

UNIcertLUCE

English for Mathematicians, UNIcert ${ }^{\circledR}$ III

PARTT TRERe
 \diamond
 GRAMIMLRR AND CIEETS

\diamond
Assigionnent Sheet

Candidate's Number:

Name:

Surname:

Date:

Candidate's Signature:

45 minutes / 55 points

[^0]
SUBTEST G

Task One

Complete Text 2 with suitable forms of the verbs given. Passive and to-infinitive are considered to be a 'verb form'. Use each verb only once.

```
estimate - encounter - make - depend - express - read - be - exist -
correspond - obtain - define
```


Text 1

Introduction to interpolation

Anyone who has had occasion to consult tables of mathematical functions is familiar with the method of linear interpolation and probably (1) situations in which this method of "(2) \qquad between the lines of the table" has appeared (3) unreliable. If more reliable interpolates are desired, it is clearly necessary (4) \qquad use of more information than that consisting merely of tabulated values (ordinates) of a function, (5) \qquad to two successive abscissas. Whereas that additional information could consist, for example, of known values of certain derivatives of the function at those two points, it is supposed in most of what follows that the interpolation process is to be based only on tabulated values of the function itself, with any further available information reserved for use in (6) \qquad the error involved.
There (7) \qquad a number of interpolation formulas which have this property, most of which possess certain advantages in certain situations, but no one of which is preferable to all others in all respects. Whereas certain of these formulas (8) \qquad explicitly in terms of all the ordinates on which they (9) , most of them involve only one or two of the ordinates explicitly and express their dependence upon other ordinates only in terms of differences of ordinates and successive differences of differences. In the general case, when the abscissas are not necessarily equally spaced, the use of so-called divided differences is convenient. The principal purpose of this chapter is (10) \qquad such differences and investigate certain of their properties, and (11) \qquad a basic interpolation formula from which most of the other formulas of the type described can be deduced.

[^1]
Task Two

Complete Text 1 with $a /$ an or the, or \emptyset for zero article.

Text 2

PYTHAGOREAN NUMBERS
(1) \qquad interesting question in (2) \qquad number theory is connected with (3)
\qquad Pythagorean theorem. The Greeks knew that (4) \qquad triangle with (5) \qquad sides $3,4,5$ is (6)__ right triangle. This suggests the general question: What other right triangles have sides whose lengths are integral multiples of a unit length? (7) equation
(1) $a^{2}+b^{2}=c^{2}$, where a and b are (9) \qquad lengths of (10) \qquad legs of (11) \qquad right triangle and c is the length of (12) \qquad hypotenuse. (13) \qquad problem of finding all right triangles with sides of (14) \qquad integral length is thus equivalent to (15)
\qquad problem of finding all integer solutions (a, b, c) of (16) \qquad equation (1). Any such triple of numbers is called a Pythagorean number triple.

SUBTEST H

Correct the punctuation in the sentences below by inserting a comma. Each sentence is either correct or needs one comma.

a/

For example we can search for models where a given path property is true in a given initial state.

b/

Theorem 1 is important for two reasons: First it states that all relations where this theorem is applied contain an inconsistency.

c/

Instead of 2050 students participated in the experiment.
d/
e/
\ldots
f/

g/

© Language Accreditation Unit for Universities in Central Europe - UNIcert® LUCE
© Department of Language Education, Faculty of Mathematics and Physics, Charles University

h/

i/
j/

SUBTEST I

Transform the second sentence so that it has a similar meaning to the first. You must use between two and five words including the word given. Do not change the word given.

a/

The same holds for the semiring $\mathrm{Mn}, \mathrm{n}(\mathrm{S})$. applies
The same \qquad the semiring Mn,n(S).

b/

Choose point G to represent the number 0 . let
\qquad the number 0 .

c/

$p \in A$ implies that $p \in A \cup B$. If
\qquad $p \in A \cup B$.
d/
e/
f/
g/
h/
i/
ј/
© Language Accreditation Unit for Universities in Central Europe - UNIcert® LUCE
© Department of Language Education, Faculty of Mathematics and Physics, Charles University

SUBTEST J

Complete the text using suitable nouns, adjectives, or adverbs formed from the words given. Each of the words is used only once.

```
uniform - close - calculate - inaccurate - interpret - require - sufficient -
desire - express - algebra
```


Approximation

In many of the problems which arise in numerical analysis, we are given certain information about a certain function, say $f(x)$, and we are required to obtain additional or improved information, in a form which is appropriate for (1) \qquad in terms of numbers. Usually $f(x)$ is known or required to be continuous over the range of interest.

A technique which is frequently used in such cases can be described, in general terms, as follows. A convenient set of $n+1$ coordinate functions, say $\phi_{0}(x), \phi_{1}(x), \ldots, \phi_{n}(x)$ is first selected. Then a procedure is invented which has the property that it would yield the desired additional information simply and exactly (barring (2) in calculation) if $f(x)$ were a member of the set S_{n} of all functions which are (3) exactly as linear combinations of the coordinate functions. Next, use is made of an appropriate selective process which tends to choose from among all functions in S_{n} that one, say $y_{n}(x)$, whose properties are as nearly as possible identified with certain of the known properties of $f(x)$. In particular, it is (4) that the process be one which would select $f(x)$ if $f(x)$ were in $S n$. The required property of $f(x)$ is then approximated by the corresponding property of $y_{n}(x)$. Finally, a method is devised for using additional known properties of $f(x)$, which were not employed in the selective process, for estimating the error in this approximation.

Clearly, it is useful, first of all, to choose coordinate functions which are convenient for purposes of (5) \qquad . The $n+1$ functions $1, x, x^{2} \ldots, x^{2}$, which generate the (6) polynomials of degree n or less, are particularly appropriate, since polynomials are readily evaluated and since their integrals, derivatives, and products are also polynomials.

Of much greater importance, however, is the natural (7) \qquad that it be possible, by taking n (8) \qquad large, to be certain that the set S_{n} of generated functions will contain at least one member which approximates the function $f(x)$ within any preassigned tolerance, on the interval of interest. It is a most fortunate fact that the convenient set $S n$, which consists of all polynomials of degree n or less, possesses this property if only $f(x)$ is continuous on that interval and the interval is of finite extent.

This fact was established in 1885 by a famous theorem of Weierstrass, which states, in fact, that any function $f(x)$ which is continuous on a (9) \qquad interval $[a, b]$ can be (10) \qquad approximated within any prescribed tolerance, on that interval, by some polynomial. By this statement we mean that, given any positive tolerance ε, there is a polynomial $p(x)$ such that $|f(x)-p(x)| \leq \varepsilon$ for all x such that $a \leq x \leq b$.

[^2]
[^0]: © Language Accreditation Unit for Universities in Central Europe - UNIcert® LUCE
 © Department of Language Education, Faculty of Mathematics and Physics, Charles University

[^1]: © Language Accreditation Unit for Universities in Central Europe - UNIcert® LUCE
 © Department of Language Education, Faculty of Mathematics and Physics, Charles University

[^2]: © Language Accreditation Unit for Universities in Central Europe - UNIcert® LUCE
 © Department of Language Education, Faculty of Mathematics and Physics, Charles University

