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SUBTEST A 
 
Read the following text. 
NB: For the purpose of Task Three in SUBTEST A, some of the words are 
underlined. 
 
Prime Number Conspiracy 
In a recent paper published in 2016, Kannan Soundararajan and Robert 
Lemke Oliver of Stanford University have presented both numerical and 
theoretical evidence that prime numbers repel other would-be primes that end 
in the same digit, and have varied predilections for being followed by primes 
ending in the other possible final digits. 

Among the first billion prime numbers, for instance, a prime ending in 9 
is almost 65 percent more likely to be followed by a prime ending in 1 than 
another prime ending in 9.  

This "conspiracy" among prime numbers seems, at first glance, to violate 
a longstanding assumption in number theory: that prime numbers behave 
much like random numbers. Most mathematicians would have assumed that 
a prime should have an equal chance of being followed by a prime ending in 
1, 3, 7 or 9 (the four possible endings for all prime numbers except 2 and 5).  

Yet the pair’s work doesn’t upend the notion that primes behave 
randomly so much as point to how subtle their particular mix of randomness 
and order is. 

Soundararajan was drawn to study consecutive primes after hearing a 
lecture at Stanford by the mathematician Tadashi Tokieda, of the University 
of Cambridge, in which he mentioned a counterintuitive property of coin-
tossing: If Alice tosses a coin until she sees a head followed by a tail, and Bob 
tosses a coin until he sees two heads in a row, then on average, Alice will 
require four tosses while Bob will require six tosses, even though head-tail 
and head-head have an equal chance of appearing after two coin tosses. 

Soundararajan wondered if similarly strange phenomena appear in other 
contexts. Since he has studied the primes for decades, he turned to them — 
and found something even stranger than he had bargained for.  

Looking at prime numbers written in base 3 — in which roughly half the 
primes end in 1 and half end in 2 — he found that among primes smaller than 
1,000, a prime ending in 1 is more than twice as likely to be followed by a 
prime ending in 2 than by another prime ending in 1. Likewise, a prime ending 
in 2 prefers to be followed by a prime ending in 1. 

Soundararajan then showed his findings to postdoctoral researcher 
Lemke Oliver, who was shocked. He immediately wrote a program that 
searched much farther out along the number line — through the first 400 
billion primes. Lemke Oliver again found that primes seem to avoid being 
followed by another prime with the same final digit.  

Lemke Oliver and Soundararajan discovered that this sort of bias in the 
final digits of consecutive primes holds not just in base 3, but also in base 10 
and several other bases; they conjecture that it’s true in every base. The biases 
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that they found appear to even out, little by little, as you go farther along the 
number line — but they do so at a snail’s pace.  

Lemke Oliver and Soundararajan’s first guess for why this bias occurs 
was a simple one: Maybe a prime ending in 3, say, is more likely to be followed 
by a prime ending in 7, 9 or 1 merely because it encounters numbers with 
those endings before it reaches another number ending in 3. For example, 43 
is followed by 47, 49 and 51 before it hits 53, and one of those numbers, 47, 
is prime.  

But the pair of mathematicians soon realized that this potential 
explanation couldn’t account for the magnitude of the biases they found. Nor 
could it explain why, as the pair found, primes ending in 3 seem to like being 
followed by primes ending in 9 more than 1 or 7. To explain these and other 
preferences, Lemke Oliver and Soundararajan had to delve into the deepest 
model mathematicians have for random behavior in the primes. 

Prime numbers, of course, are not really random at all — they are 
completely determined. Yet in many respects, they seem to behave like a list 
of random numbers, governed by just one overarching rule: The approximate 
density of primes near any number is inversely proportional to how many 
digits the number has. 

The primes’ preferences about the final digits of the primes that follow 
them can be explained, Soundararajan and Lemke Oliver found, using a much 
more refined model of randomness in primes, something called the prime k-
tuples conjecture. Originally stated by mathematicians G. H. Hardy and J. E. 
Littlewood in 1923, the conjecture provides precise estimates of how often 
every possible constellation of primes with a given spacing pattern will appear. 
A wealth of numerical evidence supports the conjecture, but so far a proof has 
eluded mathematicians. 

The prime k-tuples conjecture subsumes many of the most central open 
problems in prime numbers, such as the twin primes conjecture, which posits 
that there are infinitely many pairs of primes — such as 17 and 19 — that are 
only two apart. Most mathematicians believe the twin primes conjecture not 
so much because they keep finding more twin primes, but because the number 
of twin primes they’ve found fits so neatly with what the prime k-tuples 
conjecture predicts. 

In a similar way, Soundararajan and Lemke Oliver have found that the 
biases they uncovered in consecutive primes come very close to what the prime 
k-tuples conjecture predicts. In other words, the most sophisticated 
conjecture mathematicians have about randomness in primes forces the 
primes to display strong biases.  

At this early stage, mathematicians say, it’s hard to know whether these 
biases are isolated peculiarities, or whether they have deep connections to 
other mathematical structures in the primes or elsewhere.  
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SUBTEST B 
 
Read the following text. 
NB: For the purpose of Task One in SUBTEST B, some of the words are 
underlined. 
Space Curves 

Most of the discussion of the last section can be adapted to apply to curves in 
space (sometimes called twisted curves). 

To start with, we again get the tangent as the limiting position of the 
secant when one point of intersection moves into coincidence with the other. 
But the three-dimensional case differs from the case of plane curves by the 
fact that there are infinitely many perpendiculars to the tangent at the point 
of contact; these perpendiculars fill out a plane which is called the normal 
plane at the point of the curve. 

 
We shall try to find a plane lying as close to the curve as possible in the 

neighborhood of the point under consideration. To this end, we draw the plane 
passing through the tangent at the given point and through a neighboring 
point of the curve and let the second point move along the curve toward the 
point of contact of the tangent, which we hold fixed. In this process the plane 
approaches a limiting position. The limiting plane satisfies our requirement; it 
is called the osculating plane of the curve at the point under consideration. 
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Using a mode of expression introduced earlier, we say that the osculating 
plane has three coincident points in common with the curve. For this reason, 
the curve generally crosses its osculating plane at the point of contact, 
although it lies on one side of any other plane containing the tangent.  

Since it contains the tangent, the osculating plane is perpendicular to the 
normal plane. Finally, let us consider that plane through the given point of 
the curve which is perpendicular both to the normal plane and to the 
osculating plane. It is called the rectifying plane.  

The three planes just considered may be interpreted as coordinate planes 
in a three-dimensional Cartesian coordinate system which proves to be 
particularly well suited for describing the course of the curve at the point 
under consideration. One of the coordinate axes in this system is the tangent; 
the other two axes, which must lie in the normal plane, are called the principal 
normal and the binormal. The principal normal lies in the osculating plane, 
the binormal in the rectifying plane (see Fig. 189). This coordinate system, 
depending as it does on the point of the curve, is called the moving trihedron 
of the curve. It is the analogue of the coordinate system formed by the tangent 
and normal in the case of plane curves. In space, a coordinate system defines 
eight regions, called octants, as against four quadrants in the case of the 
plane. Thus the moving trihedron serves to distinguish eight types of points 
on a curve in much the same way as four types of points were distinguished, 
on page 174, for plane curves. Once again, only one of the cases is regular, 
and the others can occur only at isolated points (provided our curve is really 
a space curve, i.e. provided it does not lie wholly in a plane). At a regular point 
the curve intersects the osculating plane and the normal plane and remains 
on one side of the rectifying plane. We shall not discuss the other cases here. 
It may be mentioned, incidentally, that the twisted curves having a simple 
analytic structure, may, just like the plane curves, exhibit three additional 
types of singularities, namely double points, terminal points, and isolated 
points.  

Let us generalize the Gaussian representation of plane curves to the case 
of three-dimensional curves. For this purpose, we use a sphere of unit radius. 
To every tangent of the curve (which we assume to be oriented, i.e., to have a 
definite sense of traversal), we draw the radius of the sphere parallel to the 
tangent and pointing in the same direction. Its extremity on the surface of the 
sphere is called the tangential image of the point on the curve. In this way the 
entire curve is represented by a definite curve on the sphere. If the principal 
normal or the binormal is used instead of the tangent, we get two more curves 
on the sphere. Referred to their respective moving trihedra, these three 
"spherical images" are connected with each other and with the original curve 
by certain simple relations. For example, the tangential indicatrix and the 
binormal indicatrix together characterize the eight above-mentioned types of 
point of a curve: the point on the original curve, the tangent, and the binormal 
may each either move on continuously or reverse its course, and the 
combinations of the various possibilities give us just those eight cases. 
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SUBTEST C 
Read the definitions of mathematical notions and say which terms are 
defined. 

Definition 1 
_____________________ is a set within which the values of a function lie. (Not 
only the set of values that the function actually takes.) 

Definition 2 
_____________________ is a point x0 at which f is differentiable and f(x0) = 0. 

Definition 3 
_____________________ is the determination of a set of divisors of a given 
integer, polynomial, etc., which, when multiplied together, give the original 
number, polynomial, etc.  

Definition 4 
_____________________ is a point at which a function f(x) has both left-hand 
and right-hand limits but the limits are not equal. 
Definition 5 
… 

Definition 6 
… 

Definition 7 
… 

Definition 8 
… 

Definition 9 
… 

Definition 10 
… 
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SUBTEST D 
 
Fill an appropriate phrase from the box in each gap. Use each phrase only 
once. There are three extra phrases that do not fit any gap.  
 
 
 
Use of quaternions to represent transformations in 3D 
 
 
Use of quaternions to represent transformations in 3D 
The main practical application of this interesting algebra is to represent 3D 
rotations. 

In fact quaternions can (1) __________ 3D reflections, rotations and 
scaling, however a single quaternion operation cannot (2) __________ 
translations so if we want to rotate, reflect or scale around (3) __________ other 
than the origin, then we would have to handle the translation part separately. 
To (4) __________ the resulting point (Pout) when we translate the point (Pin) 
(5) __________ quaternions then we use the following equations:  

 
For Reflection & scaling: Pout = q * Pin * q 
For Rotation & scaling: Pout = q * Pin * conj(q) 
 
The majority of applications involve pure rotations, for this we (6) 

__________ the quaternions to those with (7) __________ and we use only 
multiplications and not addition to represent a combination of different 
rotations. When quaternions are (8) __________ in this way, together with the 
multiplication operation to (9) __________ rotations, they form a mathematical 
group, in this case SU(2). 

We can use this to do lots of operations which are (10) __________ in 
practical applications such as combining subsequent rotations (and 
equivalently orientations), (11) __________ between them, etc.  

When quaternions are used in this way we can think of them as being 
similar to axis-angle except that real part is (12) __________ to cos(angle/2) 
and the complex part is (13) __________ of the axis vector times sin(angle/2). 
It is quite difficult to give a physical meaning to a quaternion, and many people 
find this (14) __________ to axis-angle as the most intuitive way to think about 
it, others may just prefer to think of quaternions as an interesting 
mathematical system which has the same (15) __________ as 3D rotations. 

framework     required     dependence    represent     made up     a point 
include    the average    normalised    combine   calculate   interpolating   
equal   properties    similarity    using    unit magnitude    restrict     


