
What programming paradigms?
Petr Svarny

Semestr

● Seminář, tj. očekává se aktivní účast
● Zápočet na základě prezentace či práce
● Teoretický přehled referáty

○ Procedurální
○ Objektově orientované
○ Logické
○ Funkcionální

● Praktické učení se pomocí Pythonu a dalších jazyků

Programming paradigm

“A paradigm is a way of doing something (like programming), not a concrete thing (like a language). Now, it’s true that if a
programming language L happens to make a particular programming paradigm P easy to express, then we often say “L is a P
language” (e.g. “Haskell is a functional programming language”) but that does not mean there is any such thing as a “functional
language paradigm”.”

Ray Toal

https://cs.lmu.edu/~ray/notes/paradigms/

Paradigm list

Programming

DeclarativeImperative

Procedural OOP Logical Functional

Separate question - “ the level”

High level programming

- more abstraction from the HW
- majority of modern languages are “high level” but can differ in degree

Low level programming
 - close to the actual HW it is running on

The three tribes

● ART You are a poet and a mathematician. Programming is your poetry
● HACK You are a hacker. You make hardware dance to your tune
● TOOL You are a maker. You build things for people to use

Seen by their source code, code execution, notion of correctness and
user-interface (UI) preference. 💻

🖹👤

“Artist”

Source code: dense, hard to read, easy to execute.

Execution: exact details of execution are not important, but the code should be
elegant.

Correctness: A program is correct if it implements the specification exactly.

UI: Beautiful code is more important than beautiful UI.

Haskell, Lisp, ML (Ocaml, etc), Clojure, ADA

“Hacker”

Source code: clean, but clean code is less important than a clean execution.

Execution: How the computer executes your code is paramount. Always think about
the program execution.

Correctness: A program is correct if it runs the way you expect it to run, given normal
parameters. Execution elegance is more important than correctness.

UI: interaction with humans? Optional.

A short video about history and also making fun of this: http://worrydream.com/dbx/

C, C++, Assembly

http://worrydream.com/dbx/

“Doer”

Source code: The code should be clean, but only because cleaner code is
easier to iterate on.

Execution: The program only has to be fast enough for the users. Don’t
optimize, add features.

Correctness: Bugs are bad only in proportion to their impact. The program
should act the way the users expect it to act.

UI: Users are important and thus also the UI!

JS, Ruby, Python, Swift, C#.

Example

float Q_rsqrt(float number)

{
 long i;
 float x2, y;
 const float threehalfs = 1.5F;

 x2 = number * 0.5F;
 y = number;
 i = * (long *) &y; // evil floating point bit level hacking
 i = 0x5f3759df - (i >> 1); // what the fuck?
 y = * (float *) &i;
 y = y * (threehalfs - (x2 * y * y)); // 1st iteration

// y = y * (threehalfs - (x2 * y * y)); // 2nd iteration, this can be removed
 return y;
}

https://en.wikipedia.org/wiki/Fast_inverse_square_root Quake III code

https://en.wikipedia.org/wiki/Fast_inverse_square_root

References

LMU notes: https://cs.lmu.edu/~ray/notes/paradigms/

Three tribes article: https://josephg.com/blog/3-tribes/

https://cs.lmu.edu/~ray/notes/paradigms/
https://josephg.com/blog/3-tribes/

