

Springer Monographs in Mathematics

For further volumes:
www.springer.com/series/3733

http://www.springer.com/series/3733

Pavel Pudlák

Logical Foundations
of Mathematics
and Computational
Complexity

A Gentle Introduction

Pavel Pudlák
ASCR
Prague, Czech Republic

ISSN 1439-7382 Springer Monographs in Mathematics
ISBN 978-3-319-00118-0 ISBN 978-3-319-00119-7 (eBook)
DOI 10.1007/978-3-319-00119-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013936799

Mathematics Subject Classification: 03D15, 03E30, 03E35, 03F03, 03F20, 03F30, 03F40, 68Q15

© Springer International Publishing Switzerland 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Dedicated to my parents
Anna Pudláková and Ján Pudlák

Preface

As the title states, this book is about logic, foundations and complexity. My aim is
to present these topics in a readable form, accessible to a wide spectrum of readers.
The message that I want to convey is that complexity, either in the form of computa-
tional complexity or in the form of proof complexity, is as important for foundations
as the more traditional concepts of computability and provability are. Rather than
presenting my own philosophical doctrine in the foundations, my goal is to isolate
the most important problems and invite the reader to think about them.

The foundations of mathematics has always attracted mathematicians and
philosophers. There were periods of time when many mathematicians were involved
in the discussion of foundations. The most important such period was at the begin-
ning of the 20th century. At that time the set-theoretical foundations were laid down,
but set theory itself ran into problems—paradoxes were found showing that the in-
tuitive use of set theory sometimes leads to contradictions. This problem was solved
by accepting a particular axiomatic system for set theory, and things settled down.
Later the interest in the foundations was stirred by several events. In the 1930s, it
was Gödel’s Incompleteness Theorem that showed that Hilbert’s program to prove
the consistency of the foundations was not possible. The second major event was
Cohen’s proof of the independence of the Continuum Hypothesis in the 1960s. This
was an open problem concerning a basic question about the cardinality of the real
numbers, posed by Cantor already in the 1870s. Also in the late 1960s a new field
emerged that seemed to be somehow connected with foundations. This was the
computational complexity theory.

Achievements in foundations can be viewed as solutions of important problems,
but in fact they present us with much deeper open problems. Do the axioms of set
theory describe the real universe of sets? Can we trust the axiomatic system for set
theory to be free of contradiction? When the consistency of a theory is only provable
in a stronger theory, according to the Incompleteness Theorem, what are we going
to do with the consistency problem? How are we going to decide the Continuum
Hypothesis, when it is independent of the axioms of set theory? In computational
complexity there are a number of open problems. They may just be very difficult
solvable problems, but their nature, which is similar to logical problems, and their

vii

viii Preface

resilience with which they resist any attempts to solve them, rather suggest that there
are more fundamental reasons why they are still open.

These examples show that, in spite of all the progress that has been achieved,
there are problems in the foundations that are still widely open. Many mathemati-
cians and philosophers are aware of this fact and are thinking about the problems.
But not only them; also physicists have realized that they must know something
about the foundations of mathematics if they want to find the unified foundations of
physics. One can observe a renewed interest in the foundations in the past decade
notwithstanding the fact that there has been no breakthrough result obtained re-
cently.

However, a mathematician with a deeper interest in this subject does not have
much choice of suitable sources: on the one hand, there are many popular books
that present the subject in a very superficial manner, and often incorrectly; on the
other hand, there are monographs about various parts of logic, set theory and com-
putational complexity theory that can only be read with considerable effort. Further-
more, these monographs always cover much more than is needed for understanding
the basic questions about the foundations, and someone not acquainted with the field
does not know what to read and what to skip.

This book is intended to fill this gap by presenting a survey of results related
to the foundations of mathematics and complexity theory in a readable form and
with a sufficient amount of detail. It focuses on explaining the essence of concepts
and the ideas of proofs, rather than presenting precise formal statements and full
proofs. Each section starts with concepts and results that can easily be explained,
and gradually proceeds to more difficult ones. The idea is that the readers should
not be lost before they get to the heart of the matter. But since mathematicians
are always curious how the things are actually done, some formal definitions and
sketches of proofs are provided in the notes to the sections.

The prospective readers of this book are mathematicians with an interest in the
foundations, philosophers with a good background in mathematics and, perhaps,
also philosophically minded physicists. Most of the book should be accessible to
graduate students of mathematics. Logicians may find much of the material familiar,
but they can profit from the chapters about computational and proof complexities,
unless they also work in these fields.

I should also say what the reader should not expect from the book. Although
the style of the presentation is often light (such as in the quotations from science
fiction stories), the book is not popular science—its primary aim is not to entertain,
but to educate the reader. So the readers will need to stop from time to time and
ponder what they have read, or even to skip a part and return to it later. But the book
is also not a typical dry monograph consisting of definitions, theorems and proofs.
Concerning the history of mathematics, the facts that I occasionally mention are
only meant to make the text more readable and are not intended to give a complete
picture of the development of the field.

The book consists of seven chapters. The first two chapters are an introduction to
the foundations of mathematics and mathematical logic. The material is explained

Preface ix

very informally and more detailed presentation is deferred to later chapters. For
example, set theory is introduced by means of several informal principles that are
presented more precisely as the axioms of Zermelo-Fraenkel Set Theory in Chap. 3.
Similarly, the Incompleteness Theorem is only stated and the proof and the conse-
quences are discussed in Chap. 4.

Chapter 3 is devoted to set theory, which is the most important part of the founda-
tions of mathematics. The two main themes in this chapter are: (1) higher infinities
as a source of powerful axioms, and (2) alternative axioms, such as the Axiom of
Determinacy.

Proofs of impossibility, the topic of Chap. 4, are proofs that certain tasks are
impossible, contrary to the original intuition. Nowadays we tend to equate impos-
sibility with unprovability and non-computability, which is a rather narrow view.
Therefore, it is worth recalling that the first important impossibility results were
obtained in different contexts: geometry and algebra. The most important result pre-
sented in this chapter is the Incompleteness Theorem of Kurt Gödel. I believe that
the essence of the proof of this theorem can be explained with very little formalism
and this is what try to I do in this chapter. Due to the diversity of results and con-
nections with concrete mathematics, this is probably the most interesting chapter.

Proofs of impossibility are, clearly, important in foundations. One field in which
the most basic problems are about proving impossibility is computational complex-
ity theory, the topic of Chap. 5. But there are more connections between computa-
tional complexity and the foundations. I think that one cannot study the foundations
of mathematics without understanding computational complexity.

In fact, there is a field of research that studies connections between computational
complexity and logic. It is called ‘Proof Complexity’ and it is presented in Chap. 6.
Although we do have indications that complexity should play a relevant role in
the foundations, we do not have any results proving this connection. In the last
section of this chapter I present some ideas of mine about the possible nature of
these connections. I state several conjectures which, if true, would give an explicit
link between these two areas.

Every book about the foundations of mathematics should mention the basic
philosophical approaches to the foundations of mathematics. I also do it in Chap. 7,
but as I am not a philosopher, the main part of the chapter rather concentrates on
mathematical results and problems that are at the border of mathematics and philos-
ophy. Since I feel that the field lacks innovative approaches, I present one at the end
of the chapter. It is based on the idea that natural numbers that can be represented in
the physical universe are different from those studied in mathematics.

I tried to be as neutral as possible, but one cannot avoid using a certain philo-
sophical standpoint when explaining the foundations. At the beginning of the book
I assume the point of view of a realist, because it is easier to explain logic to a be-
ginner from this viewpoint. My actual philosophy is the one of a moderate formal-
ist, which is certainly apparent from my comments throughout the book. The only
special feature of my philosophy is the stress on the importance of the complexity
issues.

Even a thick volume like this cannot cover everything that is relevant to the foun-
dations of mathematics. The main omission that I am aware of concerns intuition-

x Preface

istic type theories. These theories play a central role in the current research into the
intuitionistic foundations of mathematics. The reasons for this omission is my lack
of expertise in this field and the fact that the book is already fairly long as it is.

Pavel PudlákPrague, Czech Republic
January 2013

Acknowledgements

I would like to thank all who helped me by reading parts of the manuscript, point-
ing out errors, suggesting improvements or answering questions related to the text:
Paul Beame, Arnold Beckmann, Lev Beklemishev, Samuel Buss, Lorenzo Car-
lucci, Stephano Cavagnetto, Dmitri Gavinsky, Stefan Hetzl, Edward Hirsch, Radek
Honzík, Pavel Hrubeš, Peter Koellner, Leszek Kolodziejczyk, Jan Krajíček, Sebas-
tian Müller, Jan Nekovář, Adam Nohejl, Jeffrey Paris, Ján Pich, Michael Rathjen,
Zenon Sadowski, Neil Thapen, Iddo Tzameret, Eva Vachková.

I am also grateful to the anonymous reviewers of the manuscript, whose critical
remarks were very useful and helped me to correct several errors.

My thanks are further due to Julie Cismosky, Sean Miller and Neil Thapen for
correcting the English, and to Petr Pudlák for helping me with computer related
issues.

The photographs were kindly provided by: Fachbereich Mathematik, Universität
Hamburg (Cantor, Dedekind); Kurt Gödel Society, Vienna (Gödel); Archives of
the Mathematisches Forschungsinstitut Oberwolfach (D. Hilbert); King’s College,
Cambridge University (Turing); Princeton University Library (A. Church); Bertrand
Russell Archives, McMaster University Library (Russell); Universitätsarchiv Zürich
(Zermelo).

I appreciate the help of Lynn Brandon, Lauren Stoney and Catherine Waite from
Springer-Verlag London during the preparation of the manuscript for publication.

Through all the work I was supported by the Institute of Mathematics of the
Academy of Sciences of the Czech Republic and received additional support from
several grants of the Grant Agency of the Academy of Sciences.

Last, but not least, I want to thank my wife Věra for her understanding and en-
couragement over the years of writing this book.

xi

Contents

1 Mathematician’s World . 1
1.1 Mathematical Structures . 2
1.2 Everything Is a Set . 25
1.3 Antinomies of Set Theory . 36
1.4 The Axiomatic Method . 43
1.5 The Necessity of Using Abstract Concepts 54
Main Points of the Chapter . 64

2 Language, Logic and Computations 65
2.1 The Language of Mathematics . 66
2.2 Truth and Models . 80
2.3 Proofs . 92
2.4 Programs and Computations . 123
2.5 The Lambda Calculus . 146
Main Points of the Chapter . 155

3 Set Theory . 157
3.1 The Axioms of Set Theory . 159
3.2 The Arithmetic of Infinity . 176
3.3 What Is the Largest Number? . 196
3.4 Controversial Axioms . 215
3.5 Alternative Set-Theoretical Foundations 231
Main Points of the Chapter . 253

4 Proofs of Impossibility . 255
4.1 Impossibility Proofs in Geometry and Algebra 256
4.2 The Incompleteness Theorems 272
4.3 Algorithmically Unsolvable Problems 300
4.4 Concrete Independence . 319
4.5 The Independent Sentences of Set Theory 340
Main Points of the Chapter . 364

xiii

xiv Contents

5 The Complexity of Computations . 365
5.1 What Is Complexity? . 366
5.2 Randomness, Interaction and Cryptography 410
5.3 Parallel Computations . 437
5.4 Quantum Computations . 448
5.5 Descriptional Complexity . 479
Main Points of the Chapter . 493

6 Proof Complexity . 495
6.1 Proof Theory . 496
6.2 Theories and Complexity Classes 523
6.3 Propositional Proofs . 540
6.4 Feasible Incompleteness . 562
Main Points of the Chapter . 580

7 Consistency, Truth and Existence . 583
7.1 Consistency and Existence . 584
7.2 The Attributes of Reality . 609
7.3 Finitism and Physical Reality . 646
Main Points of the Chapter . 664

Bibliographical Remarks . 667

References . 671

Name Index . 683

Subject Index . 687

Symbols and Abbreviations . 695

Chapter 1
Mathematician’s World

The real universe arched sickeningly away beneath them.
Various pretend ones flitted silently by, like mountain goats.
Primal light exploded, splattering space-time as with gobbets of
junket. Time blossomed, matter shrank away. The highest prime
number coalesced quietly in a corner and hid itself away
for ever.

Douglas Adams, The Hitchhiker’s Guide to the Galaxy

FOR an ordinary person, it is a strange, imaginary world. At the entrance we meet
very familiar creatures, such as the natural numbers 0,1,2, . . . , but further on

there will appear many strange aliens, like the imaginary unit i, the first uncountable
cardinal number ℵ1 and things even stranger than these. In some sense it is like the
artificial worlds of science fiction, or like a detective story made up of mysteries with
logical solutions, but still in many respects it is very different. The main difference
is, perhaps, not in the artificial nature of the things that we encounter in mathematics,
which apparently have very little to do with our everyday life, but in the strict rules
that they obey. In a good detective story the detective eventually solves a mysterious
crime by applying logical deduction. The author usually pretends that you could also
have deduced who the murderer was already at the beginning of the story, knowing
only the basic data presented on the first few pages. But in fact this is not true; on
the contrary, the author chooses the most unlikely person. In mathematics you really
can solve problems using only deduction and, in fact, no initial data are needed,
except for the statement of the problem; the only things you need are patience and
determination.

If you read a good novel or regularly watch a TV series, you enter into the world
of the heroes of the story and often forget, at least for a while, that it is not real.
In science fiction stories you can even experience a completely different world than
ours here on Earth. Science fiction gives writers the opportunity to construct new
worlds, even worlds that are in contradiction with firmly established laws of physics.
There is nothing wrong with this if it has its own logic. Similarly, mathematicians
invent worlds which are sometimes completely alien to ordinary people. In their
minds they create mental pictures of the concepts about which they are thinking, as
if they could really see numbers, sets, functions, infinitely dimensional spaces and a
lot more, and move in this environment arranging these objects until they construct

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_1,
© Springer International Publishing Switzerland 2013

1

http://dx.doi.org/10.1007/978-3-319-00119-7_1

2 1 Mathematician’s World

the one they were looking for. Active mathematicians actually spend a big portion
of their lives in this world. The more time they spend there, the more real this world
seems to them. Like many teenagers who spend a lot of time in the virtual realities
of computer games, mathematicians live part of their lives in what I would call real
virtuality. Whereas virtual reality is pretend reality, what mathematicians do is the
opposite: their worlds seem virtual, but are in some sense very real.

So is the mathematical world real or not? Most mathematicians would defend
the true existence of at least some mathematical objects; in fact, most people would
agree that the numbers 0,1,2, . . . in some abstract sense do exist. As I will explain
later, this is not just an important philosophical question, it is a question which is
very important for the foundations of mathematics independent of our philosophical
view, or our lack of interest in philosophy. But before we discuss such problems we
have to know what kind of “things” mathematicians deal with.

1.1 Mathematical Structures

In biology we study animals, plants, bacteria, etc., in astronomy stars, planets, etc.
So we can define biology as the science studying living organisms, astronomy as
the science of the universe, and so on. But how can we describe mathematics? The
answer to this question used to depend on what the main topic in contemporary
mathematics was. For ancient Greeks, mathematics was essentially geometry and
thus mathematics was the science of space. In the 18th century, when mathematics
was tightly connected with physics, an answer to the question ‘What is the subject
of study of mathematics?’ would most likely be that it is quantities and the relations
between them. A ‘quantity’ was a real number that possibly depended on other num-
bers. For example, when describing a motion of a physical object, quantities could
be position, speed, and momentum, all depending on time. The views on what the
subject of mathematics is changed gradually. In roughly the 19th century mathe-
maticians realized that there could be other objects of study on top of the traditional
ones. The discovery of non-Euclidean geometries was an important step towards
realizing that one does not have to study only objects which occur naturally in real
life. An especially dramatic shift happened in algebra, where mathematicians re-
alized that the usual number-theoretic structures are merely special instances from
classes of structures sharing properties with the standard ones. Later on, new math-
ematical fields appeared where the objects studied had little to do with numbers or
geometry. A systematic treatment of all mathematical objects became possible only
after calculus had been given rigorous foundations and when there was a sufficiently
general tool at hand: the concept of set.

I will describe the current standard approach to the question of what mathemati-
cal objects are. It is based on the concept of a mathematical structure, which grad-
ually developed in the first half of the 20th century and was finally adopted as a key
concept by the Bourbakists. Nicolas Bourbaki was a pseudonym under which, in
1939, a group of young French mathematicians started publishing an encyclopedic

1.1 Mathematical Structures 3

series of monographs covering the main fields in mathematics. Naturally, an attempt
to give a unified treatment to the whole of mathematics needed a general concept
such as the concept of mathematical structure.

This is certainly not the only possible view of contemporary mathematics. If
I were not interested in foundations and wanted rather to explain the source of
ideas which led to the most profound results, I would choose a different vantage
point. Quite often it is difficult to formalize general ideas by a single mathemati-
cal concept. In fact, the main progress in modern mathematics has in most cases
been achieved by realizing that the same idea was present in several fields and thus
results and proof techniques could be transferred from one field to another. A promi-
nent example is algebraic geometry, a field which applies geometric ideas to various
non-geometric objects, including some discrete structures. Mathematics has always
been a never ending struggle to express general ideas in a comprehensible, general
and rigorous way and thus it cannot be explained completely by a single concept
such as the mathematical structure. Nevertheless, Bourbaki’s structuralist approach
is the best that we have.

The ancient mathematicians considered only a few structures: the natural num-
bers, the plane and three dimensional space. Gradually new structures appeared in
mathematics, although it was not an easy process to accept them. For instance, the
complex numbers turned out to be very useful, but for a long time they were treated
as a strange auxiliary means to solve problems about real numbers. We still use the
terminology of real and imaginary numbers, but now we treat these words as purely
technical terms and do not attribute more existence to real numbers than to com-
plex ones. In mathematical analysis people realized that functions can be added,
multiplied, etc. just as numbers can be, though they are not numbers. An impor-
tant turning point was when mathematicians realized that they did not have to study
only one of the few standard structures, instead they could choose any structure
from a large variety. It was as if the objects of study were not given to them, but
they could design them according to their own will and need, just following certain
rules. (Whether one views it as the possibility to choose, or the possibility to create,
depends on one’s philosophical standpoint.)

Let us turn to the definition of a structure. Roughly speaking, a mathematical
structure is a toy or a gadget that you can play with. You push or turn knobs and
something happens. It is also like a painting where a single brush stroke makes no
sense, but together the strokes give some meaning. You can also think of a structure
as a game. In a game you have certain objects, and rules that determine what you
can do with the objects.

A nice example is Rubik’s cube, the well-known toy: the objects are the 26 small
cubes and the rules are fixed by the ingenious mechanism of Rubik’s cube that
allows you to move only certain groups of small cubes together, namely those that
form a face of the cube. Though it was important to design the mechanical construc-
tion of the cube, so that it worked well and could be mass produced, the essence of it
is not the mechanism. The only thing that is important is that you have 26 pieces and
particular rules how to move them. You can do “mathematical research” on Rubik’s
cube by studying what configurations are possible, which are symmetric, how many

4 1 Mathematician’s World

steps you need to transform a particular configuration into another one and so on.
This is, in fact, what mathematicians actually do with structures.

There are many different structures; some are, in some sense, unique, while some
are just members of large classes of similar structures. Let us consider the most
familiar structure which is the natural numbers 0,1,2,3, The structuralist point
of view is that a single number, say 4, does not have any meaning. It has a meaning
only as a part of the structure, namely, that there are four numbers less than it.
Notice that we need the relation ‘less than’, without it we could not distinguish 4 in
this way. Furthermore we can add and multiply numbers (this is the ‘playing with
a toy’ alluded to above). Thus we arrive at the following description of the natural
numbers as a mathematical structure: they consists of

1. the set of nonnegative integers {0,1,2,3, . . .}, called the universe, or the base
set, or the underlying set of the structure;

2. the operations of addition + and multiplication ·;
3. the relation of being less than or equal ≤.

Notice the stressed words set, operations, and relation. This is, in fact, the form of
all basic structures: they consist of a set on which there are some operations and
relations defined. We do not restrict the number of operations and relations, except
that their number must be finite. In particular, a structure can have only relations
or only operations. For example, we may consider the natural numbers only with
the ordering relation, or, on the contrary, we may add more operations. The natural
numbers with no operations and ≤ as the only relation form a much simpler struc-
ture, but they are important when we are interested in a particular class of structures,
namely, ordered sets.

In our example above the operations are binary, which means that they produce
an element from 2 elements. Obviously, one can consider operations with this pa-
rameter 2, called the arity, replaced by any natural number.1 In particular, operations
of arity 0 are called constants and operations of arity 1 are called functions. Oper-
ations with arity greater than 2 are rare. The arity of a relation can be any number
greater or equal than 1. A unary relation, that is a relation of arity 1, is usually
called a predicate, or a property. An example of a ternary relation is the relation ‘x
is between y and z’ used in the formalization of plane geometry.

It probably required a considerable psychological effort for mathematicians to
realize that the underlying set, the universe of a structure, does not determine the
relations and operations. For example, originally people thought of the natural num-
bers as something intrinsically associated with the natural ordering and the two ba-
sic operations. The realization that we are completely free to choose operations and
relations (and that the resulting structures can be interesting and useful) led to a
dramatic development of mathematics in the 19th century, especially in algebra. A
similar revolution occurred in physics one century later. In the 20th century theoret-
ical physicists discovered that mathematics offers not only the classical structures of

1‘Arity’ is not an English word, but it is common in mathematical jargon. The word is derived from
the suffix -ary.

1.1 Mathematical Structures 5

mathematical analysis, but many more, and they can be very useful in physics. This
started with Einstein’s use of the tensor calculus on manifolds in general relativity
theory and Heisenberg’s use of matrices in quantum mechanics.

Now, what happened with quantities? Modern mathematics has replaced this in-
formal term by the concept of function. When describing some real phenomenon by
two numbers x and y, where the number y is uniquely determined by the number x,
we say that y is a function of x. This is formally written as

y = f (x).

We call x a variable and y the value, and f is a symbol by which we denote the
function. The basic functions have names, such as ‘square of ’, ‘sine’, ‘exponen-
tial’, . . . , and they are often expressed using special notation,

x2, sinx, ex,

More generally, y may depend on several variables. Thus, in particular, operations
are also functions. We use the word ‘operation’ in situations when the function of
several variables possesses some “nice” properties. This is the case of the operations
of addition and multiplication on the natural numbers: they are commutative and
associative (which means that the sums and products do not depend on the order in
which they are computed).

If f is, say, a function defined on the real numbers, then it can be studied as the
structure consisting of

1. the universe R, which is the set of real numbers, and
2. the function f , as an operation.

It may seem that I am too fastidious about details when mentioning the universe.
Isn’t the structure already determined by the function? When we are stating theo-
rems about the structure, it must be clear what the elements we are talking about
are. We use the universe to determine the range of elements. It is a sort of a universe
in which things concerning the structure take place.

I assume that the reader already knows most of these elementary concepts, but it
is good to recall the terminology before discussing more difficult ones.

Ordered Sets

Let us now consider an example of a class of structures. The structures in the class
are called ordered sets. This is probably the most ancient kind of structure. As soon
as people started to organize their things they made lists by ordering the items that
they considered. In fact this structure is imposed on essentially all data people use.
We use language which is a sequence of words; written records are also sequences.
So things are communicated in some order, whether we want to stress it or not. It
is also interesting to note that the word ‘ordering’ comes from ‘order’ which also

6 1 Mathematician’s World

Fig. 1.1 Two drawings of the
graph of the cube

means that things are properly organized, the opposite of disorder. And this is in fact
the main purpose of mathematical structures, namely, to organize things, to intro-
duce some order into our observations and data, so that we are able to manipulate
them efficiently, physically and mentally.

The most obvious example of an ordered set is the set of natural numbers with
the ordering relation ≤ that I mentioned above. Other familiar examples are the
structure of the integers with ordering and the structure of the real numbers with
ordering. These three structures are essentially different, not only because they have
different universes, but because they have different structures, now using the word
in the usual meaning. It does not matter how we represent the natural numbers,
the integers and the real numbers, there will always be something different. The
natural numbers are distinguished from the integers and the reals by the fact that
they contain a smallest element. In the integers there are pairs of numbers such that
there is no element between them, for example, there is no element strictly between
0 and 1. This is not true for the structure of reals: for every two elements, there
exists an element between them (their mean is such an element).

Graphs

The word ‘graph’ is used in two meanings. The traditional one is the diagram of
a function, such as the dependence of the price of some commodity on time. It
has a different meaning in the modern branch of mathematics that studies discrete
structures, the theory of graphs. In this theory a graph consists of points and arcs
that connect some points. This looks like a geometric concept, and it did originate in
geometry, but it has more to do with topology than geometry. Consider for instance
a cube. A cube determines in a natural way a graph, where we take the vertices of
the cube as points and the edges of the cube as arcs, see Fig. 1.1. In fact, the standard
terminology uses ‘vertices’ and ‘edges’ for all graphs. The reason why graph theory
is so different from the classical fields of mathematics is that we completely abstract
from the nature of vertices and edges and we only consider facts that depend on
information about which vertices are connected and which are not. So if our cube is
made of rubber and we twist it, the graph will be the same.

As another example of a graph, let us consider the graph of the flight connections
of an airline. You can think of it as cities on a world map connected by arcs. On
most such maps the arcs have little to do with the actual routes that an aircraft takes
when flying between the two cities. An actual route must follow particular corridors,
which is irrelevant for a passenger who only wonders whether there is a direct flight
from city X to city Y.

1.1 Mathematical Structures 7

Groups

If mathematicians voted for the most important class of structures, they would prob-
ably elect groups. The name is just a historical accident, so do not try to guess the
meaning from normal use of the word. This concept is slightly more difficult, but
worthwhile to learn. A group is a structure with one binary operation which in some
sense behaves nicely. What this means precisely can be defined by postulating some
simple laws that the operation must meet, which I will state shortly (page 10). Here
I will only explain the concept in plain words.

The best way to imagine a group is to think of the elements of the group as re-
versible actions and the group operation as the composition of actions. As usual in
mathematics, taking no action also counts as an action, called the unit element. Note
that there is an important conceptual shift here: the actions themselves are elements,
not the objects on which they act. Rubik’s cube and similar toys are excellent ex-
amples. For Rubik’s cube group, an action is, for example, turning the front face
clockwise 90°, or turning the top by 180°. These are just some elementary actions.
An action, however, may be more complex. For instance, we can compose the first
one with the second one and this is also an action. We will get a different action, if
we start with the second one and then apply the first one. The trick to solving this
puzzle is to have several complex actions which do some particular things, such as
turning two neighboring corners in opposite directions while keeping the rest the
same. To transform a particular position into the original position is also an action.
The goal is to compose this action from the elementary ones.

As you can imagine, the group of Rubik’s cube is not a very simple one, it has
212 ·11! ·38 ·8! elements. There are groups which have infinitely many elements, but
whose structure is simpler. Namely, one of the basic groups is the group of integers
where the group operation is addition. To visualize it as a group of actions think
of it as adding money to and withdrawing money from an account, say, starting
with balance 0. Adding money is represented by positive integers, withdrawing by
negative ones. This structure is the additive part of the structure of the integers that
we considered earlier.

Groups are also essential in the study of symmetries. Consider a simple sym-
metric object, say an equilateral triangle A, B , C. We call a rigid action which
transforms the triangle to itself a symmetry. There is a trivial symmetry correspond-
ing to “no action”, which we have, in fact, for any geometrical object. A nontrivial
symmetry is the rotation where A goes to B , B goes to C and C goes to A. We can
describe it by the list A→ B , B→ C, C→ A, or by saying that we rotate coun-
terclockwise by 120°. We have one more rotation for 240°. Then we have another
type of symmetry—we can flip the triangle along its axes of symmetry. For instance,
flipping along the axis going through A can be described as interchanging B with C

while A does not move. Another natural way of representing the same group is by
permutations of three elements. The six permutations

(A,B,C), (C,A,B), (B,C,A), (B,A,C), (C,B,A), (A,C,B)

are the elements of the group. They correspond to the identity, the transformation
that does not move anything, and the symmetries denoted by a, b, c, d, e in Fig. 1.2.

8 1 Mathematician’s World

Fig. 1.2 The symmetries of
an equilateral triangle

Fig. 1.3 The multiplication
table of the group of
symmetries of an equilateral
triangle. The unit element of
the group is denoted by 1

1 a b c d e

1 1 a b c d e

a a b 1 e c d

b b 1 a d e c

c c d e 1 a b

d d e c b 1 a

e e c d a b 1

The identity is the unit element of the group and is denoted by 1. The group oper-
ation is the composition of two permutations. For example, (C,A,B) is the trans-
formation A �→ B , B �→ C, C �→ A and (B,C,A) is the transformation A �→ C,
B �→A, C �→ B . Hence their composition is the identity (A,B,C).

These two representations use specific properties of the group. A general way by
which we can represent any binary operation is the multiplication table. The multi-
plication table of the group of symmetries of an equilateral triangle is in Fig. 1.3.

Finally, we consider a way of representing groups that plays an important role in
the study of finite groups—representations by matrices. In this way problems about
finite groups can be translated into problems about matrices. Matrices form a very
rich structure with a lot of interesting concepts and important theorems. The study
of such representations is so useful that it forms a separate field called the group
representation theory. Here is one such representation of the group of symmetries
of an equilateral triangle.(

1 0
0 1

)
,

(
0 −1
1 −1

)
,

(−1 1
−1 0

)
,

(−1 1
0 1

)
,

(
1 0
1 −1

)
,

(
0 −1
−1 0

)
.

(For the definition of the matrix product see page 396.)

1.1 Mathematical Structures 9

We have seen four representations of the same group. Each of them determines
the structure of the group, but the group as an abstract object cannot be identified
with any of them.

Why do we need various structures, why do we not just use numbers? The ex-
amples of graphs and groups show that there are practical situations which cannot
be described only by numbers. We can think of structures as models of real and po-
tentially realizable situations. Another possible view is that structures give us ways
to classify objects. One useful way of classifying collections is to count the number
of elements. We count our pieces of luggage to check that we have them all, which
clearly does not ensure that we have all our luggage. But this test usually works.
Numbers are not the only kind of structure used for such a classification. In par-
ticular groups are very good for this purpose. They are used in crystallography, to
name a practical application. The symmetry group can be used to distinguish various
objects, but it does not necessarily determine them completely.

In mathematics such a use of groups is almost ubiquitous. Returning to our ex-
ample, we can distinguish the triangle from other geometrical objects by its group
of symmetries. It is rather awkward here, as the triangle is much simpler than its
symmetry group, but for larger objects it makes sense. In this case we would rather
use the triangle to define the group.

One of the most beautiful pieces of mathematics, which I will consider in some
detail in Chap. 4, is also based on this concept. This is the famous result that alge-
braic equations of degree 5 are not solvable using radicals. This means that there is
no explicit formula using basic arithmetic operations and roots, expressing a solu-
tion to the equation in terms of the parameters. Here we have a natural scale given
by the degree of the equation. But this gives us no clue why equations should be
solvable up to degree 4, and unsolvable from degree 5 on. It was a great insight of
Galois that one should assign groups to equations. The kind of groups that can be
associated with equations of degree 5 and higher do not occur for equations of lower
degree, and this gives the distinction between the solvable and the unsolvable.

Let me finally mention a result which belongs among the major achievements of
twentieth century mathematics. The result is interesting also because it is a theorem
with the longest proof ever written by mathematicians. It is called the classification
of simple finite groups. The word “simple” is a little misleading; it is a technical
term which specifies groups that are in some sense basic building blocks for con-
structing all finite groups. Naturally, having a description of them is very important,
if we want to understand finite groups. The whole result is contained in a series
of papers produced by a number of first rate mathematicians. The total number of
pages amounts to several thousands. Some simple groups had to be described ex-
plicitly, the smallest one with 24325 · 11 = 7 920 elements, the largest one having
246320597611213317 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 (approximately 8 · 1053) el-
ements, called the Monster. The enormous length of the proof and the huge size of
the groups that it describes are certainly remarkable, but what is also interesting is a
strange kind of irregularity. We are used to the fact that in mathematics things tend
either to be very regular, or to look very random; if there is regularity with some
exceptions then the exceptions are small. Here, in contrast, we have 26 exceptions
that share very few common properties.

10 1 Mathematician’s World

Types of Structures

In order to give a more precise meaning to the concept of a structure, we have
to use more technical means of mathematics, some notation, and a few symbols.
Formally, a structure is given by a list that consists of several sets. The first set is
the universe, the set of objects of the structure. The remaining sets are relations,
functions and operations on the universe. Let us denote by N the set of all natural
numbers. Taking N as the universe, we can define various structures. The universe
by no means determines the structure, however, there are some structures with this
universe that we like more than the others. On the set N we usually take the fol-
lowing one (N;+, ·,≤). To stress the special role of the universe, it is separated
from the other sets by a semicolon. In this structure the binary relation ≤ is super-
fluous because we can define it from the operation + (namely, x ≤ y if and only if
there exists a z such that x + z= y), but we may have other reasons for keeping it.
This structure has two binary operations and one binary relation—this information
is what we call the type of the structure. Let R denote the set of all real numbers. We
can define a structure of the same type as the natural numbers by taking (R;+, ·,≤).

A different example is a directed graph. It is determined by a set of vertices and a
general binary relation. Hence we can say that directed graphs are structures of the
type consisting of one binary relation.

Structures with one binary operation also have a special name; they are called
magmas, or groupoids.2 Groups can be defined as those structures with one binary
operation that satisfy the following axioms:

1. there exists a unit element (an element, usually denoted by 1, that satisfies x ·1=
1 · x = x);

2. the operation is associative ((x · y) · z= x · (y · z) for all elements x, y, z);
3. every element has its inverse (the inverse of x is usually denoted by x−1 and

satisfies x · x−1 = x−1 · x = 1).

Groupoids and groups belong to a large class of structures, called algebraic struc-
tures, or universal algebras, which are structures that only have functions and oper-
ations, but no relations.

All the structures that we have considered so far are first-order structures. There
are structures that use more complex objects; such structures are called second order,
third order, etc. In second order structures we have sets of subsets of the universe
and relations between such subsets. This can be explained as follows. In a second
order structure we have two universes, one consists of the elements that we want to
study, the other consists of sets of elements, which we call second order elements.
In a second order structure we also have relations and functions defined on second
order elements. In order to imagine second order elements, think of subsets of the
universe as properties of elements and sets of these subsets as properties of proper-
ties.

2Not to be confused with groupoids in category theory.

1.1 Mathematical Structures 11

Example Let us take the color navy blue as an example of a property of real objects.
Then we can take dark colors as an example of a property of properties that contains
navy blue as an element.

If we attempt to define second order structures in full generality things become
quite complicated. We can consider not only relations between subsets, but also be-
tween subsets and elements. Furthermore we should allow talking about properties
of relations. But that is still not enough, since functions are also first-order objects,
so we should allow relations between functions and so on. It is rather complicated,
but it is only a technicality. The essence is that we have certain levels: the zero level
are elements, the first level are relations and operations. In a second order structure
we can define relations and operations on all objects of the first two levels.

The simplest example of a class of second order structures is the class of topolog-
ical spaces. Topological space consists of a set of points A (this is the universe), and
a set of subsets of A, called open sets that must satisfy some laws. For instance, the
real numbers as topological space (called the real line) have the universe R and the
open sets are subsets of reals which are unions of open intervals. (An open interval
is the set of numbers between r and s not including the endpoints r , s.) The empty
set is defined to be open too. Intuitively an open set is a set which does not contain
a point on its border.

Let us proceed to the third order. This essentially means that we allow subsets of
all subsets of the universe. There is no reason to stop at the third order, but already
there it is hard to find nice examples. Let us take the first-order structure of reals
(R;+, ·,≤). Extend it to a second order structure by adding the set of all continuous
functions of one variable, denoted by F . Then we would like to consider the limits
of the continuous functions, so we add a topology on F by taking the set of all
open subsets of the functions, denoted by X . This results in a third order structure
(R;+, ·,≤,F ,X). In this structure +, ·, ≤ are first-order concepts, F is second
order and X is third order.

The types of structures are associated with certain set-theoretical constructions.
The first one is the Cartesian product of sets. The Cartesian product of two sets X

and Y is denoted by X × Y and it is the set of all pairs of elements (x, y) where
x is an element of X and y is an element of Y . The reason for using × is that the
size of the Cartesian product is the product of the sizes of the two sets; otherwise
this set operation shares very little with the corresponding operation on numbers.
Clearly, we can iterate this operation to get the product of a finite number of sets.
The name ‘Cartesian’ is in honor of the French mathematician and philosopher
René Descartes (1596–1650), to whom we attribute the invention of coordinates and
analytic geometry (although some analytic methods in geometry had already been
used in ancient Greece). In modern terms it means that one dimensional space can
be identified with the set of real numbers, and higher dimensional spaces are simply
the products of copies of one dimensional space. His invention was probably the
first step in the process of formalization of mathematical objects by mathematical
structures. Mathematicians very often use pictures to visualize structures that they
are thinking about. In the case of the Cartesian product X × Y the picture is the

12 1 Mathematician’s World

familiar one with X drawn as the coordinate x, Y the coordinate y and the product
being the points on the plane. The Cartesian product corresponds to relations, since
we can define relations on a set A as subsets of the products of A with itself. Thus a
subset of A is a unary relation, a subset of A×A is a binary relation, etc.

The second set operation is related to exponentiation and thus it is denoted
by YX . It is the set of all functions f defined on X and having values in Y . In-
stead of saying that f is an element of YX , we prefer to express it by f : X→ Y .
The Cartesian product enables us also to define functions with several variables,
which we call operations. Thus, for example, a binary operation f on a set A is an
element of AA×A, or using the other notation f : A×A→ A (which is read as ‘f
maps A×A into A’). For higher order structures, we need yet another set operation.
Let us denote by P(A) the power set of the set A, the set of all subsets of A. Thus,
for example, relations between second order elements are subsets of P(A)×P(A).

This notation can be used to define types of structures, but for this book we do
not need a formal definition. Moreover, there are types of structures that do not
quite fit into this schema. In classical parts of mathematics real numbers play a
key role, thus many structures are somehow connected with them. Consider, for
instance, a real vector space. It is a set of vectors A and a binary operation on A,
usually denoted by +, satisfying certain axioms (namely (A;+) is a commutative
group). Furthermore, for every real number r , we can multiply any vector a of A

by r and thus obtain another vector of A. This does not fit into the above schema,
as the real numbers are not in (A;+), they are external. In order to define this
structure we have to take the union of the two structures—the real numbers and the
group of vectors. The resulting object can be denoted by (R,A;+R, ·R,+A, ·R,A).
I have distinguished the two additions and two multiplications by subscripts, (to
be more precise, we should write specifications such as ·R,A : R × A→ A which
is multiplication of a vector by a real number, etc.). So we have to generalize the
concept of a structure further and allow more than one universe. Also notice that in
this particular example the roles of the two universes R and A are different: while
A may vary arbitrarily, R is fixed for all real vector spaces.

For understanding the foundations of mathematics we do not have to study the
whole ramified variety of structures. The most interesting phenomena can be ob-
served in simple first-order structures.

Structures of Structures

In order to understand structures, it is important to realize that only the form is
important, not the content. This means that the nature of the elements is irrelevant.
The word ‘structure’ denoting this concept is chosen appropriately, as we would
like to identify two objects that have the same structure. Thus to get the whole
point we only need to define what ‘the same structure’ means. Intuitively it means
that we can move one structure so that it completely coincides with the other. To
move the structure means to move the points of the universe, the rest, the relations

1.1 Mathematical Structures 13

and operations will move along because it is attached to the points. In mathematics
structures do not live in space, so the transformations from one structure into another
one are not continuous transitions (unless we incidentally study topology). Thus we
only need to specify the beginning and the end of the movement. This is done by
the concept of mapping. (A mapping and a function are the same things; we use
different names only because of the different context.) Such a mapping should be
one-to-one, which means that no two points are mapped onto one, and it should
be onto, which means that every point of the universe of the second structure is
an image of a point of the first structure. The mapping translates in a natural way
relations and operations from one structure into the other. If the resulting image
is identical with the second structure, we say that the structures are isomorphic.
Isomorphism is the mathematical concept of having the same form. We often do not
distinguish structures that are isomorphic and often say that ‘two structures are the
same, up to isomorphism’.

To understand the above definition, think of the problem of comparing two pic-
tures on a film in order to check if they are the same. First you have match them
correctly. This means that you need some special points, in this case two are enough,
which determine the correct position. If you put the pictures so that the points coin-
cide, then it suffices to check if every line, every spot, etc. coincides.

The study of mappings of one structure into another is not restricted to isomor-
phisms. Given a class of structures one defines a more general concept, called ho-
momorphisms or just morphisms, by using more general mappings. In particular, a
homomorphism does not have to be a one-to-one mapping, hence it can map several
elements on one. In this way some information about the structure on which it is
defined may be lost in its image. Homomorphisms enable us to formalize the intu-
itive concept of similarity. The ability to recognize similarities is one of the most
important features of human and animal thinking. Thus it is not surprising that in
modern algebra many important results can be stated purely in terms of morphisms.
A class of structures and morphisms is in some sense also a structure; it is called a
category. We can study a class of structures by studying its category.

The Four Color Theorem

I will conclude this section with a couple of mathematical results that will be used
as examples in the following chapters.

In 1852 an English mathematician, Francis Guthrie, conjectured that every map
can be colored by four colors so that no two neighboring countries have the same
color. This is, perhaps, the most famous problem in combinatorics, or at least it had
been so until it was solved by Kenneth Appel and Wolfgang Haken in 1975 [5, 6].
The original statement talks about the topology of the plane, but it can be stated
as a problem about certain graphs. Given a map, represent countries as vertices,
say choose a point inside every country. Then connect by an arc every two vertices
that come from neighboring countries. Then, instead of coloring countries, we will

14 1 Mathematician’s World

color vertices. The restriction is that two vertices connected by an arc must have
different colors. This simple transformation shows why graphs are so useful. We
can transform a rather complicated statement to a simple combinatorial one.

This reduction alone does not suffice to translate the problem to graph theory. Not
every graph corresponds to a map and it is very easy to construct a graph that is not
colorable by four colors (take five vertices and connect every pair of vertices). Thus
we need a characterization of graphs that come from maps; these graphs are called
planar, as they come from maps in the plane. Such a purely combinatorial charac-
terization was found by Kazimierz Kuratowski (1896–1980), a Polish set theorist
and topologist; thus the problem has been reduced to finite combinatorics.

Whether or not every map can be colored by four colors has no bearing on the
foundations of mathematics. What has is the way the problem was solved. Appel and
Haken did not write down a proof of the conjecture, they only tested by computer
that a proof exists. Following some earlier results they reduced the problem to a
finite number of cases that were possible then to check by computer. Each particular
case can be checked “by hand”, but the total number of cases is too large for a
human, even with the more recent improvements that have reduced the number of
cases. This raised a discussion as to whether such proofs are legitimate. Certainly,
such a proof conveys less to a mathematician than a usual proof. Typically, a proof
is based on a small number of ideas that one can memorize so that it is possible to
reconstruct the formal proof when needed. The experience of mathematicians with
long proofs is that they are very likely wrong if such a set of basic ideas cannot
be extracted from them. I agree with that, as this concerns proofs that are written
by people and such proofs are never completely formal. Once the things are done
formally, computers are much more precise than people. By now the validity of
the theorem has been verified by running the programs on different machines and
by using alternative proofs written by different people. What remains a mystery is
why we do not have a ‘normal’ proof, a proof sufficiently short to be understood by
people. As we will see later, there are theorems that do not have short proofs. But
our mathematical tools are still very limited and thus we are not able to prove for
such concrete theorems almost anything about the lengths of their proofs.

Note that there is a generalization of this problem to all orientable surfaces. In-
terestingly enough, the generalization had been solved for surfaces of all genera,
except for the plane, without using a computer and before the original problem was
solved.

The Four Color Theorem was not the first case in which an infinite problem was
reduced to a finite number of cases. The famous Goldbach Conjecture, probably
the oldest unsolved problem in mathematics, says that every even natural number
greater than 2 can be expressed as the sum of two prime numbers. A weaker con-
jecture states that every odd number greater than 7 is a sum of three odd primes.
In the 1930s, the Russian number theorist Ivan M. Vinogradov proved the weaker
conjecture for all odd numbers starting from some large number N0 [299]. Thus,
theoretically, it sufficed to check all odd numbers less than N0 in order to complete
the proof. Unfortunately the number N0 was so large (the original estimate was

ee
e42 ≈ 10101017

) that there was no chance to check the remaining cases by compu-

1.1 Mathematical Structures 15

tation. This is still the case, in spite of the bound on N0 being substantially reduced
and in spite of the possibility to use contemporary powerful computers.3

More recently another famous problem has been solved using a computer in a
similar way as in the Four Color Theorem. It is the Kepler Conjecture that the dens-
est arrangement of equal balls is, in fact, the one that people have always been using.
In 1998 S.P. Ferguson and T.C. Hales announced a proof of the conjecture [112]. It
is based on a reduction proposed by L. Fejes Tóth in the 1950s. Since the compu-
tations used computer arithmetic, some doubts about the completeness of the proof
still persist.

One may expect that computer aided proofs would be quite widespread by now,
but it is not so. It turns out that there is a very narrow window where computers
may help mathematicians. If ever a proof can be reduced to a finite number of cases,
then, usually, either the problem can be solved completely by a mathematician, or
the number of cases is so huge that it cannot be checked even by a computer.

Ramsey’s Theorem

Frank P. Ramsey (1903–1930), a British mathematician and philosopher, proved a
lemma that he needed in order to solve a certain problem in logic (the decidabil-
ity of a certain part of first order logic) [235]. The lemma was later rediscovered
by Paul Erdős and Gyorgy Szekerés working in a totally different field [69]; since
then it became one of the main parts of combinatorics. Today this lemma is called
Ramsey’s Theorem and plays an equally important role also in logic and set theory.
Therefore this theorem is very useful when we want to illustrate the connections
between various fields of mathematics.

The essence of the theorem can easily be explained to anybody. Suppose that
you have a symmetric binary relation on a finite set. Such a relation is also called
an ‘undirected graph’, or just a ‘graph’. Traditionally, for this theorem, one takes a
random group of people and the relation of knowing each other as an example of a
graph. The question that this theorem addresses is to what degree the relation can
be chaotic, or put positively, must there be at least some order in any such relation?
There are many ways to define the degree of order, but the extreme cases are clear:
if every pair is connected by the relation, then clearly it has the maximal order; by
the same token, if no two are connected it also has the maximal order. Ramsey’s
theorem, roughly speaking, says that total chaos is impossible. More precisely, we
can always find a small subset of vertices where either all elements are connected
in the graph, or all elements are not connected. For example, if there are at least 6
people in the group, there must be at least 3 that all know each other or all do not
know each other (see Fig. 1.4). Similarly, if the group has at least 18 people, then

3The very recent result of T. Tao [289] that every odd integer greater than 1 can be represented
as a sum of 5 or fewer primes uses the fact that the Goldbach conjecture has been verified by
computation for all numbers up to 4 · 1014.

16 1 Mathematician’s World

Fig. 1.4 Examples of a colorings of pairs of elements of a 5-element set and a 6-element set. The
coloring of the 5-element set shows that R(3) > 5 because there is no 3-element monochromatic
set. Since R(3)= 6, there must exist 3 points connected by lines of the same color in any coloring
of a 6-element set. In the example there are two such triples, both form blue (solid line) triangles

there must be at least 4 that all know each other or all do not know each other. For 5,
it suffices to have 46 people in the group.

In general, for every number n, we can find a number r , such that a graph on r

vertices contains a subset of size n where either all elements are connected or no
pair is. The Ramsey number R(n) is defined as the least r such that every graph on r

vertices contains a subset of size n where either all elements are connected or no pair
is. The theorem says that this is a correct definition, such a number exists for every n.

The above examples can be stated as R(3) ≤ 6, R(4) ≤ 18 and R(5) ≤ 46. In
fact we know that R(3)= 6 and R(4)= 18, but we do not know the exact value of
R(5). We only know that 43≤R(5)≤ 46. This is remarkable since to determine the
value of R(5) is a finite problem, one has “only” to check all the graphs on 43, 44
and 45 vertices. Testing a single graph is not so difficult (though it is quite a time
consuming task—there are more than one million subsets of size 5 of a set of size
45), the problem is that there are too many graphs to be tested.

The classical infinite version of the theorem states that for every graph on the
natural numbers, there is an infinite subset of the natural numbers such that either
all elements in the subset are connected, or no pair is. A remarkable fact is that the
finite version of the theorem can be derived from the infinite one. The advantage of
such a proof of the finite version is that we do not have to bother with counting. The
disadvantage, the price for the simplification, is that we do not get any bounds on
the Ramsey numbers.

Notes

1. General structures. A general structure is defined by an echelon construction.
The construction starts with base sets (universes) A1, . . . ,An. Then we can ap-
ply operations of the Cartesian product ×, the power set operation P and the
operation of taking the set of all functions from one set into another set BA.
This means that we successively produce sets such that every new set is ob-
tained from A1, . . . ,An and the already produced ones by applying one of the
three operations. We identify products of several sets if the order of the sets in
them is the same; for instance, we do not distinguish between (B1 × B2)× B3
and B1× (B2×B3). Thus we can omit parentheses in the products. A structure
is a sequence of the form (A1, . . . ,An; B1, . . . ,Bm) where B1, . . . ,Bm are sub-
sets of the sets obtained by the echelon construction or mappings between them.

1.1 Mathematical Structures 17

For example, our third order structure considered above (R;+, ·,≤,F ,X)

is produced from the sequence R,R×R,RR,P(RR), where the operations +
and · are mappings from R×R to R, the relation ≤ is a subset of R×R, the set
F is a subset of RR (the set of all real functions) and X is a subset of P(RR)

(the set of all subsets of real functions).
In a precise definition of a structure we have to associate a type to each of

the sets. In particular, in first-order structures this means determining if it is a
relations or an operation and then its arity. first-order structures are those where
neither of the operations P(X), XY is used. In second order structures these
operations can be applied, but not iterated, in third order structures they may be
iterated once etc.

It is possible to simplify the matter by considering operations and functions
as a special kind of relations (for example, a binary operation is a ternary rela-
tion). However, quite often, it is an advantage to have operations as a primitive
concept.

2. Higher type functionals. General structures can use all three operations: Carte-
sian product, power set operation, and the operation of taking all functions from
a given structure to another one. We can get, however, very interesting objects
by considering only the last one. This means to concentrate on functions and
not to use relations and sets. We start with elements as the basic type of ob-
jects; the set of elements is the universe of the structure. The next type consists
of functions. A function is a mapping from the universe to itself. Then we can
define functionals, which are mappings that map functions to elements. We can
use also mappings that assign functions to elements and mappings that assign
functions to functions and so on. We will simply call all such objects functionals
and distinguish them by their types. As the types do not have linear structure, we
cannot use numbers for denoting types, we need to introduce special notation.
The type of elements will be denoted by o (‘o’ for ‘objects’). Given types τ and
σ , the type of functionals that map objects of type τ to objects of type σ will
be denoted by τ→ σ . Thus functions are functionals of type o→ o, the lowest
level functionals are (o→ o)→ o, etc. Note that functionals of type o→ (o→
o) can be identified with binary operations, that is, functions of two variables.

Now we will consider some important classes of structures.
3. Ordered sets. An ordered set is a structure with one universe and one binary

relation on it denoted usually by ≤ (ambiguously, because the relations in dif-
ferent structures are different). By an ordered set we usually mean a partially
ordered set which means that there may be incomparable elements. The axioms
of partially ordered sets are

a. x ≤ x—reflexivity,
b. x ≤ y and y ≤ z implies x ≤ z—transitivity,
c. x ≤ y and y ≤ x implies x = y—antisymmetry.

The ordered sets where every two elements are comparable are called linear
orderings; they satisfy also

d. x ≤ y or y ≤ x.

18 1 Mathematician’s World

Fig. 1.5 The graphs K5
and K3,3

Fig. 1.6 A subdivision of K5

4. Graphs. A general graph is a binary relation on the set of vertices. It is called
a directed graph because we may have a directed edge (u, v) without having
the opposite (v,u). Edges of the form (u,u) are called loops. For instance,
partially ordered sets are a subclass of graphs. Graphs in the narrow sense are
symmetric, which means (u, v) is an edge if and only if (v,u) is, and loops are
prohibited. We denote by (u, v) an ordered pair. For symmetric graphs, we can
take unordered pairs which are two-element sets. They are denoted by {u,v}.
(Sometimes a more general concept is considered where there can be more than
one arc between two vertices.)

Kuratowski’s characterization of planar graphs is based on forbidden sub-
graphs. He found a set of graphs such that planar graphs are exactly those that
do not contain a graph from the set. The set of forbidden graphs consists of
the two graphs in Fig. 1.5 and all their subdivisions. A subdivision of a graph
is obtained by refining edges into paths; pictorially, we put several dots on an
edge (see Fig. 1.6).

5. Groups. A group is usually considered as a structure with one binary operation,
one unary operation (a function) and a constant. These are called multiplication,
the inverse element function and the unit element. Thus we write (G; ·, −1,1).
The inverse element and the unit is definable from multiplication, but having
these two additional primitives enables us to write axioms as equations:

a. 1 · x = x · 1= 1,
b. x · x−1 = x−1 · x = 1,
c. x · (y · x)= (x · y) · x.

Note that we do not postulate commutativity. You can check that the symmetry
group of a triangle is not commutative. The groups where the commutative law
x · y = y · x holds are called commutative or Abelian groups. For commuta-
tive groups, one often uses additive notation, thus instead of calling the binary
operation ‘multiplication’ we call it ‘addition’.

We will now define some concepts needed to explain the meaning of simple
groups.

1.1 Mathematical Structures 19

A group homomorphism is a mapping f of a group G1 into a group G2
which preserves the operation. This simply means

f (x · y)= f (x) · f (y),

for every two elements of G1. (As customary, we use the same dot for both
groups, though these are different operations in general.) This condition implies
that f preserves 1 and inverses. The image of the group G1 under f , denoted
by Im(f), is the set of all elements of G2 to which some element of G1 is
mapped. This set is, as you can easily check, closed under the operations of
multiplication and inverse and contains the unit element. So it is a subgroup of
G2. The kernel of f , denoted by Ker(f), is the set of elements of G1 which are
mapped onto 1. It is also a subgroup. Ker(f) is the trivial one element subgroup
of G1 if and only if f is a one-to-one mapping, in which case G1 is isomorphic
to Im(g). On the other hand, if the image is the trivial one element subgroup of
G2, then G1 is equal to Ker(f).

The two groups Ker(f) and Im(f) do not give full information on G1 in
general, but the structure of G1 can be very well understood if we know them.4

Take an element g of G1 which is not mapped to 1. Then the set of all ele-
ments which have the same image, namely f (g), is the set of elements of the
form g · h, where h runs through the elements of Ker(f). Thus G1 can be
decomposed into cosets which have a structure similar to Ker(f), every coset
corresponding to an element of Im(f). Also, if we know that g1 and g2 are from
cosets determined by h1 and h2, that is, f (g1)= h1 and f (g2) = h2, then the
element g1 · g2 is from the coset determined by h1 · h2.

As an example consider Rubik’s cube. We have Rubik’s group, let us denote
it by G1, which consists of the transformations of the whole Rubik cube. Note
that we consider only transformations that can be physically realized without
breaking the cube into pieces (there would be 12 times more transformations,
if we allowed decomposing and reassembling the cube). Further we can con-
sider the same transformations, but look only at the small cubes at the edges,
which means that we identify the transformations which act in the same way
on edges. Let us denote this group by G2. Then we have a mapping, in fact a
group homomorphism f : G1 → G2, given by ‘forgetting the vertices of Ru-
bik’s cube’. In this case Im(f) = G2, the group of transformations on edges.
Ker(f) is the group of the transformations which are mapped on the identity
element of G2 which are transformations which move only the small cubes
on vertices while preserving the edges. This decomposition is actually used by
Rubik cube solvers.

Now comes the crucial definition. A group G is called simple, if for every
homomorphism f from G to another group, either f is one-to-one, or f maps
G to the trivial one element group. By the remarks above, this is equivalent

4In order to get full information about G1, we need the groups Ker(f) and Im(f) and, furthermore,
a homomorphism from Im(f) into the group of automorphisms of Ker(f). It would take us too far
afield to explain this relation.

20 1 Mathematician’s World

to the condition that either G is equal to Ker(f) and Im(f) is a one element
group or G is isomorphic to Im(f) and Ker(f) is a one element group. In other
words, we cannot decompose a simple group into smaller groups using a group
homomorphism, which makes the study of simple groups more difficult.

6. Rings and fields. A ring is a structure with two binary operations and one con-
stant on one universe. The operations are usually denoted by + and · (the ·
is almost always omitted when writing terms), the constant is denoted by 0.
The axioms of the rings express that for a given ring (A;+, ·,0) the structure
(A;+,0) is a commutative group, · satisfies the associative law and the two
operations are connected by the distributive laws

x · (y + z)= x · y + x · z and (x + y) · z= x · z+ y · z.
A ring (A;+, ·,0) is a field, if the nonzero elements with the operations · form
a group, which means that there is a multiplicative unit element and nonzero el-
ements have multiplicative inverses. The most familiar fields are rational num-
bers, the real numbers, and the complex numbers. Integers form only a ring.

7. Universal algebra. This is the field of mathematics that studies algebraic struc-
tures in general, without assuming any special properties of them. The aim is to
generalize theorems that are known for various special classes of algebras such
as groups, semigroups, rings, fields, lattices, Boolean algebras, etc. Except for
fields, these classes can be defined by equations, as we have done for groups
and implicitly for rings (the problem with fields is that 0 has to be treated sepa-
rately). So it is natural to study the equations valid in classes of such structures,
the equational theories. Furthermore, there is a natural concept of homomor-
phisms for universal algebras, namely, as in groups, the mappings which pre-
serve operations.

8. Topological spaces. A topological space is a structure of the form (A;X) with
X ⊆ P(A) where X contains ∅ and A and it is closed under arbitrary inter-
sections and finite unions. The sets in X are called open sets. Note that it is
a second order structure. Moreover, the condition that the open sets are closed
under intersection is even of a higher order (namely the third order) since it
talks about arbitrary subsets of sets of subsets of A.

9. Special structures. There are several structures that play a special role in math-
ematics. The reasons for their exceptional status are in that they appear in many
problems, or they are in some sense universal, or it is simply the tradition. Ex-
amples of such structures are: the ring of integers, the field of real numbers,
the ordering of rational numbers, the topology of real numbers, etc. The classes
of structures were often defined by choosing some general properties of these
special structures.

10. Real vector spaces. A real vector space is a structure of the form (R,A;+R, ·R,
+A, ·R,A). It has two types of objects: the real numbers R, called scalars, and
vectors A. On the real numbers there are the two basic arithmetical operations
+R, ·R; further, there is a binary operation +A on vectors, called addition, and
an operation of multiplying a vector by a scalar ·R,A. In a real vector space

1.1 Mathematical Structures 21

the real numbers are determined uniquely, so one has to postulate only axioms
which determine the structure of vectors and bind it with real numbers. The
axioms of the real vector spaces say that (A;+A) is a commutative group and
for every r, s ∈R and a, b ∈A,

a. 1 · a = a,
b. (r + s) · a = r · a + s · a,
c. r · (a + b)= r · a + r · b,
d. (r · s) · a = r · (s · a).
Here 1 stands for the real number 1, (in order to be able to write these axioms
as equations, we should include 1 into the definition of the structure as a special
constant). I have omitted the subscripts since it is clear from the context which
operation is meant. Thus real vector spaces are described by equations, but,
clearly, we cannot derive all of their properties from these equations since they
say nothing about real numbers. They determine this concept assuming that we
know what the real numbers are.

11. Finite automata. This is one of the basic concepts of the theory of computation.
A finite automaton is a structure of the form (A,B,Q;q0, δ, σ) where q0 ∈Q

is a constant, and δ : A×Q→Q, σ : A×Q→ B are operations. The inter-
pretation is that A is the input alphabet, B is the output alphabet, Q is the set of
the states of the automaton and q0 is the initial state. Such an automaton works
in discrete steps. In every step it receives a letter a from the input alphabet. It
reacts by changing its state from its current state q to the state δ(a, q) and it
writes the output σ(a, q). This concept is not only similar to algebras, but it
actually is amenable to algebraic methods.

12. Boolean functions. A Boolean function is mapping of the form f : {0,1}m→
{0,1}n, in words, a function that maps strings of zeros and ones to strings of ze-
ros and ones. This is the main structure studied in theoretical computer science.
It is the prototype of finite functions, functions with finite domain and finite
range.

13. Boolean algebras. A Boolean algebra is an algebra with three operations
meet ∧, join ∨ and complement ′ and two constants 0 and 1. It satisfies the
laws of propositional logic, which can be expressed by the following axioms.

a. commutative and associative laws for ∧ and ∨;
b. both distributive laws for ∧ and ∨: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

x ∨ (y ∧ z)= (x ∨ y)∧ (x ∨ z);
c. x ∧ x′ = 1, x ∨ x′ = 0, x ∧ 1= x, x ∨ 0= x;
d. De Morgan’s laws: (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′.
A Boolean algebra has an ordering which we will denote by x ≤ y and which
is defined by x = x ∧ y; 1 is the top element and 0 is the bottom element.

One can show that this theory is in a certain sense the algebraic theory of
the two element set {0,1}. Namely, one can define every Boolean function f :
{0,1}n→{0,1} using the basic operations of the two element Boolean algebra,
and all equalities between terms formed from Boolean functions are provable
in this theory. However, this theory has also larger finite and infinite models.

22 1 Mathematician’s World

14. Manifolds. Sometimes it is rather difficult to present a concept in question as a
structure, sometimes we even need to generalize further the concept of a struc-
ture. A real manifold is a topological space where we have locally real coordi-
nates. Intuitively, it is a patchwork assembled from pieces of an n-dimensional
Euclidean space. This is formalized by the concept of an atlas of charts. The
charts are homeomorphisms (= mappings preserving the topology) from open
subsets of the manifold into a d dimensional real space. A topological space
with an atlas is a nice structure, but it is not a manifold; it is only one of the
infinitely many ways to determine it. To resolve this purely formal problem,
one defines a manifold as a topological space with all admissible charts for an
atlas, charts that are compatible with the charts in the atlas. The atlas itself is
not a part of the structure.

Is it necessary to use such awkward definitions? The point is that there is
no problem with an intuitive definition, if we work with typical objects. Once
we need to consider extremal cases or when we need to generalize theorems as
much as possible, we are in trouble without a rigorous definition.

15. Categories. When studying structures we are interested only in their form, but
when we prove their existence we need to construct them. This amounts to
choose particular elements for the universe and defining which are in the par-
ticular relation or what a particular operation does with them. Thus we define
the rational numbers as pairs of natural numbers, the real numbers as certain
sets of rational numbers, etc. Then, of course, we can forget what the actual
elements of the universe are. We are interested only in the shape, but we have to
use material to realize it. Can we not avoid the ad hoc part of choosing material
and, instead, get the shape directly?

The theory of categories is at least a partial remedy. In this theory, instead of
individual structures, we study a category, which is the overarching structure
of a class of structures. Thus a category is a large structure whose elements are
some structures in the usual sense.

In a category we have two kinds of basic elements: objects and morphisms
between objects. For every object A, there is an identity morphism iA from A

to A. Given a morphism f from A to B and a morphism g from B to C we can
form their composition fg which goes from A to C, otherwise the composition
is not defined. The axioms are

a. iAf = f and giA = g, whenever defined,
b. f (gh)= f (gh), whenever defined.

(Note that it is not an algebraic structure in the strict sense since the composition
is not defined for every pair of morphisms.)

A typical category is the class of all groups with homomorphisms. In general,
the intended meaning of morphisms is some kind of mappings, but there are
categories where morphisms are not represented by mappings. For example, any
partially ordered set is a category, if we interpret x ≤ y as a unique morphism
from x to y. A morphism f from A to B is defined as being an isomorphism, if
there exists a morphism g from B to A such that fg = iA and gf = iB .

1.1 Mathematical Structures 23

Here is an example of an important concept that can be defined purely using
the language of categories. We define that an object C is the product of the
objects A and B , if there are morphisms f , g from C to A, B respectively such
that for any other object C′ and morphisms f ′, g′ from C′ to A, B , there exists
a unique morphism h from C′ to C such that hf = f ′ and hg = g′. In the theory
of categories, such definitions are often presented in the form of commutative
diagrams. The ‘commutativity’ means that if we compose morphism along two
paths of arrows that start and end in the same objects, then the resulting two
morphisms are equal. Below is a commutative diagram for the definition of the
product.

A C
f g

B

C′
f ′ h

g′

The product does not have to always exist, but when it does then it is unique
in the sense that any two such objects are isomorphic. In the category of all sets
the product is just the Cartesian product of the two sets. Thus we are able to
define it without mentioning pairs! Also in the categories of algebras defined
by equations the categorical product is the naturally defined product. It is in-
structive to realize that the product of two elements in a partially ordered set
interpreted as a category is their greatest lower bound.

Categories behave like a special kind of structure except that their universe
can be too big to be considered as a set. For instance, all groups do not form
a set but a proper class (I will explain this concept later). There is a natural
concept of morphisms between categories, they are called functors. Functors
preserve identity morphisms and the operation of composition of morphisms.
The operations used in the construction of structures (product, power-set, the
set of all functions from one set to another) can be extended to functors.

For instance, the power-set operation P can be extended to a functor from the
category of sets into itself. As P is defined for sets, the objects of the category,
we only need to define P(f) for morphisms, which are mappings between sets.
Suppose f :A→ B , then P(f) : P(A)→ P(B) is defined by putting P(f)(X)

equal to the image of X under the mapping f .
16. Proof of Ramsey’s theorem. Since the role of edges and non-edges in the the-

orem is symmetric, one uses colorings of unordered pairs instead of graphs.
Assume a coloring of pairs of the set {1, . . . , r} by two colors is given. We want
to construct a monochromatic subset, which is a subset in which every pair has
the same color. We start with the pairs of the form (1, x) with 1 < x ≤ r and
consider their colors. One of the colors has to occur at least (r − 1)/2-times.
We take the subset X1 of {1, . . . , r} of those elements x > 1 for which the pair
(1, x) has the prevailing color. (If both colors occur the same number of times,
then it does not matter which color we choose.) Let v1 be the least element
of X1. In the next step we consider all pairs (v1, x) with v1 < x and x ∈ X1.
There must be a color that occurs at least ((r − 1)/2 − 1)/2-times. Note that

24 1 Mathematician’s World

this color may be different from the color that we selected in the previous step.
Take the subset X2 of those elements x > v1 of X1 such that the pair (v1, x)

has the prevailing color. We can continue this process until the sets Xi shrink
to an empty set. Thus we have chosen elements 1, v1, . . . , vn for some n that
is approximately the binary logarithm of r . Now look at the colors of the pairs
of elements of the set {1, v1, . . . , vn}. As noted above, both colors can occur,
but the coloring has a very special property: the color of every pair (x, y), with
x < y, depends only on the smaller element x. In the Ramsey theory jargon this
property is called ‘combed to the right’. For x = 1, v1, . . . , vn−1, associate this
color with x. Then, again, take a color that occurs at least (n− 1)/2 times and
select the elements associated to this color (and add vn if you wish to have one
more element). Thus you get a monochromatic subset. The size of the subset is
approximately 1/2 of the logarithm of r , hence, if r goes to infinity, then the size
of such a subset also goes to infinity. This finishes the proof of the finite version.

The proof of the infinite version is almost the same. The only changes are
that we take the coloring of pairs of the infinite set {1,2,3, . . .}, and we do not
talk about the prevailing color but a color that occurs infinitely many times. It
may happen that both colors considered at some stage occur infinitely many
times. In such a case we can choose any of them.

The proof of the finite Ramsey theorem is quite easy, so it is not a matter
of economy to deduce it from the infinite version. The reason for doing it is
to show how one can get a finite statement from an infinite one. Later we will
see nontrivial applications of this proof. The proof is based on the following
result. A tree is a connected graph without cycles. A rooted tree is a tree with a
distinguished vertex, called the root. (Examples of a rooted trees are in Fig. 4.4
on page 325.) We consider infinite trees. A tree is called finitely branching, if
the degree of every vertex, that is the number of edges incident with the vertex,
is finite. An infinite branch is an infinite chain starting in the root (a sequence
of pairwise distinct vertices starting in the root in which every two consecutive
vertices are connected).

König’s Lemma Every infinite finitely branching tree has an infinite branch.

Proof Start the construction of an infinite branch with the root of the tree. Since
the degree of the root is finite, the subtrees that are connected to it cannot be all
finite. So choose as the next vertex the root of an infinite subtree connected to
the root. Apply the same argument recursively to subtrees. Thus we obtain an
infinite branch.

To derive the finite Ramsey theorem from the infinite one, assume that the
finite Ramsey theorem fails. This means that for some n the following holds.
For every r , there is a coloring of pairs of elements of {1, . . . , r} by two col-
ors such that no subset of size n is monochromatic. Having these colorings
we would like to construct a coloring of the infinite set {1,2,3, . . .} that has
no monochromatic subsets of size n, hence no infinite monochromatic subsets.
Thus we have colorings of pairs on arbitrary large segments that satisfy some
property and we would like to construct a coloring of all pairs. König’s lemma

1.2 Everything Is a Set 25

is a perfect tool for it. The vertices of the tree will be the colorings for which
there is no monochromatic subset of size n. This will include the trivial empty
coloring of the empty set of pairs of elements of the one element set {1}, which
will be the root. Two colorings will be connected by an edge in the tree if, for
some r , one is on {1, . . . , r}, the other is on {1, . . . , r + 1} and the second one is
an extension of the first one to the larger set. It is quite straightforward to prove
that this is a tree. Assuming the finite Ramsey theorem fails, it is an infinite
tree. It is finitely branching since there is only a finite number of colorings on a
finite set. By König’s lemma, there is an infinite branch. This is a sequence of
gradually extending colorings. We take their union as the coloring of all pairs.
Clearly, if there were a monochromatic subset of size n, it would already be in
one of the colorings. �

The above theorems are in fact only special cases of a more general result
proved by Ramsey. The general result concern not only pairs, but also k ele-
ment subsets for every fixed finite k. Furthermore, but less important, one can
consider an arbitrary fixed finite number of colors. Here is the general form of
the infinite theorem.

The Ramsey Theorem For every k, m positive integers, and for every col-
oring of k-element subsets of the natural numbers by m colors, there exists an
infinite monochromatic subset X (a subset in which all k-element subsets have
the same color).

The proof of the theorem goes by induction on k. One reduces the case of
k + 1 to the case k by a ‘combing’ argument similar to the one that we have
used above.

1.2 Everything Is a Set

No one shall be able to drive us from the paradise that Cantor created for us.

David Hilbert, On the infinite

The concept of a set was introduced in mathematics by Georg Cantor (1845–
1918). Similar ideas had been considered before him, in particular in philosophy
and logic. Cantor was not a logician and he arrived at the concept working on math-
ematical problems. Thus he was the first one to realize that sets are not only a good
methodological tool but they are also useful for obtaining mathematical results. In
spite of his success in proving results using set theory, mathematicians of his time,
except for a few, ignored Cantor’s results. His first paper on this subject was pub-
lished in 1878, but it took several decades before set theory was accepted by the
mathematical community.

Cantor’s first major result in mathematics concerned functions on the real num-
bers. He proved a theorem about trigonometric series, which are series of sine and
cosine functions. In physics this theory is used to decompose sounds into pure
sounds. He proved that such a decomposition is unique, if the series of functions

26 1 Mathematician’s World

converged at every point. Then he realized that he could weaken the assumption so
that the series converged everywhere except for finitely many points. But that was
still not the best possible result. He found out that it is also possible to allow cer-
tain infinite sets. He went on to describe more and more complex sets. For that he
needed to make the concept of a subset of a real line precise. Furthermore, he needed
to apply a certain operation (derivation of a set) transfinite number of times, which
led to his discovery of transfinite ordinal numbers. (I will explain these concepts
in Chap. 3). He realized that set theory was a new, completely unexplored field of
research and thus he devoted the rest of his scientific career to this subject.

Georg Cantor
Courtesy of
Universität
Hamburg

I will not follow Cantor’s development of the theory.
Instead I will introduce this concept assuming the reader
knows almost nothing about it. The concept of a set seems
familiar: a set is an arbitrary collection of arbitrary elements.
However in order to understand the way this concept is used
in mathematics, we have to describe it more precisely. I will
state several basic principles that determine the concept of
the set. I will state them in plain language so that they are
easily understandable. When stated formally they are postu-
lates of set theory, but to obtain an axiomatization that is pos-
sible to use in mathematical practice, one needs more pos-
tulates. I will present the remaining ones in Chap. 3, which
will be devoted to set theory.

The first basic principle is the following one:

The Principle of Extensionality A set is uniquely determined by the elements that
it contains. Thus two sets are considered equal if they have the same elements.

This means that it does not matter how we specify the elements that belong to
a set, what matters is only which elements are selected. We can determine the ele-
ments by some property, say described by a formula, or by an algorithm that decides
if an element belongs to the set or not, or just list the elements of the set, etc. A par-
ticular definition is only a way of specifying the set; the set is simply the collection
of elements that satisfy the definition.

This principle is not so easy to accept, unless you already have some experience
with set theory since in natural language we tend to identify the sets with their
definitions. Suppose I say the red things in this room.5 What I mean is the set of
the red things in this room. The set consists of a lamp, a pen, a control light on my
computer and some books on the shelves. Would you say that the first definition
and the list of the objects define the same thing? The principle of extensionality
says that it is so: there is an abstract thing, a set, which is defined by both the
condition of being red and the list. The reason why in a natural language we do
not interpret extensionally definitions in the manner mentioned above is that the

5I assume that we agree on what red things are.

1.2 Everything Is a Set 27

same word construction is used in different occasions by different people at different
times, etc., thus the actual set of the things it defines varies depending on context.

Let us consider a different example: the set of people over 60 in the sample of pa-
tients that we have treated. If you write a report on your medical research, you want
to give as much information as possible, so you will certainly include the definition
of the set. On the other hand, if you process your data on a computer it is a different
task. The information on the patients will be most likely stored with their birthdays,
thus you can write a program to determine who is over 60. But you can also simply
list the patients over 60; the computer does not care and the output will be the same.

At this point it is worthwhile to digress to history. The principle of extensionality
is, clearly, the most distinctive feature of the set theoretical approach started by
Cantor. It is interesting to compare it with other ideas which appeared or became
popular at about the same time. The philosophical doctrine of logical positivism is
a modern version of positivism developed by the Vienna circle in the 1920s and
30s. According to this doctrine the only meaningful statements are those that talk
about observable events. The concept of the black box is much more recent, but it
can be used to explain the essence of logical positivism. By a black box, we mean
a device which we can observe only from outside and we cannot open it in order
to see how it functions. Positivism tells us that if we cannot open the box, any
theories about what is going on inside are meaningless. We can only make theories
about how it behaves. A mathematical description of the behavior of a black box
is a function. Such a function f tells us that, given an input x to the box, we will
get f (x), the value of f on x, as the output. Thus the black box is described by
a structure consisting of the set of possible inputs, the set of possible outputs and
the function f . A positivist would interpret the concept of function in the same
way as contemporary mathematicians: the function is just the set of pairs of input
x and the corresponding output f (x). Particular definitions, or algorithms are only
auxiliary means of determining the function. Extensional interpretation of functions
was probably well established in mathematics before logical positivism appeared,
but it cannot be a mere coincidence that similar ideas appeared in different fields of
science in a relatively short period of time.

How is this related to sets? Think of a set A as a black box. For a given element
x the set A tells us whether or not x belongs to it. If we have another set B which
behaves in the same way, then B is equal to A. This is exactly the principle of
extensionality.

Extensionality, in a broader sense, is a fundamental principle of all mathematics.
It does not concern only set theory because what we call ‘abstraction’ can often
be explained by extensionality. When we count we only use properties of numbers
and we forget about the concrete collections that correspond to the numbers. A
number, such as 5, is the same 5 whether it is represented by five apples or five
oranges. This concerns every mathematical structure—we abstract from the nature
of elements, we only use the shape, the structure that the elements form. In this
extensional understanding of structures, a relation is merely a set of pairs, it is not
the definition that determines which pairs are related. Similarly a function is also a
set of pairs, it is not a mechanism that produces f (x) from x. It is worthwhile to
restate the principle for relations and functions.

28 1 Mathematician’s World

The Principle of Extensionality for Relations and Functions A relation is
uniquely determined by the pairs of elements that are related, a function f is
uniquely determined by pairs x, an argument, and f (x), the value. Thus two rela-
tions are considered equal if they relate the same pairs of elements and two functions
are equal if they give the same values for the same arguments.

We can state such a version of extensionality for every mathematical structure. In
set theory the Principle of Extensionality is never postulated for relations, functions
or other structures because in set theory all structures are sets, hence the principle
for them follows from the principle for sets.

The second basic principle is:

The Principle of Comprehension For any reasonable property, there exists a set
which contains exactly those elements that satisfy the property.

There is a modifier ‘reasonable’ in this statement that makes it rather vague.
I will explain shortly (in the next section) why we have to use it. For now, let us
ignore it. In any case, the meaning is very general: for instance, a property can be
determined by an algorithmic procedure, or simply by a list of elements, etc.

This principle seems intuitively completely clear. If we can distinguish some
elements, we can name the ‘collection’ of these elements. This means that we have
a ‘name’, or a ‘concept’, so we can treat it as an entity. One of the ideas behind sets is
to simplify our language by sticking to a single word ‘set’ instead of ‘a collection’,
‘a concept’, ‘a class’, etc. (though sometimes we will distinguish between ‘classes’
and ‘sets’).

Now we can make our first deduction and prove that there exists at least one
set, namely an empty set. For that, we simply need a property which is never sat-
isfied (such properties are abundant) and apply the comprehension principle. The
extensionality principle, on the other hand, tells us, that the empty set is unique.

To get a good picture of how sets are used we have to stress one more fact, which,
perhaps, should not be called a principle, but which is still very important.

The Principle of Being an Element A set can be an element of another set.

More formally this means that we do not distinguish elements and sets, thus we
have only one type of object. Why is it important? If we could not form sets of
sets, set theory would be just a kind of descriptive language. We need to produce
many different elements to be able to combine them into various structures. If we
could not use sets, we would have to postulate the existence of elements somehow.
Furthermore, in modern mathematics there are powerful methods that are based on
constructions that use the possibility of forming a set from other sets as elements.
We build new structures by using parts of, or just whole structures as the elements
of the new structures.

Let us note that it follows from the above principles that every set is an element
of another set. Namely, a set x is an element of a set with the unique element x.

1.2 Everything Is a Set 29

We denote the set with elements a1, a2, . . . , an by {a1, a2, . . . , an}. Hence the set
with the unique element x is {x}. (Note that these two sets are in general different:
while {x} has only one element, x can be empty or have more than one element!6)
In particular this enables us to construct a new set from the empty set. So we have
two sets. Then we can form a two element set. This is another set, it has more
elements than either of the two. It is not difficult to realize that we can go on and
create infinitely many different sets. With infinitely many elements we can construct
infinite structures.

It is remarkable that we are creating everything from the empty set. Does this fact
have a deeper meaning, or it is just a technical ad hoc trick? In theoretical physics
matter dissolves more and more into empty space. Particles are just some probability
amplitudes or vibrating strings which themselves have no volume. . .

Well, so far we have only infinitely many elements and we have to work more
to get, say, the natural numbers. To construct a structure we need not only a set,
but also relations and operations. Recall that the extensionality principle applies to
relations and operations as well. Once we accept the extensionality principle for
relations the next step is to realize, that relations are just sets of pairs. Similarly
we can identify binary operations with certain sets of triples and so on. Thus, for
example, the relation ≤ on the natural numbers is just a set of pairs (a, b) where a

is less than or equal to b and + is the set of triples (a, b, c) such that a + b= c.
So extensionality easily gives us an explanation of what are relations and opera-

tions. What still remains to be defined are pairs, triples, etc. We could assume that
these are primitive concepts determined by axioms, such as the concept of a set, but
there is a better solution. It turns out that pairs, triples, etc., can easily be constructed
from sets. I will describe it in more detail in the next section; for now, let us only
observe that an unordered pair of elements a and b can be simply identified with the
set {a, b} having the two elements a and b.

Note that it is just a matter of convenience that we reduce the concept of a func-
tion to the concept of a set. We could do it otherwise too. Historically people were
first interested in the concept of a function and only much later the concept of a set
emerged in mathematics. In Newton’s time people thought of functions as physi-
cal quantities and thus attributed to them properties which are common in physical
phenomena such as continuity and the existence of derivatives. When the theory de-
veloped, further examples of functions with some bad properties were found. The
most striking among them is a continuous function with no derivative in any point.
This means that the curve that the function defines does not have a tangent in any
point, so to say, any point is a like a sharp edge. The question arose then: what is
an arbitrary function? This question is closely related to the question about arbitrary
sets, as sets can be defined as the points where a function is zero; on the other hand,
a function is, as we understand it today, a set of pairs.

6It is consistent to assume the existence of some sets x which are equal to {x}, but usually they are
prohibited by other axioms, as they are rather unnatural.

30 1 Mathematician’s World

The Natural Numbers

Richard Dedekind
Courtesy of
Universität
Hamburg

The numbers which count the number of elements in a set
are called cardinal numbers, or simply cardinals. Later on
I will also talk on infinite cardinal numbers, but here I will
only consider the finite ones. These are the numbers that we
denote by 0,1,2,3, . . . and call the natural numbers. The
nature of numbers was studied by many philosophers and
mathematicians. The first rigorous foundations of the natu-
ral numbers was given by Richard Dedekind (1831–1916)
in the book What are and what should the numbers be? pub-
lished in 1888 [59]. In 1889 Giuseppe Peano (1858–1932)
published a book The principles of arithmetic presented by
a new method [216] where he presented Dedekind’s formal-
ization in a more precise form. According to Peano, the nat-
ural numbers are defined as a structure with a universe N ,
a function S and a constant 0 satisfying:

1. for every x, S(x) = 0,
2. if x = y, then S(x) = S(y),
3. for every set X ⊆N , if 0 ∈X and x ∈X implies S(x) ∈X, then X =N .

The function S(x) is the successor function, which is the unary operation of
adding one: x + 1. The notation with + looks as if we implicitly used + to define
it, therefore logicians prefer to use a special symbol for it.

The third axiom is the basic principle of the natural numbers: mathematical in-
duction. This principle is usually stated as the following rule:

Mathematical Induction For a given property of the natural numbers ϕ(x), if ϕ
holds for 0 and ϕ(x) always implies ϕ(x + 1), then all numbers satisfy ϕ.

Giuseppe Peano 7

Note that the only difference between 3. and the state-
ment of Mathematical Induction is that sets are replaced by
the informal concept of properties.

This obvious and seemingly trivial principle is used in
many proofs, simple and difficult ones as well. In fact, it is a
universal principle—since this axiom determines the natural
numbers, all results in number theory and finite combina-
torics can be rewritten so that they only use this principle.8

The system based on the three axioms above is called
Dedekind-Peano Arithmetic. The structures satisfying these

7This media file is in the public domain in the United States.
8More precisely, we must also use definitions of arithmetical operations and axioms about sets.

1.2 Everything Is a Set 31

axioms are uniquely determined up to isomorphism. But note that it is not an ax-
iomatization in logic since the third axiom speaks about sets. In other words, the
natural numbers defined in this way are a second order structure. Thus when using
these axioms, we must also use set theory.

It is possible to approximate this system by axiomatizations in logic, but then we
can never achieve uniqueness up to isomorphism. The most natural axiomatization
based only on logic is traditionally called Peano Arithmetic (see page 116).

The German logician Gottlob Frege (1848–1925) studied the question from a
more philosophical point of view. His idea is very natural (later also used by Rus-
sell and others): a number n is the property shared by all sets with this number of
elements. Using set-theoretical terminology, a number is just the set of all sets of
the same cardinality. This presupposes knowing what it means to be of the same
cardinality. But this causes no problems; two sets have the same cardinality, if we
can find a one-to-one assignment of elements of the first set to the second set so
that every element is matched with an element from the other set. In set theory a
one-to-one assignment is a function and this in turn is just a set of pairs. So this can
be expressed purely in terms of sets. Note that instead of saying that two sets have
the same cardinality, we also say that they are equinumerous.

When formalizing the natural numbers in set theory we need to represent num-
bers by sets. Frege’s definition of the natural numbers is not suitable for the for-
mal system currently accepted as the standard. In Zermelo-Fraenkel Set Theory the
class of all sets of a given cardinality greater than 0 is never a set. We can solve
this problem by choosing one representative from each class of equinumerous sets.
Another possibility is to use the Dedekind-Peano definition and just say that the
natural numbers are one of the structures satisfying the three axioms above. Since
in Zermelo-Fraenkel Set Theory we have to state an axiom of infinity anyway, we
could just state the axiom saying that such a structure exists. But it is better to use
more esthetically pleasing construction. Such a construction is due to the Hungarian
mathematician John von Neumann (1903–1957). He defined the number n to be the
set of numbers 0,1, . . . , n− 1; thus n is identified with the set of numbers smaller
than n. Note that this works very well: as there are no natural numbers smaller than
0, 0 is the empty set; 1 contains only 0; 2 has two elements 0 and 1 etc. We get the
next number by adding it to itself as an element. In set theoretic notation the num-
bers 0,1,2, . . . ,5 are: 0 (zero) is ∅ (the empty set; the two objects are the same),
1 is {0}, 2 is {0,1}, 3 is {0,1,2}, 4 is {0,1,2,3}, 5 is {0,1,2,3,4}. Since zero and
the empty set are the same, set-theorists prefer to use 0 instead of ∅. If we substitute
for the numerals their definitions, we can express all numbers only using the symbol
0 for the empty set, braces and commas. Thus 0, . . . ,5 become:

0,
{0},
{0, {0}},
{0, {0}, {0, {0}}},
{0, {0}, {0, {0}}, {0, {0}, {0, {0}}}},
{0, {0}, {0, {0}}, {0, {0}, {0, {0}}}, {0, {0}, {0, {0}}, {0, {0}, {0, {0}}}}}.

This notation is, of course, not good for practical purposes.

32 1 Mathematician’s World

So far we have only described a few small numbers, but we need a general defi-
nition. First we note that the successor is defined very easily by

S(x) := x ∪ {x},
which is the key idea of this definition of the natural numbers. We want to say that
every number n can be obtained from 0 by applying the successor function a finite
number of times. We cannot do it directly because defining a ‘finite number of times’
is equivalent to defining the natural numbers. So such a definition would be circular.
Thus instead we use Dedekind’s idea and say that

n must be contained in all sets which contain 0 and which are closed under
the successor function.

For a set a to be closed under S means that whenever it contains m it also contains
S(m). Note that the condition stated above is a property of elements n, hence, by
the comprehension principle, there exists a set consisting of such elements. This set
is the smallest set that contains 0 and is closed under the successor function. So it is
natural to think of it as the set of numbers that can be obtained from 0 by applying
the successor function. We define the set of natural numbers N to be this set.

To prove that the principle of mathematical induction holds for N defined in this
way, we argue as follows. Suppose ϕ is a formula such that ϕ holds for 0 and ϕ(x)

implies ϕ(S(x)). Let N ′ be the set of numbers satisfying ϕ. By the assumptions of
induction, N ′ contains 0 and it is closed under S. Hence, by definition, N ⊆ N ′,
which means that all n satisfy ϕ.

Once we have defined the set of all natural numbers, the universe of the structure,
and the successor function, it remains to define the ordering relation and the oper-
ations. The ordering is defined very simply: a ≤ b if and only if a is a subset of b.
Here we see the advantage of having sets as elements: the structure of the elements
enables us to define some relations very easily.

We define addition by saying that n+m is the number whose cardinality is equal
to the union of two disjoint sets A and B , where A is equinumerous to n and B

is equinumerous to m. Unfortunately the sets representing the two numbers are not
disjoint (unless one of them is 0), but it is a trivial task to construct such A and B .
As regards the multiplication we are luckier, we can define n · m as the number
equinumerous to the Cartesian product n×m of the sets n and m.

These constructions use special properties of the two operations. There is a much
more general way of defining arithmetical function called definition by recursion.
Let us consider a recursive definition of addition. Addition is determined by the
following equations

x + 0 = x,

x + S(y) = S(x + y).
(1.1)

Here we define what it means to add 0 and then we define how to add a number
bigger than 0 using the successor function and the addition for a smaller number.

1.2 Everything Is a Set 33

So these equations uniquely determine the operation. Having addition, we can give
a recursive definition of multiplication:

x · 0 = 0,
x · S(y) = x · y + x.

We can go on and define xy and other functions. (See also the general form of
recursion on page 142.)

The Real Numbers

I will skip the constructions of the integers and the rational numbers from the natural
numbers because they are easy and well-known. A more interesting problem is to
construct the real numbers.

In the 18th century, mathematicians were aware of the fact that calculus, the
theory of real functions, limits, integrals, infinite series, etc., needs some axioms of
continuity.

Example Let f be a continuous function defined on the closed interval [0,1]. If
f (0) < 0 and f (1) > 0, then there exists a real number a, 0 < a < 1 such that
f (a)= 0.

No one doubts that principles such the one above are true. But in order to develop
the theory, we either have to state them as axioms, or we need a definition of the real
numbers from which they follow. When using set theory as the foundations, we do
not want to add axioms that are not about sets. We would like to derive everything
from the basic axioms about sets, so only the second option is of concern to us.
To this end we must define a mathematical structure representing real numbers,
in a similar way as we defined a mathematical structure representing the natural
numbers.

The classical approach is based on Cauchy sequences, named after the French
mathematician Augustin-Luis Cauchy (1789–1857).The starting point is, as in all
constructions of the real numbers, the rational numbers. An infinite sequence of
rational numbers r0, r1, r2, . . . is called a Cauchy sequence if the elements of the se-
quence get closer and closer as n increases. This is a rather subtle concept that needs
a more precise explanation. It does not suffice that the distance between consecutive
elements decreases. What we need is that if n is large, then the distance between rn
and all rm, for m> n, is small. Once we know that all Cauchy sequences converge,
then all the properties of real numbers follow. So the idea is to ensure that a Cauchy
sequence converges by choosing an object representing its limit. Clearly, we have to
choose the same object for all Cauchy sequences that should converge to the same
limit. Thus the whole construction boils down to the definition of what it means
that two Cauchy sequences converge to the same real number, which must be stated
without mentioning the real number itself. The formal definitions of these concepts
are in Notes.

34 1 Mathematician’s World

For formalization in set theory, Cauchy sequences are as good as any other for-
malization. However, the option preferred by set-theorists is based on Dedekind’s
cuts. It is also a more acceptable answer to the philosophical question ‘what are the
real numbers?’ Dedekind used the fact that we only need to add irrational numbers
to the rationals. Then an irrational number is defined as a ‘hole’ in the line of rational
numbers. Set theory enables us to easily define what a hole means: it is a partition of
the rational numbers into two parts, one below the hole, the other above. Arithmetic
operations with holes are done by shifting these partitions appropriately.

Example
√

2 is thus identified with the pair of sets (X,Y), where X is the set of
all rational numbers less than

√
2 and Y is the set of all rational numbers bigger

than
√

2. However, it would be a circular definition if we used this to define
√

2.
Therefore we must say that Y is the set of all positive rational numbers y such that
2 < y2 and X is the complement of Y .

If we only want to show that the real numbers can be formalized in set theory,
we can ignore tradition and philosophy and use some simple straightforward con-
struction, such as decimal representation. In this representation a real number is
an infinite sequence of numbers 0, . . . ,9 with a period and a sign. In order to get
uniqueness, we disallow sequences that end with a tail of 9s.

Interestingly, the formalization of structures in set theory is a similar task as the
formalization of structures for computers. Programming languages seldom use sets,
they rather use lists and arrays, in which elements are given in some order, but this
is not essential. The only essential difference between representing objects in set
theory and in computers is that in computers we do not have infinite structures.

Notes

1. Urelements.9 It is possible to develop set theory using true elements which are
not sets. Such elements are called urelements. Another possibility is to use sets
which have themselves as the only one element, sets that satisfy x = {x}. Thus
we can mimic urelements while preserving extensionality for all objects, which
we cannot do in the first case. The standard approach is, however, to use neither
of the two kinds of urelements since we do not need them for practical purposes
and the theory is simpler without them.

2. Pairs and sequences. The pair (a, b) is defined, following Kuratowski, by
{{a}, {a, b}}. If a = b, then (a, b) contains one element that contains one ele-
ment a. If a = b, then it contains two elements; one element is a one element set
containing a, this determines a; the other is a two element set containing both
elements, this determines b as the element that is not in the one element set.

9Ur-, originally a German prefix now also used in English, means primitive, original.

1.2 Everything Is a Set 35

To represent a finite sequence with n elements a1, . . . , an we take the set
of pairs {(1, a1), . . . , (n, an)}. This is, in fact, a function defined on the set
{1, . . . , n}. Other indexed structures (matrices, infinite sequences, etc.) are done
in similar way.

3. Recursive definitions in set theory. It is not difficult to prove in set theory that
functions defined by recursion exist. We can reduce it to induction, which we
already have. For example, we prove by induction that, for all n, there exists
a unique partial operation defined on the interval [0, n] satisfying the equa-
tions (1.1). Then the operation of addition defined on all natural numbers is the
union of these partial operations.

4. Cauchy sequences. A sequence r0, r1, r2, . . . is Cauchy, if for every ε > 0, there
exists n such that for all k,m > n, the inequality |rk − rm|< ε is satisfied.

Two Cauchy sequences r0, r1, r2, . . . and s0, s1, s2, . . . converge to the same
real number if for every ε > 0, there exists n such that for all m > n,
|rm − sm|< ε. Note that we are able to define it without knowing the number
to which they converge. Thus we can use the above condition to define an equiv-
alence relation on Cauchy sequences. Then we define the real numbers as equiv-
alence classes.

The advantage of this construction is that it works for all metric spaces. Thus
one can prove that every metric space can be extended to a complete metric
space.

5. Dedekind’s real numbers. Let Q denote the set of rational numbers. Dedekind’s
definition can be simplified by considering only one set of rational numbers for
every real number. Thus we define a real number to be a nonempty proper subset
of Q which is closed downwards (with any rational number it contains all smaller
ones) and which does not have the largest element. For two real numbers r , s,
we say that r is less than or equal to s, if r is a subset of s; r + s is defined as
the set of rational numbers which are less than or equal to a + b for some a ∈ r

and b ∈ s; multiplication is defined in a similar way. The rational numbers Q are
not a subset of R constructed in this way, but they are embedded in R by the
assignment a �→ (−∞, a).

6. Other structures. As regards a small finite structure there is no problem to con-
struct it now. We take, say, an initial segment of the natural numbers as the uni-
verse and to define a subset, relation or function, we simply list the elements. In
the case of infinite structures, we have to find a particular construction in each
case. This may depend on the axioms of set theory that we use! We can talk
freely about classes of structures satisfying some properties, but to prove that
there exists at least one such structure we need a construction.

So far we are only using naive set theory, which is inconsistent, if taken strictly
logically. We will have to restrict the general principles to get consistency and
then add new axioms to retain the necessary strength. For instance, the existence
of the power set P(X) for every set X is a consequence of the Principle of Com-
prehension, but it will be postulated as an axiom later. In order to prove that N is
a set, we will also need an axiom—the Axiom of Infinity.

36 1 Mathematician’s World

1.3 Antinomies of Set Theory

The decadent mood of the end of the 19th century influenced also the views on
the future of science and technology. People thought that all important inventions
had been discovered and there were no substantial discoveries going to happen in
physics. Mathematics has always been different because it has had famous open
problems. They will never be exhausted, as new problems arise at least as fast as
old problems are solved. The foundations of mathematics are, however, a different
thing. In foundations there is a clear convergence to more complete and more precise
systems. From this point of view the state of the affairs in mathematics was simi-
lar to physics. During the 19th century all concepts of mathematics were reduced to
natural numbers. This process, called arithmetization, started with Descartes’s intro-
duction of analytic geometry, continued with the formal definitions of convergence,
derivations and integrals, and ended with the introduction of sets. Set theory was
able to reduce even the remaining natural numbers to the abstract concept of a set.

For mathematicians this was a positive thing. Except for a few, they are interested
in doing research on real mathematical problems. The problems on foundations are
seldom clear cut and often it is more philosophy than science. Having firm founda-
tions meant that they could discard those pseudoproblems forever. But even before
set theory became generally accepted, it received a serious blow. This was because
a contradiction was derived from basic principles.

Before considering the contradictions, I will briefly digress to explain why a
contradiction is fatal for any theory. A contradiction is a pair of statements such that
one is the negation of the other. When we derive such statements we can derive also
their conjunction (also called a contradiction) which is logically false. It follows
from the rules of logic that any statement is a consequence of a false statement. In
Latin this rule is referred to as ‘ex falso sequitur quodlibet’.10 This is also used in
natural language. When we want to stress that something is blatantly false, we say
that if that is true then something ridiculous is also true. However, the natural human
interpretation of implication is that the parts of the implication, the antecedent and
the consequent share some content. Therefore it is not easy to accept that a single
statement can imply everything. The best way to see that a contradiction implies
everything is to use a proof by contradiction. In such proofs we assume that the
statement that we want to prove is false and derive a contradiction. Then we argue
that therefore it is not possible that the statement is false, hence it is true. Now, if
we are able to derive a contradiction without any assumptions (except for the basic
principles), then it is formally derivable from any assumption. Thus any assumption
can be rejected, hence everything can be proved.

Once we know that we can prove everything, there is no point in actually proving
anything. Such a system gives us no information and certainly does not describe any
real phenomenon, as in the real world a statement cannot be true and false at the
same time.

10From falsehood, it follows anything you like.

1.3 Antinomies of Set Theory 37

Here we are, of course, concerned with mathematical truth. In our life it is quite
different. We get a lot of contradictory information. One source of contradiction
is unreliable information, another one is the use of generalization based on partial
data. We are always ready to reject such statements and recompute our model of the
world.

Contradictions in set theory are often called paradoxes or antinomies because
they contradict our intuition.11 The simplest and the most important one is Russell’s
Paradox discovered by the philosopher and logician Bertrand Russell (1872–1970)
in 1901. He showed that already one particular instance of the Comprehension Prin-
ciple is contradictory. Namely, he applied this principle to the property ‘of not con-
taining itself as an element’. The principle asserts that there is a set, let us call it
R, whose elements are just the sets with this property. For example, the empty set
belongs to R since it does not contain any set as an element. On the other hand, the
set of all sets (suppose we proved that it existed) contains any set, hence also itself,
thus it does not belong to R. We obtain a contradiction if we consider the question,
whether R is an element of R. For suppose R is an element of R, then R does not
satisfy the defining property of R, hence it does not belong to R. This contradic-
tion shows that R cannot belong to itself. But if it does not, then it does satisfy the
defining property of R so it must belong to itself. Thus we get a contradiction in any
case.

Russell was probably not the first to discover this paradox. Logicians in Hilbert’s
circle knew this paradox and attributed it to Ernst Zermelo (1871–1951). Zermelo
did not publish the paradox, but according to his recollections, he thought about it
around 1900. He used it to prove that the largest cardinality does not exist. But Can-
tor had been aware of the problems with certain sets already before Zermelo. He said
that they “cannot be conceived as determinate, well-defined, finished sets”. He also
called them “absolutely infinite sets”.12 However, there is an essential difference
between the approaches of Russell on the one hand, and Cantor and Zermelo on
the other. While Cantor and Zermelo studied sets as mathematical entities, Russell’s
focus was on the principles of logic. Cantor and Zermelo viewed the paradoxes as
proofs that “very large sets” do not exist. In contrast, Russell presented his paradox
as a proof that the principle of comprehension is not a universally valid logical prin-
ciple. If we want to have a consistent system, we must restrict the class of properties
to which it is applied. Presenting the paradox in this way had a decisive impact on
the further development of set theory.

In fact, Russell arrived at his paradox analyzing an earlier paradox found by
Cantor. Cantor proved that for every set, the set of all subsets of it is strictly larger.
The problem then is with the set of all sets. This set exists by the Comprehension
Principle, where one uses as the defining property any property which is generally

11Strictly speaking, we should distinguish between paradoxes—apparent contradictions, and
antinomies—actual contradictions, but when using informal reasoning it is difficult to make this
distinction. Therefore, these words are used interchangeably.
12Letters to Hilbert, September 26 and October 2, 1897. See [65], page 42.

38 1 Mathematician’s World

true (say, the property of being equal to itself). This set is, by definition, the largest
set, so it contradicts to Cantor’s theorem.

Apparently most mathematicians were not very impressed by the antinomies.
They felt that what they were doing was sufficiently well tested and they used math-
ematical objects that were in some sense more real than sets. In any case, the histor-
ical experience suggested that even if a part of the present mathematics would have
to be abandoned because of its contradictory character, it would be only a small part.
Still, it was rather disturbing that the contradiction was derived from what seemed
an intuitively obvious principle.

At this point several other paradoxes were discussed. One of them, whose roots
go back to the ancient Greeks, is the well-known liar’s or Epimenides paradox.’ The
story says that Epimenides was a Cretan who said: “All Cretans are liars.” Was he
a liar?13 A modern version of this paradox is the paradox of the barber: “There is
a man in a village who shaves all men in the village who do not shave themselves,
and only those. Does he shave himself?”

Another, known as Berry’s paradox, goes as follows. We know that any
nonempty subset of the natural numbers has the first element. (This is just an equiv-
alent form of the induction principle.) Also it is clear that there are only finitely
many English sentences with at most 100 letters, hence there are natural numbers
which cannot be defined by such sentences. Thus we can define a number n to be the
first number that cannot be defined by an English sentence with at most one hundred
letters. This is a contradiction, as we have just defined n by such a sentence!

At first it may seem that the problem with the paradox may have something to do
with infinity. After all, we have no idea how large the largest number definable in
this way is. But in fact we can easily give an upper bound on the numbers that have
to be considered. With 26 letters used in English and one more character for the
space between words (or at the end of the sentence) we can estimate the number of
English sentences with at most 100 letters by 27100. Thus the alleged number should
be amongst the numbers 0,1,2, . . . ,27100 since at least one of these numbers cannot
be defined using 100 letters.

The number 27100 is, unfortunately, too big even for a computer. Furthermore,
English is rather complex, so it would be difficult even to generate all syntactically
admissible sentences. But you can design, or at least imagine, your own special
purpose language with a simple and precise syntax and such that one can state the
paradox using a sufficiently small number instead of 100.

Another version of this paradox is based on the assumption that our universe
is finite. Under this assumption we do not have to give an explicit estimate of the
length of the definition.

These two paradoxes belong to a class of paradoxes, called semantic paradoxes,
that are based on natural language and use words such as ‘true’ and ‘defined’, which
are not precisely defined. However, it is possible to formalize these concepts when
we have a formal language. Then, the paradoxes are resolved by strictly distinguish-

13This is the traditional version of the paradox which assumes that a liar is always lying.

1.3 Antinomies of Set Theory 39

ing between the object language and the language that we use to define these con-
cepts. These paradoxes have never been perceived as a real threat. After all, such
paradoxes have been known for thousands of years and they never interfered with
mathematics.

Paradoxes in Mathematics

There are paradoxical results in mathematics that do not present inconsistencies.
They are exact theorems, except that they are counterintuitive. A classical exam-
ple of a paradoxical object is the function, constructed by Bolzano and Weierstrass
which is continuous but not differentiable at any point, which I already mentioned
above. Another classical example is a curve constructed by Peano in 1890 that com-
pletely fills a square.

Paradoxical results are present in many fields of mathematics, the more the field
is connected with our a priori intuition the more likely we can find some. For in-
stance, human understanding of the geometry of three dimensions, which is to a
large extent inborn, is quite good. When thinking about higher dimensions we try to
use our three dimensional intuition, but it often fails badly. It is an easy exercise to
construct two circles C1 and C2 in four dimensions such that the distances between
all pairs of points one on C1 and the other on C2 are the same. We can do it using
analytical geometry, but we are not able to visualize it because in three dimensions
it is impossible.

Since a lot of our everyday decisions are based on estimating probabilities of
various events, one would expect that our intuition about probability is fairly good.
But there are examples of the failure of our intuition also in this field. Perhaps the
most popular is the well-known Birthday Paradox of Richard von Mises. It seems
very counterintuitive that with a probability greater than 1/2 among 23 randomly
chosen people there are two with the same birthday. One would expect to need
essentially more to get this probability, but the above fact can easily be shown by a
simple calculation.

A more recent and more tricky one is the following nice puzzle, so nice that it
made it into the pages of the New York Times as the Hat Problem. There are n

people each having a blue or red hat. Each person can see the color of everybody
else’s hat, but not his or her own. According to the rules of the game they play,
at some point they are asked to guess the colors of their own hats. They have to
answer at once and independently of each other, but anybody can abstain. If every-
body abstains or one of them guesses incorrectly they loose. If at least one does not
abstain and everybody who answers gives the correct answer, they win. The play-
ers can agree on a suitable strategy beforehand, but once the game starts they are
not allowed to communicate. It is clear that every strategy may fail since either ev-
erybody abstains, which is a failure, or at least one player always answers, but the
player surely may give the wrong answer, as the players do not know their colors.
The question is, what is the best strategy when one wants to get the highest chance

40 1 Mathematician’s World

of winning. We are, of course, assuming that the colors of the hats are completely
random. Intuition tells us that it is not possible to get the probability of winning
greater than 1/2. The argument is that one player makes a wrong guess with a prob-
ability of 1/2; if more players answer at the same time, the probability that one of
them answers wrongly is even larger. Thus it seems that the best they can do is to
choose one player who will be the only one who answers and who makes a random
guess. In reality, there are strategies for which the probability of winning goes to 1
with n going to infinity.

There are paradoxes that do not lead to contradictions also in set theory. In
Chap. 3 I will talk on consequences of the Axiom of Choice that look paradoxi-
cal. I will consider the famous Banach-Tarski paradox that says that it is possible to
decompose a sphere into finitely many pieces from which we can reconstruct two
spheres. Though the Axiom of Choice does not introduce a contradiction, such para-
doxical consequences undermine its position among the basic mathematical princi-
ples.

Notes

1. Russell’s paradox. Let us analyze Russell’s paradox more formally. The contra-
diction will be more apparent, if we use a bit of logical notation. The paradoxical
set R is defined by the condition

x ∈R if and only if x ∈ x. (1.2)

To find out if R is an element of R, we substitute R for x. Then we get

R ∈R if and only if R ∈R.

This is a false proposition as it says that a proposition is equivalent to its negation.
Note that we have not used any non-logical assumption other than (1.2).

Therefore we can conclude that whatever the relation ∈ is, the sentence (1.2)
cannot be true for all x. Thus we can interpret the argument as a general theorem
on structures with a binary relation. Let us restate it in this way.

Proposition 1 Let (A;B) be a structure with one binary relation B . Then there
is no element r of A such that the proposition

B(x, r) if and only if ¬B(x, x), (1.3)

holds for every x in A.

If we interpret A as the men of the village and B(x, y) as ‘y shaves x’, then
it shows that there cannot exist a man claimed in the Paradox of a barber. It is
much harder to imagine sets as the structure where the universe is all sets and
∈ is a binary relation. We feel that ∈ is something special. But as far as logical
deductions are concerned, it is only a binary relation.

1.3 Antinomies of Set Theory 41

We can view this result as based on loops in the graph defined by the rela-
tion R. It has been observed that one can also use longer cycles. For cycles of
length 2, we get the following version of the proposition above.

Proposition 2 There is no element r of A such that the proposition

B(x, r) if and only if there exists no y such that B(x, y) and B(y, x),

(1.4)

holds for every x in A.

This case appeared in one of the popular puzzles of Raymond Smullyan.
These generalizations are not only used in recreational mathematics, but also
for serious results. W.V.O. Quine observed that one can use cycles of arbitrary
lengths and made the bold conjecture that it suffices only to prohibit these cycles
in order to obtain a consistent set of axioms of set theory. I will say more about
it in Chap. 3. S. Žák used cycles of increasing lengths to prove hierarchy theo-
rems for nondeterministic complexity classes (not knowing Quine’s observation;
the hierarchy theorems for deterministic computations are explained in Chap. 5,
page 377). A version with an infinite cycle was found by D. Mirimanoff already
in 1917.

2. Cantor’s Paradox. Before analyzing Cantor’s Paradox, let us prove his theorem
on the cardinality of powersets.

Theorem 1 For every set X, there is no one-to-one mapping from P(X) to X.

Proof Suppose f is such a mapping. Define Y = {f (Z); Z ⊆X ∧ f (Z) ∈ Z}.
Then f (Y) ∈ Y , by the definition, if and only if f (Y) ∈ Y . Thus the assumption
of the existence of such a mapping leads to a contradiction. �

Clearly, there exists a one-to-one mapping from X to P(X) (namely x �→
{x}). Thus we conclude that P(X) has larger cardinality than X. The paradox is
now obtained by taking the set of all sets V . We have P(V)⊆ V , which means
that P(V) is mapped to V by the identity mapping. For X = V and f equal to the
identity mapping, the set Y in the proof of Cantor’s theorem is exactly Russell’s
set R. Thus Russell’s Paradox is the pure logical essence of Cantor’s Paradox.

The type of argument used in Russell’s paradox and Cantor’s theorem is called
diagonal, or self-referential. It can actually be used to obtain nontrivial mathe-
matical results. In (1.3) we can avoid the contradiction, if r is not in A. So another
interpretation of the argument of the paradox is that any r satisfying formula
(1.3), for all x in A, must lie outside of A. This argument is used also in the most
important theorem in the foundations of mathematics, Gödel’s incompleteness
theorem. I will return to it and discuss it in more detail.

Another paradox discovered by Cantor concerns cardinal arithmetic (see
Chap. 3 for the basic concepts). Suppose the that set X of all “alephs” (more
precisely, sets ℵα , where α are ordinals) exists. Then it is a well-ordered set,
hence its cardinality must be some ℵβ . But also ℵβ must be larger than all ℵα
in X. This is a contradiction.

42 1 Mathematician’s World

3. Hilbert’s Paradox. Consider two operations: the union of a set X (denoted by⋃
X) and the set of all mappings on a set X (denoted by XX). Start with a

non-empty set and let U be the set obtained by applying these operations in
all possible ways. Then UU must be a subset of U , by definition. But UU has
a larger cardinality than U (as one can show by the same argument as in the
theorem above). Hence we cannot consistently assume the existence of such a set.

Hilbert considered this paradox to be more serious than others because the set
U is apparently constructed from below only using basic set-theoretical opera-
tions. But this is only what it looks like if we do not use a precise definition. As
soon as one tries to define U precisely, one sees that it is not possible to avoid re-
ferring to “large entities”. For example, the standard way to define such a U is to
use transfinite recursion. To this end, however, one has to use all ordinals. Ordi-
nals do not form a set, hence also U will not be a set. In set theories with classes,
ordinals form a proper class (a class which is not a set) and so will also be U .

4. Burali-Forti’s Antinomy. For the sake of completeness we mention also Burali-
Forti’s antinomy. It was published by Burali-Forti, but had been known to Cantor
before. After all, it is not so much different from Cantor’s paradox. By the theory
of ordinal numbers, which we will consider later, an initial segment of ordinal
numbers has an ordinal number which is bigger than any element of the segment.
Thus the existence of the set of all ordinal numbers leads to a contradiction.

5. The Hat Problem. The reason why the intuitive argument is wrong is the follow-
ing. While it is surely true that when a player answers, he gives the right answer
with probability 1/2 and the wrong one with 1/2, this is only the conditional
probability with the condition being that the player answers. If we take into ac-
count that a player sometimes abstains, we have the probability ε of the correct
answer, ε of the wrong answer and 1−2ε that he abstains, for some 0≤ ε ≤ 1/2.
If ε is small, then the player gives wrong answer with small probability. Now the
trick is that with more players it may be possible to arrange it so that the bad
cases overlap, so the probability of failure remains small, but the good cases are
distinct, so the probabilities add up. Indeed, in the optimal solution that exists
for n of the form 2k − 1,

a. either all players answer incorrectly, and this happens with probability 1
n+1 ,

b. or exactly one player answers correctly while others abstain; each of the play-
ers does so with probability 1

n+1 , hence they win with probability n
n+1

The solution is based on Hamming codes, which is a hint for the reader who
wants to solve it.

6. Paradoxes in computational complexity theory.

a. Consider computations of Boolean functions f : {0,1}n→{0,1}n by Boolean
circuits. This model of computation will be introduced later. For now, think of
it as a piece of hardware consisting of electronic gates that works as follows.
If you fix the input values on input wires, the circuit computes for a while and
when the values on all gates stabilize, you get the output value of the function
f that the circuit computes. Suppose, for some function f , the minimal size

1.4 The Axiomatic Method 43

of a Boolean circuit computing f is S. Now suppose that you want to com-
pute f in parallel on two independent inputs. This means that you want to
compute the function F that from 2n bits x, y produces 2n bits f (x), f (y).
Intuition tells us that the minimal size of a circuit computing F should be
2S. The following is an intuitive reason that it cannot be less. Given a circuit
for F we can think of it as two overlapping circuits, one computing f (x) the
other f (y). The overlap consists of the gates that depend on both inputs x and
y. But if a gate may have an arbitrary value depending on y, then it should
be useless for computing f (x) and symmetrically with x replaced by y. Thus
the gates from the overlap should be useless, hence the best we can do should
be to take two disjoint circuits. Yet, one can show that, for some functions f ,
one needs only a tiny fraction more than S to compute F (namely (1+ εn)S,
where εn→ 0 as n→∞). (See [295].)

b. Consider the following three player communication game. Player 1 gets a bit
string x of length n, x = (x0, . . . , xn−1) and a number i; Player 2 gets the
same string x and a number j ; Player 3 gets i and j . Their information is pri-
vate, so, for example, Player 1 does not know j . Then Player 1 and Player 2
send independently of each other messages to Player 3. They have agreed be-
forehand on what messages they will send in all possible situations and they
have done so in such a way that Player 3 is always able to say correctly what is
the value of xk for k ≡ i+ j mod n. The question is what is the total length of
the messages they would have to send to Player 3 in the worst case. Clearly, a
possible protocol on which they may agree is that they would send all the bits
of x to Player 3, which is n bits. Intuitively this seems the best possible thing
they can do. The argument is as follows. For Player 1, the information about
i is totally irrelevant, as for a given i the k ≡ i + j mod n may be completely
arbitrary. Hence the only relevant information Player 1 can send concerns x.
Similarly for Player 2. So they will send some information about x, inde-
pendently on the indices i, j . But then they have to send at least n bits, as
the information on x cannot be compressed. Yet, the minimal number of bits
that the players have to exchange is bounded by a function f (n) such that
f (n)/n→ 0 as n→∞. (See [230].)

1.4 The Axiomatic Method

At the age of eleven, I began Euclid, with my brother as my tutor. This was one of the great
events in my life, as dazzling as first love. I had not imagined that there was anything so
delicious in the world.

Bertrand Russell, The Autobiography of Bertrand Russell14

The oldest mathematical texts contain examples of mathematical problems with
solutions. They served as guides of how to solve equations, how to construct ge-
ometric figures etc. The first proofs of mathematical theorems appeared in ancient

14[254], Vol. 1, page 36.

44 1 Mathematician’s World

Greece probably in the 6th century BCE. They are attributed to Thales and mem-
bers of the Pythagorean School (for example, the proofs of Thales’ Theorem and
the Pythagorean Theorem). Convincing evidence that mathematical proofs had been
used in the ancient Greece in the 5th century BCE is the discovery of the incommen-
surability of the side and diagonal of a square. (This is essentially the fact that

√
2

is not a rational number, see page 257.) This is a kind of statement that requires a
proof; you cannot claim that it is impossible to write

√
2 as a fraction of two whole

numbers, unless you can prove it.
This was not only the time when first proofs appeared, but also the time when

western philosophy emerged. According to tradition, it was Pythagoras who coined
the term philosopher. The emergence of philosophy meant that science ceased to be
considered to be a tool serving to efficiently accomplish practical tasks, but rather an
environment for intellectual activity, disregarding any possible applications. Once
people started to ask, not only ‘how?’, but also ‘why?’, they could not have been
satisfied with mere statements of mathematical facts. They needed proofs.

Aristotle (384–322), the greatest philosopher of Antiquity, studied logic and the
scientific method in general. He determined a set of logical rules, which he called
syllogisms and described logical deductions as successive applications of these rules
starting from some basic assumptions. By this, he described what we now call the
axiomatic method.

Aristotle distinguished between two types of basic assumptions: postulates and
axioms. Postulates are those that are common to all sciences, whereas axioms are
special for a particular field. In the modern terminology of mathematical logic we
do not use the word ‘postulate’; however, we do distinguish between logical axioms
and mathematical axioms.

A prime example of an application of the axiomatic method are Elements writ-
ten by Euclid of Alexandria around 330 BCE. Euclid starts by explaining the basic
concepts such as ‘A point is what does not have a part.’ Part of these statements
are not definitions in the modern mathematical sense; they relate the abstract mathe-
matical concepts to reality. We would rather call them intended interpretation. Then
he presents two lists of statements. The first one can be interpreted as geometrical
axioms, the second as logical and arithmetical axioms. The results are presented as
theorems, constructions and algorithms.

We know about some gaps in proofs and that the postulates in Elements are not
sufficient to derive all theorems. Yet, it is an impressive work, whose style is surpris-
ingly close to present-day mathematical monographs. Many mathematicians used
Elements as a prototype for their treatment of geometry. In fact, this book is among
the most influential ones of Western civilization. Finally, a modern axiomatization
of geometry was given by the great German mathematician David Hilbert (1862–
1943) in his Foundations of Geometry15 in 1899.

The axiomatic method is a way to reduce assumptions used in a theory to a
few basic principles. But this does not only concern assumptions; at the same time,

15Grundlagen der Geometrie, [124].

1.4 The Axiomatic Method 45

we are also reducing concepts to simpler ones. Thus the reduction goes on in two
parallel lines: on the one line we are reducing the assumptions, on the other we are
reducing the concepts.

axioms theorems

primitive concepts defined concepts

Reducing the assumptions means that we show that they are derivable from others;
reducing concepts means that they are definable from others. Eventually no further
reduction is possible and then we talk about axioms and primitive concepts.16 The
primitive concepts are those which are not defined. The main reason is that they
cannot be further reduced, but we usually also assume that they are clear and do not
need further explanation. Similarly axioms are statements that we are not able to
reduce to more primitive ones.

In principle, we could develop theory only using primitive concepts, but it would
be very cumbersome. Definitions enable us to use short terms to express more com-
plicated concepts and thus we can express ideas more efficiently.

An ideal mathematical text starts with axioms, followed by definitions, theorems
and proofs of theorems. Definitions do not have to be all at the beginning. Further-
more, proofs may use auxiliary theorems, which are called lemmas. Proofs may
also use auxiliary concepts that are not used in the axioms and the statements of the
theorems. Although we use a special word ‘lemma’ for auxiliary theorems, we do
not have words distinguishing auxiliary terms and their definitions from the genuine
concepts and their definitions. However, mathematical articles and monographs do
not only consist of definitions and theorems. Reading a completely formal math-
ematical text would be difficult and readers need to know the motivation for the
theorems, how the results relate to those in other articles etc. It also helps to give
informal descriptions of difficult proofs.

Example In elementary plane geometry the primitive concepts are points, lines and
the incidence relation between points and lines. Thus we have two kind of objects,
points and lines, and the relation ‘a point lies on a line’. The basic axioms of plane
geometry are:

1. for every two different points, there is a unique line incident with them;
2. every line has at least two points;
3. any two different lines have at most one point in common;
4. there are three points which do not lie on one line.

Using these basic concepts one can define other objects, such as triangles, quadri-
laterals, etc., but also relations such as two lines being parallel (⇔ no point lies on
both lines). These axioms are only a part of the list that Euclid needed, but already

16Sometimes it is useful to keep some redundancy; sometimes we are not able to prove that further
reduction is impossible, but it is.

46 1 Mathematician’s World

using these axioms one can prove many theorems. Also the concepts available in
this system are rather simple and we have to add more primitive ones and more ax-
ioms to get interesting theorems. In particular we need the relation of congruence in
order to be able to say that two line segments have the same length.

The main reason for using the axiomatic method is that we want to understand
the subject that we study, we want to know what is essential—we need a theory.
By a theory we usually understand a collection of statements which explain certain
phenomena. It is very difficult to define what it means to explain. There are, how-
ever, some attributes that are quite clear: simplicity and universality. Thus a good
theory must be based on a small number of general statements. The simplest theo-
ries may consist of a single postulate. The law of free fall asserts that the speed of
falling objects is proportional to the square of the elapsed time. The universal nature
of this theory is in its applicability to any object. A more general theory is Newton’s
theory of gravity. It explains much more than just the attraction of bodies to the
Earth. It can also be given by a single equation asserting that the attraction of bod-
ies is proportional to the product of their masses and to the square of the distance.
Maxwell’s theory unifies electrostatic and magnetic forces using a few differential
equations. The ultimate goal of theoretical physics is a unification of all physical
theories, dubbed the Theory of Everything; presented more modestly, it should be
one theory for all forces in nature.

This is just to name a few examples from physics. Theories are present in all
scientific disciplines. They are not always called theories; sometimes they are called
models (when there are alternative theories), sometimes they are called laws. For-
mally, they are all just axiomatic systems.

Ancient Greeks not only discovered that one can axiomatize mathematics, but
also the striking fact that one needs only a small number of very basic principles
to do that. This also concerns some other fields of science. If nature were evil,
we would need to get more experimental data every time we wanted to get more
knowledge. That would mean accepting more and more axioms, which eventually
would make the axiomatic method almost useless. But on the contrary, especially
in physics, we are witnessing a reduction to fewer and fewer basic principles, one
needs fewer and fewer absolute constants, etc. Already the present physical theories
are able to reduce all chemistry to a few physical laws. In principle, it is possible
to compute the chemical properties of all atoms and molecules only using quan-
tum electrodynamics. We can go on and reduce molecular biology to chemistry
etc. These are, of course, only theoretical reductions. In practice, the computational
problems involved are so difficult that it is unlikely that one will ever be able to do
without experiments.

In the foundations of mathematics the axiomatic method plays an extremely im-
portant role. Russell’s paradox taught us a lesson: set theory cannot be based only
on intuitive principles. In particular, it is necessary to restrict the use of the Princi-
ple of Comprehension. In this situation, it is reasonable to present the modification
as precisely as possible. Although stating axioms of set theory explicitly does not
guarantee the consistency of the resulting theory, it gives us at least something that

1.4 The Axiomatic Method 47

we can test. In 1908 Zermelo published a set of axioms for set theory [318]. This
was the beginning of axiomatic set theory. With a small, but important, addition by
Abraham A. Fraenkel (1891–1965), this axiomatic system has been commonly used
as the foundations of mathematics to the present day. The theory is called Zermelo-
Fraenkel Set Theory. (I will describe it in detail in Chap. 3.) A large body of results
have been proved in this theory and the theory has passed these “tests”—no contra-
diction has been found.

Axiomatic approach is praised by logicians, but not everybody shares their view.
There has always been resistance to formalization of mathematics. The strongest
opposition was declared by the intuitionistic movement at the beginning of the 20th
century. Even today some mathematicians would prefer to treat mathematical con-
cepts informally instead of axiomatizing them. Their main argument is that concepts
such as the natural numbers are clear to everybody and are more fundamental than
logic. I will discuss these views in more detail in Chap. 7.

Axiomatic Theories

The purpose of axioms is to describe some part of the real world and, accepting
the structuralist view, the world of mathematics consists of structures. Thus axioms
can be viewed as describing some structures. In mathematical logic we call a set
of axioms a theory, and structures that satisfy the axioms models of the theory. For
example, integers with the constant 0, the operations −x and x + y are a model of
the theory of groups.

There are two basic situations where we use axioms:

1. to describe a class of structures,
2. to describe a single structure.

We have already considered various classes of structures defined by axioms. In par-
ticular ordered sets are defined by the axioms 1., 2. and 3. on page 17. The subclass
of linear orderings is defined by adding axiom 4. Another important class of struc-
tures is groups. This class is defined by the axioms on page 18. The subclass of
commutative groups is defined by adding the axiom of commutativity x · y = y · x.

The most important examples of single structures that we would like to axioma-
tize are the basic algebraic structures: the natural numbers, the integers, the rational
numbers and the real numbers. To axiomatize such structures is usually a much
harder task. Whether it is possible at all depends on the language and logic that we
use. These problems are among the most important problems in the foundations of
mathematics; I will deal with them in the following chapters.

Many important classes of structures were obtained by generalizing some stan-
dard structures. The prime example is the concept of a field. This class of structures
was defined by taking the basic properties of the structure of the real numbers as
the axioms, (see page 20 for the axioms). Another example comes from geometry.
Consider plane geometry with the basic objects being points and lines and the basic

48 1 Mathematician’s World

Fig. 1.7 Fano plane. Points
are the seven points on the
intersections of the lines;
lines are the triples of points
lying on the six lines and on
the circle. The lines and the
circle are drawn only to
indicate which triples of
points form lines

relation of incidence. Formally, it is a structure with two universes, P for points and
L for lines and the incidence relation R ⊆ P × L, where R(x, y) means that the
point x is on the line y. The relation satisfies the axioms on page 45. However these
axioms do not describe the Euclidean plane uniquely. There are infinitely many es-
sentially different structures satisfying these axioms, in fact, there are even finite
structures. An example of such a structure is the Fano plane, see Fig. 1.7. Although
discrete planes look like “pathological objects”, they are, in fact, useful. Finite fields
are even more important.

An axiomatic theory, in the strict sense, should only use logic; it should not use
any higher order, or external concepts, such as sets and numbers, unless they are
also axiomatized by the theory. However, this term is often used with a broader
meaning. A theory whose axioms are stated in logic is called elementary; otherwise
it is called nonelementary. This distinction is irrelevant from the practical point of
view since the most interesting theorems usually refer to nonelementary concepts,
such as subgroups in the theory of groups, ideals in the theory of rings, etc., whose
definitions require the concept of set, but it is very important from the point of view
of logic. An example of an elementary theory is the elementary group theory defined
on page 18.

A nonelementary theory may use some standard structure as a sort of a primitive
concept. Thus it is assumed that all true statements on that structure are given. An
example is the concept of a real vector space. The standard structure in a real vector
space is the structure of the real numbers with addition and multiplication; so this is
the external part. The axioms (see page 20) talk only about the internal part and its
relation to the real numbers. Also all physical theories refer to the integers, the real
and the complex numbers as basic concepts and leave the job of defining them to
mathematicians. Most theories studied in mathematics are nonelementary because
they use the concept of set.

In principle, one can transform every nonelementary theory into an elementary
one simply by adding axioms describing the nonelementary concepts. But in prac-
tice this is often impossible because there is no way to present the axioms in an
efficient way.

The latter comment concerns a fundamental question: how should the axioms of
a theory be presented? The ideal situation is when we can write down a finite list of
axioms. When this is not possible, we may still be able to present the axioms in a
very reasonable way, namely by an axiom schema. An axiom schema is a formula

1.4 The Axiomatic Method 49

containing a metavariable for formulas. We obtain an instance of the schema, a con-
crete axiom, by substituting a formula for the metavariable. The two most important
theories axiomatized by schemata are Peano Arithmetic and Zermelo-Fraenkel Set
Theory, which I will describe in the following chapters. One can relax the condition
on the set of axioms to the mere requirement that there is an algorithm for deciding
whether or not a given formula is an axiom or not. But this is as far as we can go;
if the set of axioms is algorithmically undecidable, we cannot consider it to be a
formal system. In a formal system, we should be able to decide whether or not a
given text is a proof; if we are not able to decide if a sentence is an axiom, then this
is impossible.

In this book, I will only consider theories that are axiomatized by an algorithmi-
cally decidable set of axioms. To stress the latter fact, I will sometimes use the term
‘formal theory’ or ‘formal system’. The latter one has a little broader meaning—the
system does not have to be based on logic. I will also use ‘axiomatic system’, ‘ax-
iomatization’, etc. with the same meaning as ‘formal theory’. The reader not familiar
with the concept of decidability can simply imagine a formal theory as a theory ax-
iomatized by a finite set of axioms and schemas since for a large class of theories,
axiomatizability by a decidable set of axioms is equivalent to axiomatizability by a
schema (according to a result of R.L. Vaught [298]).

The assumption that the set of axioms must be algorithmically decidable has pro-
found consequences. It implies that certain structures cannot be axiomatized. This
concerns, in particular, the structure of the natural numbers, as well as all structures
that contain the natural numbers. This fact is the essence of the Gödel Incomplete-
ness Theorem, which I will explain in Chap. 2 and then in more detail in Chap. 4. An
important consequence is that nonelementary theories that use the natural numbers
as primitive concepts cannot be fully formalized. In particular, none of the currently
used physical theories can be fully formalized.

Properties of Theories

1. The most important property of an axiom system is its consistency. This means
that the system is free of contradiction. In an inconsistent system one can de-
rive any sentence, hence such a system is useless, as we noted in the section on
antinomies in set theory. Actually, axiomatization of set theory was historically
the first case where the question of consistency became important. Before people
axiomatized concrete structures. Assuming that a particular structure exists, we
get the consistency of any set of sentences that are satisfied in the structure. In
particular, we believe that the natural numbers exist, therefore the axioms about
them are consistent. For sets there is no such “canonical” structure. The only
place where they occur is our natural language, which is imprecise and inconsis-
tent in many ways. There is nothing to which we could reduce the consistency of
set theory.

Upon closer inspection, we realize that the situation is not much better even if
we have a canonical structure for the theory. For example, we may firmly believe

50 1 Mathematician’s World

that the natural numbers are a real object and as such they must be consistent. But
how can we test that a sentence that talks about all numbers is true in the struc-
ture? We cannot test all infinitely many numbers. So our argument that the ax-
ioms about natural numbers are consistent is based on the belief that the axioms
are satisfied in this structure. What we, however, can do completely formally is
to reduce the consistency of one theory to another one. Thus, for example, we
can reduce the consistency of an axiomatic system for the natural numbers to the
consistency of an axiomatic system for set theory.

Consistency is the key concept in the foundations, so we will learn more about
it later; it will occupy us essentially for the rest of this book.

2. The second most important property of axiomatic systems is the completeness.
A system is complete, if we can derive all sentences that are true in the struc-
ture that we are axiomatizing. In the case the system should describe a class of
structures, we require that any sentence which is true in all structures of a given
class is derivable in the system. For some simple structures, it is possible to find
a complete axiomatization, for more complex ones, it is impossible. Note that
completeness depends on the language that we consider. Thus, for example, it is
possible to give a complete axiomatization of elementary geometry of the plane
in the style of Euclid and Hilbert. However, if we want to study deeper problems,
say differential geometry, the task becomes impossible. Another example is the
natural numbers with addition as the only operation, which we denote by (N;+).
This structure is axiomatizable, whereas if we also include multiplication, that is,
if take the structure (N;+, ·), it is not.

In the case of classes of structures defined by axioms we get completeness
automatically. For example, groups are precisely those structures (with one bi-
nary operation, one unary operation and a constant) that satisfy the three axioms
on page 18. Thus the three equations form a complete set of axioms. This looks
terrific, as if we could just let a computer generate all the theorems about groups
from these axioms. Unfortunately there is again the problem of the language that
one considers. If we only use the elementary language of group theory {1, ·, x−1}
we get only trivial theorems. In order to express interesting concepts, for exam-
ple, to define a simple group, we need either to use a higher order language, or
work in set theory. In both cases a complete axiomatization is elusive.

A more technical remark concerns relative completeness. I touched on this
subject already above when talking on real vector spaces. The set axioms of real
vector spaces is complete relative to the structure of the real numbers (R;+, ·),
which means that we can derive all true sentences about real vector spaces using
the axioms and sentences true in (R;+, ·). Incidentally, there is a complete ax-
iomatization of (R;+, ·), which implies that we can also completely axiomatize
real vector spaces. But again, interesting problems concern sets of vectors.

3. We say that a collection of axioms is independent, if no axiom can be derived
from the others. Put otherwise, axioms are dependent, if they can be further re-
duced to a smaller set. So it is important to know, if a given set is independent.

1.4 The Axiomatic Method 51

The famous case of the fifth postulate of Euclid concerns this property. The orig-
inal statement of this axiom was that two lines a, b intersecting a line c so that
at one side of c the sum of inner angles is less than 180° (“two right angles”)
must intersect at that side of c. This is equivalent, using the other axioms, to: for
a line a and a point B not on the line, there is a unique line b through B which
does not intersect a. A lot of people tried to derive this axiom from the others.
It took a long time for people to accept the possibility that it cannot be done. A
positive outcome of this were new structures, the non-Euclidean geometries. We
will come back to this topic later and I will explain how is possible to show inde-
pendence. For now, let us just say that one needs to construct a structure which
satisfies all axioms except the one that we want to show to be independent.

Independence is not as important as consistency and completeness. If we want
to axiomatize a structure or a class of structures, we are satisfied with any consis-
tent and complete set of axioms. We are interested in the dependence of axioms
only because we want to fully understand the concept and, possibly, find its gen-
eralizations.

Notes

1. First-order logic. In this chapter I have been using the term ‘logic’ for what
is more precisely called ‘first-order logic’. The name stems from the fact that
the logic uses first-order language, the language for first-order structures. I will
explain this connection and the key role of first-order logic among other logics
in the next chapter.

2. The axioms of Euclidean geometry on a plane. Above I have stated only the most
basic axioms, the axioms about the incidence relation between points and lines.
To develop elementary geometry one needs axioms about two more relations:

a. “point A is between points B and C”;
b. “segment AB has the same length as segment CD”; we say that AB is congru-

ent to CD.

There are two groups of axioms one for each of the two relations. These are a
few cleverly chosen statements that rather surprisingly suffice to derive all that
one needs. What they say can be informally described as follows.

a. The axioms about the relation ‘between’ say that on every line, once we fix
a direction by taking two points, we can define a linear ordering that is dense
and does not have the largest or the smallest elements.

b. The axioms about the congruence relation say, roughly speaking, that we can
drag a segment on a line and to any line and that all distances in congruent
triangles are preserved.

Once we have congruence on segments, we can define congruence on angles.
A large part of elementary geometry can be developed using these axioms and

only using logic. In particular, although we do not have the circle as a primitive

52 1 Mathematician’s World

concept, we can emulate it by a point C that determines the center and a segment
CD whose length determines the diameter. Essentially the same can be done with
the ellipse and other quadrics. However when using more complex objects one
has to resort to set theory. For example, one cannot express in logic concepts
such as polygon and connected, and cannot define curves that are not determined
by algebraic equations. (Below I will show that connectedness of graphs is not
expressible in logic.) Hence, in order to get a completely formal system in which
we can develop more advanced parts of geometry, we have to accept some ax-
ioms of set theory on top of the Euclidean axioms.

This set of axioms is not complete. To make it complete one has to add axioms
about the topology; it suffices to do it on lines. This is usually done by talking
about sets of points. Adding axioms on sets results in a system that cannot be
completed, due to Gödel theorems, but if we restrict ourselves to the primitive
concepts of these axioms and only use order logic, one can get a complete theory.
The idea is to replace the axiom on sets by an infinite schema that states it for
every formula. For example, one can take the following set of axioms for every
two formulas φ and ψ .

Let a line be given and an ordering on the line be fixed. Suppose that on
the line every point that satisfies φ is before every point B that satisfies ψ ,
then there exists a point A on the line that is between the points that satisfy
φ and ψ (A may satisfy one of the two formulas).

Note that this is very much related to the axiomatization of the structure (R;+, ·).
3. Gaps in Elements. One kind of important missing axioms are instances of the

continuity principle. In particular, the axioms telling when a circle and a line
intersect and when two circles intersect. This axiom is needed already in the first
theorem that proves the existence of an equilateral triangle with a given side AB.
Euclid relied on the intuitively clear fact that if we want to connect a point inside
of a circle with a point outside using a line, we have to intersect the circle. This
is correct, but it does not follow from his axioms.

4. Connected graphs is a nonelementary class. We will use the class of connected
graphs to illustrate some limitations of the axiomatic method.

A graph is connected if every two different vertices are connected by a path.
This is a clear and natural definition, but there is a problem: we need the concept
of a path. We can define connected graphs equivalently by saying that a graph is
not connected, if there is a partition of the vertices into two nonempty disjoint sets
such that there are no edges between the two blocks. In this definition we need
the concept of a set. Without using such concepts we cannot define connected
graphs.

Suppose that connected graphs can be defined by a first-order sentence Φ .
Consider an infinite sequence of symbols v,u1, u2, u3, . . . , which will be inter-
preted as vertices of a graph. Furthermore, consider the following infinite set of
axioms:

a. ui = uj , (for all i = j);
b. ui = v, (for all i);

1.4 The Axiomatic Method 53

c. u1 is connected only to u2;
d. ui+1 is connected only to ui and ui+2, (for all i).

A graph satisfying these axioms is not connected since it contains an infinite
path of vertices that are not connected with any vertex outside the path, and
there is a vertex v outside. Therefore the axioms must be incompatible with Φ ,
which means that one should be able to derive a contradiction from the union
of the axioms and Φ . However, we will show that it is not possible to derive
a contradiction from these axioms and Φ . Suppose there is such a proof P of
contradiction. Every proof is finite, hence there is the largest i such that ui is
mentioned in the proof. Now, take the graph which is just a path of i+1 vertices;
interpret the first i vertices as u1, . . . , ui and the last one as v. This is a connected
graph, and it satisfies all axioms used in the proof P . Thus using the axioms
which occur in P we can derive only sentences which are valid in this graph, in
particular, we cannot derive a contradiction.

The conclusion is that connectedness is a property that we cannot study with-
out using some higher order concepts such as sets.

5. Theories in physics. A typical theory in physics is based on differential equa-
tions. Consider Maxwell’s equations for the electromagnetic field. For the sake
of simplicity, we restrict ourselves to the case of vacuum.

curl H= ε0
∂E
∂t

, curl E=−μ0
∂H
∂t

,

div E= 0, div H= 0.

Here H (the magnetic field) and E (the electric field) are vector fields depend-
ing on time, curl and div are well-known vector differential operators, whose
explicit form is not important for us here. Thus each of the first two equations
written in coordinates splits into three equations with partial derivatives with
respect to space and time coordinates. A solution of this system of differential
equations can be presented as a structure (R3,R,H,E) where H :R3×R→R

3

and E :R3×R→R
3 are everywhere differentiable and satisfy Maxwell’s equa-

tions. Hence the theory of electromagnetic field in vacuum is the theory of such
structures. Clearly, Maxwell’s equations are not an axiomatic system for which
we would only need logic to make deductions. To get conclusions from the equa-
tions we have to use mathematics. If we want obtain some global statements, for
example, to show the possibility of electromagnetic waves, we have to construct
or prove the existence of particular solutions to the equations. Finding a solu-
tion of a set of differential equations is a nontrivial task that often requires a lot
of ingenuity, in fact it is the subject of study of separate fields of mathematics.
In practical applications we are given some partial information about the solu-
tion, such as boundary conditions or an initial state, and we want to compute the
solution at every point.

Einstein’s Relativity Theory is different. This theory cannot be completely
reduced to a set of equations. The key concepts concern observers and what

54 1 Mathematician’s World

they see. Thus the problem of axiomatizing Relativity has attracted a lot of re-
searchers. Most axiomatic systems proposed so far only formalize Special Rel-
ativity. Axiomatizations help us understand what are basic principles and what
are their consequences. Then one can clearly see that specific mathematical con-
cepts, such as the Lorenz transformation and the Minkowski norm, follow from
the assumption that the speed of light is the same for all inertial observers and a
few other basic principles.

General Relativity is a much more difficult theory. In this theory space-time is
described by Einstein’s Field Equations, which are nonlinear partial differential
equations. One can use some axiomatizations of Special Relativity and extend
it by adding Einstein’s Field Equations to obtain an axiomatization of General
Relativity.17 It would be more interesting to have a theory in which Einstein’s
Field Equations would logically follow from basic principles.

1.5 The Necessity of Using Abstract Concepts

Building a good theory is the main goal in any field of science. Having a theory
we can give explanations of a variety of phenomena and make predictions. Making
predictions means that we are able to compute what happens more precisely and
more efficiently. A characteristic feature of theories is that they use more abstract
concepts than those that we can observe immediately. Philosophers argue whether
or not one should use concepts that do not correspond to things that we can ob-
serve. The Occam’s Razor, also called the law of parsimony, tells us that we should
avoid any use of concepts that are not inevitable for describing the situations that
we study. Logical positivism was based on a similar axiom, the aim being to avoid
meaningless ‘metaphysical’ considerations. In mathematics essentially all concepts
are abstract, so these problems may seem irrelevant, but it is not true. What should
be called ‘abstract’ and what should not is difficult to decide and mathematicians
do not care anyway. What is however undeniable is that there is a hierarchy of math-
ematical concepts. The words ‘more abstract’ and ‘higher order’ correspond to our
feelings about the concepts higher in the hierarchy. Furthermore, mathematics, be-
ing the most precise of all fields of science, gives us the possibility to study the role
of abstract concepts systematically. More than that, we can even prove that abstract
concepts help in several ways. In fact, the field of logical foundations is all about it.

A Tough Nut for Computers

It’s high time now to be less abstract and give some concrete examples. I will
start with a very elementary example, which is a well-known problem from recre-

17This is not quite precise. One has to first generalize the theory and only then it is possible to add
Einstein’s Field Equations. The generalizations without the Field Equations are also interesting
theories and can describe nontrivial phenomena.

1.5 The Necessity of Using Abstract Concepts 55

ational mathematics, called the Mutilated Chess-Board Problem. Consider an ordi-
nary chess-board with two opposite corners cut out, say a1 and h8. The problem is
whether or not it is possible to tile such a board with dominos. This is a finite prob-
lem, so, in principle, one can solve it by trying systematically all possibilities. But
there are so many possibilities to partially tile the board until we get stuck that one
cannot enumerate them all, even with the help of the fastest computer. The answer
to this puzzle is no, it is not possible to tile completely the mutilated chess-board.
Hence if we merely use the method of trial and error, we have to try all partial tilings
in order to be sure that there is none. However, there is a really simple proof that it
is not possible. Every domino covers one black and one white square. Hence a com-
plete tiling is only possible if the number of black and white squares is the same,
which is not the case.18 The solution is simple enough so that most people find it
very quickly. But now imagine that we were not so familiar with the chess-board,
for example, suppose the question was put for the go-board whose squares are of the
same color. Then it would be harder to guess this solution. The concept of coloring
squares is not part of the problem. In order to solve the problem, we have to recall
this concept and connect it with the problem. As I said, we have the advantage of
knowing the concept of coloring, but in mathematics, quite often, one has to invent
a completely new concept to solve a problem. Note that coloring is higher in the
hierarchy of concepts than the concept of tiling. Tiling is defined by local condi-
tions, while coloring concerns the whole board. But there is an even more abstract
concept that is used in the solution. It is the concept of a natural number. That it is
really more abstract than the concept of tiling can be demonstrated practically. You
can teach very small children to tile; a little older ones will even understand that
some areas can be tiled and some cannot, but understanding the concept of a num-
ber in such a way that it can be used to show the impossibility of some configuration,
requires substantially more intelligence.

I do not know if anybody has tried this on children, but this problem is well-
known in the area of computer science called artificial intelligence. The ultimate
goal of artificial intelligence is to develop intelligent computer systems. But com-
puters are still not able to do a lot of things that are simple for humans. In 1964 John
McCarthy proposed the Mutilated Chess-Board Problem as an example of a state-
ment that can easily be presented to computer theorem provers, but which will be a
“tough nut” for them (see [195]). Let me stress that he did not mean that computers
would not be able to do even such simple proofs. What he meant was that for the
Resolution Calculus, the proof system most commonly used in automated theorem
proving, the problem was hard because proofs in this proof system are very much
like trying all possibilities. In other words, the proof system can handle efficiently
only problems that can be solved by sort of local manipulations. Whether or not the
Mutilated Chess-Board Problem is hard for the ordinary 8× 8 chess-board is still
open, but we do have evidence that it is probably hard. What we know for sure is

18For this argument one can also use the simpler version in which only one square is cut out. The
reason to cut out two is simply to make the puzzle a little harder. With only one square away the
idea of counting the parity of the number of squares comes to one’s mind immediately.

56 1 Mathematician’s World

that the generalized problem for boards n×n, with n an even number of the order of
thousands, any proof in this proof system is so large that it cannot be practically per-
formed. For showing that the argument using coloring cannot be done in the proof
system, this is enough because if one could use this argument, the proof would be
still relatively short even for large boards.

Transcendental Numbers

Let us consider something more serious. Most examples of using abstract concepts
for solving problems that are stated in elementary terms come from number theory.
One of the popular problems in number theory is proving that a number is not a so-
lution of an algebraic equation with integer coefficients. Numbers that are solutions
of such equations are called algebraic; those that are not are called transcendental.
For example,

√
2 is a solution of the equation

x2 − 2= 0,

so
√

2 is algebraic. On the other hand π is not a solution of any such equation, hence
it is a transcendental number. Proving that a particular number is transcendental is
usually hard. The first proof that a number is transcendental was given as late as
in the 19th century. Later, when Cantor discovered set theory, he showed that the
existence of such numbers can be proved very easily using set theoretical concepts.
He proved that the cardinality of the set of all real numbers is not countable, whereas
the cardinality of the set of algebraic numbers is countable. Therefore, there are
transcendental numbers.

Notice the similarity with the previous problem. Again the main idea is counting.
Such counting proofs are often very simple, but we have to pay for it: such proofs
do not give us explicit examples of the objects claimed to exist. We will encounter
proofs that prove the existence without giving explicit examples again later.

Diophantine Equations

There are many problems about natural numbers that can be stated only using the
basic arithmetical operations. Problems of this type were studied by Diophantus of
Alexandria, who lived in the 3rd century. The problems he solved can be presented
in modern terms as follows. Given an equation with integer coefficients, find a so-
lution that is also an integer (or several integers, if the equation contains more vari-
ables). A classical problem, solved already in antiquity, is to give all such solutions
to the Pythagorean equation

x2 + y2 = z2.

There are infinitely many such triples (3, 4, 5 is the smallest one) and they have a
simple characterization. The proof is completely elementary. One may be tempted

1.5 The Necessity of Using Abstract Concepts 57

to conjecture that it should be always so: once a problem uses only elementary
operations on numbers, the solution must be elementary in the same way. But there
are other equations for which no elementary proofs exist. For example, the following
simple equation has only a finite number of solutions (according to Thue’s theorem),
but no elementary proof of this fact is known

x3 − 2y3 = 11.

There is an abundance of such examples in number theory. Another classical prob-
lem is, for a given number d , to characterize prime numbers p for which the equation

x2 + dy2 = p

has a solution with x, y integers. Pierre de Fermat (1601–1665) found solutions of
this problem for d = 1,2,3. For example,

x2 + y2 = p,

which is the above equation for d = 1, has a solution if and only if p has residue 1
when divided by 4 (thus p = 5,13,17,29 . . .). A number of great mathematicians
contributed to this problem by finding solutions for more numbers d . A complete
solution of this problem is known, but the proof uses a substantial part of modern
number theory. For example, the set of primes for which x2 + 14y2 = p has a solu-
tion has a fairly simple characterization, but no elementary proof of the correctness
of this characterization is known.

One of the most famous mathematical problems is Fermat’s Last Theorem. It is
the following theorem:

Fermat’s Last Theorem For n≥ 3, the equation

xn + yn = zn

does not have a solution with x, y and z positive integers.

When a name is associated with a theorem, usually this means that the theorem
was proved by the person of this name. This not the case here. The theorem was
proved by Andrew Wiles in 1994. The history of this problem is well-known. Fer-
mat wrote this statement in his copy of Diophantus’s book and added that he had
a wonderful proof of the statement, but the margin was too narrow for it. We have
enough evidence that the note was either just intended to tease other mathematicians,
what he often did, or he simply had a wrong proof. Our evidence that Fermat did not
have a proof is based on the results obtained when trying to prove the theorem. For
some numbers n, the problem is elementary; for example, the case n= 4 is treated
in elementary books on number theory. For other values of n, only nonelementary
proofs are known. The complete proof of Wiles is a masterpiece of mathematics.
What is the most interesting is that it uses a major part of the deep theories devel-
oped in number theory before and more theory is introduced along with proving
the theorem. It should be noted that contemporary number theory uses tools from a
number of other fields—algebra, geometry, topology, analytic function theory, etc.

58 1 Mathematician’s World

Thus Wiles’s theorem is a great example of using abstract concepts. Almost none
of the powerful results used today were available to Fermat; some fields, such as
topology and algebraic geometry did not exist back then. Therefore, we believe he
could not prove it.

This is true, but, frankly, we are not completely sure. More precisely, in all other
fields the evidence would be accepted as a “clear proof”, but in mathematics we have
higher standards. When we claim something, we must have a mathematical proof.
We have to admit that we do not have a proof that Fermat’s Last theorem does not
have an elementary proof. Logic has not developed suitable tools for this purpose
yet. Fermat’s problem is one of the most difficult ones and Wiles’s proof is very deep
(in the sense of using abstract mathematics). It seems that a proof that Fermat’s Last
theorem does not have an elementary proof could be of a comparable complexity.
There are, however, some other cases, in which we can prove that abstract means,
in a certain sense, are necessary; I will show some examples in Chap. 4. Thus I do
believe that eventually logicians will be able to handle theorems of this type too.
Then, perhaps, we will also have a proof that Fermat’s Last Theorem was rather
“Fermat’s Last Joke”.

The Reasons why Abstract Concepts Are Needed

When trying to find reasons for the use of abstract concepts the following three
come to mind naturally.

1. An elementary solution exists but it is too long; it can happen that it is so long
that it cannot be written down. Using more abstract concepts we get a shorter
proof that is feasible.

2. There is no solution that only uses elementary concepts.
3. Any solution needs axioms that surpass the concepts present in the problem.

There is a subtle difference between 2. and 3. A solution that uses nonelementary
concepts, meaning concepts that are not present in the statement of the problem, may
still only use elementary axioms. The second reason seems to be the most frequently
occurring one, but in fact it can never occur. There are plenty of nonelementary
proofs that do not use nonelementary axioms. But according to an important result
in logic, we can, so to say, always apply Occam’s Razor to such proofs. Roughly
speaking, this means that we can eliminate all statements that are not mere modifi-
cations of the theorem that we want to prove, or modifications of an axiom that we
want to use in the proof. This is may look surprising because it implies that lemmas
can also be eliminated from proofs. A lemma is an auxiliary theorem that can be for-
mally unrelated to the theorem that we want to prove. In particular, it may refer to
concepts that do not occur in the theorem. Unless a proof is completely straightfor-
ward, it contains lemmas. According to that result in logic, we can eliminate them
and thus the only reason for using them is our concern for brevity. However elimina-
tion of lemmas may result in a tremendous increase of size. So it may be impossible
to write down such a proof. This is why we have to use lemmas in practice.

1.5 The Necessity of Using Abstract Concepts 59

I will talk about this result later (in Chap. 6); for the time being let us just re-
member that all cases that look like the second case are in fact the first case (or there
is an elementary and short proof that we do not know of).

The third case also needs a caveat. We cannot claim that a proposition φ is only
provable using axioms that contain some concepts not present in φ. This is surely
not true because we can simply take φ as an axiom and then φ follows trivially. The
meaning of 3. is that there is no natural axiom system that uses the same concepts
and that is strong enough for φ. The question then is what ‘natural’ means. Best
is to take concrete theories used in practice and find the weakest one in which φ is
provable. Such a scale can be constructed as follows. Take some basic axioms of set
theory, but without the axiom of infinity. This will be the bottom element. The next
will be the set theory, in which we add the axiom of infinity. Then we gradually add
stronger and stronger set-theoretical axioms. One can show that, for example, there
are finite statements (meaning statements about finite sets) that are not provable in
this ‘finite set theory’. One can show statements that have a similar relation to higher
levels. We will see such examples in Chap. 4.

Of course, this does not solve the classification problem completely. Instead of
saying ‘natural axioms’, I said ‘basic axioms’, so one can still object that, although
we use some standard axiom systems, there is no unambiguous justification of these
systems. However, the scale becomes much less ambiguous if we go higher in the hi-
erarchy. There the axioms correspond to infinite cardinal numbers, so, in particular,
they are linearly ordered.

I will discuss these fundamental questions in more detail later, after I explain the
necessary concepts.

Logical Classification of Concepts

In logic, there are tools to measure the complexity of a concept. The mere length of
the definition does not necessarily mean that the concept is abstract, but it does give
an approximation of this property. Using a particular measure of the complexity of
the definitions, we get a corresponding hierarchy of concepts. We can think of the
concepts higher in a hierarchy as being more abstract. A definition is formally a
logical formula, hence we need measures of the complexity of formulas.

The most basic classification is according to the order of the language used. I
have already mentioned order of structures. To each order we have a corresponding
language. Thus first-order concepts are defined using formulas that only talk about
elements, second order concepts are those that we can define only using subsets or
functions, third order concepts require subsets of subsets, etc.

Another basic classification is according to the number of quantifiers. We can
count the total number of quantifiers, but a more important hierarchy is based on
the number of alternations between the universal quantifier and the existential one.
I will explain it in the next chapter.

We also need to measure the strength of the assumptions. As noted above, to
prove some theorems we may need strong assumptions in spite of the fact that the

60 1 Mathematician’s World

statement of the theorem uses only elementary concepts. Often it is possible to get
a hierarchy of theories from a hierarchy of formulas.

Let us consider Peano Arithmetic as an example (see page 116). In this theory
the elements are numbers and the only relations and functions are the ordering and
the operations of addition and multiplication. So the formulas express facts about
numbers using only ordering, addition and multiplication. This language is usually
called the language of arithmetic and, correspondingly, the formulas are arithmeti-
cal formulas. The theory has a few very basic axioms and an infinite set of axioms
of induction, for every formula in the language one axiom expressing induction for
this formula. In spite of the fact that we have the principle of induction for every for-
mula, Peano Arithmetic is incomplete; there are true arithmetical sentences that are
not provable in the theory. The reason is not that the principle of induction does not
suffice to characterize the natural numbers, but that in Peano Arithmetic this princi-
ple is stated only for arithmetical formulas. Some true sentences need higher order
induction. Therefore a theory called Second Order Arithmetic has been defined, in
which one can also talk about subsets of numbers and in which induction is stated
for formulas in the enriched language (see page 295). This theory is stronger than
Peano Arithmetic, but it is still incomplete. So we can define Third Order Arith-
metic, in which one can talk about sets of subsets of numbers, and so on.

As an example of a hierarchy of theories based on quantifier complexity, take,
for every number n, Peano Arithmetic with the induction axioms only for formulas
with at most n quantifier alternations. This gives a sequence of theories below Peano
Arithmetic the strength of which increases with n.

Notes

1. Resolution calculus. The calculi used in logic do not seem very suitable for au-
tomated theorem proving. Therefore a very compact system was developed in
the 1960s, with the main contribution by J.A. Robinson. It is called Resolution.
This proof system is used for proving first-order sentences (sentences with quan-
tifiers). The propositional part (also called Resolution) has been widely studied
since it is the simplest proof system for propositional logic. Rather than defining
it formally, I will explain its application to the Mutilated Chess-Board Problem.
Our atomic propositions will be statements saying that a domino is placed on
particular two adjacent squares. The proposition that a domino is put on squares,
say, b2, c2 will be denoted by [b2,c2]. A disjunction of atomic and negated
atomic propositions is called a clause. We define a set of clauses that express
that the board is completely tiled. The set consists of two parts. The first one ex-
presses that every square is covered. It contains a clause for every square saying
that the square is covered. Say, for the square b2 the clause is

[a2,b2] or [b1,b2] or [b2,c2] or [b2,b3]

because these are all four possible ways in which it can be covered. The second
set consists of clauses saying that no two dominos overlap, more precisely, no

1.5 The Necessity of Using Abstract Concepts 61

square is covered twice. We have several clauses for every square, depending on
its position on the mutilated board. For example, for b2 the clauses are

not[a2,b2] or not[b1,b2],
not[b1,b2] or not[b2,c2],
not[b2,c2] or not[b2,b3],
not[a2,b2] or not[b2,b3],
not[a2,b2] or not[b2,c2],
not[b1,b2] or not[b2,b3].

Our aim is to disprove the assumption that there is a tiling, therefore we want
to derive a contradiction from the clauses. A contradiction is a pair of clauses
one being a proposition and the other its negation (for example, [a2,b2],
not[a2,b2]). The advantage of Resolution is that it has only one simple rule.
This rule allows us to combine two clauses in the following way. The condition
for applying the rule is that one clause contains a proposition (not negated) and
the other contains the negation of this proposition. Then we can remove the two
complementary propositions and unite the clauses into one. For example, from

[a2,b2] or [b1,b2] or [b2,c2] or [b2,b3],
not[b2,b3] or not[b3,c3]

we can derive

[a2,b2] or [b1,b2] or [b2,c2] or not[b3,c3]

Furthermore, we always replace multiple occurrences of a proposition or a nega-
tion of a proposition by a single one. (Hence the result of an application of the
rule may be smaller than both clauses.)

It was this proof system, Resolution, for which the bound on the lengths of
proofs was proved. A theorem of M. Alekhnovich says that the length of the
proofs increases exponentially with the size of the board (see [3]). Above I said
that every proof in Resolution is like considering possible cases. To see this re-
lation we have to look at the proof from the bottom up. So when we are at some
clause in the proof we can go up to the two predecessors, the two clauses from
which it was derived (provided that it is not an initial clause). Recall that one
clause contains a proposition and the other contains the negation of the proposi-
tion. Thus this splitting corresponds to considering two cases; in one the propo-
sition is true and in the other one it is false.

2. Analytic number theory. In analytic number theory analytic functions are applied
to study problems about the natural numbers. A classical problem in number
theory is the distribution of prime numbers. A particular case of this problem
asks to estimate the function π(x), defined as the number of prime numbers
less than or equal to x. The well-known Prime Number Theorem (proved by
Jacques Hadamard and Charles de la Vallée-Poussin in 1896) says that π(x)

is asymptotically x/ lnx. It was first proved using analytic means, but in 1949
P. Erdős and A. Selberg found an elementary proof [68, 263]. (Here I am using
the word ‘elementary’ to say that the proof did not use analytic functions; it

62 1 Mathematician’s World

does not mean that the proof was easy.) Elementary proofs have been found
for several other theorems that had been proved by analytic means. However,
analytic functions seem to be a very strong means that is not possible to replace
by an elementary approach in general.

Probably the most famous problem in mathematics, the Riemann Hypothesis,
is a problem from analytic number theory, stated by Bernhard Riemann in 1859.
The ζ -function is defined by

ζ(x)=
∞∑
n=1

1

nx
,

for every complex x such that its real part Re(x) > 1. The function can be an-
alytically extended to the whole complex plane without x = 1, where ζ has a
pole. The ζ -function has zeros ζ(−2)= ζ(−4)= ζ(−6)= · · · = 0, called trivial
zeros, and infinitely many zeros in the strip 0 < Re(x) < 1, called non-trivial
zeros. The Riemann Hypothesis is the following statement:

The Riemann Hypothesis All nontrivial zeros of ζ are on the line Re(x)= 1
2 .

So even to state the hypothesis we have to refer to some results on analytic
functions. However the consequences of the hypothesis that we are interested in
are elementary statements. The Riemann Hypothesis implies very good estimates
on the distribution of primes. The ζ -function was defined by Leonhard Euler
(1707–1783), who also discovered the formula

∞∑
n=1

1

nx
=
∏
p

1

1− 1
px

,

where p ranges over prime numbers. This shows a relation of ζ function to
primes. Some estimates can be derived using this formula; for more precise esti-
mates, the following formula is used

−ζ ′(x)
ζ(x)

=
∞∑
n=1

Λ(n)

nx
,

where Λ(n)= lnp, if n is a power of a prime p, and Λ(n)= 0 otherwise. In fact,
the Riemann Hypothesis is equivalent to a bound on the number of primes less
than a given number n:

Equivalent statement 1 There exists a constant C such that, for every n≥ 3,∣∣∣∣
∫ n

3

dx

lnx
− π(n)

∣∣∣∣≤ C
√
n lnn.

Thus, though originally stated using analytic functions, there is an elementary
statement about the natural numbers that is equivalent to the Riemann Hypothe-
sis.

Another equivalent statement can be stated using the Möbius function μ. This
function classifies natural numbers into three classes:

1.5 The Necessity of Using Abstract Concepts 63

a. μ(n)= 0, if n is divisible by a square of a prime;
b. μ(n)=−1, if n is a product of an odd number of distinct primes;
c. μ(n)= 1, if n is a product of an even number of distinct primes.

If n is not divisible by a square of a prime, we say that it is square-free. The
number of square-free numbers in the initial segment [1, n] is asymptotically
6
π2 n ≈ 0.608n. The crucial quantity is the difference between the numbers less
than or equal to n that are products of an even number of primes and those that
are products of an odd number of primes. This can be conveniently expressed by∑n

i=1 μ(i).

Equivalent statement 2 For every ε > 0, there exists n0 such that for all n > n0,
|∑n

i=1 μ(i)| ≤ n1/2+ε .

Note that for a random sequence ri of±1 s of length n, the standard deviation
of
∑n

i=1 ri is
√
n. It has been observed that for an infinite series of random ±1 s,

the condition of the equivalent statement is satisfied with probability 1 for every
ε > 0. Thus the Riemann Hypothesis says that the Möbius function on square-
free numbers shares some properties with random sequences of ±1 s, although
it does have some regularities that do not occur in truly random sequences; for
example, μ(2x) is always either −μ(x) or 0.

The Riemann Hypothesis problem has fascinated generations of mathemati-
cians, therefore it is unlikely that it has an elementary proof. The evidence so far
is that it should be true, but if it is not so, it is at least a good project—better
bounds on how close the nontrivial zeros are to the Re(x) = 1

2 line give better
estimates on the distribution of the primes. Already the proofs of the Prime Num-
ber Theorem of Hadamard and de la Vallée-Poussin were based on proving that
no zero has Re(x)= 1.

However strong analytical number theory seems to be, it is not clear that from
the point of view of our current logical classification it transcends “finite means”.
Complex functions are higher order objects, but this does not automatically mean
that we cannot simulate them by finite objects. Often, it is possible to replace
infinite objects by their names, which are finite objects. Very little research has
been done on showing formally that analytic means are stronger.

3. Experimental testing of the Riemann Hypothesis. Computer experiments with the
Riemann Hypothesis are also interesting from the point of view of foundations.
There are several ways how to test the Riemann Hypothesis. Nontrivial zeros of
ζ are usually enumerated in the order of their absolute values. Approximations
of zeros can be computed quite efficiently and, moreover, the computation also
determines if the zero is on the line Re(x)= 1/2 or not. The first 15 zeros were
calculated in 1903. At the time of writing these lines almost 60,000,000,000
have been known, all being on the line Re(x)= 1/2. (Check the Internet for the
current record.) Let me stress that in this way one can only refute the conjecture.
No matter for how many zeros it is verified, it still may be false.

The results of testing the equivalent statement 2. are a good warning to all who
may be tempted to make deductions about the truth of a hypothesis from such

64 1 Mathematician’s World

experiments. For n > 200, the value of |∑n
i=1 μ(i)| keeps being less than 1

2

√
n

for a very long time, often being very close to it. Thus one is led to the conjecture
that it is always so. But then suddenly, for n= 7,725,038,629, it exceeds 1

2

√
n.

This computation, however, did not disprove the Mertens Hypothesis’ that for all
n, |∑n

i=1 μ(i)| ≤ √n. The Mertens Hypothesis (conjectured by Stieltjes in 1885)
is slightly weaker than the inequality stated above because 1/2 is replaced by 1,
but it is still stronger than the Riemann Hypothesis. In 1985 A.M. Odlyzko and
H.J.J. te Riele disproved the Mertens Hypothesis [210], but not by computations.
Later, upper bounds on the first counterexample n were computed; the present
best bound is n < e1.59·1040

. Thus the conjecture is false, in spite of all empirical
evidence that we have so far. It may well happen that we will never find any
concrete number that violates the Mertens Hypothesis.

Let me stress, however, that much more evidence for believing that the Rie-
mann Hypothesis is true comes from theoretical results. In particular, deep re-
sults about finite fields have been proved that can be interpreted as a version of
the hypothesis.

Main Points of the Chapter

• A structure is given by a set of elements (the universe) and relations and opera-
tions (defined on the universe). There are infinitely many types of structures.
• Mathematicians study some standard structures, such as the natural numbers and

the real numbers, and various classes of structures, such as groups. The basic
structures were introduced a long time ago; others were defined more recently.
• Two basic principles for sets are extensionality and comprehension.
• Infinitely many sets can be constructed starting with a single set, the empty set.
• Relations and operations can be defined as sets of pairs, triples, etc. Therefore,

we only need sets to formalize mathematical structures.
• Russell’s paradox destroys the hope of having a consistent set theory based solely

on our intuition. We have to use axiomatic set theory.
• In mathematics, theories are defined by axioms. To derive theorems in an elemen-

tary theory we only need logic. However, in order to be able to state and prove
interesting results, logic alone does not suffice; we have to use set theory.
• There are several reasons for using the axiomatic method: 1. it is precise, 2. it

is fair because we state the assumptions explicitly, 3. it is useful because we can
test whether the theory can be applied to a particular phenomenon, 4. it helps us
to explain the studied concepts because a short list of basic axioms explains the
essence better than a long complicated description.
• There are mathematical problems that can be stated in a completely elementary

way, but cannot be solved without applying very abstract concepts.
• Mathematical logic has the means to measure the degree of abstractness of con-

cepts and to prove that such concepts are indispensable. Until now, however, we
have succeeded in proving the necessity of using abstract concepts only in a few,
rather simple instances.

Chapter 2
Language, Logic and Computations

Realizing that the aliens would not understand us, we were
continuously sending out the Pythagorean Theorem and other
simple geometrical propositions. But our call into space
remained without an answer.

Stanisław Lem, Magellan’s Cloud

IT seems difficult to define mathematics. A possible definition, or rather an expla-
nation of mathematics, could be that mathematics is an extension of our language

that enables us to perform rigorous deductions. The problem with this explanation is
that it does not take into account the theorems and proofs that are the main products
of this field. Nevertheless, the role of mathematics as a means of expressing our
ideas precisely is unquestionable. It is also possible to observe the growing num-
ber of mathematical terms in common language. Of course, many of these terms
were present before the advent of mathematics and they just obtained a more pre-
cise meaning in the course of the development of mathematics. The first thing that
comes to ones mind are numerals. The etymology of numerals 11 and 12 in many
languages witnesses that the decimal system had been accepted at their early stage.
(The most likely etymology, say, of the English word eleven is ‘one left over’.) There
are many geometrical concepts commonly used, for example, triangle, square, line,
curve, cylinder. There are also many more modern concepts, like function, mini-
mum, set, probability. This is not the privilege of mathematics; scientific terms from
all fields penetrate common language. Mathematics is special in that it is applied in
other sciences, but not conversely, other sciences can provide problems and moti-
vation for mathematics, but cannot be used there.1 Because of its universal nature,
mathematics has been proposed as a communication means with extraterrestrial civ-
ilizations.

A language is not merely a collection of words. The words must have some mean-
ing. A very primitive language, perhaps a language of some species of animals, may
consist of words and their meaning, without any complicated constructions. Human
languages allow combinations of words to talk about arbitrarily (arbitrarily at least
in principle) complicated things. This requires some rules, rules that say how we

1There is one exception: computer science is used in experimental mathematics.

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_2,
© Springer International Publishing Switzerland 2013

65

http://dx.doi.org/10.1007/978-3-319-00119-7_2

66 2 Language, Logic and Computations

can combine words into sentences—the syntax, and rules by which we deduce the
meaning of sentences—the semantics. Furthermore, there is a special, and very ba-
sic, type of meaning of a sentence, its truth. This brings us to logic, the art of putting
pieces of truth together in order to get new evidence.

‘Mathematics as the foundations of logical reasoning’ sounds good, but we are
looking for the foundations of mathematics in this book. So let’s try to invert it:
logic as the foundations of mathematics. There is no doubt that logic is essential for
mathematics. But do we know precisely what logic is? Or is the logic that we are
using the right one? We definitely must learn more about logic to be able to answer
such questions. Anticipating what we should learn in this chapter, let me say that it
turns out that the logic that we use in mathematics is a very clear and unambiguous
concept. There is no problem with logic as far as the foundations are concerned. It
does not mean that it is a simple thing, on the contrary, there are computationally
unsolvable problems in logic and a lot of problems for mathematical research. A
different question is if logic suffices for the foundations. At the turn of the 20th
century, several philosophers and mathematicians tried to find the foundations of
mathematics based only on logic. This stream in the philosophy of mathematics is
called logicism. The incompleteness theorems of Gödel proved that this goal (or at
least its original version) cannot be achieved. We have to introduce specific axioms
about sets in order to be able to develop mathematics. We will see how much we
have to add to logic in Chap. 3 that deals with set theory.

Having a formal language and formal rules for logic one can do certain opera-
tions mechanically. ‘Mechanically’ is an obsolete term; the 20th century’s version
should be ‘electronically’, but we know what it means: one can find an algorithm,
or put differently, write a program for that task. Such a task is, in particular, proof
checking. To check the correctness of a formal proof does not require any intellectual
ingenuity, it can be done by a machine. This fact has practical applications, but we
are not interested in them. For us, it documents that the concept of a proof is so clear
that one can check mechanically whether or not a given text is a correct proof. There
are, however, tasks that are not algorithmically solvable, in particular the problem of
finding a proof of a given sentence cannot be mechanized. Thus we have arrived at
the concept of a computation, another concept that is very relevant for foundations.
And again, the same questions: what is it, can it be precisely defined, etc? We’ll see.

2.1 The Language of Mathematics

Now we will leave aside the use of mathematics as a language, and talk about the
language used in mathematics. Let us look at a typical mathematical text. Nowadays
it is written most often in English, but this is the least important property, as it can
be translated into any language. The first most striking feature of a mathematical
text is its very restricted vocabulary. Potentially it may contain any words and often
words that are used in everyday life for things and properties that have nothing to
do with mathematics, (for example, ring, field, group, good, dense) which, however,

2.1 The Language of Mathematics 67

have a completely different meaning in mathematics. The reason for that is that
sometimes people use analogies from real life to explain mathematical ideas. If
mathematicians wrote papers for computers, whose life is restricted to solving given
problems, the vocabulary would be even smaller. The grammar of mathematical
texts is also only rudimentary. For instance, mathematics uses verbs only in a very
restricted way. Surely, the verb to be, is used, but it only connects a noun with an
adjective, or it is used to express existence. There are several other verbs that you
can find in mathematical texts, for example, suppose, assume, follow, imply. Those
can be avoided using a different sentence construction; we can replace them by
connectives (namely if . . . then). In real life time is very important and thus a lot of
the grammatical structures concern time. Most verbs express changes in time. Verbs
come with various tenses expressing the relation to the present. Mathematics, on the
other hand, expresses facts independent of time. Even if the problem concerns time
we consider it as an entity; for example, instead of motion mathematicians consider
its trajectory. Time, in the form we perceive it, is not present even in physics. It
is just the fourth dimension. Mathematicians are like historians: they do not have
to think what will happen, they do not have to perform experiments, they have the
complete history of the phenomenon at hand. Like historians only need the past
tense, mathematicians only need the present.2

So what remains of the natural language in mathematics? Here is what is used:

• nouns (number, point, set, . . .);
• adjectives (straight, continuous, large, . . .);
• prepositions and verbs expressing relations (a point on a line, a function vanishes

at zero, . . .);
• connectives (and, or, not, . . .);
• two quantifiers ‘there exists’ and ‘for all’.

Nouns are necessary because we should be able to speak about things. Things
in mathematics are elements of structures, structures and sets. Typically we study a
particular mathematical structure and then the things that we consider are elements
of the structure. But also when speaking about structures and sets, we can always
assume that they are elements of a larger structure, say, the structure of all sets.
Hence nouns are elements.

Adjectives express properties. A property is something that concerns one ele-
ment. Then we have relations, which, in the simplest case, concern pairs of elements
and are called binary relations. Interestingly, there is no single word class that cor-
responds to relations. In most cases relations are expressed by prepositions or verbs,
but they can also be expressed by certain combinations of words. From the point of
view of logic, these are linguistic nuances and we put all relations into one class.
Moreover, logicians also include properties in the same class and call them ‘unary
relations’. Another word that is sometimes used for properties is ‘predicates’. This

2There are languages in which grammatical structure for expressing time is only rudimentary (for
example, Chinese), other languages may lack other structures. The language of mathematics is
certainly the poorest of all.

68 2 Language, Logic and Computations

is, however, confusing because grammatically ‘predicate’ refers to a particular part
of a sentence which, from the point of view of logic, may describe a binary relation
like the following sentence:

Point P lies on line �.

According to grammar ‘lies on line �’ is a predicate, according to logic the sen-
tence expresses that a certain binary relation holds between a point and a line. To
see the reason for thinking about the sentence as expressing a relation, notice that
one can say the same as follows:

Line � goes through point P .

The last two items on the list above concern logic. There are various ways of
expressing the same connectives and the same quantifiers. Furthermore, the inter-
pretation of connectives in a natural language is often a little different from the one
of formal logical. The connective or is usually interpreted as the exclusive or, hence
in law one often uses ‘and/or’ to express the non-exclusive or. In logic or is the non-
exclusive, which means that ‘A or B’ is true also when both A and B are true; but the
exclusive or, a different connective, is sometimes used too. In some languages and
in slang, double negation is used just to stress simple negation, while in logic two
negations cancel each other. All the connectives used in a natural language reduce to
the following four not, and, or, if . . . then. The two quantifiers can also be expressed
in many ways. For the universal quantifier, there are essentially the same expres-
sions in all languages, which are words such as all, every, any, each. These words
differ slightly in their use and meaning, but in logic, again, they are considered to be
synonyms. For the existential quantifier, some languages have special constructions
such as ‘there is’, ‘il y a’, ‘es gibt’, but the most common way is simply to use the
verb to be.

Natural languages also use modalities, which are words expressing how much
we believe in what we are saying. Such words include surely, necessarily, maybe,
probably. Modalities can be considered as unary connectives, similarly as we treat
negation as a unary connective. Their meaning is not precise, according to the math-
ematical standards, therefore they are not used in mathematics.3 But it does not
mean that mathematics is completely deprived of the possibility of expressing such
things. Consider the modalities probably, likely, unlikely, for example. Mathemat-
ics has developed a whole theory in order to be able to express such statements,
the probability theory. Mathematicians, of course, do not use these vague words,
instead they quantify numerically the probability of an event. Sometimes this is ac-
cepted also in our everyday life. For instance, in the USA they often forecast that the
probability of rain is so many percent, instead of just saying that it is likely, unlikely,
as they do elsewhere.

Similar is the role of the various quantifiers that are present in natural languages
such as a few, some, many, almost all. In fact, it is one of the main goals of mathe-
matics to replace these imprecise expressions by precise statements. This is achieved

3Modal logics are not used to state and prove mathematical results, but they have interesting appli-
cations, see provability logic on page 297.

2.1 The Language of Mathematics 69

by counting, which means using numbers to say precisely, or to estimate the quan-
tity in question. Thus what remains from the language are the precise quantifiers for
all and there exists.

It is important to realize that the possibility of replacing modalities and imprecise
quantifiers by precise statements is the main reason why the former ones are not
used in mathematics. Once in a while suggestions are made to enrich mathematics
by modalities, other quantifiers, etc. These are futile proposals; this will never catch
up because it is against the spirit of mathematics!

The aforementioned list is the result of a superficial analysis based on grammat-
ical categories, thus one key item is missing on the list: variables. In the traditional
classification there is no word class corresponding to variables, although it is one of
the most important concepts in mathematics. Still, variables are present in the ev-
eryday use of language. Suppose for instance that you want to say that there are two
elements without referring to the numeral 2. You can say: ‘There is an element and
there is another one different from the previous one.’ With three elements we would
use something like: ‘. . . and yet another one. . . ’. With four elements it will become
rather messy. Here we have considered only the task of expressing the existence of
a certain number of elements, but we have to handle the same problem in other situ-
ations where we need to talk about several elements. In a natural language we have
very limited means for that; we have words like ‘another, yet another, this, that’
which are good for two elements, and may be used for three, but for more they are
not practical. What one uses then are descriptions like ‘the tall man, the blond girl,
the one who came first’. However, the most efficient way is to use names. The most
ancient mathematical texts used the awkward way of distinguishing elements of
natural language. The simple trick of assigning letters as temporary names to the in-
vestigated entities, used already in antiquity, must have had dramatic consequences
for the development of mathematics. It enabled mathematicians to treat much more
complex problems than before.

Nowadays we call the temporary names variables and the permanent ones con-
stants. Variables are most often x, y, z; examples of constants are π and e.4 The
number of variables that may be needed in an average length paper is surprisingly
large. Therefore, people use various alphabets, indices, primes, and other marks.5

There is one more class, functions, which I will explain later.
You see that linguists study languages from a different perspective; grammatical

categories do not render the substance of the language of mathematics. The correct
classification for the language of mathematics is the following:

• constants and variables;
• functions;
• relations;

4The term variable is often used with another meaning, namely as a function; for example, a ran-
dom variable is a function defined on a probability space.
5In one of my papers I used all lower case Latin letters and on top of that several Greek letters and
some upper case Latin letters. This is not unusual.

70 2 Language, Logic and Computations

• connectives;
• quantifiers.

This is the classification of mathematical logic, the field of science that studies the
language of mathematics.

Why Is the Language of Mathematics so Restricted?

I spoke about what the language of mathematics looks like. Now the difficult ques-
tion is ‘Why?’. Why do we use this particular fragment of our natural language?
Why don’t we use more? Does it have to be a fragment of a natural language? These
are very difficult questions, yet we can give at least some partial answers.

Consider, for example, the modalities ‘maybe, probably, surely, necessarily’.
These words sound alien to mathematicians, since in mathematics statements are
either true or false, there is no third possibility, tertium non datur. Thus the question
can be rephrased as: ‘why only two truth values?’. The answer is simple: because
two suffice and one is not enough.

It is obvious that we have to use at least two truth values. The reason for using
only two is not so much economy; the true reason is that we want to analyze the
concepts as much as possible in order to understand their essence. Whenever it is
possible to decompose a phenomenon into simpler components we do so and it
always helps us. Thus physicists decompose molecules into atoms, in order to find
laws about molecules, then they decompose atoms into elementary particles, in order
to understand atoms better, etc. Concerning truth values, we cannot say that three
truth values can be ‘decomposed’ into two, but we can describe all arguments of
non-classical logics using just the classical one, the logic with two truth values.

Before going on I have to make a terminological digression. When new trends in
the foundation of mathematics first appeared, such as intuitionistic mathematics, a
term was needed to denote the standard approach. Thus we use phrases ‘classical
mathematics’ and ‘classical logic’. This is not very fortunate, since meanwhile a
lot of modern mathematical fields appeared and one would hesitate to call such
mathematics classical. In logic it is, however, very common to use this word to
distinguish the standard approach from various alternatives, especially when talking
about alternative logical calculi. Therefore I will stick to this word, (but remember,
‘classical mathematics’ includes almost all modern fields).

There are various ways we can translate uncertainty, fuzziness etc. into classi-
cal logic. For instance, for uncertain statements we can consider all possible cases
where the uncertainty is replaced by either truth or falsehood. In the case of fuzzy
sets, sets where elements are contained in the set with various values between 0
and 1, we can think of them simply as functions in the classical set theory.

The two values are not a dogma that is imposed on each new generation of math-
ematicians, it is simply the most convenient way of thinking. Another reason for
classical two valued logic is its uniqueness among minimal possible logics. The con-
nectives are not simply some connectives that can be used in two valued logic. By

2.1 The Language of Mathematics 71

taking combinations, the connectives of classical logic generate all possible Boolean
functions.6 It would be much harder to agree on a non-classical logic, as there are
many and there is no natural choice among them. The usual argument for someone
who proposes a non-classical logic is that their logic contains the classical one and
on top of that has other means of expressing statements and making deductions. But
when they are describing the “new” logic, they use classical logic. So using classical
logic the new system can always be described as another mathematical structure.

I used the truth values only as an example of a general principle. What mathe-
maticians actually do is more general: they look for the simplest universal system
that suffices for a given purpose. In the problem considered here, it is the language
of mathematics. I argued that two truth values are the right choice for truth values.
There are more thing to decide, for example, quantifiers. We need them in order
to be able to talk about unspecified entities, to be able to make generalizations and
eventually to be able to talk about infinity. One quantifier suffices, say, the quan-
tifier ‘for all’. The existential quantifier ‘there exists’ is dual to ‘for all’, and it is
definable from it. Hence, once we take one of them we actually accept also the other
one. But we do not need more! If we want to quantify in another way, we can use
mathematical structures such as probability spaces, numbers, etc.

Such a reductionistic trend in science can be documented by many examples.
The axiomatic method is a good example: a theory, for example, a physical theory,
is considered better if based on smaller number and simpler equations. We think it
is better, not because we save space and time for its presentation, but because it ex-
plains better the studied phenomenon, because it is more likely to be true, or simply
because it looks nicer. We prefer to explain a certain phenomenon by referring to a
single principle, rather then to several.

Is Logic Simply a Part of Natural Language?

In order to explain the language of logic, I presented it as a fragment of a natural
language, but I do not claim that natural language is primary and logic is derived
from it. A language is necessary for logic, but, in a sense, logic is absolute. There
are many natural languages and there are huge differences between languages that
are not related, such as the difference between English (or other Indo-European
languages) and Chinese (dialects). But there is no difference between the logics
used by the people using different languages—their logic is the same.

When I say that language is necessary for logic I mean it in a very broad sense.
The language does not have to be a human language. There are several species of
very intelligent animals that only use a few sounds for communication between
themselves. So their ‘vocabulary’ is very small and does not contain essentially any
logic. But they are able to perform deductions. The language that they are using

6We use conjunction, disjunction, implication and negation, but it suffices to only take one of the
three binary plus negation.

72 2 Language, Logic and Computations

for this purpose is an internal language of each individual, the language of concepts
that they are able to form in their brains. I am sure animals think very much like we
do, namely, they imagine possible situations, in particular situations that may occur
after they perform a particular action, and choose the one that is the most favorable
for them. Intelligence is the ability to see similarities between situations and thus
be able to better estimate the consequences. Logic is a means of organizing this
process.

The Language of Mathematical Logic

Mathematical logic is the field that deals with the language used in mathematics, the
proofs and the truth of mathematical statements. Therefore, we will call a formal
language for mathematics a logical language. Later I will also talk on deduction,
so we will also have some rules to derive true sentences. Such systems are called
logical calculi.

People often associate mathematical logic with symbols (and often it is the rea-
son why they do not like it). The role of symbols in logic is emphasized more than
needed. At early stages the name symbolic logic was used to distinguish mathe-
matical logic from its sister branch in philosophy. But symbols are not any more
important in logic than in any other branch of mathematics. Symbols enable us to
express things more compactly, more precisely and sometimes they are useful for
calculations. But in spite of this and in spite of the tendency of mathematicians to-
wards brevity and precision, logic symbols are almost never used in mathematical
writings with the exceptions of mathematical logic itself and set theory.

The same can be said about the syntactical rules, the rules describing how for-
mulas are constructed. One of the first things that you encounter in a textbook on
logic is a lengthy and boring description of the syntax. But unless you are going to
study a particular formal system, you do not need it. The syntax of a formal logical
language is only a simplified syntax of a natural language. Nevertheless, there is a
good reason for presenting it so formally in textbooks. What is needed is to show
that a formal language can be presented precisely and thus studied as a mathemati-
cal concept. A natural language is a rather vague and complicated thing, moreover,
it is changing in time; it may be anything except a precise mathematical concept.
Mathematicians, who use language as a tool not as a subject of their study, do not
mind that the language is not precisely defined. But if you want to state and prove a
theorem concerning language, you need something precise. Therefore, you need to
do the boring job of explicitly writing down all the syntactical rules.

However, it depends on the person studying logic; if somebody is willing to ac-
cept that a formal concept of a language can be constructed, they do not need to
consider an example of such a formalization. Once the primitives are described, it
is not necessary to describe how a sentence is formed from these primitives as it
is essentially the same as in natural languages. The actual syntax may vary for dif-
ferent logical languages, but this is not important. There are a few things that one

2.1 The Language of Mathematics 73

has to secure; the main thing is to structure sentences in such a way that they allow
only unique reading, which is usually done using parentheses. In natural languages
we use pauses in speech instead of parentheses, and punctuation in writing; also
there are some words for separation. But it does not work so perfectly, there are sen-
tences that can be interpreted ambiguously, (which is a problem well-known among
lawyers).

Actually, a large part of the contemporary population has a very intimate ex-
perience with formal languages. Those are the people who know a programming
language. For such computer minded readers, I do not have to describe a logical lan-
guage at all. Logical languages have been prototypes for programming languages,
the difference being only what the texts in the languages expresses: statements in
logic, algorithms in a programming language.

In order to complete the picture of the logical analysis of the language of mathe-
matics, we need some more detail and, after all, I also have to mention at least the
basic symbols used in mathematical logic.

The description in the last section was simplified, as we did not consider an
important type of concepts, which are functions. Functions are present in natural
languages too, for example, ‘the mother of ’ is the function that assigns to a person
his or her mother. Though functions can be considered to be only a special kind
of relations, it is more practical to use them as primitives. Functions are the main
subject of studies in many branches of mathematics. The corresponding syntactical
concept in logic, the names of functions, are called function symbols.

Having function symbols we get a new type of syntactical concept the terms. A
term is an expression formed from function symbols, variables, and constants. What
children use already at elementary school as algebraic expressions are terms that use
function symbols for the basic arithmetical operations. Terms are, of course, used in
other structures too. The interpretation of a term is a function if the term contains
variables, or an element of a structure if it only contains constants. For example,
1+ 1 is one of the names for the number 2, while 2x + 1 denotes a linear function.
For binary functions, one often uses infix notation and calls them operations; this
concerns mainly + and × and other group operations. Again, for a programmer
the concept of a term is very familiar, as this part of logic completely penetrated
programming languages. No wonder, functions are here to be computed.

Now, having terms and a relation symbol, we can form an atomic formula, which
is a formula that contains no logical symbols, namely, no connectives and no quan-
tifiers. For example, take terms x+2 and x ·y and the binary relation symbol < and
form an atomic formula x + 2 < x · y.

In algebra we often need only one relation, the relation of equality. Equality is
often treated as a logical primitive, but again this is only a matter of convenience. It
is a relation that occurs very frequently, so it is more practical to assume that it is
present in logic. Furthermore, it is interesting to study just equations (expressions
of the form s = t , with s, t terms). Already this fragment of logic is sufficiently
complex.

The next step is to combine atomic formulas using connectives and quantifiers.
Taking the above atomic formula and, say, x = z2, we can form, for example, the
conjunction of the two x + 2 < x · y ∧ x = z2.

74 2 Language, Logic and Computations

The role of quantifiers is very important, so let’s consider some examples of their
use.

All people are good.

This is a sentence from life, so the variable is not denoted by a letter. The variable
there is hidden in people, which at the same time specifies the range of the variable.
This sentence has the same structure as:

Every number is prime.

This sentence is false, but this is a positive fact: we are able to decide its truth
value. Now take:

A number is prime.

Here we cannot decide, if it is true or false. The variable number is not quantified,
it is free. There are two more possibilities to make a sentence with a definite truth
value. One is to use the existential quantifier:

There is a prime number.

The other is to substitute a concrete element for the variable, say:

5 is prime.

Bertrand Russell explained the meaning of formulas with free variables as being
propositional functions. As when we write sinx, we denote a function that can have
any value between −1 and 1, so the sentence x is prime can have either of the two
values true or false. In fact, one of the names for the logical calculus with predicates,
variables and quantifiers used to be the functional calculus. This denotation is not
used anymore; we call it first-order logic.

Theoretically we could avoid formulas with free variables, but it is quite conve-
nient to use them inside of proofs. For example, a proof in number theory may start
with:

Let x be a number. Suppose x is prime. . .

But a theorem must be true under all circumstances, hence all variables must
be bound by quantifiers. Therefore, in logic we reserve the word ‘sentence’ for
formulas in which all variables are bound and hence have a definite truth value.

The quantifiers are usually denoted by ∀ (for All) and ∃ (there Exists). Quanti-
fiers bound variables exactly in the same way as, say, summation and integration
operators. For example, consider a binary function sin(x + y). When we integrate
along x, say,

∫ 1
0 sin(x+ y)dx, we get a function of only one variable y. We say that

x is bound in
∫ 1

0 sin(x+y)dx. A similar thing happens if we take a formula ϕ(x, y)

with two free variables and apply, for instance, the universal quantifier to x. The
resulting formula is ∀x ϕ(x, y). While the truth of ϕ(x, y) depended on x and y, the
truth of ∀x ϕ(x, y) only depends on y.

Single quantifiers or several quantifiers of the same kind are easy to understand.
The complexity arises when we alternate the two kinds. One alternation, such as

2.1 The Language of Mathematics 75

∀x∃y ϕ(x, y), can be understood fairly easily. In this way we can express things
like the infinitude of the prime numbers:

For every prime, there exists a larger prime.

To grasp the meaning of ∀x∃y∀z ψ(x, y, z) is not so easy. In natural speech it is
never used. When it is needed it is somehow circumvented. Consider, for example,
the sentence:

In every town there is the tallest building.

There are only two quantifiers in this sentence, but the third one is hidden in ‘the
tallest’. The latter fact is expressed using the comparative relation taller as follows:

The building taller than every other building.

Plugging this definition into the last sentence we get a sentence with three al-
ternating quantifiers, which shows a typical way of avoiding several alternations of
quantifiers in speech. Three alternating quantifiers occur in the definition of the limit
of a function. This is one of the first definitions that students encounter when start-
ing with the calculus. The inability to grasp the meaning of such a definition is used
to sort out those who do not have a talent for mathematics. But the concept of the
limit can be explained, not quite precisely, without the three quantifiers as follows.
y0 is the limit of the function f at point x0, if

whenever x is very close to x0, then f (x) is very close to y0.

The quantifiers are hidden in the imprecise expression ‘very close’. (It is possible
to develop a theory in which this apparently vague expression has a precise mean-
ing, see Chap. 3, Robinson’s Nonstandard Analysis and Vopěnka’s Alternative Set
Theory.)

To imagine the meaning of four alternations of quantifiers seems as difficult as
to imagine four-dimensional space. But there is a way out: using the concept of a
game we can imagine even long alternations of quantifiers. I will explain it in the
next chapter.

Notes

1. The language of propositional logic. This language uses

a. an infinite set of propositional variables,
b. connectives, and
c. parenthesis.

The standard connectives are in Table 2.1.
All connectives can be defined using one of the first three and negation. Other

connectives are also used sometimes; e.g., XOR (exclusive or) and propositional
constants: true (�, 1) and false (⊥, 0).

In intuitionistic logic only equivalence can be defined from the other connec-
tives.

76 2 Language, Logic and Computations

Table 2.1 Standard
connectives Symbols English word Name

∧, & and conjunction

∨ or disjunction

→, ⊃ if . . . then implication

¬, ∼ not negation

≡,⇔ if and only if equivalence

2. The language of first-order logic. This language has two parts: logical and non-
logical. The logical symbols are the symbols of propositional logic except for
propositional variables. Further, it uses (first-order) variables and quantifiers ∀
(universal) and ∃ (existential). In classical logic it suffices to use one quantifier.

The nonlogical symbols are constant symbols (which may be treated as 0-
arity function symbols), function symbols and relation symbols of various ari-
ties. A typical theory uses a finite set of non-logical symbols. I will present an
example after I define context-free languages. Equality (=) is usually treated as
a logical symbol, but it can also be used as a special binary relation.

3. Context-free languages. The theory of formal languages was founded by Noam
Chomsky in the 1950s. I will start with an important concept from this theory,
context-free languages. It is worth noting that the concept was discovered when
studying natural languages. Nowadays it is an important concept in computer
science. In logic it is not used, but the way logicians define a formal language
of a logical calculus is equivalent to a use of a context-free language. I will use
a definition of logical formulas based on a context-free language as it shows a
connection between natural languages and formal ones.

In the mathematical language theory a language is a very general concept, it
is any set L of finite strings of symbols from a finite set A. The set A is called
the alphabet of the language L; the strings are called words.

To define a context-free language we need another finite set N , disjoint with
A, whose elements are called nonterminal symbols, with one distinguished non-
terminal symbol s. Furthermore we need a finite set of pairs consisting of a non-
terminal symbol and a word in the alphabet A∪N . Such a pair (a,w), a ∈N , w
a word, is usually written as a⇒w, indicating that a can be replaced by w, and
it is called a rewrite rule. The set of such rules is called a context-free grammar
of the language. (Using general rewrite rules one defines general grammars, but
we do not need them here.) The language determined by the grammar is the set
of all words that can be obtained starting with the initial symbol s and applying
rewritings.

The terminology that I am using here is common in computer science, but
does not apply to natural languages. When considering natural languages we
should call A the vocabulary and the strings of symbols sentences. The non-
terminal symbols are grammatical categories such as subject, predicate, object,
adverbial clause. The initial symbol s represents the class of all sentence in the

2.1 The Language of Mathematics 77

language. Let us consider a couple of rules that are probably valid for any human
language.

< sentence >⇒ < subject >< predicate >

< predicate >⇒ < verb >< adverbial clause >

The meaning of the angled brackets < · · · > is that the compound expression
denotes a single symbol. Thus <sentence>, <subject>, etc. are elements of
the set of nonterminal symbols. If we only were interested in the structure of
sentences, we would use only the grammatical categories such as noun, verb,
adverb, etc. as terminal symbols. If we want to get actual sentences, we need
also rules that transform nonterminal symbols into terminal ones, such as

< verb >⇒ abandon

< verb >⇒ abase

< verb >⇒ abash

. . .

The context-freeness means that we are describing grammatically correct sen-
tences, with no regard to their meaningfulness. So sentences such as ‘A yellow
poem lies in the air.’ are considered to be in the language. In fact, probably no
natural language is context-free because there are always some dependencies be-
tween the forms of words due to declension, conjugation, etc., that cannot be
completely described by context-free rules.

Programming languages are usually defined as context-free languages, but
there are often additional exceptions that spoil this property. The famous pro-
gramming language ALGOL, created soon after the birth of the formal language
theory, was based on a context-free grammar.

4. The language of first-order logic, cont’d. We will consider a language with two
connectives ∧,¬ (‘and’ and ‘not’, which suffice to define all other connec-
tives), universal quantifier ∀ (‘for all’, the other quantifier, ∃x . . .’ is definable
by ¬∀x¬ . . .), equality = and an infinite set of variables (say x, x′, x′′, x′′′, . . .).
In our simple example, there is one binary relation symbol R, one binary function
symbol F and a constant c.

A context-free grammar for this language has three nonterminal symbols:
<formula>, <term> and <variable>, with <formula> being the initial sym-
bol. The rules are

< formula >⇒ ∀< variable > (< formula >)

< formula >⇒ (< formula >)∧ (< formula >)

< formula >⇒ ¬(< formula >)

< formula >⇒ R(< term >,< term >)

< term >⇒ F(< term >,< term >)

< term >⇒ < variable >

< term >⇒ c

< variable >⇒ < variable >′
< variable >⇒ x

78 2 Language, Logic and Computations

This system has superfluous parentheses around atomic formulas, which can be
avoided by having a nonterminal symbol for atomic formulas and a few more
rules.

5. Higher-order languages. In a second-order language we have variables for rela-
tions and for functions. Usually we distinguish first-order symbols from second
order symbols by using lower case letters for first-order symbols and upper case
letters for the second-order symbols. This is not enough for all the bookkeeping
that one would need if all done quite formally. To this end we have to declare
for each second-order symbol whether it is a relation or a function and then of
what number of variables. Note that the relations and functions of the first-order
language can be viewed as first-order constants in higher order languages.

As examples, I will write formally the axiom of induction and an axiom of
topological spaces.

a. Suppose we are describing the natural numbers, thus all elements are natural
numbers. Then we do not have to mention the set N and the axiom of induction
reads:

∀X((X(0)∧ ∀x(X(x)→X(x + 1)
))→∀x X(x)

)
.

b. To write down the second axiom of the two axioms of topological spaces,
I will use the same symbol O for the predicate expressing that a set is open.
Thus the predicate O is a third order constant. I am using capital calligraphic
letters for third order objects. Then the axiom reads:

∀X∀Y ((∀X(X (X)→O(X)
)∧ ∀x(Y(x)≡ ∃X(X (X)∧X(x)

)))→O(Y)
)
.

6. Propositional logic. Propositional logic is the part of logic that uses neither quan-
tifiers nor equality. Then the structure of atomic formulas does not matter; the
only thing that matters is which atomic formulas are the same. Thus we can
use any symbols for atomic formulas, preferably we use propositional variables.
There is a good reason for referring to them in this way, as their meaning is sim-
ply true or false. We can view propositional logic as the study of a two element
structure. The two elements represent true and false and they are usually denoted
by 1 and 0. On this structure we study operations (but not relations). The opera-
tions are called Boolean functions. Boolean functions corresponding to negation,
conjunction, disjunction, etc. are defined by the familiar truth tables.

The idea of studying propositional logic as the theory of a two element set
is due to George Boole (1815–1864) and therefore we talk about Boolean func-
tions, Boolean algebras, etc. Gottfried Wilhelm Leibniz (1646–1716) was very
close to this discovery. He noticed that, when interpreting true as 1 and false as
0, conjunction is the product. He thought that disjunction should be the sum, but
that did not work. That was before mathematicians realized that it is not neces-
sary to stick to familiar structures and that one can invent new interesting ones.

A set of operations is called a complete set of connectives, if every operation
on {0,1} can be expressed using operations from the set. For example, {¬,∧}
and {¬,∨} are complete. All these are simple facts, but they are important for
realizing that at least propositional logic is uniquely determined: it is the theory
of the simplest nontrivial set.

2.1 The Language of Mathematics 79

7. Normal forms. Many problems on formulas become simple if we can use a
normal form, that is, if we can transform a general complicated formula into
a formula having a nice structure. Everybody knows that (due to the distribu-
tive law) it is possible to write any polynomial as a sum of products of vari-
ables and constants (called monomials). A similar fact holds for propositional
logic, where we have two distributive laws (x ∧ (y ∨ z)≡ (x ∧ y)∨ (x ∧ z) and
x∨(y∧z)≡ (x∨y)∧(x∨z)), and De Morgan’s laws¬(x∧y)≡ (¬x∨¬y) and
¬(x ∨ y)≡ (¬x ∧¬y). This enables us to write every proposition as a disjunc-
tion of conjunctions of propositional variables or negated propositional variables.
This is called the Disjunctive Normal Form or simply DNF. There is, of course,
the dual version, the Conjunctive Normal Form, or CNF. Note that the interpre-
tation of a DNF is that we list all cases when the formula is true. This is not a
very efficient way of expressing a given Boolean function, in fact, the reduction
to a DNF or CNF often results in an exponential blow-up in the size. Thus DNFs
and CNFs simplify problems in propositional logic only theoretically.

In first-order logic we also have a nice normal form. First we move all
quantifiers to the beginning of the sentence. This is enabled by rules such as
¬∀x φ ≡ ∃x¬φ and φ ∧∀x ψ ≡ ∀x (φ ∧ψ), where x does not occur in φ. Then
the inner part of the formula contains no quantifiers, thus we can transform it into
a DNF (or a CNF). The resulting formulas are called prenex normal forms. This
is a useful and efficient reduction, but the prenex normal forms are often more
difficult to understand than the original sentences where the quantifier occur in
places to which they actually refer.

Having all quantifiers in a prefix enables us to define the quantifier complexity
of sentences. Rather than counting the number of quantifiers we count the num-
ber of alternations of quantifiers. Furthermore, it is important to know what is
the first quantifier in the prefix. If the number of alternations is small we denote
the class simply by listing the quantifiers.

Example ∃x∀y∀z∃u φ, with φ quantifier-free, is a ∃∀∃ formula.

If we have more alternations, we write only the first quantifier indexed by
the number of alternations. So the above formula is a ∃3 formula. Sometimes
people use Σ and Π instead of ∃ and ∀, but that may lead to confusion with
other hierarchies.

8. Equational theories. I spoke about natural languages as a motivation for the lan-
guage of first-order logic. This concerns propositional connectives and quanti-
fiers. Function symbols, terms and equations come from mathematics. Function
symbols describe elementary operations, terms describe computations and equal-
ity is a basic binary relation. In first-order logic we call equations atomic formu-
las. It may seem that they are too simple to be of any interest, but the contrary
is true. Using equations one can express quite a lot, in fact we can, in some
sense, simulate the whole first-order logic. To be quite precise we should note
that a connective and a quantifier is implicit in equational theories. When we
talk about a set of equations we mean, in fact, the conjunction of the equations.

80 2 Language, Logic and Computations

When we say that an equation with variables is true, we mean that it is true for
any possible value of the variables, which means that we implicitly assume that
the variables are universally quantified. (For example, we state the commutative
law as x + y = y + x, meaning that ∀x∀y(x + y = y + x).)

An important example of an equational theory is Boolean algebras. This is
the equational theory of the two element set {0,1}. We can take all operations
that can be defined on this set (that is, all Boolean functions), or only a finite
complete set of them. Thus propositional logic can be viewed as the equational
theory of a two element set.

9. Communication with extraterrestrials. Mathematics would certainly be useful,
but it is naive to expect that use of mathematical language would automatically
solve the problem of communication. This problem was studied by the Dutch
mathematician Hans Freudenthal. In his book Lincos: Design of a Language for
Cosmic Intercourse, he presented a language for communication with extrater-
restrials. His idea is roughly as follows. In order to be able to communicate with
intelligent beings, we need a common language, but we cannot agree on a com-
mon language because it is impossible to exchange messages. Therefore we have
to design a suitable language such that we can teach the other party this language.
He proposed to teach by examples, starting with concepts from number theory,
logic and set theory. When they learn the language, they will understand any
messages that we send them.

When designing messages for aliens the first thing one should do is to realize
what we want to achieve. If the message should only convey that we are intel-
ligent creatures, we do not have to send the Pythagorean Theorem, as the mere
fact that we are able to send electromagnetic signals proves that our knowledge
exceeds such trivial theorems. In such a case we only need to send signals that
can be distinguished from those naturally occurring in space. A more difficult
task is to persuade a potential recipient about our achievements in science (other
than understanding electromagnetic waves), in particular, about our successes
in mathematics. An especially interesting problem, but rather theoretical one, is
how to persuade someone about having advanced computing technology. Prob-
lems of this kind have been studied in computational complexity theory in the
case of the two parties exchanging information in both directions. In the situa-
tion when the recipient is hundreds of light years away, one has to assume only
unidirectional communication and thus the problem is different.

Naturally, it is more promising to look for incoming signals, but a number of
signals have also been sent out.

2.2 Truth and Models

The Definition of Truth and Satisfaction

To define the concept of truth in general is a difficult philosophical problem. In
mathematical logic, however, there is a precise definition of this concept. Truth is

2.2 Truth and Models 81

a relation between sentences and reality. I have described “mathematical reality” in
the first chapter; it is the realm of mathematical structures. In the previous section
I explained the formal language of mathematics as studied in mathematical logic.
So the definition of truth is the definition of a certain relation between these two
things. More precisely, it is a definition of the relation that ‘a sentence φ is true in a
structure M’. It is more common to say that ‘a sentence φ is satisfied in a structure
M’ and reserve the word ‘truth’ for a special situation that I will describe shortly.
Thus we rather talk about the definition of satisfaction.

The definition of satisfaction is based on defining the meaning of the parts of the
sentence. When we decompose a sentence, which is a formula in which there are no
free variables, we get parts that do have free variables.

Example Consider the sentences

‘For all x, x ≤ 1, or x2 > x’

which is true in the natural numbers. This sentence contains a subformula

‘x ≤ 1, or x2 > x’

in which the variable x is free. Therefore we have to define satisfaction also for
formulas and particular values of their free variables. In our example, we first define
the satisfaction of the subformula for x = 0,1,2,3, . . . and then the satisfaction of
the sentence.

Given a formula φ(x1, . . . , xn) a structure M and elements a1, . . . , an, the def-
inition of satisfaction of φ by the elements a1, . . . , an in M proceeds inductively,
starting with atomic subformulas. We define the satisfaction of atomic formulas ac-
cording to the relations and functions in M . The satisfaction of compound formulas
is defined by interpreting connectives and quantifiers in the natural way. The formal
definition is in Notes; here I will only consider an example.

Example The formula above has two atomic subformulas x ≤ 1, and x2 > x. The
first one is satisfied by 0 and 1, otherwise it is not satisfied. The second one is
satisfied for 2,3, The subformula ‘x ≤ 1, or x2 > x’ is satisfied for every natural
number because: for 0 and 1 the first term is true, for 2,3, . . . the second term is true,
and a disjunction of two formulas is satisfied if at least one of them is. The sentence
‘For all x, x ≤ 1, or x2 > x.’ is true in the natural numbers because the subformula
‘x ≤ 1, or x2 > x’ is true for every natural number.

At first glance, this looks like a circular definition because we are defining satis-
faction assuming that we already know what it is. We are defining ‘for all x’ by say-
ing that it holds for all x. Certainly, if somebody did not understand the sentence, the
definition would not help them to understand it. The Polish logician Alfred Tarski
(1901–1983), who invented this definition, made this point by saying:

The sentence ‘It’s snowing.’ is true if it’s snowing.

82 2 Language, Logic and Computations

So what is the matter? In order to understand this definition, one has to realize
two things. Firstly, we are not in the position of philosophers who want to find the
meaning of the concept of truth. We are defining truth and satisfaction as a mathe-
matical concept. Forget about meaning and look at it as a mathematical definition.7

There are sentences on one side and structures with their elements on the other.
Since the sentences are formalized as certain strings, we are defining a relation be-
tween finite strings representing formulas and strings of elements of a structure.
Thus this is a perfectly legitimate mathematical definition that can be formalized in
set theory. Also it is a general definition that works for every structure and tells us
in which structure a sentence is true and in which it is false.

It is instructive to consider the special case of finite structures. In this case, one
can even write a program to determine, if a given sentence is true in a given structure.
Programming languages often contain at least part of the propositional logic, so the
task is simpler if we use such a language. The quantifiers will be tested by searching
all elements of the structure, using constructs such as do ... while Note
that when writing such a program we are doing essentially the same as what we did
above. In particular, we are programming how to test that a formula is satisfied for
all x by letting the computer check it for all x. Because we are considering finite
structures, there is no doubt that it makes sense—the computer will be able to tell us
whether or not the formula is satisfied. Now, imagine an ideal computer that is able
to do infinite computations. Then the definition of satisfaction for general structures
can be viewed as a program for such a computer.

Secondly, we have to realize is that there are two levels of discourse. The lower
level is the formal language for which we are defining the concept of satisfaction; it
is called the object language. The upper level is the language that we use to make
this definition; it is called the metalanguage. We have already observed that not
distinguishing between the two levels leads to paradoxes, which would result in
contradictions in formal systems. On the other hand, having this distinction, the
definition makes sense: although we are using the same logical operators, such as
‘or’ and ‘there exists’, they appear in different places. In particular, we are defining
‘or’ in the object language using ‘or’ in the metalanguage. We suppose that we
understand ‘or’ in the metalanguage, so we can use it to define it in the object
language.

The psychological factor that makes this definition difficult to accept is that we
are defining something that is completely clear to us. Thus it seems that there is
nothing to define. Therefore, we should view it as a formalization rather than a
definition.

Let us now fix some terminology. Instead of saying that a sentence φ is satisfied
in a structure M , one often says that M is a model of φ. This is further extended
to theories. We say that M is a model of a theory T if all axioms of T are satisfied
in M . We also often say ‘models’ instead of ‘structures’. Model theory, an important

7And read the quotation from Isaac Asimov’s Imaginary at the beginning of the next chapter
(page 157).

2.2 Truth and Models 83

field of logic, studies mathematical structures, that is, models, from the point of view
of logic. The concepts of truth and satisfaction are the basic notions in this field.

When stating a theorem we often assume that the particular structure is clear from
the context. For example, if we state that an arithmetical sentence is true, we mean
that it is satisfied in the natural numbers. Surely, there are many other structures in
which we can interpret the sentence.

This leads us back to philosophical questions. Although we do have a formal
definition of truth, the meaning of this concept is a matter of philosophical views.
Saying that a sentence is true presupposes an objective reality where the sentence
should be satisfied. But what is mathematical reality? Specifically, are mathemati-
cal structures real? If not, how can we then talk about mathematical truth? Another
question is, assuming we believe in mathematical reality, how do we acquire math-
ematical knowledge and how do we learn what is true? We cannot empirically test
sentences that talk about an infinite number of elements. We can only decide the
validity of a sentence in small finite structures. For large infinite structures, as well
as for large finite ones, we use proofs instead of empirical tests. But proofs need ax-
ioms; logic alone does not suffice. So we need to justify axioms. How do we justify
axioms if we cannot test their validity? And so on. . .

I leave these questions without an answer for the time being. What I am going
to present further in the book should give us more ideas on which we can base our
opinion. Finally, in Chap. 7, I will address these questions directly.

Logically Valid Sentences

When talking about truth we always imagine something absolute. What we have
considered so far, was only relative truth: a sentence being true relative to a par-
ticular structure. So here is an important concept. There are sentences that are true
in all structures. One may get the impression that such sentences are very simple
and uninteresting. Also one of their names, tautologies, has such a connotation. But
in fact, these are the sentences that we are mostly interested in, the substance of
logic. In logic we are interested in absolute truth, not sentences that are true only
in a particular situation, those are the subject matter of other sciences. We call the
sentences true in all structures8 logically valid. The term ‘tautology’ is mostly used
for logically valid formulas of propositional calculus.9

Logically valid sentences express all that logic can say about truth. If we want
to know, if a sentence ϕ follows from another sentence ψ , we can just check, if
the implication ‘if ψ , then ϕ’ is logically valid. In the same way we can reduce the
question whether a sentence is a consequence of a set of axioms to logical validity

8More precisely, true in all structures of an appropriate type.
9Some authors distinguish between logically valid sentences and tautologies in first-order logic
and call tautologies only the sentences whose validity can be established by means of propositional
logic.

84 2 Language, Logic and Computations

of certain sentences. For example, if we want to know whether the sentence x · y =
y · x is a consequence of the axioms of groups, we just need to know whether the
sentence x ·y = y ·x is true in all structures that satisfy the axioms of groups, which
simply means we need to know if it is true in every group. (This particular sentence
expresses the commutative law and is not true in every group.)

All this looks very simple, but the conclusion that we get is extremely important:
we can define logical validity. This is a consequence of the fact that we can define
satisfaction. By saying ‘define’ I mean it in the strongest sense, namely, logical
validity is a mathematical concept. There is no other basic concept of gnoseology,
the science of knowledge, that can be so unambiguously defined! At this point logic
departs from philosophy and becomes a part of mathematics.

Proving Consistency and Independence by Constructing Models

One of the most important problems studied in logic is the consistency of an ax-
iomatic system. This problem is also relevant in other theoretical fields, but the
closer the field is to practice the less important it is. This is because physical re-
ality is considered the best test of consistency. In mathematics too we can test the
consistency of sentences on small finite structures, small enough to be handled by
computers. Thus, for example, we can show the consistency of certain axioms of
geometry using the Fano plane. But the majority of the interesting theories concern
infinite structures. Therefore, we have to substitute physical reality by the world of
mathematical structures.

Having a definition of satisfaction, we can formally prove that testing an ax-
iomatic theory on structures suffices to prove its consistency. Indeed, one can prove
that a sentence φ is either true or false in a given structure M , but not both. Further,
one can show that if axioms are satisfied in M , then so are all their logical conse-
quences. Therefore, if we want to prove that an axiomatic theory T is consistent, it
suffices to find a structure in which all axioms of T are true, in other words, to find
a model of T .

A theory without models is certainly strange. One often calls a concept void if
there is no example of it. What is a void theory? It turns out that such a theory is
inconsistent. So having a model and being consistent are equivalent things. This is a
nontrivial fact; it is called the Completeness Theorem. I will talk about it in the next
section because it concerns both semantics, the topic of this section, and the syntax
of proofs, which will be the topic of the next section.

Let us see how this reduction is used in practice. The simplest situation is when
the axioms are satisfied in one of the structures that we already know. If this is
not the case we try to adapt or combine the existing structures to get a model that
we need. In other words, we construct the model from available models. Thus, for
example, we prove the consistency of the complex numbers using the Gaussian
plane, which is the ordinary plane with axis x used for the real numbers and the
axis y for the imaginary numbers. A point with coordinates (a, b) corresponds to
the complex number a + ib.

2.2 Truth and Models 85

The problems arise when we need models of strong theories, in particular, set the-
ories. Except for some very weak set theories, their models cannot be constructed
from the classical standard structures such as the natural numbers and the real num-
bers. We will see that in these cases we have to accept the consistency as a hypoth-
esis.

If we analyze consistency proofs more closely, we find out that we are using
certain assumptions even in such simple cases as the case of the complex numbers.
When proving that the theory of complex numbers is consistent our assumption is
that the theory of real numbers is consistent. We may say that the latter assumption is
obvious, but, strictly speaking, we are only reducing the consistency of the complex
numbers to the consistency of the real numbers. Essentially in all proofs of consis-
tency we are reducing the consistency of a theory T to the consistency of another
theory S. To stress this fact we say that T is consistent relative to S. The consistency
of S can be justified by our belief that S axiomatizes a structure that is real. Then
we also believe that T is consistent and do not talk about relative consistency.

To prove that a sentence is independent of a system of axioms one can also use
models. This is due to the simple relation between consistency and independence:

Proposition 3 A sentence φ is not provable from a consistent set of axioms A, if
and only if the set A supplemented with ¬φ is consistent.

Consequently, it is possible to prove that φ is not provable from A by constructing
a model in which the sentences of A are true and sentence φ is false. This simple
proposition is the basic tool in many proofs of independence. Its power lies in the
fact that it replaces a negative task—to show that no proof gives φ, by a positive
one—to construct a model.

A nice example is Euclid’s fifth postulate. Recall that this axiom is equivalent to
the statement that for a line and a point not on the line there is a unique line through
the point that is not incident with the given line. In Euclidean geometry, the line
through the point is parallel to the given line. For centuries, people believed that this
axiom is superfluous because it can be derived from the others. Only at the begin-
ning of the 19th century did some mathematicians realize that it may not be the case.
Indeed, this axiom does not follow from the others. The solution of the problem is at-
tributed to János Bolyai, Carl Friedrich Gauss and Nikolai Ivanovich Lobachevsky.
Lobachevsky and Bolyai published their works in 1829 and 1831; the only evidence
about Gauss’ work that we have is from his letters, but it is convincing enough.
Lobachevsky and Bolyai developed what is nowadays called hyperbolic geometry
or Lobachevsky-Bolyai geometry. Lobachevsky studied fairly non-trivial problems
such as the volumes of polyhedra in three-dimensional hyperbolic geometry.

In logical terms, they studied the theory in which the fifth postulate is replaced
by its negation. In order to prove that the fifth postulate is independent, it sufficed
to show that the new theory was consistent. Lobachevsky and Bolyai considered the
fact that the theory leads to meaningful results as sufficient evidence that the new
theory is consistent, but they did not have a proof. It was still possible that when
the theory was developed further it would run into a contradiction. A genuine proof

86 2 Language, Logic and Computations

of independence only appeared later, in 1868, when Eugenio Beltrami constructed
a model of this theory. In Beltrami’s model all axioms of Euclidean geometry were
true, except the fifth postulate, which showed that the fifth postulate was indepen-
dent. There is no doubt that the insight of Bolyai, Gauss and Lobachevsky was the
major step in the solution of the problem, but the problem was solved by Beltrami.10

In popular expositions of the problem of Euclid’s fifth postulate you can still
read that “Gauss, Lobachevsky and Bolyai proved the existence of non-Euclidean
geometries”. Let us ponder what a proof of the existence of a concept means. In
contemporary mathematics it means precisely this: to prove the existence of a struc-
ture that is a model of the concept in Zermelo-Fraenkel Set Theory. So the fact that
one can develop a meaningful theory about the concept does not count as a proof;
it may only be accepted as a piece of evidence supporting the conjecture. There is,
however, one important exception: set theory itself. As we will learn in the next
section, one cannot prove the consistency of Zermelo-Fraenkel Set Theory in itself,
hence also one cannot construct a model of Zermelo-Fraenkel Set Theory in itself.
So for the existence of this concept, we only have arguments based on a having
“well-behaved theory” etc., arguments of the kind that we dismissed in the case of
non-Euclidean geometries.

Models Are not Uniquely Determined by Theories

Assuming that structures are the main subject of our study and logic only serves
to describe them, we would like logic to be able to determine each structure as
much as possible. Clearly, logic cannot determine a particular structure uniquely
because for a given structure there are infinitely many isomorphic ones. That is all
right, we do not want to distinguish isomorphic copies of the same structure. So
our concern is if one can determine a structure up to an isomorphism. In general,
this is not possible. More precisely, one can determine only finite structures by the
sentences that are true in them. For an infinite structure, there are structures that are
essentially different, but which satisfy exactly the same sentences. The best way to
demonstrate it is to consider the sizes of structures. A classical result of Leopold
Löwenheim (1878–1957) [186] and Thoralf Skolem (1887–1963) [270] says that
for an infinite structure there are structures of any infinite cardinality satisfying the
same sentences. (For a more precise statement see Notes.)

Example Consider the natural numbers and the real numbers. The first structure is
countable and the second is uncountable. We think of the set of natural numbers as
the canonical example of a countable infinite set (in fact, ‘countable’ comes from
the possibility of enumerating the set by numbers). Yet, there are structures that are
uncountable and they satisfy the same sentences. Similarly, the real numbers are a

10Gauss did important work in the study of the concept of curvature. We may thus speculate that
he could have realized that curved surfaces are models of non-Euclidean geometry, but we do not
have any historical evidence of that.

2.2 Truth and Models 87

prototype of a higher type infinity, the continuum, but there are countable structures
that are logically indistinguishable from them.

There is an even more striking example. Consider an axiomatic system for set
theory, say Zermelo-Fraenkel Set Theory. Assuming it is consistent, it has a model,
but then, according to Löwenheim-Skolem’s theorem, it also has a countable model.
It has a countable model, in spite of the fact that in this theory there are many much
larger cardinalities! This looks really weird, but in fact, it is also a good example
for explaining how it is possible. The crucial thing is to realize that a structure is
a world that is different from ours. People living there see things from a different
perspective, from a much narrower one. It is like popular explanations of higher di-
mensions. People living in a two-dimensional world could not escape from a circle.
Watching them in a three-dimensional world, we see that it is possible to use the
extra dimension to jump over the border. But only we can use the three dimensions,
the rules of the game do not allow the people from the two dimensions to do so.

Turning back to the countable model of set theory, let us call it M . Take the nat-
ural numbers of M and the reals of M . As the whole model M is countable, both
the natural numbers and the real numbers of M are countable sets. This seemingly
contradicts the theorem of set theory saying that the two sets have different cardinal-
ities. To resolve this apparent contradiction we have to recall the definition of what it
means that two sets have the same cardinality. The definition says that they have the
same cardinality, if there exists a one-to-one mapping f from one of the sets onto
the other one. So let such an f be the mapping of the natural numbers of M onto
the real numbers of M . To conclude that the two sets have the same cardinality from
the point of view of M we would need to prove that such an f is in M , but there is
no reason why it should be. So the contradiction is only apparent. Exactly like the
action of jumping from the circle is not allowed in the two-dimensional world, the
mapping f is not allowed in the model M .

The reason for this discrepancy is that logic is in some sense finite (the technical
term for this property is compact). In particular, each proof is finite and therefore
it cannot use more than a finite number of axioms. Hence everything that we can
prove about a structure only depends on local properties. The cardinality, however,
is a global property.

A Nonstandard Model of Arithmetic

Not only are there models of different cardinalities that satisfy the same sentences,
but also in one given cardinality there may be different ones. This may be viewed as
a drawback of logic, but also as an advantage: it gives us interesting structures. In
particular such interesting structures are the nonstandard models of arithmetic. By
arithmetic I mean a theory that partially describes the structure (N;+, ·,≤), or more
precisely, a theory T one of whose models is (N;+, ·,≤). We call such theories
arithmetical. An important arithmetical theory is Peano Arithmetic (see page 116).
This is a theory based on a small set of simple axioms and an infinite set of axioms

88 2 Language, Logic and Computations

stating the principle of the mathematical induction for every formula in the language
of (N;+, ·,≤). In model theory the word ‘theory’ is used for any consistent set of
sentences, even if there is no effective procedure to determine if a sentence is an
axiom of this theory. Such a theory is True Arithmetic, which is simply the set of
all sentences true in (N;+, ·,≤). We will see in Chap. 3 that nonstandard models of
True Arithmetic are very useful.

To define nonstandard models, we rather define its opposite, the standard model.
The standard model is simply (N;+, ·,≤) and all models isomorphic to it. Hence, M
is nonstandard, if it is not isomorphic to (N;+, ·,≤). Thus each uncountable model
of arithmetic is nonstandard, but there are also countable ones. Nonstandard models
are very complex structures and they cannot be obtained by an explicit construction
(except for some very weak subtheories of Peano Arithmetic). To get at least an idea
of what they look like, one should look at the ordering of elements of such a model
M . The model starts with a copy of the standard model. These are the elements that
can be denoted by numerals; they are called standard numbers or finite numbers.
Since M is not standard, there must be other elements. They are all after standards
numbers and they are called nonstandard or infinite. Clearly, there is no largest
nonstandard number, but also there is no smallest nonstandard number. In fact, for a
nonstandard number α, the number α− 1, and the integer parts of α/2,

√
α, etc. are

also nonstandard. Note that the fact that there is no least nonstandard number does
not contradict the least number principle because the set of nonstandard numbers is
not definable in M .

Notes

1. The definition of satisfaction. Assume that a finite list of nonlogical symbol is
given. To simplify the definition I will only use relation symbols R. Further, I
will assume that the logical symbols are only ∧ (conjunction), ¬ (negation), and
∃ (existential quantifier). Let L be such a language. Given a relation symbol R
from L and a structure M for L, I will denote by RM the relation of M that is
the intended interpretation of the relation R in M .

For a formula φ with free variables x1, . . . , xn and elements a1, . . . , an from
M , we want to define the relation ‘φ is satisfied by elements a1, . . . , an in M’. To
simplify the definition I will further use the standard notation M |� φ[a1, . . . , an]
to denote this relation of satisfaction. The definition goes by induction on the
complexity of the formula φ:

a. for a k-ary relation symbol R(x1, . . . , xk), M |�R[a1, . . . , ak] if the elements
a1, . . . , ak are in the relation RM ;

b. for formulas φ and ψ , M |� (φ ∧ ψ)[a1, . . . , an] if M |� φ[a1, . . . , an] and
M |�ψ[a1, . . . , an];

c. for a formula φ, M |� ¬φ[a1, . . . , an] if it is not true that M |� φ[a1, . . . , an];
d. for a formula φ, and a variable x1, M |� ∃x1φ[a2, . . . , an] if there exists an

element a1 in M such that M |� φ[a1, a2, . . . , an].

2.2 Truth and Models 89

Since this is a very important definition, I will describe in more detail how it is
formalized in set theory. Let M be a fixed model. Let F be all first-order formulas
in language L and let A be all finite sequences of elements of M . Formulas are
formalized by finite strings of symbols from a finite alphabet. Let Fi denote
the subset of F consisting of all formulas of logical complexity i. Thus F0 are
atomic formulas, Fi+1 are all formulas from Fi , plus those that are obtained
from them using a connective or a quantifier. We have F0 ⊆F1 ⊆F2 · · · , and F
is the union of the sets Fi , i = 0,1, Then we define the relation |� between
Fi and A by recursion on i. Condition 1. defines the base case. Conditions 2.–4.
define how to extend the relation |� from Fi to Fi+1. Thus we obtain a sequence
of relations, where the first relation is defined explicitly and each succeeding one
is defined explicitly from the previous one. Finally, the relation |� is the union of
all these partial relations.

Note that the definition of truth of sentences is a special case of this definition:
a sentence φ is true in M , if it is satisfied by the empty string in M .

The definition of satisfaction for higher order structures and languages is anal-
ogous.

2. The Löwenheim–Skolem Theorem.

Theorem 2 If a theory T has an infinite model, then it has models of arbitrary
infinite cardinalities.

The theorem is a consequence of the proof of the completeness theorem,
which we will present in the next section. Here I will only sketch a proof of
a weaker theorem:

If T has an infinite model, then it has a countable model.

Furthermore I will only consider the special case where the theory has a single
axiom of the form ∀x∃y φ(x, y), where φ(x, y) is quantifier-free. Assume the
language of the theory does not contain function symbols. Let M be an infinite
model of this theory. Let us define a function f on the universe of M by choosing,
for every x in M , an element f (x) such that φ(x,f (x)) holds in the model. (f is
called the Skolem function for ∀x∃y φ(x, y).) Pick an element a of the model and
take M ′ to be the submodel of M with universe {f n(a); n= 0,1,2, . . .}, where
f n denotes n-times iterated f . Since φ is quantifier free, φ(f n(a), f n+1(a)) is
true also in the submodel M ′, thus M ′ satisfies the axiom. M ′ is either countable
infinite or finite. If it is finite, repeat this process with another element, etc.

If the language does contain function symbols, we have to take the universe
of M ′ to be all elements generated from a by the functions of M and f .

The above proof can be explained as follows (the same idea is used to prove
the theorem in general). First we replaced the theory by a universal theory,
namely, the theory axiomatized by ∀x φ(x,f (x)). Then we have taken a sub-
structure of M generated from a single element. A substructure satisfies all uni-
versal sentences that the structure does, hence it is also a model of the original
theory. For more detail, see also Compactness on page 115.

90 2 Language, Logic and Computations

Fig. 2.1 The Beltrami-Klein
model of the hyperbolic plane

Fig. 2.2 The hyperbolic
length of the segment AB is
1
2 log |AP |·|BQ|

|AQ|·|BP | , where | · · · |
denote the Euclidean lengths
of the segments

3. Models of planar hyperbolic geometry. In hyperbolic geometry the fifth postulate
is replaced by

For every line l and every point A not on l, there are at least two different
lines going though A that are not incident with l.

The first model of non-Euclidean plane geometry found by Beltrami was on
surfaces of negative curvature. Later he realized that one can project it on a disc
in a Euclidean plane. This model was popularized by Felix Klein, thus it is often
called the Beltrami-Klein model. The points of this model are points inside of
the circle (the points on the circle are excluded). The lines of the model consist
of the inner points of segments whose endpoints are on the circle, see Fig. 2.1.
The verification of the axioms of incidence, including the axiom that replaces the
fifth postulate, and the axioms about the relation ‘between’ is very easy because
both relations are the same as in the Euclidean plane from which is the model
constructed.

The tricky part is to define the relation of congruence between segments and
to prove that the corresponding axioms are true. To this end, one defines the
hyperbolic length of a segment, see Fig. 2.2. Then two segments are congruent
(have the same length) in the new sense if the real numbers assigned to them are
the same.

A different model was discovered by Poincaré. The points of the model are
again the inner points of a circle. Lines of the model are arcs (sections of circles)
that start and end on the circle and that are perpendicular to the circle at both
sides. Moreover, every diameter is a line too. The advantage of this model is that

2.2 Truth and Models 91

Fig. 2.3 Poincaré’s model

the angles in the model are the true angles. Thus you can clearly see that the sum
of the angles of the triangle ABC in Fig. 2.3 is strictly less than 180°.

Note that both models are constructed from the Euclidean plane. Thus this
proves relative consistency: if the axioms of the Euclidean plane are consistent,
then so are the axioms of the hyperbolic plane.

4. Nonstandard models of (N;+,≤) and (R;+, ·,≤). In contrast to the arithmetic
of the natural numbers with addition and multiplication, these two structure de-
termine fairly weak theories. Therefore, it is possible to construct explicitly non-
standard models of them.

Here is a nonstandard model M of the addition of integers, the theory of
(N;+,≤). The universe consists of pairs (q,n), with n an integer and q a non-
negative rational number; however we exclude pairs (0, n) for n < 0. The or-
dering of M is the lexicographic ordering determined by the orderings of inte-
gers and rational numbers. The addition is defined componentwise, (q,n) +M

(r,m)= (q + r, n+m).
We know that Peano Arithmetic certainly does not have such a simple model.

One result that proves this is a theorem by S. Tennenbaum. This theorem gives a
lower bound on the complexity of countable nonstandard models of Peano Arith-
metic: they cannot be constructed using computable relations and operations.

The theory of (R;+, ·,≤) is called the Theory of real closed fields because it
is axiomatized by the axioms of ordered fields and the axiom schema that says
that every polynomial of an odd degree has a root. To get a countable model
of this theory, one can simply take the submodel of this structure determined
by algebraic numbers (numbers that are solutions of algebraic equations with
integer coefficients).

Note, however, that all this is due to the restricted language. In the structure
(R;+, ·,≤) it is impossible to define integers. If we enrich the structure by pred-
icates or functions that allow us to define integers, axiomatization by a decidable
set of axioms becomes impossible, as well as the construction of computable
nonstandard models.

5. Free algebras. Let a theory T be given. We would like to have a most general
model of T , so that we can study what is provable in T and what is not. In general
there is no canonical way to assign any such model to T , but in some cases it
is possible. The problem is that while in a theory T there may be undecidable
sentences, in a model, for every φ, we must have either φ or ¬φ; but there is

92 2 Language, Logic and Computations

no rule that would tell us which of the two is better. The most important class
of theories that do have such canonical models are equational theories. These
are theories that are given by a set of elementary positive statements—equations.
Then if we are to decide which of the two independent sentences s = t or ¬s = t

should hold, we always take the second. Thus we obtain an algebra that has in
some sense the least possible number of dependences among its elements.

This is only a rough description. To make it work one has to start with a count-
able set of elements, called generators. The resulting algebra is called the free
algebra (with countably many generators). Then an equation t = s with variables
x1, . . . , xn is derivable in the equational theory if and only if it is satisfied by n

distinct generators of the free algebra.
6. Logics without semantics and logics without syntax. I have presented the standard

approach that assumes that there is a world of structures (or models) and logic is a
means of talking about them. Hence a logical system that does not have semantics
is considered meaningless. Nevertheless, other philosophical directions in the
foundations of mathematics refute this basic dogma. They say that the only real
entities are proofs. Then having semantics is not considered important at all.
There are logical systems that have a nice syntax, which means that they have
certain plausible properties, but for which finding semantics was a problem (see,
for example, Church’s λ-calculus, page 146).

On the other hand, there are logics that miss an important part of syntax. Any
system called logic must have formulas to express statements, but some systems
do not have the concept of a proof, or if they have a concept of a proof, there
is no completeness result saying that all logically valid sentences are provable.
This concerns all higher order logics starting with second-order logic. There are
also logics that use infinitely long formulas and infinitely long proofs. This can
be accepted as syntax, but it is not a kind of syntax that we can use for practical
purposes.

2.3 Proofs

The definition of truth determines the set of logically valid sentences, but it does not
give us a way to determine which are these sentences. Applying the definition would
mean testing the truth on each structure. There is no effective procedure for that even
for a single structure. This does not mean that the definition is completely useless
for that purpose. For a particular sentence, we might be able to prove, using mathe-
matical considerations, that it is true in all structures. But why should we look for a
proof of the fact that a sentence ϕ is true in all structures, if we can prove ϕ itself?

This suggests that there is another way to define when a sentences is true—by a
proof. The concept of a proof is an old one. It has been used mainly in two fields:
mathematics and law. The meaning of the concept is a collection of pieces of evi-
dence that is able to persuade any person about the truth of a sentence in question.
The pieces of evidence alone do not suffice, they have to be arranged in such a way
that they fit together. In criminal investigations and lawsuits the evidence is the facts

2.3 Proofs 93

related to the case and testimonies of reliable witnesses. In mathematics the evi-
dence is axioms, previously established theorems, and computations. The pieces of
evidence are just some sentences, thus the essence of the concept of a proof hinges
on how they are connected.

In lawsuits one should prove the accusation ‘beyond a reasonable doubt’.
Clearly, it is unreasonable to ask for proof without any doubt, as nobody would
be convicted. The problem is in that any presented evidence and testimony can be
questioned as nothing in the world is one hundred percent sure. To support the ques-
tioned evidence new proofs may be required and so on resulting in a never-ending
process. But even if all the facts and testimonies are accepted as unquestionable,
there are still a lot of hidden assumptions that one has to use. People who try to
simulate human reasoning on computers know that even in reasoning about simple
situations we unconsciously use hundreds of assumptions.

Gottlob Frege11

In mathematics the first proofs also were very incom-
plete. But already in Euclid’s Elements the proofs are es-
sentially the same as in contemporary mathematics (except
that they sometimes use assumptions not stated explicitly as
axioms). The concept of a proof, however, was not defined
back then. Aristotle studied syllogisms, which are some rules
for propositional logic, but he did not have a complete sys-
tem. In the 17th century the German mathematician and
philosopher Gottfried Wilhelm Leibniz (1646–1716) pro-
posed the idea of designing a calculus for logic in which one
could present logical reasoning and check its correctness in
the same way as we calculate in algebra. It was, however,
only two centuries later, when his vision was realized. The first complete system for
first-order logic was constructed by Frege in his Begriffsschrift in 1879 [77].12 Peano
presented another system in his Principles of Arithmetic in 1889 [216]. A.N. White-
head and Russell published their fundamental work Principia Mathematica on the
foundations of mathematics in three volumes in 1910, 1912 and 1913 [313–315].
Their formal system for proofs in first-order logic became the prototype for many
systems that appeared later.

We say that the concept of a proof is now formal, meaning that it can be treated as
a rigorous mathematical concept. Note that formalization of the concept of a proof
was only needed for understanding the foundations of mathematics. It is remarkable
that every mathematician has a perfect sense for what constitutes a proof and what
does not. So to say, mathematicians learn the rules of the game by playing it.

Claiming that we have a formal definition of a proof we should give such a def-
inition quite formally. I will do it in the sequel; here I only give a short description
how it can be done. Firstly, we take some simple sentences which are obviously tau-
tologies as logical axioms. A typical one is the law of excluded middle, which is ϕ

or not ϕ; we postulate it for every formula ϕ. Then we need logical rules that enable

11This media file is in the public domain in the United States.
12The title is translated as Concept Script.

94 2 Language, Logic and Computations

us to derive tautologies that are not axioms. The rule modus ponens used already by
Aristotle is a case in point. This rule says:

Suppose ‘ϕ’ and ‘if ϕ, then ψ ’ has been established. Then we can derive ‘ψ ’.

A proof is constructed by successively deriving sentences. This means that at
each step we either simply write down an axiom or derive a sentence from previously
obtained ones using a logical rule. Note that at each step we have several options
what to do next. The sentence that we want to prove gives us only hints, but there is
no general strategy. The daily experience of mathematicians is that sometimes it is
extremely hard to find a proof of a given sentence.

Once we list all symbols used in the language, all axioms and all rules, the con-
cept becomes completely formal. The proof is a sequence of symbols satisfying
certain syntactical rules. It is simpler to describe the syntax of a proof than, say,
the syntax of an English sentence, even not counting the complexity of the English
vocabulary. All logicians agree that the concept of a proof can be made completely
formal. However, there are some mathematicians who doubt that all actual proofs
produced by mathematicians can be converted into such formal proofs. The purpose
of a real mathematical proof is not to present a sequence of symbols that can be
mechanically checked, but to convey the idea that leads to a proof and persuade the
reader that the idea can be realized. Thus for instance, if the proof splits into consid-
ering several similar cases, a proof for only one is given and the others are left to the
reader to prove, or it is only stated how the proof for the first case can be modified
to work for the other cases, etc. Furthermore the steps in such a proof are not ele-
mentary steps as in a formal proof, they are more like small jumps. Depending on
how big these jumps are, the proof requires more or less effort and ingenuity on the
part of the reader. Careful checking of a ten-page article may take several days, but
there are some that need many more. If we have problems with short proofs, what
would happen if we tried to convert a really long one into a formal proof?

Can All Mathematical Proofs Be Turned into Formal Proofs?

I contend that, if needed, we would be able to formalize any proof with only a mod-
erate amount of work. I think that our experience with computers demonstrates it
sufficiently clearly. That experience shows that any algorithm can be formalized.
Before the advent of computers nobody cared to write down algorithms formally.
Nowadays, when we need to communicate a lot of algorithms to computers, there
are algorithms of extreme complexity written formally. This was certainly assisted
by the use of high level programming languages. While people write programs rou-
tinely, writing a mathematical proof in a formal system so that a computer can check
it is only done by researchers in the field of proof checking and a few mathemati-
cians. Proof checkers and automated theorem provers had been written almost as
soon as computers became available. Already in the late 1960s, Hao Wang (1921–
1995) wrote a program that proved all the approximately 350 theorems of Principia
Mathematica, (see [303]). Since then the power of computers has increased dramat-

2.3 Proofs 95

ically and many proof checkers and programs for automated theorem proving have
been written. The interest of working mathematicians in these programs is growing
and the demand for such programs in industry is significant. It is just a matter of
time when applications of formal logic become an important part of the computer
industry. Then writing formal proofs will be as routine as writing programs.

The book Proofs and Refutations, The Logic of Mathematical Discovery [178]
by Imre Lakatos is an interesting treatise on mathematical proofs. The leading idea
is that mathematical theories can turn out to be wrong in the same way as it happens
with physical theories. A physical theory, however nice it is, has to be refuted, if
there is an experiment which is in contradiction with the prediction of the theory. In
physics it is not a theoretical possibility, but rather a typical process—theories are
proposed and refuted only to be replaced by more accurate ones. This goes on and
on. Lakatos’s claim is that the same happens in mathematics. As a case example,
he considers proofs of the well-known Euler formula which asserts that for each
polyhedron the number of vertices plus the number of faces equals to the number of
edges plus 2, which is expressed as

v+ f = e+ 2.

He shows how proofs of this theorem were found and then refuted by counterexam-
ples, then fixed again and so on. He hints that this is a never-ending process. I do not
think that by claiming that proofs are never quite correct he wanted to harm math-
ematics. Apparently, he was inspired by Karl Popper’s Conjectures and Refutations
whose main thesis is that a scientific theory must be refutable at least in princi-
ple. Ideologies claiming their infallibility are good only for manipulating people.
This is a great idea of a great philosopher, but should it be applied to mathematics
too? There is a fundamental difference between mathematical results and physical
theories. When a physical theory fails, it means that the given equations are not
applicable to the reality they should have represented. It is not that the theory as a
mathematical work is wrong. Mathematical results, though inspired by our physical
experience, are derived without referring to it; they may have one or more useful
applications, but some do not have any, and this is not considered as a failure.

Lakatos talks on refutations of proofs, but it is not the concept of a proof which is
not rigorous, the problem is in the definitions of the concepts used in the proofs. The
troubles are caused mainly by the definition of polyhedra. There are several classes
of three-dimensional shapes that we might be willing to call polyhedra. If we take
the most restrictive definition, a simple proof works well. For more general forms,
the proof fails and we may need a different proof or the theorem is not true at all.
Proofs are refuted because some tacit assumptions turn out to be wrong. It is not
logic that fails.

Some mathematicians may still doubt that it is possible to spell out all the as-
sumptions in deeper mathematical proofs. This was indeed the case until the 19th
century. By the end of that century all mathematical concepts had been precisely
defined and that became a standard for the future. The concepts introduced into
mathematics later were always constructed rigorously. Furthermore also the con-
cept of a proof itself became a part of mathematics. I admit that some proofs would
need a considerable amount of work to be turned into formal proofs, but I am sure

96 2 Language, Logic and Computations

it would be less work (and, perhaps, more interesting) than writing an average size
computer program. According to current estimates, based on the experience with
writing formal proofs for computer checkers, the size of a formal proof is on the
average about three to four times bigger than a plain “mathematical” proof. This
may seem too much for being accepted by mathematicians. But a four-times longer
text does not mean that one needs four times more time to write it. Every mathe-
matician knows that writing up a mathematical result is always the easier part of the
job, usually much easier than discovering the result. There is another argument that
suggests that mathematicians might be willing to devote a little more time to writ-
ing their proofs if they could gain something. It is the experience with typesetting
mathematical papers and, in particular, mathematical texts. Nowadays mathematics
(including books like this) is typeset in the system TEX (or various versions of it)
designed by the American mathematician and computer scientist Donald Knuth. If
you compare the difficulty of writing a formula in TEX with writing it by hand you
probably get a similar factor (about 3:1) for the ratio between formal and informal
proofs. Yet most mathematicians prefer typing their papers in TEX themselves.

In 1892, Peano started an ambitious project called Formulario Mathematico,
[217]. The aim of the project was to write a collection of all known mathematical
theorems in a formal logical language. He expected that the advantage of presenting
mathematics in this way would be brevity, precision and uniformity. The succinct-
ness of logical formulas would enable him to cover a large amount of material,
which otherwise would be impossible. The project was finished in 1908, but it was
rather a failure—nobody was using it, except for Peano. Although he described the
main theorems also in words, it was very difficult to read it because most of the text
were just formulas containing a lot of new symbols. Nevertheless, some symbols in-
troduced by Peano have been accepted and have been used since then; for instance
the set-theoretical symbols ∈,⊂,∪,∩.

Peano’s idea was that mathematics would be taught using Formulario. He gave
such courses of calculus, but the students were desperate. His great mistake was
that he did not realize that mathematical texts have a twofold role. The first one is to
verify the truth of the stated theorems. Therefore we need precise language, precise
definitions and precise proofs. It is true that the highest level of precision is only at-
tainable by formal systems, but they do not have to be based solely on symbols. The
second role, the one that Peano neglected, is to communicate ideas to other people.
It is possible to memorize a formal proof, but it is useless. Mathematicians need to
understand the proof. They need to make a “mental picture” of the proof and put it
into context of related results etc. Again, there is a parallel with computer programs.
A computer only needs a formally precise program, but studying an uncommented
complicated program is a programmer’s nightmare.

One reason some mathematicians do not believe that proofs can be written for-
mally is that introductory textbooks most often use formal systems for first-order
logic that are simple to describe, but difficult to use. These systems were developed
with the aim to have as simple definitions of the formal systems as possible. There
are, however, other systems that are aimed at practical use. Proofs in these systems
are indeed very close to the way mathematicians argue in their proofs, therefore they

2.3 Proofs 97

are called natural deduction systems. I will describe such a system in Notes; below
I will only give an example of a proof in this system.

Example Let us compare a mathematical proof and a fully formalized proof in a
natural deduction system. We want to prove the tautology:

If it is not true that A is true and B false, then either A is false or B is true.

Here is how a mathematician would prove it. (Mathematicians would do it only
for didactic reasons because the tautology is “obviously true”.) The numbers in
parentheses are added for the sake of comparing the mathematical proof with the
formal proof below.

Suppose that it is not true that A is true and B is false (1.). Consider two cases.
Case 1, A is true (2.). Arguing by contradiction, suppose that B is false (3.).

Then A is true and B is false, which contradicts to our initial assumption. Hence B

must be true (5.). This implies that either A is false or B is true (6.).
Case 2, A is false (7.). Then we have again that either A is false or B is true (8.).
Since A is either true or false (9.) and in both cases either A is false or B is true,

the latter fact is always true (10.).
Since we have derived that either A is false or B is true from the assumption that

it is not true that A is true and B is false, we have proved the implication (11.).

In logic the tautology is expressed by

¬(A∧¬B)→ (¬A∨B).

Here is a formal proof in the natural deduction system presented on page 113.
1. ¬(A∧¬B) [assumption]
2. A [assumption]
3. ¬B [assumption]
4. A∧¬B [from 2. and 3. by rule 1]
5. B [from 1. and 4. by rule 8]
6. ¬A∨B [from 5. by rule 3]
7. ¬A [assumption]
8. ¬A∨B [from 7. by rule 3]
9. A∨¬A [axiom]
10. ¬A∨B [from 9., 6. and 8. by rule 4]
11. ¬(A∧¬B)→ (¬A∨B) [from 1. and 10. by rule 5]

The main problem of proof checkers (and automated theorem provers as well)
is their lack of the basic knowledge that all mathematicians have. For most results,
should they be represented formally, one needs to introduce a lot of concepts and
prove a lot of elementary theorems. This depends on the fields of mathematics. In
set theory it is not such a problem, since what we start with are axioms of set theory.
That is why Wang was able to prove all theorems of Principia Mathematica [303].
In other fields one has to go a very long way from the axioms of set theory. Thus
some proof checkers are only built for a single mathematical field. To overcome
this problem we need to create a large “mathematical library” of basic concepts and

98 2 Language, Logic and Computations

theorems, so that then authors can use some concepts and refer to some theorems
instead of proving everything from scratch.

The second big problem is the lack of a sufficiently strong versatile automated
theorem prover. When writing a proof, a mathematician leaves a lot of simple logical
deductions to the reader (sometimes they are not that simple, sometimes they are
gaps that cannot be fixed). It would be very boring, also for the reader, if every
simple detail were spelled out. So this has to be done by computer and eventually
will, but it will take time.

Now that I have spoken so much about the exactness of proofs the reader may
have become worried that I want to hide something more fundamental, without
which the above question does not have a proper meaning, namely:

Is the Concept of Logically Derivable Sentences Uniquely
Determined?

One can propose a large number of different logical calculi, thus the question is
whether they differ also in the theorems that they are able to prove. This is a really
fundamental question, it is the question about what logic is. Recall that in the pre-
vious section we gave a semantical definition of true sentences. Our point of view
is that structures are primary and logic is a means to describe them. Therefore, our
aim should be to show that true sentences are exactly those that are provable, which
will automatically solve the problem of the uniqueness. Showing that the semantical
definition of logically valid sentences is the same as the syntactical one entails two
things:

1. one can only prove logically valid sentences, and
2. every logically valid sentence can be proved.

The first property is called the soundness of the logical calculus and it is fairly
easy to prove it. One shows that the logical axioms are true and that logical rules
preserve truth, and then we apply the principle of mathematical induction to prove
that all derivable sentences are true. Checking axioms and rules is easy, as they have
a very simple structure. Let us look, for instance, at modus ponens (see page 94).
We want to show the following: if ϕ is true and ϕ implies ψ is true, then also ψ is
true. But that is obvious, because if ϕ implies ψ is true and we know that ϕ is true,
then also ψ must be true.

It is as if I heard you saying: ‘Wait a moment, what kind of proof is this! You
are proving the soundness of modus ponens by using modus ponens!’. Indeed, this
is what we do. But notice that this is exactly the same situation as it was in the
definition of satisfaction. We are just translating the logical axioms and rules from
the metalanguage into a formal system which is the object of our study.

Also here it helps to imagine that the formalization is intended for a computer.
Suppose that we have written a program for automated theorem proving and now
we want to check that it is correct. Namely, we want to prove that it can only prove
logically valid sentences. Then we would argue in exactly the same way as sketched

2.3 Proofs 99

above. We would say that it can only start with logical axioms, which are obviously
logically valid, and derive sentences by rules that are obviously logically sound.

Note that we do use a mathematical argument in this proof, although a very easy
one—we are using mathematical induction to prove that all derived sentences are
logically valid.

Those who doubted the usefulness of logic before starting to read this book may
view this as a confirmation of their opinion. Indeed, it looks like all logicians do is
just rewriting obvious things in an obscure formalism, but we will shortly see that
this is not the case.

Let us now turn to the second property. It concerns the question about the com-
pleteness of logical calculi: are our logical calculi complete in the sense that one can
derive all true sentences from them? Here we meet Kurt Gödel (1906–1978) for the
first time with his first fundamental result:

The Completeness Theorem The calculi for first-order logic are complete.

Kurt Gödel
Courtesy of Kurt
Gödel Society,
Vienna

In his doctoral dissertation from 1929 (published in a
journal in 1930 [95]), Gödel proved the theorem for the cal-
culus presented in Principia Mathematica. But the choice
of the particular calculus was not important because all pro-
posed calculi are equivalent.

The soundness and completeness means that the seman-
tical definition of logical validity coincides with the syntac-
tical definition. This has one profound consequence. Since
proofs are finite entities that we can explicitly construct, log-
ical validity is a concept that is fully accessible to us.

Maybe completeness does not come as a surprise to you
and you expect a similar kind of a “silly argument” that I
used to prove soundness, but completeness is far less obvi-
ous and requires a nontrivial proof. The reason is that the
two properties, soundness and completeness, are not treated
in the same way. The soundness is clearly a necessary con-
dition that we require from any logical calculus, and that we had better put it in the
definition of a logical calculus. Of course, we would like to have both properties, but
we would not sacrifice soundness for the sake of completeness. This is not a purely
academic question, as in general completeness does not hold always. It holds for
the most common logic, first-order logic, but there is no way to extend it to stronger
logics which contain set theoretical notions. I will give an informal sketch of the
proof of the Completeness Theorem in the sequel.

At this point it is difficult to fully appreciate the fact that it is possible to com-
pletely characterize the true sentences by the syntactical concept of a proof (ex-
pressed briefly, that we have soundness and completeness). It is a great achievement
that the question of what logic is has been solved once and for all. We will see
in the next section that, in spite of similarities between the concepts of proofs and
computations, we are not able to prove that the commonly accepted definition of
computations is the right one.

100 2 Language, Logic and Computations

The First Incompleteness Theorem

We know what logic is, we know what proofs are, and we can prove every logically
valid sentence. So why are we not yet content? The problem lies in the distinction
between logical validity and mathematical truth. First-order logic, which works so
perfectly, tells us what is true in all first-order structures. Though this is an important
part of mathematical truth, there are other things in mathematics. The most interest-
ing results in mathematics concern single structures. For example, in number theory,
we study the structure of natural numbers. When proving theorems about numbers
we, of course, use logic, but we also need specific properties of the structure of num-
bers that are not of a pure logical nature. On top of logic, we also need axioms about
numbers. We need axioms in geometry, we need axioms about the real numbers, the
real valued functions, and so on. By accepting set theoretical foundations we reduce
the problem of finding axioms for particular structures to finding axioms for sets,
but as we have seen, it is not a simple task to find axioms for sets. Thus we may give
up set theory and try to find the axioms at least for the theory of numbers. When
we restrict the project of finding a complete axiomatization only to the natural num-
bers, it does not look too ambitious. After all, natural numbers are the most familiar
entities that we find in mathematics and they are so concrete. Furthermore, we know
the basic principle that governs the natural numbers: the principle of mathematical
induction. Still, it turns out that it is impossible to find such an axiomatization. Let
me stress that the problem is not caused by an extreme complexity or difficulty, it is
simply impossible.

David Hilbert
Courtesy of
Mathematisches
Forschungsinstitut
Oberwolfach

This, certainly, needs more explanation, but let me make
a brief digression into history. The aim of Hilbert’s Program
was to find axioms for all the basic mathematical structures
and proofs of the consistency of these axiomatic systems.
The program was presented in Hilbert’s address at the Third
International Congress of Mathematicians, held in Heidel-
berg in 1904. Rudiments of his program are also the con-
tent of the second problem of the famous twenty three open
problems presented on the previous International Congress
of Mathematicians, held in Paris in 1900. The problem asked
for proving the consistency of an axiomatic system for the
real numbers.13 A prototype of axiomatizations that Hilbert
asked for was his axiomatization of geometry. Proofs of con-
sistency were also quite common in geometry, where the
consistency was shown by constructing a model for a given
set of axioms. If successful, the program would guarantee
that whatever meaning mathematical results have, we would

13His goal was not to find axioms for the structure of real numbers with only operations + and ×.
He wanted to axiomatize a richer structure in which at least a basic mathematical analysis could
be done.

2.3 Proofs 101

at least know that proving theorems is not a completely futile activity. In a consis-
tent theory the provable theorems are separated from refutable ones, so by proving a
theorem we get a piece of information. Having a complete list of axioms for a given
mathematical structure would, furthermore, give us the confidence that at least po-
tentially we can prove every true theorem. This would not solve the problems of
foundations completely, as there still would remain questions such as what mathe-
matics has to do with reality, where do the structures come from, etc. But, in some
sense, it would leave the problems to philosophers—the remaining problems would
not be mathematical problems.

Hilbert was very enthusiastic about this project and several mathematicians, in
particular the Swiss logician and philosopher Paul Bernays (1888–1977) joined him.
They founded a new field of logic, proof theory,14 the main aim of which was to
achieve the goals of Hilbert’s Program. But after initial success came a blow. In
1930 at a conference in Köningsberg Gödel presented his incompleteness theorem,
which we call the First Incompleteness Theorem. This theorem showed that it is im-
possible to achieve the goal of Hilbert’s Program because every theory that formal-
izes a sufficiently large part of mathematics is necessarily incomplete. The Second
Incompleteness Theorem had even more profound impact on Hilbert’s Program, but
let me first explain the simpler of the two theorems.

In order to state the First Incompleteness Theorem more formally, we need to un-
derstand the concepts involved. Recall that a formal theory is a theory axiomatized
by a decidable set of axioms. The decidability means that using an algorithm we
can decide whether or not a given sentence belongs to the set of axioms. In practical
theories, the decision procedure is very simple because a typical theory has a finite
list of axioms and, possibly, a finite list of axiom schemata.

The second thing that needs specification is what part of mathematics should the
theory axiomatize. In his paper Gödel used the Theory of Types of Whitehead’s and
Russell’s Principia Mathematica (as the title of his paper suggests “On formally un-
decidable sentences of Principia Mathematica and related systems I”) [96]. Focus-
ing on Principia Mathematica was a natural choice, as this was the most important
of the formal theories that aimed at formalizing the whole of mathematics. Gödel
showed that not only this theory is incomplete, but so is any extension.

Requiring the entire Theory of Types to be in the theories about which the Incom-
pleteness Theorem speaks is a fairly strong assumption. Weakening this assumption
is an important problem because one may hope to be able to completely formalize
at least some parts of mathematics, and it was known that in some cases it was pos-
sible (for example, elementary geometry). Gödel was aware of the fact that his theo-
rem can be proved for other theories and he explicitly mentioned Zermelo-Fraenkel
Set Theory, von Neumann’s theory and a version of Peano Arithmetic. Analyzing
Gödel’s proof, it is not difficult to see that the proof only needs some finite math-
ematics to be a part of the theory. The theory should be able to prove some basic
facts about finite structures—finite sets, or finite strings, or natural numbers. Of the

14Die Beweistheorie in German.

102 2 Language, Logic and Computations

three mentioned concepts, the last one is part of the most traditional mathematics.
Therefore, the modern presentation of the theorem assumes that the theory formal-
izes the basic concepts of arithmetic and certain basic theorems about arithmetic
are provable in it. One should, however, keep in mind that using arithmetic in the
statement is only an elegant way of presenting the theorem and equivalent theorems
can be stated using finite sets, or finite strings.

Another important condition is the consistency of the theory. If a theory is in-
consistent, then it is complete in a really bad way—everything is provable. When
talking about complete theories we usually have in mind those that are also con-
sistent. For such theories, exactly one of the sentences φ or ¬φ is provable for
every φ, whereas in inconsistent theories both are provable. Although we are only
interested in consistent theories, when stating a general theorem we have to take care
of the undesirable case of inconsistent theories. Gödel used a stronger assumption,
called ω-consistency, which was later weakened to mere consistency of the theory
by J.B. Rosser.

Now we know all we need to state the theorem.

The First Incompleteness Theorem Any consistent formal theory T that is able
to formalize a certain part of arithmetic is incomplete. More precisely, there is an
arithmetical sentence φ such that neither φ nor its negation ¬φ is provable in T .

The remarkable fact is that the unprovable sentences concern finite structures
and numbers—the concepts that are at the heart of mathematics, the entities that
most mathematicians view as real (real at least in the sense that there should be no
ambiguity what is true and what is false).

Higher Order Logics and Theories

What we have considered so far is first-order logic. ‘First-order’ because we have
variables and quantifiers only for the lowest order objects, relations and functions
are fixed. What happens if we introduce variables for relations and allow quantify-
ing them? As far as the language and its interpretation are concerned, there is no
problem; we can expand the language in this way. Thus we obtain second-order
languages—the languages for second-order structures. Second-order languages en-
able us to define interesting things; for example, we may define that ‘two objects are
the same if every property that one has, the other also has’. The next step is to de-
fine the satisfaction of second-order formulas in second-order structures. This also
causes no problems; the definition of satisfaction for first-order formulas extends
naturally to the second order. Having the definition of satisfaction, we can define
logically valid second-order sentences—the sentences satisfied in all second order
structures.

In order to define second-order logic, it still necessary to find axioms and rules
of this logic. But here we run into an essential problem. The incompleteness phe-
nomenon concerns also this logic: there is no formal system by which the set of

2.3 Proofs 103

logically valid sentences could be defined. In other words, we may propose some
system of logical axioms and rules, but if such a system is sound, then it is in-
complete. Thus what is called ‘second-order logic’ is only the set of logically valid
second-order sentences; there is no second-order calculus.

This paradigm can be used to define logics of any order. But all these logics suffer
the same problem as second-order logic because they contain it as a subsystem. One
can also take a system that contains all these finite order logics, which looks like
the ultimate system, the most general logic of all. For such a logic, Whitehead and
Russell introduced the Theory of Types. But their system is incomplete, and, due to
Gödel, we know that it is incomplete for an essential reason.

Therefore, we should not classify these higher order logics as logics at all. The
possibility to characterize logically valid sentences using a formal system is an es-
sential property of logics. The most natural place to draw the line between logics and
set theories is between first-order logic and second-order logic. Note that already in
the third order theory of arithmetic one can express some important sentences and
concepts of set theory such as the Axiom of Choice, the Continuum Hypothesis, the
determinacy of infinite games, etc.; in weaker forms they can also be defined in the
second-order theory of arithmetic.

Higher order logics were intended to be the base logics of theories about higher
order structures. Since higher order logics are not axiomatizable, first-order logic
is also used as the base logic for higher order structures. For example, there is a
very natural (but incomplete) axiom system for the second-order structure of natural
numbers, which is the standard structure of natural numbers extended by subsets.
This theory, called Second Order Arithmetic, has two sorts of objects, numbers and
sets, an both are treated as first order elements (see page 295). This is the same as
in set theories, where sets of any type are treated as elements and the membership
relation ∈ is a binary relation defined on these elements.

The realization that there is only one logic, namely, first-order logic, was an
important step in the development of mathematical logic. This idea is due to
Skolem [271].

The Second Incompleteness Theorem

The next natural question is: what is the meaning of the independent sentence con-
structed in the proof of the First Incompleteness Theorem? Gödel found the answer
soon after he proved the First Incompleteness Theorem (in the same year 1930).
He proved a strengthening of the First Incompleteness Theorem, which is called the
Second Incompleteness Theorem, that specifies the nature of the incompleteness.
According to this theorem the unprovable sentence expresses the formal consistency
of the theory.

The Second Incompleteness Theorem If T is a consistent formal theory which
is able to formalize a certain part of arithmetic, then T does not prove its own
consistency.

104 2 Language, Logic and Computations

John von Neumann, who learned Gödel’s First Incompleteness Theorem in Kön-
ingsberg, discovered the Second Incompleteness Theorem independently too. The
letter in which he announced his result to Gödel arrived just three days after Gödel
sent his paper [96] with both theorems to the publisher.15

The Second Incompleteness Theorem is not a strengthening of the First. There
are consistent theories which prove sentences expressing their inconsistency. For
such a theory, the Second Incompleteness Theorem does not show that T is incom-
plete.

It is clear that the first theorem destroys the hopes of achieving the first goal of
Hilbert’s Program, the axiomatizations. A little more refined argument is needed to
show that the second incompleteness theorem kills also the second goal: proving
the consistency of axiomatic systems used for the foundations of mathematics. To
prove the consistency of such systems seems a more modest goal. We know we
cannot completely axiomatize structures such as the natural numbers and the sets,
but we may be satisfied with a nice and sufficiently strong axiomatic system. The
fact that we are not able to completely axiomatize these structures, however, shows
that we are not quite sure what are the theories that describe true arithmetic, true
set theory etc. The more arbitrary the axiom systems look, the more pressing the
question about consistency is. The last thing that we would want is an inconsistent
system, a system in which everything is provable, which gives us no information
whatsoever. In particular, in set theory we want to be sure that there will be no new
generation of paradoxes that will force us to abandon the currently used axiomatic
system.

Let us return to Hilbert at the beginning of the 20th century to see how the sec-
ond incompleteness theorem works. Based on the original works of Frege, Russell,
Whitehead, and others, Hilbert’s proof theory established that a proof is a finite
mathematical structure described by elementary combinatorics. So the mathemat-
ics needed for formalizing the syntax of logic is very simple. The consistency of a
theory is simply another syntactical concept. Thus Hilbert was naturally led to the
belief that the consistency problem can be handled with the same sort of mathemat-
ics. Why would one need to use infinite sets to prove something about finite sets?
Hilbert had been thinking about the problem for several years, thus it was clear to
him that proving consistencies would not be a completely trivial thing, and he knew
very well that he had to use some assumptions, some means. He never specified
precisely his idea of finitary means that he proposed for proving the consistencies,
but the name tells us enough: one should only use numbers, finite structures, etc.,
infinite sets were disallowed. He hoped that with such restricted means one could
eventually prove the consistency of arbitrary consistent theories, even theories such
as Zermelo-Fraenkel set theory, in which there are extremely large infinite sets. Sup-
pose we can present the finitary assumptions that he had in mind as a formal system,

15November 20 and November 17, 1930 respectively, see [58], p. 87. Gödel’s priority has never
been seriously challenged. The only fact worth mentioning is that in 1905, Poincaré conjectured
(without stating it formally) that one cannot prove the consistency of mathematical induction with-
out using mathematical induction itself [220]. Gödel’s Second Incompleteness Theorem applied to
Peano Arithmetic implies a possible formal version of Poincaré’s conjecture, but it is even stronger.

2.3 Proofs 105

a theory T based on first-order logic. Then Gödel’s second theorem tells us that T
is not capable of proving its own consistency. So T already fails to prove the con-
sistency of a theory that only talks about finite objects, let alone the consistency of
a theory that talks about infinite ones.

We may modify the approach by saying: well, we cannot only use finitary means,
so let’s look for any theory that would prove the consistency of all consistent theo-
ries. But Gödel’s theorem also prevents this; in fact, Gödel’s theorem says exactly
that this is not possible. Every theory T fails to prove the consistency of some the-
ory, namely of itself. Note that if a theory S contains theory T , then the consistency
of S immediately implies the consistency of T . Thus T not only does not prove the
consistency of itself, but it also does not prove the consistency of any theory that
contains T .

Another consequence of the incompleteness theorem is that we can always ex-
pand our theory by adding to it the statement of its formal consistency as a new
axiom. The expanded theory again does not prove its consistency, it only proves the
consistency of the original one. (But, perhaps, this may be a way to produce new
useful axioms? I will elaborate on this in Chap. 7.)

Gödel’s theorems were the end of Hilbert’s Program, but they did not destroy
proof theory. This field is still flourishing and results related to the incompleteness
theorems are an important part of it.

After this brief acquaintance with the incompleteness theorems, I defer the proofs
to Chap. 4, where I will also explain the theorems in more detail. It is impossible
to fully understand the incompleteness theorems without knowing at least the basic
ideas of proofs.

Misconceptions About the Incompleteness Theorems

The incompleteness theorems are very important results and many people outside
of logic know them, but they are often wrongly interpreted. The most frequently oc-
curring misinterpretation concerning the first incompleteness theorem is that ‘there
are unprovable sentences’, meaning that there are mathematical theorems that can
never be proved. The mistake is in that Gödel’s theorem does not claim an absolute
impossibility of learning truth; it only says that relative to a theory something is im-
possible to prove. Take an arbitrary true sentence φ. Then, trivially, there is a theory
in which it is provable, namely the theory whose axiom is φ. Or, if you do not like
this, add φ to the currently used axioms of set theory. Thus the theorem does not
exclude that we can gradually expand our axiom systems and the resulting theories
can potentially prove any given sentence. Nowadays most mathematicians accept
Zermelo-Fraenkel set theory as the foundations of mathematics, so one may suggest
interpreting ‘provable’ as ‘provable in Zermelo-Fraenkel set theory’. The problem
is, however, that it is more natural to accept this set theory as an open system that we
can gradually expand by new axioms. A natural way to expand Zermelo-Fraenkel

106 2 Language, Logic and Computations

set theory is to add large cardinal axioms, which are a kind of higher infinity ax-
ioms (I will consider this topic in the following chapters). What the incompleteness
theorem does say is that we cannot expand theories in a systematic way. Certainly,
humankind will only be able to prove finitely many theorems, thus there will be
some that we will never be proved. But we cannot tell which are those we will never
prove.

A related misconception is that ‘we cannot prove the consistency of the founda-
tions of mathematics’. Suppose we only needed finite structures, so we could use
Peano Arithmetic or Finite Set Theory (defined on page 116). For proving the con-
sistency of these theories, it suffices to use essentially any set theory that postulates
the existence of infinite sets, much less than the full strength of Zermelo-Fraenkel
Set Theory. This also explains ‘the paradox that we know that formal arithmetic is
consistent, but we cannot prove it’. Our belief in the consistency of formal arith-
metic (represented by Peano Arithmetic) is based on the fact that we need very
simple set-theoretical assumptions to construct its model. The correct statement is
that we cannot prove the consistency of some formal foundations of mathematics in
the same, or a weaker system. This is, in fact, the Second Incompleteness Theorem
restated in different words.

Here I should remind the reader that finding the foundations of mathematics in
which their consistency would be provable was not the goal of Hilbert’s Program.
Having a formal system T in which its consistency would be provable would not
help us to justify its consistency. If one believes that theorems of T are true, then
one implicitly assumes that T is consistent. Therefore, if we use some T as the
foundations, it does not matter whether the consistency of T is provable in T .

The main problem in understanding the incompleteness theorem stems from the
fact that the theorem, along with asserting that there is an unprovable sentence, also
gives us a concrete true sentence that is missing in the theory (the consistency of the
theory). Therefore, it seems that while theories are incomplete, this phenomenon
does not affect our knowledge of the true facts. One is lead to the conclusion that
we, people, have the ability to overcome the limitations posed on formal systems
by the incompleteness theorem. A careful analysis of such arguments immediately
reveals the fallacy. Essentially, one has only to spell out the assumptions that are
used. These arguments are always based on the assumption that the theory in ques-
tion is sound, which means that it only proves true sentences. So the fact that we
can consistently extend the theory by adding the Gödel sentence to it is already con-
tained in the assumption. This, certainly, needs a longer discussion, which I defer to
Chap. 7.

Shortly after the incompleteness theorems were published, there were attempts
to avoid the incompleteness phenomenon by replacing first order theories by some-
thing else, but very soon it turned out that this cannot work. The reason is that the
incompleteness of the theories to which Gödel’s theorem is applicable is caused by
the complexity of the sets of sentences provable in these theories. Every theory in
which it is possible to prove certain elementary propositions about numbers must
have this complexity and, therefore, cannot be complete. Consequently, it is not
possible to avoid the incompleteness by changing logic and formalism.

2.3 Proofs 107

On the Proof of the Completeness Theorem

Proving completeness is not as trivial as proving soundness, but once the concepts
involved are sufficiently familiar, the proof is not difficult. To prove the theorem
Gödel considered the contrapositive implication: if a sentence does not have a proof,
then it is not true in all structures. Thus we only need, for a given unprovable sen-
tence, to construct a structure that does not satisfy the sentence: it satisfies its nega-
tion. Consider such a hypothetical structure M that satisfies the negation of the sen-
tence. What else should the structure satisfy? Certainly, all sentences that logically
follow from the negation of the sentence. This still leaves a lot of sentences that we
do not know whether they should or should not hold in M because the sentence does
not decide everything. Here comes the first trick. If we cannot decide a sentence ϕ

we can (expressing it in trendy terms) break the symmetry by choosing ϕ or not ϕ
arbitrarily. In both cases the enlarged set of sentences will be consistent. The en-
larged set will imply more sentences, but there will still be some undecided. So we
repeat this enlarging process on and on. Doing it in a systematic way will ensure
that after infinitely many steps we decide all sentences and still have a consistent
theory of what should hold in M .

Now we have all sentences that should be true in the hypothetical model M , but
we still do not have the model. The crucial idea of this proof is that we can use
logical symbols as the elements of the structure. I have warned about the distinc-
tion between syntax and semantics so you may be worried that this would break
this law, but what Gödel did is permissible. The logical calculus is a mathematical
entity and lives in the same world as structures. We are now looking at this world
from the outside and consider relations between the elements of the logical calculus
and structures. So both proofs and models are the subject of our study, they are at
the same level, they are in the world of structures. Proofs, as sequences of symbols,
are simply another type of structures. We know that the substance of the elements
of structures is irrelevant, so the elements of the structure M may coincidentally be
symbols used in the calculus. To construct M , we assume that we have sufficiently
many constant symbols and take the universe of M to be these symbols. More pre-
cisely, we have to ensure that for every existential statement, we have a constant
which testifies this statement. Then it remains to define relations and operations.
This turns out to be easy, as we already have all the sentences that should be true in
M . To decide, for instance, whether c should be in relation R with d , we just look
at the theory and see whether the corresponding sentence R(c, d) is there.

See Notes for more detail on the proof of the Completeness Theorem.

Constructive Mathematics—Proofs Instead of Structures

As it is natural to assume that there is the real world that we perceive by our senses
and about which we reason, it is also natural to think about mathematics in this way.
Therefore, I have started with describing structures and went on by describing logic

108 2 Language, Logic and Computations

as a means of studying structures. But mathematical reality is elusive. When we
study the natural numbers, we do not perform experiments, instead we use axioms,
for example, the induction axiom. We can try a few examples to see if a conjecture
is reasonable, but the only way we can convince ourselves that it is a theorem is to
prove it. A proof may use facts that we know about other structures, or facts about
sets, but if we analyze carefully all the assumptions that we use, we find out that we
are proving it from basic axioms such as axioms for sets and induction. Thus, while
pretending that we are working with structures, we in fact are just doing proofs.
Hence, shouldn’t we consider a proof as the basic entity in mathematics, all the rest
being derived from it?

There is a stream in mathematical logic that pursues such a direction; it is called
constructive mathematics. The main sources from which it originated are the in-
tuitionism represented by the Dutch mathematician L.E.J. Brouwer (1881–1966)
and the constructivism of the Russian mathematician Andrey A. Markov Jr. (1903–
1979). Intuitionism started around 1900 as a reaction to two events. The first was the
emergence of nonconstructive proofs, which are proofs that show the existence of a
mathematical object without explicitly constructing it. The second was the so called
foundation crisis caused by the discovery of Russell’s paradox. Intuitionists claimed
that paradoxes were just samples of symptoms of the ill foundations of mathematics.

The most prominent figure among those whose views were connected with in-
tuitionism at its early stages was the French mathematician Henry Poincaré (1854–
1912). Very soon Brouwer became the most important proponent of intuitionism
and it was he who coined the name of this stream.

Intuitionists proposed to found mathematics not on formal systems, but on math-
ematicians’ intuition. Their argument does have some appeal: whatever problems
occurred in the foundations, they had little impact on everyday mathematics. Most
concepts, originally based solely on intuition, survived all the foundation crises
without problems. While formal foundations always have had some trouble, intu-
ition apparently hasn’t. This argument is acceptable, but if one rejects the classical
set theoretical foundations of higher order structures, such as the real numbers, one
has to propose something else. Therefore, Brouwer started an ambitious program
of revising the whole of mathematics in an intuitionistic manner. What he proposed
was too restrictive for most mathematicians and they did not accept it.

One of the main differences between classical mathematics and constructive
mathematics is logic. Describing logic went against the aims of intuitionism, as they
reject formal systems in favor of intuitive reasoning, but it turned out that the logic
they used is a very natural system. It is now called intuitionistic logic. Intuitionistic
logic uses the same connectives and quantifiers but some of them are interpreted dif-
ferently. In particular, the disjunction φ∨ψ is interpreted as follows. One can assert
φ ∨ ψ to be true, only if one can assert that φ is true or that ψ is true. In classical
logic we can assert φ ∨ψ without knowing which of the two propositions is true; in
intuitionistic logic it is not allowed. The main example is the law of excluded mid-
dle, which is the classical tautology φ∨¬φ. This is true, in classical logic, no matter
whether or not we know which of the propositions φ and ¬φ is true. In intuitionistic
logic we must know which of the two is true. Thus one of the basic classical laws is
rejected in intuitionistic logic.

2.3 Proofs 109

Example In intuitionistic mathematics a real number is identified with a sequence
of rational numbers that approximate it with arbitrary precision. If we are given two
real numbers r1 and r2 by such sequences, we do not know how far we must go
to establish that r1 < r2 or r1 = r2 or r1 > r2. (In fact, to establish that r1 = r2 no
approximations suffice; we need a proof.) Therefore the trichotomy law does not
hold for real numbers in intuitionistic mathematics.

Here are examples of some pairs that start as if they were the same.

π = 3.14159265 . . .

355/113 = 3.14159292 . . .

√
5+√6+√18 = 8.928198 . . .√

4+√48 = 8.928203 . . .

These examples concern two important problems studied in mathematics and com-
puter science: 1. the problem of rational approximations of real numbers, 2. the
problem about the complexity of deciding inequalities between sums of square roots
of integers.

Intuitionists distinguish two relations that are the same in classical mathematics:
non-equality r1 = r2 and apartness r1#r2. The first means that we only know that
r1 cannot be equal to r2, the second means that we have an estimate on how much
the two real numbers differ. Thus knowing that π is irrational, we can conclude
that π = 355/113; to establish that π#355/113 we need a concrete estimate such as
355/113− π > 0.0000002.

At first glance intuitionistic interpretation of disjunction looks as if it completely
eliminates this connective. Why should we assert φ ∨ ψ when we know that φ is
true? But it is not so. When combining disjunction with other connectives we can get
intuitionistic tautologies that use disjunction essentially. Consider the proposition
α ∨ β→ φ ∨ ψ . The intuitionistic interpretation of this proposition is: if one can
decide which of α and β is true, then one can decide which of φ and ψ is true.
Hence, for instance, φ ∨ψ→ φ ∨ψ is an intuitionistic tautology.

Similarly the existential quantifier is reinterpreted in intuitionistic logic. In order
to be able to assert that there exists an element x with a property φ, one has to pro-
vide an example of such an element. This is quite a natural requirement when one
interprets disjunction in the way above, since the existential quantifier is like an infi-
nite disjunction. Disallowing the law of excluded middle is a drastic restriction, as it
results in disallowing proofs by cases and proofs by contradiction. But intuitionistic
interpretation of the existential quantifier is not so alien to a working mathematician.
Mathematicians have always preferred constructive proofs of existential statements.
‘Constructive’ means that an element with a given property is somehow constructed
explicitly. Nonconstructive proofs, proofs in which the existence of an element is
deduced indirectly, appeared only at the end of the 19th century. At that time some
mathematicians rejected such proofs. I will mention some specific nonconstructive
results in Chap. 5 (see page 391).

110 2 Language, Logic and Computations

Intuitionistic logic prohibits certain proofs, so one may hope that foundations
based on this logic would be safer. However, Russell’s Paradox can be derived in this
logic too, therefore changing only logic is not sufficient. While intuitionistic logic
is a very natural and stable concept, the other changes proposed by intuitionism are
not so well justified. In fact research is still going on with the aim of producing
constructive foundations that could compete with classical ones. Nevertheless, there
are some interesting and very abstract structures that are based on intuitionism.

The Russian constructivist school came later, in the late 1940s. It was based on
more formal concepts. It shares with intuitionism the intention to prohibit noncon-
structive reasoning and to this end it uses the same logic. But unlike intuitionism, it
gives a precise meaning to the disjunction and the existential quantifier, a meaning
based on the concept of algorithm. For example, a sentence

For every x, P(x) or not P(x).

is true if and only if there is an algorithm to decide the property P . Or one can say
that

For every x, there exists y such that Q(x,y).

only if it is possible to construct y from x such that Q(x,y), which precisely means
that there is an algorithm that does it. The mathematics of constructivism is based
on the strict requirement that only constructive structures should be studied. Again,
‘constructive’ means algorithmically computable. As a result all real valued func-
tions must be computable in the following sense. Given a good approximation of x
by a rational number r , we should be able to compute a good approximation of the
function value f (x) by a rational number q . A consequence is that all such functions
are continuous. This is an appealing feature, as it returns to the original intuition of
the function and very well corresponds to what is going on in reality. In the real
world all physical processes are more or less continuous. But such little positive
pieces are completely overwhelmed by a host of negative results such as the result
saying that there is a piecewise linear function that is not integrable.

Thus most mathematicians do not find the constructivists’ approach to be very
useful. Although constructive mathematics has contributed a lot to the study of com-
putations, it seems that more has been done in the classical fields of mathematics;
this concerns especially computational complexity. On the positive side, construc-
tive systems are very useful for designing programming languages and in automated
theorem proving.

Intuitionistic logic can also be used to obtain new theorems in classical mathe-
matics. Remarkable examples of such applications can be found in the area of proof
mining. This is a research program whose goal is to extract more information from
existing proofs. It was initiated in the 1950s by Georg Kreisel who asked the fa-
mous question: “What more do we know if we have proved a theorem by restricted
means, than if we merely know that it is true?” Many logicians have contributed to
this program (for example, J.-Y. Girard analyzed Van der Waerden’s Theorem [93],
H. Luckhardt analyzed Roth’s Theorem [187]). U. Kohlenbach studied the logical
structure of certain proofs in functional analysis and succeeded in strengthening and

2.3 Proofs 111

generalizing a number of theorems in this field [158]. The key tool that he used was
intuitionistic theories. In spite of using intuitionistic systems, the results he obtained
are standard mathematical theorems that have nothing to do with intuitionism.

There are various branches of constructive mathematics, but most logicians
working in constructive mathematics share the view that the principal objects in
mathematics are proofs. For Brouwer, mathematics was a mental activity indepen-
dent of any objective reality and the products of this activity were proofs. Some
constructivists go as far as to reject semantics at all. Contemporary constructive
mathematics focuses on connections between algorithms and proofs. The connec-
tions discovered so far confirm the key role of proofs in mathematics. This is in
contrast with the traditional view that the main objects are mathematical structures
and proofs only serve to gain more knowledge about them.

Notes

1. Algebra of logic and the logic of relations. George Boole (1815–1864) partially
realized Leibnitz’s idea in his book An Investigation of the Laws of Thought.
He axiomatized the theory of classes with the basic set-theoretical operations,
intersection, union and complement. From the point of view of the systems
currently used in mathematical logic, we can view his system either as proposi-
tional logic, or first-order logic restricted to the use of predicates, i.e., unary re-
lations, or as an axiomatization of Boolean algebras. Logic, however, cannot be
based only on unary relations. Therefore, Ernst Schröder (1841–1902), Charles
S. Pierce (1839–1914) and others developed algebras of relations. This line
of research culminated in the work of Tarski and his students, who introduced
the concept of cylindric algebras [119, 120]. Cylindric algebras formalize first-
order logic in a purely algebraic fashion, like Boolean algebras do in the case
of propositional logic.

2. Axioms and rules for propositional logic. The first thing we should realize is
that there is a simple algorithm to test whether a propositional formula is a tau-
tology. By definition, a formula is a tautology if and only if it is true for all
truth assignments to propositional variables. Since every variable can only have
two values there is only a finite number of truth assignments and one can sys-
tematically check all of them. Why then do we need any axiomatization at all?
There are several reasons. One reason is purely aesthetic: we have to axiomatize
first-order logic, so it would be awkward if the propositional part of it was pre-
sented in a different way. Another one is that the way people think is closer to
an axiomatic system than to truth value checking. Last but not least, for propo-
sitions with many variables, the exhaustive algorithm would run too long, while
the proposition may still have a short proof. One of the main open problems in
proof complexity is whether or not there exists a proof system for propositional
logic in which every tautology has a proof of at most polynomial length.

Here are the axiom schemata of a system of axioms for propositional logic
(from [110]).

112 2 Language, Logic and Computations

P → (Q→ P)

(P → (Q→R))→ ((P →Q)→ (P →R))

(P ∨Q)→ (Q∨ P)

(P ∧Q)→ (Q∧ P)

P → (P ∨Q)

(P ∧Q)→ P

(P → (Q→ (P ∧Q))

((P →R)∧ (Q→R))→ ((P ∨Q)→R)

(P → (Q∧¬Q))→¬P
(P ∧¬P)→Q

P ∨¬P
The system has a single rule, modus ponens:

From P and P →Q derive Q.

In the above axiom schemata and in the rule the letters P,Q,R are variables
representing arbitrary propositions. In the propositional calculus we can substi-
tute for them arbitrary propositional formulas to get an instance of an axiom or
the rule. Thus the formulas above represent infinitely many axioms.

Examples 1. Let us interpret P as the propositional variable p and Q as p→ p.
Then p→ ((p→ p)→ p) is an axiom by the first axiom schema.

2. Interpret P as p, Q as p→ p and R as p. Then(
p→ (

(p→ p)→ p
))→ ((

p→ (p→ p)
)→ (p→ p)

)
is an axiom by the second axiom schema. From this, we can derive p→ p by
applying two instances of the first schema and twice modus ponens.

A proof in this system is a sequence of propositional formulas in which every
formula is either an instance of an axiom schema or follows from two formulas
occurring before by the rule. Any formula in a proof is a tautology.

There are many ways in which the propositional calculus can be axioma-
tized. The above one belongs to a group in which the aim is to minimize the
number of rules, namely, there is only one rule and many axiom schemata. In
such systems modus ponens is the most common rule used. The other extreme
is to take a minimal number of axiom schemata with many rules. Such systems
are called sequent calculi and are extremely useful for analyzing proofs. Note
that due to the fact that in the axiom schemata above the main connective is the
implication, one can easily present them as rules (except for the last one).

Axiomatizations also depend on the set of connectives that we want to use.
We can take a small set of connectives that forms a complete set of connectives
(for example, ¬ and→) and thus we get a simpler set of axioms.

There are several other types of systems that are not based on axioms and
rules in particular natural deduction systems, see below.

2.3 Proofs 113

3. Axioms and rules for first-order logic. To get an axiomatization for first-order
logic, we can take the set of axiom schemata from the previous paragraph,
modus ponens (now applied to first-order formulas) and add only two axioms
and two schemata specific for quantifiers. The axiom schemata are:

(∀xφ(x))→ φ(t)

φ(t)→∃xφ(x)

where x stands for an arbitrary first-order variable and t stands for an arbitrary
term whose variables are not quantified in φ and it is substituted for all occur-
rences of the variable x. The rules are:

From φ→ψ(x) derive φ→∀xψ(x).
From ψ(x)→ φ derive (∃xψ(x))→ φ.

In both rules there is a restriction that the variable x must not occur in φ. (One
can weaken it to: every occurrence of x in φ is in the scope of a quantifier that
binds x).

Formal systems of this form are called Hilbert style systems.
4. Natural deduction systems. The main feature in which they differ from others

is that a proof may contain a subproof. A subproof uses some additional hy-
potheses that are valid only in the subproof. An example is a subproof where
an implication α→ β is proved. The subproof starts with the hypothesis α and
ends with β . The subproofs may contain other subproofs and so on. One can use
formulas from outer subproofs in inner subproofs, but not conversely. This is
very much like in programming languages where one can use procedures with
local variables. Most rules come in pairs associated with connectives or quanti-
fiers. One member of the pair is used to obtain a more complex formula using
the connective or the quantifier, the other does the opposite.

Here is a list of the axioms and rules of a natural deduction proof system.
Axiom schema: A∨¬A.
Rules:

a. From A and B derive A∧B .
b. From A∧B derive A and B .
c. From A derive A∨B and B ∨A.
d. If C was derived from hypothesis A in a subproof and C was also derived

from hypothesis B in a subproof, then from A∨B derive C.
e. If B was derived from hypothesis A in a subproof, then derive A→ B .
f. From A and A→ B derive B (modus ponens).
g. If B and ¬B were derived from hypothesis A in a subproof, then derive ¬A.
h. If B and ¬B were derived from hypothesis ¬A in a subproof, then derive A

(proof by contradiction).
i. From A(y) derive ∀xA(x) (y must not occur in any hypothesis).
j. From ∀xA(x) derive A(t) (for any term t whose variables are not quantified

in A).
k. From A(t) derive ∃xA(x) (for any term t whose variables are not quantified

in A).

114 2 Language, Logic and Computations

l. If B was derived from hypothesis A(y) in a subproof, then from ∃xA(x)

derive B (y must not occur in other hypotheses).

The first natural deduction system was introduced by a Polish logician
S. Jaśkowski in 1934.

5. The proof of the Completeness Theorem—more detail. Recall that given an un-
provable sentence φ we want to construct a model M in which φ is false. Note
that φ being unprovable is equivalent to ¬φ being consistent. So, for a consis-
tent sentence we need to construct a model. I will consider a more general task:
for a given consistent set T of sentences to construct a model in which they are
satisfied. Thus, in particular, I will show that every consistent formal theory has
a model.

The idea is to gradually enlarge the set T to a set T ′ in such a way that
we can use terms of the language as the elements of a model. For the sake of
simplicity, let us assume that the language of T contains one binary relation R

and, possibly but not necessarily, function symbols and constants; furthermore,
we will assume that equality is not in the logical calculus.

I will start by stating the properties that T ′ should satisfy:

a. T ′ contains T ;
b. T ′ is consistent;
c. T ′ is complete;
d. for every sentence ∃xϕ(x) in T ′, there exists a closed term (a term without

variables) t such that ϕ(t) is in T ′.
Given T ′ with the above properties, define a model M as follows. The universe
consists of all closed terms of T ′. The interpretation of R in M , denoted by RM ,
is defined by

RM(s, t) if and only if R(s, t) is in T ′,
where s and t are terms without free variables. Similarly, the interpretation of
an n-ary function symbol F , denoted by FM , is defined by

FM(t1, . . . , tn)= s if and only if F(t1, . . . , tn)= s is in T ′.
The main lemma is the following:

Lemma 1 A sentence is true in M if and only if it is in T ′.

This lemma is easily proved by induction on the logical complexity of the
sentence (the number of connectives and quantifiers). The base case, which is
the case of atomic formulas, follows immediately from the definition of M .

Consider ¬ϕ, and suppose that the lemma is true for all sentences of smaller
complexity. In particular, the lemma must hold for ϕ. By the consistency and
the completeness of T ′, ¬ϕ is in T ′ if and only if ϕ is not in T ′. Thus we get
the lemma for ¬ϕ.

Now suppose we want to prove it for ∃xϕ(x) assuming it holds for all sen-
tences of smaller complexity. If ∃xϕ(x) is in T ′, then for some term t , ϕ(t) is
in T ′. Since we assume the lemma for formulas of smaller complexity, ϕ(t) is

2.3 Proofs 115

true in M , hence also ∃xϕ(x). Proving the converse implication, assume that
∃xϕ(x) is true in M . Then, for some closed term t , ϕ(t) is true in M . By the
induction assumption, this implies that ϕ(t) is in T ′. Hence (by the complete-
ness and the consistency of T ′) also ∃xϕ(x) is in T ′. I leave the other cases to
the reader.

To finish the proof of the completeness theorem, it is sufficient to con-
struct T ′. Indeed, if we have such a T ′, then the model M from the lemma
is a model of T by the first condition. The construction of T ′ is done by an
infinite process in which we at each step either add a sentence ϕ if it is still
independent, or we add a new constant symbol c and a sentence ϕ(c) if ∃xϕ(x)
is already in the set so far constructed. The technical details how to do it are
inessential.

6. Compactness. The most important property of first-order logic, called compact-
ness, is a consequence of having finitary syntactical means. It is the following
fact:

Compactness of First-Order Logic A set of sentences Φ is consistent if and
only if every finite subset of Φ is consistent.

The proof of this proposition is easy. Φ is inconsistent means that there exists
a proof of contradiction using Φ as assumptions. But a proof is a finite sequence
of formulas, hence it only uses a finite number of sentences from Φ . Note that
there are also (more difficult) proofs that do not use the Completeness Theorem.

As an easy application, I will show that an infinite model M can always be
expanded to a larger model M ′ (which means that the universe of M ′ is a proper
superset of the universe of M) so that M ′ satisfies the same sentences as M . To
this end, let Φ be the set of all sentences true in M . Let us introduce a symbol, a
constant, for every element of M ; let ca , a ∈M be these constants. Let c be an-
other constant symbol. Now we are using a language with infinitely many sym-
bols, but all the facts that we need hold true also in this case. Let Ψ be Φ aug-
mented with axioms c = ca , for all a ∈M . I claim that Ψ is consistent. Suppose
not, then we have a finite set Ψ ′ of sentences from Ψ that are inconsistent. Those
finitely many sentences can only use a finite number of constants ca . But then M

is also a model of Ψ ′ because we can interpret the new constant c as an element
not mentioned in Ψ ′. Hence Ψ ′ is consistent. By the Completeness Theorem
it has a model M ′. The universe of the model M ′ does not have to contain the
universe of M . However, as we have a constant for each element of M and these
constants are interpreted in M ′ we have a natural embedding of M into M ′: el-
ement a of M is mapped on the interpretation of ca in M ′. Since M ′ satisfies all
new axioms c = ca , the interpretation of c is different from the interpretations
of constants ca . Hence no element of M is mapped on the interpretation of c.

The constructed model M ′ satisfies the following stronger property: if φ

is a formula with k free variables, and a1, a2, . . . , ak are elements of M , then
M |� φ[a1, a2, . . . , ak] if and only if M |� φ[a1, a2, . . . , ak]. Such a model M ′
is called an elementary extension of M . If we start with the standard model of
arithmetic (N;+, ·,≤), we obtain a nonstandard model in which exactly the
same arithmetical sentences are true as in the standard one.

116 2 Language, Logic and Computations

One can perform this construction with more than one c, in fact, with an
arbitrarily large set of constants. If one adds also the axioms c = c′ for every
pair of new distinct constants, then a model of arbitrary large cardinality is
obtained. This is the upward version of the Löwenheim–Skolem Theorem.

7. Peano Arithmetic and Finite Set Theory. One of the most studied theories in
mathematical logic is Peano Arithmetic (abbreviated as PA). It is a theory whose
language has one constant 0, one unary operation S and two binary operations
+, ·.16 The operation S(x) is interpreted as x + 1, the successor of x. It is
axiomatized by the following axioms:17

S(x) = 0
S(x)= S(y)→ x = y

x = 0→∃y(x = S(y))

x + 0= x

x + S(y)= S(x + y)

x · 0= 0
x · S(y)= x · y + x

and for every formula φ(x), the following is an axiom(
φ(0)∧ ∀x(φ(x)→ φ

(
S(x)

)))→∀x φ(x).

This is called the induction axiom schema for arithmetical formulas.
The first seven axioms of Peano Arithmetic is a theory called Robinson

Arithmetic.
Robinson Arithmetic is usually presented with the binary relation ≤ and an

axiom, which is, in fact, a definition of this relation:

x ≤ y ≡ ∃z(z+ x = y).

This theory is very weak (it does not prove even such basic facts as the com-
mutativity and associativity of the operations and the transitivity of ≤), but is
important in logic.

In algebra one uses the constant 1 instead of the successor function from
which the successor function is definable. The successor function is only used
in logic and some programming languages. The reason for using it explicitly in
axiomatizing Peano Arithmetic is that it is the most primitive function in this
system. Note that the axioms for+ and · are, in fact, the natural recursive defini-
tions of these operations. Thus it is more natural to have the successor function
explicitly. Note, however, that the axioms for addition and multiplication are
not definitions in the sense of first-order logic. We can use these formulas as
definitions only in higher order logics, or in set theory.

Peano Arithmetic is not quite suitable as a theory on which we could base the
foundations of mathematics because the only objects in it are numbers. Even
elementary mathematics needs set theory; one should be able to talk at least

16In the sequel I will also often denote multiplication by ×.
17I am using the standard convention that the universal quantifiers in front of formulas are omitted.

2.3 Proofs 117

about finite sets. Although we cannot talk directly about finite sets in Peano
Arithmetic, it is possible to code sets by numbers. One of the possible encodings
is the following. For a number n, define a set Dn by D0 = ∅ and for n > 0 let

Dn = {Dk1, . . . ,Dkm}
where n= 2k1 + · · · + 2km , k1 < · · ·< km. This mapping is a bijection between
the natural numbers and the hereditarily finite sets. These are sets that are finite,
its elements are finite, the elements of its elements are finite, etc. Having this
coding we can speak freely about finite structures in Peano Arithmetic. Conse-
quently, we can talk about formulas and proofs, about Turing machines, etc.

Let us now consider the structure consisting of hereditarily finite sets with
the usual membership relation ∈. In the same way, as the natural numbers are
the canonical structure for number theory, this is a canonical structure for theo-
ries of finite sets. There are several equivalent axiomatic systems whose model
is this structure. One such system is the usual Zermelo-Fraenkel set theory with
the axiom of infinity replaced by its negation, an axiom saying that all sets are
finite. But in fact we do not have to take all the axioms of Zermelo-Fraenkel;
for instance, the Axiom of Choice can be derived from others in this theory.
The theory is denoted by ZFfin and I will call it Finite Set Theory (for lack of
a better name). The problem with this name is that it suggests that the theory
completely describes the structure of hereditarily finite sets, which is impos-
sible by the incompleteness theorem. But this theory is such a natural system
that the name is justified. In particular, if we translate its axioms using the
above encoding, we get arithmetical statements provable in Peano Arithmetic.
Hence, everything that we can prove in Finite Set Theory can also be proved
in Peano Arithmetic. And vice versa, if we define the natural numbers in Fi-
nite Set Theory in the usual way, then we can prove all the theorems of Peano
Arithmetic. Thus Peano Arithmetic and Finite Set Theory are the same theories
up to suitable translations.

This shows that Peano Arithmetic and Finite Set Theory are very natural
theories.

8. Proving relative consistency by interpretation. We say that a theory T is in-
terpretable in theory S if it is possible to represent the relations and function
symbols of T by the formulas of S so that the translations of the axioms of T

are provable in S.
I will define it more precisely in the special case in which the language of

T contains only one binary relation R. Let ρ be a formula in the language of
S with two free variables. Then for every formula φ in the language of T , we
can translate φ into a formula of the language of S by replacing all atomic
subformulas of the form R(x, y) by formulas ρ(x, y). We say that ρ defines an
interpretation of T in S, if the translations of the axioms of T are theorems of S.

Notice that the last condition implies that the translations of all theorems of
T are theorems of S. In particular, if T is inconsistent, then so is S. Thus we
get an easy, but very important fact:

Theorem 3 If S is consistent and T is interpretable in S, then T is also con-
sistent.

118 2 Language, Logic and Computations

Proving that T is interpretable in S is a very efficient way of proving the
relative consistency of T with respect to S, especially when T is axiomatized
by a finite set of axioms. Then the proof of the relative consistency is given by
the proofs of the translations of the axioms. Thus we have a completely finite
object that shows the relative consistency.

Usually we need a slightly more general concept of interpretation, in which
the domain of the interpretation of T may be a proper subdomain of S. The
above relation between Finite Set Theory and Peano Arithmetic are such mu-
tual interpretations. Many relative consistency proofs in set theory are also by
interpretation.

9. A consistent theory that proves its own inconsistency. According to the Sec-
ond Incompleteness Theorem a consistent theory T (and sufficiently strong to
express such things) does not prove its consistency. This is equivalent to the
following statement: the theory T augmented by the statement that T is incon-
sistent is consistent. I will use + to denote the operation of adding an axiom to
a theory and denote by ConT the formal statement that T is consistent. Thus
the Second Incompleteness Theorem can be equivalently stated as follows:

If T is consistent, then T +¬ConT is consistent.

Now, let T be consistent. Then also T +¬ConT is consistent and this theory
proves that T is inconsistent. Since T + ¬ConT is an extension of T , if T is
inconsistent, T + ¬ConT is inconsistent too. This can be formalized in T +
¬ConT , hence this consistent theory proves its own inconsistency.

What are models of this theory? By the Completeness Theorem we know
that this theory has a model. The natural numbers of the model cannot be the
standard model, since in the standard model there is no inconsistency of T .
Thus the numbers of this model form a nonstandard model and the number
representing the proof of contradiction in T is a nonstandard number.

10. Reducing the consistency of Peano Arithmetic to the well-ordering of ε0. In
1936, not long after Gödel published his seminal results on incompleteness,
results that essentially destroyed Hilbert’s Program, Gentzen obtained a fun-
damental result in proof theory. His result is in the direction that Hilbert was
aiming at: it gives a proof of the consistency of Peano Arithmetic using an argu-
ment that seems acceptable from the point of view of finitism [91, 92]. Gentzen
proved the consistency of Peano Arithmetic using transfinite induction over ε0.
The ordinal ε0 is a more complex structure than the natural numbers, but it can
be presented as efficiently as the natural numbers, including the operations of
addition, multiplication and exponentiation (see Chap. 3).

It is disputable whether Gentzen’s result is a realization of Hilbert’s Program
in the special case of Peano Arithmetic, but in any case it is an important result.
As far as the consistency problem is concerned, it gives us some justification to
believe that PA is consistent, as the consistency is based on an assumption that
is not directly linked with PA. Another consequence is that we get an indepen-
dent sentence that is different from the one given by the second incompleteness
theorem and which is more “mathematical”.

I will say more about this subject in Chap. 6.

2.3 Proofs 119

11. Automated proof checking and theorem proving. I will explain later why it is not
possible to automate the problem of finding a proof of a theorem. Since mathe-
maticians are able to prove difficult theorems nevertheless, and everybody (in-
cluding animals) can do more or less difficult logical reasoning, it should be
possible to do something also on computers. People had wondered to what ex-
tent our thinking can be simulated by computers even before the first computers
were constructed. Nobody knows how far we are from the day that one will be
able to say that a computer thinks, but it is, perhaps, the biggest challenge of
humankind.

Automated theorem proving started in the 1950s with systems designed by
M. Davis, P.C. Gilmore, H. Wang and others. It is interesting to note that some
of them were quite successful though they had been written before key con-
cepts were introduced in the area (namely the Davis-Putnam procedure of Mar-
tin Davis and Hilary Putnam, in 1960 [56], and the resolution18 of John Alan
Robinson, in 1965 [248]). One of the successes of automated theorem proving
is a proof of Robbins’ Conjecture. This conjecture, which is now a theorem,
states that the following equations suffice to axiomatize Boolean algebras:

x ∨ y = y ∨ x

(x ∨ y)∨ z = x ∨ (y ∨ z)(
(x ∨ y)′ ∨ (x ∨ y′

)′)′ = x.

This means that the equational theory defined by these equations, augmented
by definitions 0 := (x ∨ x′)′, 1 := x ∨ x′ and x ∧ y := (x′ ∨ y′)′, is equivalent
to the standard axiomatizations, such as the one given on page 21. The con-
jecture was stated in 1933 and was proved by W. McCune in 1996 [197] using
his computer program EQP (related to his more well-known OTTER). It is not
surprising that computers proved to be superior to people in this particular area.
After all, manipulating with equations, which in most cases have no meaning,
is a rather mechanical work. Yet it is a remarkable fact, since some very good
mathematicians tried to solve the problem.

The proof of Robbins’ conjecture should not be confused with computer
assisted proofs. In computer assisted proofs, such as the proof of the famous
Four Color Conjecture, the problem is reduced to a search of a large number
of special structures. Except for this part, the proof is completely designed by
a mathematician. In the case of Robbins’ Conjecture, a general program for
proving equations was applied to the conjecture. So computer assisted proofs
require formalization of only some special concepts, while theorem provers
need formalization of all possible proofs in the field considered. The advantage
of Robbins’ Conjecture was that it only sufficed to formalize equational proofs.

One of the first languages for formalizing proofs so that they can be used in
computers was N.G. de Bruijn’s AUTOMATH,19 whose development started in

18See page 60.
19http://www.cs.ru.nl/~freek/aut/

http://www.cs.ru.nl/~freek/aut/

120 2 Language, Logic and Computations

1967. In 1994 an initiative QED (Quod Erat Demonstandum, an abbreviation
often used to mark the end of a proof) was launched to unify forces on building a
proof checker that would be accepted as the international standard. In the QED
Manifesto many arguments for such an enterprise had been collected. Unfor-
tunately the project died out eventually without producing significant outputs,
leaving various groups to compete, as before. (You may remember the similar,
but much more successful initiative called ALGOL in the early history of pro-
gramming languages.) A remarkable event was the verification of the proof of
the Four Color Theorem by B. Werner and G. Gonthier in 2004 [106]. It was
done using the proof assistant Coq, initially developed by T. Coquand and G.
Huet in 1991. The Prime Number Theorem was verified by J. Avigad and his
students using the system Isabelle in 2004. One of the most successful on-going
projects of formalizing and verifying proofs is MIZAR.20 Its library of formal-
ized and verified theorems has more than 49 000 items at the time of the writing
of these lines.

12. Intuitionistic logic. The axioms and rules of classical logic are often chosen
so that one only needs to remove something to get intuitionistic logic. This is
also the case with the system on page 111; to get an axiomatization of intu-
itionistic logic we only need to remove the axiom of excluded middle P ∨¬P .
The axioms and rules for quantifiers are the same. Thus intuitionistic logic is
weaker than classical logic. On the other hand one can interpret classical logic
in intuitionistic logic. For classical propositional logic, it is very simple: write
two negations before the sentence. So a propositional sentence φ is a classical
tautology, if and only if ¬¬φ is an intuitionistic tautology.

Intuitionistic logic is more complex than classical logic. Unlike in classical
logic, it is not possible in intuitionistic logic to express one of the basic connec-
tives ¬,∨,∧,→ using the others. The most attractive feature of intuitionistic
logic is that one can extract algorithms from certain proofs.

The presence of double negations that cannot be reduced to a single one
shows a relation to modal logics. Both φ and ¬¬φ express that φ is true, but
in ¬¬φ with lesser emphasis. Fortunately, three negations reduce to one. The
connection to modal logics is also seen in semantics.

13. Modal logics. Modalities are not used in mathematics; in mathematics we only
use precise statements. Still it is interesting to study modal logics. Applications
of these logics are in the study of human reasoning and in artificial intelligence,
but also in some branches of mathematics. In mathematics we use modal logics
as mathematical entities, say, formal systems, or structures, but we reason about
them using classical logic without modalities. Attempts have been made to base
set theory on a modal logic, in order to avoid Russell’s paradox while keeping
an unrestricted schema of comprehension, but such proposals will never be ac-
cepted by mathematicians (as I explained in Sect. 2.1).

The basic modalities are necessarily, denoted by �, and maybe, denoted
by ♦. Hence, for a proposition φ, �φ is read ‘φ is necessarily true’ or simply

20http://mizar.org/project/

http://mizar.org/project/

2.3 Proofs 121

‘necessarily φ’ and ♦φ is pronounced ‘maybe φ’. Using negation we can define
one from the other: �φ is equivalent to ¬♦¬φ and ♦φ is equivalent to ¬�¬φ.
Unlike in classical or intuitionistic logic, there is no canonical unique modal
logic. In the spectrum of systems that have been studied there are some that
seem to be more natural than others. I will describe one of these here, the system
called S4, and mention another one, Provability Logic in Chap. 4 (page 297). I
will only talk about propositional logic.

System S4 is an extension of classical propositional logic. Hence we accept
all the axioms and rules of classical logic for formulas in the language expanded
by �. The other modality ♦, will be treated as an abbreviation of ¬�¬. For
example, we accept the law of excluded middle for modal formulas. If we apply
this law for the formula �φ, we get the following tautology �φ ∨¬�φ. Using
♦, this is equivalent to �φ∨♦¬φ. The meaning is: either φ is true necessarily,
or maybe φ is false. To get something interesting, it is important to add some
axioms and rules specific for the modality. In S4 the additional axioms are:

(1) �(φ→ψ)→ (�φ→�ψ),
(2) �φ→��φ,
(3) �φ→ φ,

and an additional rule, called generalization, is

from φ, derive �φ.

Note that there are formulas φ such that φ→ �φ are not tautologies (for ex-
ample, if φ is a propositional variable). This seems counterintuitive because of
the rule of generalization. The reason is that in this logic we cannot derive an
implication φ→ψ by deriving ψ from the assumption φ.

14. Kripke’s “possible-world” semantics of modal and intuitionistic logics. A cru-
cial moment in the history of modal logics was the discovery of possible world
semantics. The idea is very old, perhaps, this interpretation of modalities was
known already to Aristotle, but it was only in the late 1950s when the Amer-
ican logician and philosopher S.A. Kripke (as a teenager) found a mathemati-
cally sound approach to possible world semantics, which is now called Kripke
semantics [170]. The basic idea is that true should mean true in a particular
world, while necessarily true should mean true in all worlds. In particular, this
explains the generalization rule: if we derive a proposition without any addi-
tional assumptions, then it must always be true. This idea has to be developed
further, since in general, formulas may have many occurrences of the modality
and the occurrences can be nested, etc. Therefore, we not only need possible
worlds, but also a relation between the worlds. It is a binary relation with some
properties; we say that W2 is an alternative world to W1, if the relation holds
between W1 and W2. Then one defines inductively the truth value of modal
formulas. For propositional variables, we assume that they get a definite value
true or false in each world; they can have different values in different worlds.
If we already know the truth values of some formulas and we combine them by
Boolean connectives, then the truth value of the compound formula is defined

122 2 Language, Logic and Computations

in the usual way. The key step is when we know the truth value of φ for each
world and we need the truth value of �ψ in a world W1. Then we define:

�ψ is true in a world W1, if φ is true in every world W2 which is alter-
native to W1; otherwise it is false.

In order to avoid confusion with the usual concept of satisfiability, one often
says that W forces sentence φ and writes W � φ when the sentence is true in
the world W in the sense of possible-world semantics.

Example Suppose the relation on worlds is a linear ordering; we can think of it
as one world in different times. Then �φ is forced in a world W1 means that φ
is forced in W1 and in all future worlds.

Formally, in Kripke semantics one model is replaced with a set of models and
a binary relation on this set. In the case of propositional logic that we consider
here, single models are simply truth assignments to variables. The relation is
called the frame of the model. The most interesting thing is that the properties
of the frame determine the modal logic. In particular, reflexive and transitive
relations determine S4. What it precisely means is this.

Theorem 4 A formula is derivable in S4 if and only if it is forced in all models
with reflexive and transitive frames.

Notice that the link between the axioms and properties of frames is quite
direct. The axiom schema (2) expresses transitivity and (3) expresses reflexivity.
Other frames determine other systems of modal logics.

Example Suppose that φ is forced in a world W1, but it is not forced in an
alternative world. Then in W1 �φ is false. This shows that φ→ �φ is not a
tautology.

Intuitionistic propositional logic can be interpreted in S4 as follows. For an
intuitionistic formula φ, we define its translation φ′ into S4, essentially, by
putting boxes everywhere. More precisely, we define inductively: a proposi-
tional variable x is translated as �x; the translations of ¬φ, φ ∨ ψ , φ ∧ ψ

and φ→ ψ are respectively �¬φ′, �(φ′ ∨ ψ ′), �(φ′ ∧ ψ ′) and �(φ′ → ψ ′),
where φ′,ψ ′ are the translation of φ,ψ .21 Then a sentence φ is an intuitionistic
tautology if and only if its translation φ′ is an S4 tautology.

We can check that the law of excluded middle is not valid in intuitionistic
logic. Translating the formula x ∨ ¬x, x a propositional variable, into S4 we
get �x ∨ �¬x. If this were true, then we would have either x true in all al-
ternative worlds, or x false in all alternative worlds. But a model can easily be
constructed such that in a world alternative to a fixed world W1 x is true and in
another it is not.

21Boxes in front of disjunctions and conjunctions can be omitted.

2.4 Programs and Computations 123

Notice that this interpretation in turn gives possible world semantics for in-
tuitionistic propositional logic. It is, however, easy to define Kripke models for
intuitionistic logic directly. For example, the defining clauses for the negation
and the universal quantifier are:

M �¬φ if for no N alternative to M, N � φ;
M � ∀x φ(x) if for all N alternative to M and all a ∈N, N � φ(a).

In Kripke models of first-order intuitionistic sentences the worlds are structures
with relations and functions for the corresponding symbols of the sentences. It
is further assumed that if W2 is an alternative world for W1, then the structure
W1 is a substructure of W2. The equality relation has to be interpreted as an
equivalence relation because, in general, equality is not preserved in alternative
worlds.

2.4 Programs and Computations

The history of computations is as old as mathematics. As a matter of fact, early
mathematics was just the art of computation. When proving more and more gen-
eral results, mathematicians gradually started to consider problems that were not
computable practically, but computable only in principle, which means computable
having unlimited time for computations. Eventually they arrived at problems that
are not computable even in principle (but the proofs of such non-computability were
found much later). The algorithmic aspect has been, however, always eminent. You
cannot apply a theory to practical problems, if there is no way to compute the re-
sults. We believe that our interaction with the real world is of a computable nature,
thus any theory should produce instructions for computations, otherwise we cannot
test it. Of course, there are many theoretical results that do not lead to algorithms,
for example, results showing the non-existence of certain structures, the impossi-
bility of some computations, etc. (some of these will be treated in Chap. 4). There
we do not expect any output of the form of an algorithm, they only serve as warn-
ings: do not try! Others give us insights, explanations, etc., but these insights should
eventually help us to solve very concrete problems.

In the second half of the 20th century the theory of computing, or rather its ap-
plied parts, split from mathematics. Computing has become a new type of industry.
Like physics, computer science studies very concrete things: computers and com-
putations with them. Yet there are many purely theoretical problems concerning
computing, which rather belong to mathematics. The main problem is what can be
computed with limited resources (resources being time, the size of computers and
their memory). The reason why this is a fundamental question which is not relevant
only for computer science is that our interaction with the world is subject to the
same type of limitations. Our brains are some sort of computer too and we too have
very limited time for using them as individuals but also as humankind. Because of
that these questions are very relevant for the foundations of mathematics.

The main property of algorithms is that for each particular instance of the prob-
lem for which they are designed, shortly for each input, they should only use a finite

124 2 Language, Logic and Computations

amount of time and space. This is clearly a necessary condition, otherwise we can-
not realize computations physically. For practical computations, this is surely not
enough. There are problems that need so much time that they are practically not
computable. This leads to the study of the amount of resources, namely time and
space, needed for computations, which is the subject of the computational complex-
ity theory. Before I consider such subtle questions about computations, I have to ex-
plain the general concept whose only limitations are the finiteness of resources used.

In the theory of computation there is the same duality that we observed in logic.
There is a description of computation called algorithm or program and the actual
run of the algorithm or program, which are mechanical or electronic operations
performed by a person or a computer. There is a slight difference in the use of the
words ‘algorithm’ and ‘program’. An algorithm is usually a higher level description
which is not quite formal; it is assumed that the details of what to do precisely will
be filled in by people using it, or programmers who transform the algorithm into
an actual program, the implementation of the algorithm. A program is, on the other
hand, a precise definition (in a programming language) of what the computer should
do. When we want to compute something, we have to divide the task into a sequence
of elementary simple tasks. People not only know a lot of problems that can easily
be computed, but also are able to fill in gaps, thus the “elementary” tasks need not to
be so simple as those used by computers. Therefore, people only need an algorithm,
while a computer needs a program.

In natural languages there is a special class of sentences that corresponds to pro-
grams, the imperative. Cooking recipes are also some kind of program, so are vari-
ous instructions for use, etc. The real programs work with symbols and numbers; on
the lowest level they always use only bits, which means two values. In mathematics
children start with algorithms for addition and multiplication. Then they learn some
algebra. An algebraic expression is an algorithm. In order to compute the value of
an algebraic expression for particular numbers, we perform the operations using the
algorithms for addition and multiplication as subroutines. But only some computa-
tions can be defined by algebraic expressions. One of the most ancient algorithms
is attributed to Euclid; it is an algorithm for finding the greatest common divisor
of two integers. For this problem, there is no algebraic expression as for many oth-
ers. Incidentally, Euclid’s algorithm is very efficient and still used in practice. The
word ‘algorithm’ is also old; it stems from the name of Al-Khwarizmi, an important
mathematician of the 9th century Baghdad school.

What a computer computation is everybody knows, but let me quickly describe
it anyway, in order to introduce a few basic concepts. A computation starts with in-
put data. During the computation new internal data are created. I will call both just
data; these are strings of symbols, numbers or bits. A program contains commands
and tests. Commands specify simple operations that should be performed with data.
Tests specify simple properties of the data. The computation proceeds according to
the result of the tests. A part of the program can be skipped, or the computation re-
turns to a command before (this is called a loop). The existence of loops is an impor-
tant feature. A loop may occur because there is an instruction to return to a previous
part of a program (the go to control statement) or there can be a repeat statement.

2.4 Programs and Computations 125

Consider a “practical program” for driving a nail into wood: Keep (repeat state-
ment) hitting the nail (command) until it does not stick out (test). It consists of a
simple loop where we hit the nail and check, if it still sticks out. The reason for the
loop is that we cannot specify a priori how many times we have to hit the nail. This
kind of construction enables programmers to describe something that they do not
know how much time it will actually need. In such cases the programmer must have
some reason to believe that the computation will eventually stop; for instance, the
programmer may have an upper bound on how many times the computation will go
over the loop in the worst case. (In our “nailing” program 100 seems to be a safe
upper bound.)

The concept of an algorithm had been defined in mathematics more than a decade
before electronic computers were built. It was not only an advance in electronics that
led to the construction of the first computer, but also an advance in mathematics.
Several definitions of what is computable were proposed of which I will mention
the three most important ones, two mathematical definitions (Turing machines and
recursive functions) and one more practical definition, in fact a whole class of defi-
nitions (programming languages).

Turing Machines

Alan Turing
Courtesy of King’s
College, Cambridge
University

The first approach to defining computations that I want
to mention here, though a mathematical one, is friendlier
for non-mathematicians. This concept is due to the English
mathematician Alan M. Turing (1912–1954) and it bears his
name: the Turing machine. A similar concept was defined
independently by the American logician (born in Poland)
Emil L. Post (1897–1954). Both definitions appeared around
1936 [221, 293]. The description of a Turing machine looks
as if it were a technical device, very much like a primitive
computer. A Turing machine consists of a control device
connected to an infinite tape. The tape has distinct squares
that can hold a symbol from an alphabet. The machine can
read the symbol in the square that is currently scanned by the
head and possibly rewrite it to another symbol. The control
device is a finite machine which has a finite number of states
(in mathematical terms, it is a finite automaton). We do not
care how the machine is constructed, we only require that the current state and the
currently read symbol determine what the machine does, including the next state to
which it switches. A Turing machine operates in discrete time intervals, like a real
computer, and in each step it reads, possibly rewrites a square on the tape, moves the
tape one square to the right or to the left and switches the state of the control device.

The amazing thing is that, however primitive and cumbersome it is, it can per-
form any algorithm! Of course, the input data must be suitably presented; for exam-
ple, when computing with natural numbers, we have to use the binary or a similar

126 2 Language, Logic and Computations

representation. Once I had the opportunity to admire the collection of physical mod-
els of Turing machines of a German professor who was fascinated by this fact. As
they said, every new assistant researcher in his department got as the first assign-
ment the task of constructing one. The exposition rather than giving insight into the
concept of Turing machines, nicely showed the development of electronic compo-
nents. The first machines were built from mechanical telephone components, while
the last one used modern electronics. Those were the old days, nobody would do
it that way nowadays. The best way to visualize such a concept nowadays is on a
computer screen. This is not only an entertaining experiment, but also shows that
the concept of a Turing machine is not a technical one, it is as mathematical as
other mathematical definitions of computation. Consider the following argument: if
you can represent a Turing machine in a computer, then you can represent it as a
mathematical structure as well.

A Turing machine is a very cumbersome device. Even if you only want to design
it to do such simple tasks like the addition of two numbers, you need to do a lot of
simple but tedious work. So why has this concept been chosen and why is it still
being used in theoretical computer science? The reason is that the simpler definition
we are able to find for a given concept, the more the definition will reveal about the
essence of the concept that is defined.

I will now give an informal justification of the concept of the Turing machine.
I will argue that computations on any physical device can be simulated by a Turing
machine.

Firstly, such a device should be able to store the input data, auxiliary information
obtained during the computation and it should be able to present the output data.
These can be represented using various data structures, but the simple data structure
are strings in a finite alphabet. This suggests the use of a tape. As we cannot a
priori bound the size of memory needed during the computation and the size of the
output, we need an infinite tape. It makes little difference if the tape is infinite in
both directions or only in one.

Secondly, the changes of the data recorded on the tape have to be simple. So why
not to change just one symbol at a time? The place where the change is done must
be determined by a simple rule. This requirement alone does not lead directly to the
concept of the head of the machine, as we can easily think of various natural rules
how to determine where the change should be done. However, if we think more
mechanistically, it does not seem natural to make a change at one place and then in
a single step to jump to another distant place. Thus the most natural thing is to have
a pointer that defines the place in the data structure that is to be processed and allow
the pointer to move only one step per unit time.

Finally, the whole process of local changes in data has to be controlled somehow.
Saying that we have a finite list of rules that the machine follows would correspond
to the intuitive concept of an algorithm as used in mathematics. However, to get a
picture of a physical device that performs computations independently of us, it is
better to talk about a mechanical device that does the elementary steps.

Turing’s original justification in his seminal paper “On Computable Numbers”,
from 1936, was different. The main difference is that he analyzed what algorithms

2.4 Programs and Computations 127

can be done by a human, rather than talking about physical devices. He had two
reasons for that. Firstly, the idea that the human brain is just a very complex physical
device was not so widely accepted at that time. Secondly, the available computing
machines were able to perform only very simple algorithms. Interestingly, he did
talk about “computers”, but the meaning of this word back then was “a person who
computes”. When he reached the conclusion that a computation of a “computer” can
be simulated by his concept, he finished by saying: “If this is so, we can construct a
machine to write down the successive formulae, and hence to compute the required
number.” Hence, humans are no better than machines.

Programming Languages

The construction of first computers in the 1940s changed the situation dramatically.
Before we needed to communicate algorithms only to people and computations were
performed by people (with some help of calculators at the later stage). Thus it suf-
ficed to describe an algorithm in a natural language, using, of course, some math-
ematical terms. The precise definitions, like the Turing machine, were needed for
pure research, for instance, to show that there are problems that are not solvable
using an algorithm. Computers, first of all, needed precise definitions of algorithms.
They are not able to fill in gaps and use hints instead of a full description, nor are
they able to understand our language full of vague words. But that was only part of
the problem. What was needed was a communication means between a person and
a computer, a language that both can understand and that is sufficiently efficient in
order to be used practically.

The first programming languages were more tailored for computers. Computer
time was expensive, compared to the price of the time of researchers experimenting
with them. Also computers were worshiped by many as being capable of doing
miracles. Gradually the roles interchanged and now, in most cases, the time of a
programmer is more expensive. Using the machine code for programming was a
short episode. Soon a lot of effort was exerted to make the task of writing a program
as simple and as efficient as possible.

A programming language borrows words from a natural language (almost exclu-
sively from English) in the same way as logic does. These are words such as for, do,
repeat, stop, go-to, etc. Their number is small, but it is not because we want to use
as few words as possible. Furthermore, one uses mathematical symbols, mainly for
arithmetic, as some numerical computations occur in most programs. The languages
also offer libraries of functions that are often used, so that programmers do not have
to program the functions again and again that often occur in programs. For instance,
JAVA includes a function for finding the greatest common divisor (whose imple-
mentation is very likely based on Euclid’s algorithm), but it also contains much
more difficult ones; for example, you can ask for a random prime number in an
interval. Not only libraries of functions simplify programming, but also the types
of constructions that are possible in a given language are very important. One of

128 2 Language, Logic and Computations

the most important recent inventions is the concept of an object. It documents very
nicely the convergence to human languages. Formally, it allows the programmer
to impose a certain hierarchical structure on the program. Practically it means that
the programmer can use features of human thinking that are not based on logical
or mathematical deduction but on the vague concept of similarity. The point is that
similar real objects can be treated in the same way. Thus in object oriented program-
ming we group similar function and we allow the same procedures to be applied to
them. Such features, however important they may be for practical programming, are
irrelevant from the point of view of theory. In order to be able to define all functions
in a programming language, one needs a very tiny fraction of it; we can do with very
elementary commands and operations, the more complex ones can be programmed
from the simpler ones.

What is the most amazing fact on programming languages is how many people
“speak” these languages. Using a programming language is not the same as knowing
it; it is an ability similar to a good command of a natural language; it is the ability of
thinking in terms of the programming language. But, unlike natural languages, pro-
gramming languages are completely formal systems, which shows that people can
use a completely formal language, if there is a strong incentive to do so. Obviously,
these languages can only express algorithms, but that is already quite a rich domain.

We should also note that there are big differences between architectures of dif-
ferent languages. So we should consider each single programming language as a
different model of computable functions. Another thing to note is that a program
not only defines a computable function, but also determines to a large extent how
the function is computed. However, this is a common property of all definitions of
computable functions.

Noncomputable Functions

Our practical experience with computation suggests that there are easy functions
and difficult ones. The easy ones are computable practically. For the difficult ones,
the problem seems to be that we do not have enough time and memory to compute
them, but, perhaps, they are computable in principle? In fact there are functions that
are very difficult, but in principle computable, but there are also functions, that can-
not be computed even with arbitrary resources available. The main example of such
a function is the halting problem. The task is to compute whether a given program
applied to given data will ever terminate. This is, actually, an important question
because a computer that is not producing any output is considered to be stuck, no
matter how ingenious the computations it may be performing inside. Given a pro-
gram and data we can perform an experiment by running the program on the data. If
it stops, we know the answer, but how long should we wait? In practice we wait at
most a couple of minutes and if nothing changes on the screen we know something
has gone wrong. It can be proved, however, that there is no way to estimate how
long it is necessary to wait. Thus sometimes we have to interrupt the experiment

2.4 Programs and Computations 129

without getting a definite answer. So this is not a way to find out whether a program
stops on given input data. The result about the halting problem says even more: not
only can we not solve the halting problem by trying to run the program for a lim-
ited amount of time, but there is no way at all to decide it in finite time. A curious
fact is that even an apparently much more restricted version of the halting problem
is algorithmically unsolvable: to decide if a program running on its own code will
eventually stop.

Some programmers may be surprised by the fact that finite problems such as
the halting problem are not algorithmically solvable because these problems almost
never occur in their daily practice. The halting problem is not computable because
there is no bound on for how long a time the program may run. In practical problems
there are usually some implicit bounds on how big the number tested should be, for
how long, etc. The halting problem is a decision problem, thus it can be represented
as a function with two possible outputs YES and NO (if we want to have mathemat-
ical objects, we can use 1 and 0 instead). The above observation about bounding the
running time suggests the following noncomputable function f , which I will call
the halting bound. For a natural number n, we define f (n) to be the maximum of
all running times of programs of length at most n applied to their own code.22 We
do not consider the programs that do not stop when applied to their own code. If f
were computable, we could solve the halting problem as follows. Given a program
P of length n, we would first compute the bound f (n) and then we would run the
program on its code for f (n) steps. If P stops, then we are done, we know it stops.
If, however, if does not stop within the time limit, we know nonetheless that it will
never stop. So again we can give a correct answer. What is interesting in this exam-
ple is that we actually do not need the precise value of f (n). The same argument
works for any function g such that g(x)≥ f (x). Hence the reason why the halting
bound is not computable is not that the values of it have a special property, but it
is the growth of the function. The halting bound function increases so rapidly that
there is no program that can compute such a function.

The halting bound is closely related to the well-known busy beaver function. This
function, denoted by Σ(n), is defined as the maximal number of steps that a Turing
machine with n states and an empty tape can make and halt. Notice that we take the
maximum over all n state machines that halt, which is a condition that we cannot
algorithmically test. Further, we assume that the machine uses two-letter alphabet
on the tape. This function is also noncomputable.

Some of the nicest examples of algorithmically unsolvable problems come from
number theory. Given an equation, it cannot be decided by an algorithm if the equa-
tion has a solution in the domain of natural numbers. Recall that equations with
integer coefficients are called Diophantine equations, and we are interested only in
integral solutions of these equations. I gave examples of such equations in Chap. 1,
page 56. Let me mention one more important example, the Pell equation

x2 − dy2 = 1,

22For the sake of simplicity I restrict myself to the more specific version of the halting problem.

130 2 Language, Logic and Computations

where x, y are unknowns and d is a given natural number. This equation has been
studied and we know, for example, that it has a solution for every d that is not a
square. There are several other classes of equations that are relatively well under-
stood (in particular some classes of quadratic equations), but there is no general
theory of all Diophantine equations. In fact already the work of Diophantus was
criticized for giving many ingenious proofs, but no general theory. The algorithmic
unsolvability of Diophantine equations gives an explanation why he could not do it.
This result does not exclude that in the future we will have a nice general theory, but
if this ever happens, it will not be the kind of theory that gives us formulas or algo-
rithms for solutions. I will show explicit examples of algorithmically undecidable
Diophantine equations in Chap. 4.

In logic there are several problems that are not computable. The most basic one
concerns first-order logic; for a given sentence φ it is undecidable by an algorithm
whether or not φ is logically valid (= provable). By the same argument as for the
halting problem, it implies that we also cannot bound the lengths of the shortest
proofs of valid sentences. This gives an intuitive explanation, why provability in
first-order logic is hard. I will say more about it shortly.

Universal Machines

Of the many other important results in computation theory I will mention only one.
It says that there are in some sense universal machines or universal programs. This
means that there is a program U such that for any program P and input data x, if we
use x and the program P as input data for U , the universal program U will produce
the same output as P produces on x, assuming P stops and produces an output.
We say that, given an input (x,P), the machine U simulates the computation of P

on the input x. This looks like a nice statement for mathematical recreation or for
impressing philosophers, but, in fact, it has very important practical consequences.
Suppose you use real Turing machines for computations, then the result says that
you need only one. It is much easier to write additional data on the tape than to con-
struct a new machine for each new task. This is also what computers do: a computer
uses one universal program, called the operation system. When you run a concrete
program, you give a file with the program to the computer and the operation system
simulates your program. The same phenomenon can be observed on a higher level:
a compiler (a program that enables you to run your programs on a computer), say,
for the programming language C, can be written in C. Such a compiler is a universal
C program.

It is important to stress that a universal program U behaves in the same way as the
given simulated program P also when P does not stop, which means U also does
not stop. In order to be able to define a universal program, we have to consider all
programs, not only those that always stop. Hence, U will not stop on some inputs.
We cannot require U to stop on every input because then U would solve the halting
problem.

2.4 Programs and Computations 131

In order to prove that, say, a universal Turing machines exist, one defines such a
machine explicitly. This is the best way to prove it and the constructed machine is
not terribly complicated, but it is rather boring to write down the description of such
a machine and it is even more tedious to check that it does what it should. To write
down a description of such a machine with no explanations is a rather cheap trick
to impress readers. So instead, I will use a simple explanation why such a universal
machine should exist, an explanation based on the assumption that Turing machines
can compute any computable function. Suppose your task is, for a given Turing
machine, input data and a number n, to find out what the machine will do with these
data within n steps of computation. This is, clearly, something that you can solve
algorithmically: you simply plug in the input into the machine, switch it on and see
what happens. Therefore, this should be a computable function. Let me spell it out:

The function that for a given description of a Turing machine M , an input
string x and a number n, gives the result of the n steps of the computation of
the Turing machine M on the input x is a computable function.

Hence this function is also computable on a Turing machine. So take a Turing
machine that computes this function and modify it so that instead of using a fixed
number n, it successively tries n= 1,2, . . . until the simulated machine stops; if the
simulated machine does not stop, we let it run forever. The resulting machine is a
universal Turing machine.

We can turn this argument around and say that having a universal function is
a natural requirement for any class of functions that we would like to call com-
putable because the action of executing a given program on given data should be
computable.23

Considered from a broader point of view, universality is also an attribute of intel-
ligence. Knowing a solution of a practical problem, we can instruct another person
how to do it (provided we speak the same language). Dogs are quite intelligent, but
they are able to interpret only single commands. Still universality is present in the
brains of even less intelligent animals at least to some extent. Of course, we cannot
communicate programs to them, but we can train them to perform quite complex
tasks. What we train them to do is by far much simpler than what the animals need
for their life in nature. Universality of the brain is the ability to learn to do things that
the body is capable of doing. Of course, universality is not sufficient for a system to
be considered intelligent; we do not consider our computers to be intelligent. But,
perhaps, there is a kind of higher universality that is the essence of intelligence.

Universality sounds sublime, but it is not a luxury. Special purpose chips are used
less and less, as mass production prefers universal ones. Most computers are used
exclusively for word processing, yet it is not profitable to produce machines only
for this purpose. Universality of the brain was the main selective advantage of homo
sapiens. One may wonder how a brain shaped for a primitive hunter can play chess,
do mathematics, program computers, etc. The explanation is that nature has discov-
ered that a universal brain is much better if the conditions change unpredictably.

23This only concerns partial functions, functions that may be not always defined, see Notes.

132 2 Language, Logic and Computations

Animals with universal brains can easily adopt a particular useful behavior without
the long process of natural selection that is otherwise needed to “hardwire” it into
the brain.

The Undecidability of First-Order Logic

Alonzo Church
Courtesy Princeton
University Library24

Once a formalization of proofs in first-order logic was
achieved, the next natural question was how difficult is to
decide whether or not a given sentence is logically valid. In
particular, is there an algorithm for deciding if a sentence
is logically valid? This problem became famous as Hilbert’s
Entscheidungsproblem, which means decision problem. The
importance of this problem stems from the fact that if the
answer were positive, then it would be possible to autom-
atize mathematics, at least in principle. The undecidability
of first-order logic was proved by the American logician
Alonzo Church (1903–1995) and independently by Turing;
their papers [43, 293] appeared in 1936 and 1937, respec-
tively.

Let us see how the decidability of first-order logic would help solve mathematical
problems. Suppose that we are working in a theory that can be axiomatized by a
finite list of axioms α1, α2, . . . , αn and we want to find out whether or not a sentence
φ is a theorem. Then φ is a theorem in the theory if and only if the sentence

α1 ∧ α2 ∧ · · · ∧ αn→ φ,

(which expresses that the conjunction of axioms implies φ) is a logically valid sen-
tence. Hence having an algorithm for the predicate calculus, we would also be able
to solve the decision problem whether or not a sentence is a theorem in this theory.

Zermelo-Fraenkel Set Theory cannot be axiomatized by a finite set of axioms,
but this does not matter. We will see that there is a finitely axiomatizable theory
(Gödel-Bernays Set Theory) that proves exactly the same sentences about sets. Since
Zermelo-Fraenkel Set Theory suffices for essentially all mathematics, a positive so-
lution to the Entscheidungsproblem would enable us, in principle, to solve all math-
ematical problems mechanically.

This shows the theoretical importance of the problem, but for practice, it is not
so essential. Note that although we do not have an algorithm for the Entschei-
dungsproblem, we can still do something: we can systematically generate all possi-
ble proofs and create an infinite list of theorems such that a sentence is a theorem if
and only if it appears on the list. But, if are interested in a particular sentence which
is not a theorem, we will wait forever and never learn the answer. So this does not

24Alonzo Church Papers. Manuscripts Division. Department of Rare Books and Special Collec-
tions. Princeton University Library.

2.4 Programs and Computations 133

give us a decision procedure. What is, however, more important is that generating
theorems in this way is extremely inefficient. As researchers in artificial intelligence
know, one can obtain only very simple theorems in this way, thus such a method of
generating theorems is practically useless. But the same could have been the case if
it had turned out that first-order logic was decidable—a decision algorithm for first
order logic would have been of no practical use either. The bottom line is that, from
the practical point of view, it is not important whether there is an algorithm for the
decision problem, but whether there is an efficient algorithm. (All of Chap. 5 will be
devoted to the concept of efficiency of computations.)

The undecidability concerns pure first-order logic. If we add some axioms, the
set of provable sentences may be decidable. For example, if the axioms are incon-
sistent, all sentences are provable, thus the decision problem is trivial. There are,
however, also nontrivial examples. Recall that there are complete axiomatizations
of the natural numbers with + as the only operation, and of the real numbers with
the operations +,× and the relation <. Both theories are also decidable.

It is not just a fluke that completeness and decidability appears at the same time
in these examples. Any complete theory is decidable. This is an easy fact based on
the procedure that generates all proofs in a theory. Recall that if a sentence φ is
provable, then eventually the procedure will find the proof and thus certify that φ
is a theorem. But if T is complete, we know that if φ is unprovable, then ¬φ is
provable. So we always find in finite time either a proof of φ (when φ is a theorem)
or a proof of ¬φ (when φ is not a theorem).

Notice that this only gives us an algorithm without any estimate on its running
time. Considering how inefficient is to generate all proofs, one may suspect that the
decision algorithms for decidable theories could also be very inefficient. Indeed, this
is the case; for the two problems above, the complexity is doubly exponential and
exponential, respectively, and for some other decidable theories the lower bounds
are even higher.

There are also undecidable theories. first-order logic, as a theory with no ax-
ioms, is an example. More interesting examples are Peano Arithmetic and Zermelo-
Fraenkel Set Theory. In fact, any theory in which one can prove some basic propo-
sitions about numbers is undecidable. Also, the proofs of the undecidability of the
predicate calculus are based on proving that some finitely axiomatized theory is
undecidable. There will be more about it in Chap. 4.

Recursive Functions

Here is a purely mathematical definition of computability. The concept of a re-
cursive function25 is due to the American logician Stephen C. Kleene (1909–
1994) [153]. This approach is very mathematical, as we only consider computations
with natural numbers and define the class of functions that can be computed, the re-

25a.k.a. general recursive function

134 2 Language, Logic and Computations

cursive functions. By functions we mean functions of one or more variables, hence,
what we usually call arithmetical operations are also functions. Arithmetical func-
tions are not only important examples of possibly computable objects, but also they
have a sufficiently rich structure. Thus it is possible to encode other computations
only using operations on natural numbers. In general we have to choose a suitable
domain for data. In the case of Turing machines the domain consists of sequences of
symbols, while the domain of recursive functions is the set of all natural numbers.

In logic it is very common to define a class inductively by saying that some
initial elements belong to the class and giving some operators that produce new
elements in the class. The class consists of those elements that can be produced in
this way. (Think of, say, proofs as defined by axioms and derivation rules.) Kleene,
as a logician, used this approach. He took some basic functions and considered
several operators producing new functions from given ones. The basic functions are
quite simple, such as the constant function 0, the successor function x + 1, etc.,
so they clearly should be considered computable. We can add other functions, for
example, addition and multiplication, that we surely consider computable, but it is
not necessary as the operators enable us to produce them from the basic ones. The
operators are also simple. In particular, we take the operator of composition (also
called substitution) of functions. Having two functions f and g of one variable, we
may first apply f to the input number and then apply g to the value produced by f .
The resulting function is the composition of f and g. We may also compose binary
functions. Thus we can get, for example, the function x + yz from addition and
multiplication.

If we started with the basic arithmetic operations (addition, multiplication and
constants) and only used composition we would only obtain the functions that can
be expressed by algebraic terms (polynomials). Therefore, we need more operators.
Another basic operator is the operator of recursion. The name ‘recursive functions’
comes from this operator, but it is misleading, as this operator is still too weak to
produce all computable functions. A special case of it is the operator of iteration,
by which we compose a function with itself a given number of times. The most
powerful operator is the minimization operator. It allows us to search for the smallest
number satisfying a condition.

We can imagine recursive functions as follows. We expand our “algebraic” lan-
guage by taking more operators on top of the composition. Having a sufficiently
powerful set of basic functions and operators enables us to define all computable
functions by an expression in this language.

A formal definition of recursive functions is in Notes.

The Church-Turing Thesis

Having definitions of computable functions the next natural question is how good
these definitions are. What seems clear is that each of the definitions only describes
functions that can be (at least in principle) computed. But do these concepts (Turing
machines, programs, recursive functions, etc.) cover all computable functions? This

2.4 Programs and Computations 135

is the same kind of a property that we studied in logical calculi and called complete-
ness, but here we have a problem: we do not have a class of functions that we would
consider as the computable functions and that would be defined independently of
a concrete computational model. We do not have a purely semantical definition of
computable functions. We do have a fairly clear idea about computable functions
and all the computation models are in good agreement with it, (the idea is that a
computation should use a finite number of elementary operations), but to make this
idea precise we have to opt for one of the computation models. Before we choose
one, it is, surely, worthwhile to compare them. In particular, is the class of numeric
functions computable by Turing machines the same as the class of recursive func-
tions? I have already said that all algorithms can be done on Turing machines, so
it should not come as a surprise that the two classes coincide. In fact, if you think
about these concepts, after a while you will realize that they are not so different as
they appear at first glance. If you try to implement algorithms on a Turing machine
you will soon realize that a programming language for it would be handy. That is
exactly like asking for a higher level language instead of a machine code for your
computer. So isn’t a Turing machine rather a primitive programming language? In
some sense it surely is. It is a programming language with a single data structure
which is a linear array and a single pointer whose position can be incremented or
decremented only by one. If you analyze it more, you may find an even closer cor-
respondence, for example, the program lines correspond to the state of the control
in the Turing machine, etc.

What about recursive functions? Also this definition can be interpreted as a kind
of a programming language. It is a programming language for computations with
natural numbers. It has some simple functions as primitive concepts, as most pro-
gramming languages do. Then it has certain operators that we can interpret as possi-
ble constructions that can be used in a program. One of these is composition, that is
used to form terms; this is also available in most programming languages. Another
is recursion, again this construction is very common in programming languages. It
helps when writing very short programs, but professional programmers try to avoid
it whenever possible, as it does not give them good control of the computation. Min-
imization is not present in programming languages as a basic construct (it gives even
less control of what is going on during the computation), but it can be programmed
easily. On the other hand, iteration corresponds to a simple loop in a program and
this is the most frequent construction.

Such mutual interpretations were found not only for the aforementioned three
concepts, but for all that had been proposed. This is not a proof, but sufficiently
good evidence that the concepts have been chosen correctly. The claim that these
concepts characterize computable functions is called the Church-Turing Thesis (al-
though neither Church nor Turing stated the thesis precisely in the way it is pre-
sented nowadays).

Can the Church-Turing Thesis be proved or disproved? Firstly, it cannot be
proved or disproved as a mathematical statement because it is not a mathemati-
cal statement. It relates mathematical concepts to part of our practical experience
for which we do not have a rigorous definition. Theoretically, it is possible that

136 2 Language, Logic and Computations

somebody might come up with a programming trick, an operator on functions, etc.
that we would like to call computable but that would not be covered by the current
definitions of computations. In such a case we would have a reason to abandon the
thesis, but strictly speaking this would not be disproving. Considering the years of
experience with programming, such a possibility is almost excluded.

The only way to make this thesis a little more formal statement is to interpret
it as a postulate in physics. It perfectly makes sense to take the current physical
theories and look whether the phenomena there have a computable nature and how
they can be used for computations. The conjecture that all physically computable
functions are computable on Turing machines, or their equivalents, is called the
Physical Church-Turing Thesis. This question has been studied and lead to the new
concept of quantum computing. Quantum Turing machines are a new important
concept and it seems that they can solve some problems faster than classical Turing
machines (as we will see in Chap. 5), but when computational complexity is ignored,
the two models are equivalent. This is not a proof, but a strong evidence that the
Physical Church-Turing Thesis cannot be disproved using quantum theory.

Naturally, also general relativity was used in the attempts to refute the Physical
Church-Turing Thesis. There the situation is less clear. There are enthusiasts who
believe that some likely occurring phenomena, such as black holes, can be used to
solve problems that are not computable on Turing machines, others are more scep-
tical. In any case, this is only a theoretical discussion; nobody believes that such
schemes can ever be used to help people compute. This is in contrast with quantum
computing, where several teams of experimental physicists are working on con-
structing quantum computers. Nevertheless, the research into relativistic computa-
tions is extremely important because it concerns the fundamental question of what
can physically be computed. (For more about it, see Notes.)

It has also been suggested that a noncomputable function could be encoded in
fundamental physical constants. For example, the decimal digits of some constant
could define a noncomputable set. If there also were a way to measure the value
of the constant with arbitrary high precision, we would obtain a refutation of the
Physical Church-Turing Thesis. In the most optimistic scenario we would also know
that the digits of the constant encode a particular noncomputable set and we could
use it to decide Church-Turing undecidable problems.

It should be noted that the Physical Church-Turing Thesis is meaningful only if
the universe is infinite, which we still do not know. If space and time were finite,
then there could only be finite computations. In such a case the fundamental role
of computability would be replaced by the role of computational complexity. But I
believe that computational complexity is equally important for physics even if the
universe is infinite.

The Syntax and the Semantics of Computations

The distinction between syntax and semantics is essentially the same as in logic.
Syntax is (descriptions of) Turing machines and programs in programming lan-

2.4 Programs and Computations 137

guages. In the case of recursive functions it is a little bit more subtle. There the
syntax is a definition of a function in terms of basic functions and operators. Using
a suitable notation for operators we can write these definitions as algebraic terms.

Semantics is given simply by the corresponding functions. We assume that a pro-
gram starts on input data, computes, and then outputs the result of the computation
and stops. The function is the assignment of the output data to the input data. Recall
that in mathematics we treat function in the purely extensional way: we think of a
function as a set of pairs input-output. When defining recursive functions, the func-
tions are part of the definition, so it is even simpler (no wonder, it is a mathematical
approach to computability). A Turing machine determines a function on strings in
the given alphabet. We assume that, except for a finite segment, the tape contains
blank squares. When the machine starts, the input to the machine is the word on the
non-blank squares; similarly, when the machine stops, the output is what is written
on the non-blank segment of the tape. Thus the machine always works with finite
strings.

In logic we have not only formulas and models, but also proofs. A similar con-
cept in the theory of computations are computations. When we are only interested
in the question whether or not a function is computable, we do not have to define
computations, instead we can use the definition of a computable function. But if
we want to study practical computations, it is important to have a definition of a
computation. In particular, time and memory requirements are of great concern for
difficult problems, and those can only be studied using the concept of a computa-
tion. Mathematically, a computation is a sequence of elementary steps. What is a
single elementary step depends on the model. For Turing machines, it is scanning
the current square, printing a new symbol on it, moving the head to an adjacent
square and changing the state of the control.

Furthermore, one needs the concept of computation for a single purpose program.
Suppose we need to solve a concrete problem, but the program that we write proba-
bly will never be used again. Then the semantics based on functions does not make
any sense, as we only need one output. The distinction between computable and
noncomputable functions can only be made if we have infinitely many inputs. Com-
putability only concerns the distinction between finite and infinite, namely, com-
putable means that the process always ends after finitely many steps.

The Matrix Model of Computations

I am going to introduce yet another model of computations. My aim is to capture
the combinatorial character of a computation. This model is useful for analyzing and
proving theorems about computations, in particular, it can also be used for studying
finite function, which can be done using the classical models too, but in a more
cumbersome way. Furthermore, the main parameters of the model, the dimensions
of the matrix, correspond to the main complexity measures, time and space, which
also suggests a relation to physics.

138 2 Language, Logic and Computations

Fig. 2.4 The matrix model

The main twist is to focus on computations instead of devices that do compu-
tations. I define a computation to be a matrix M with entries from a finite alpha-
bet satisfying the following condition. There is a rule R that uniquely determines
the entry mi+1,j (the entry in row i + 1 and column j) from the entries that are
in the row above (the row i) that are adjacent to it, see Fig. 2.4. Thus the en-
tries mi,j−1,mi,j ,mi,j+1 determine the entry mi+1,j , provided j is not the index
of the first or the last column; if it is, then it depends only on two entries above (on
mi,j ,mi,j+1 if j is the first column, that is, j = 1, and on mi,j−1,mi,j if j is the last
column). Let me stress that the rule is uniform for all entries; it does not depend on
the position in the matrix, except that it is sensitive to the sides of the matrix.

The computational interpretation of this model is as follows. We put input data
on the first row. Then fill in the matrix row by row and read the output data in the last
row. So the idea that we use to solve a particular problem, the algorithm, is hidden in
the rule R. The advantage of viewing a computation in this way is that we eliminate
the dynamical aspect of the computation by representing it by a fixed structure. A
column j describes the content of the memory location j during the computation,
the entries in a row i encode the content of memory location in time i. Thus the
physical interpretation of the two dimensions of the matrix is time and space. The
matrix is the trajectory of a computation. Furthermore, the rule that determines the
system is local, as it should be in physics. Filling in the matrix can be viewed as a
discrete version of a classical problem of solving an ordinary differential equation
with a boundary condition; the boundary condition is the input data. An example of
computation is given in Fig. 2.5.

In order to implement all algorithms in this model, we must allow arbitrarily large
alphabets (because in a finite alphabet we have only a finite number of possible
rules R). The letters in the alphabet will be used not only to code the bits in the
memory, but also the currently implemented instruction from the program. We can
avoid this problem by relaxing the definition a little. If we allow rules that determine
the entry not only by at most three entries above, but at most k entries in the row
above (adjacent to the entry right above), then we can do with a two letter alphabet
(0 and 1). Various other generalizations are possible, such as using more dimensions

2.4 Programs and Computations 139

2 3 0 1 0 3 1 2

2 0 3 0 1 1 3 2

0 2 0 3 1 1 2 3

0 0 2 1 3 1 2 3

0 0 1 2 1 3 2 3

0 0 1 1 2 2 3 3

Fig. 2.5 The matrix of a computation that sorts the sequence 23010312 (the top row) into
00112233 (the bottom row). The computation is done by swapping every two consecutive numbers
when the first is bigger than the second (this is the rule R). Thus each entry of the matrix, except
for the first row, is uniquely determined by the two or three neighbors above it. This example is
contrived, since there are no ambiguities as to which elements should be swapped. (Such an ambi-
guity would appear, for example, in 321, in which we can swap either 3 and 2, or 2 and 1.) In order
to be able to sort any sequence we would have to use a rule that would decide which of the possible
conflicting replacements should be done. Furthermore, this is not a very efficient way to sort. Fast
sorting algorithms are based on a special choice of which pairs are compared and swapped; then
one has to consider also pairs of non-consecutive elements

for space. But such improvements bring only insignificant gain in the efficiency of
computations.

We should note that often more space is needed than is allocated for input data.
In fact, we often want to keep the input data intact during the whole computation
and use other memory locations for the data created by the computation. Thus we
allow the use matrices with more columns than is the length of the input string. We
put the input data at the beginning of the first row and fill in the rest uniformly by a
symbol not present in the data (the ‘blank’ symbol). Then the number of columns is
the size of memory used in the computation—the space complexity.

I will use this model for explaining computational complexity in Chap. 5.

Beyond Computability—Complexity Hierarchies

Naturally we wonder what is beyond the range of computable functions. Because
things become more difficult, I will restrict myself to decision problems and I will
only speak about sets of natural numbers. Formally, a decision problem is simply
a set; the problem is, for a given element, to decide if it belongs to the set. We say
that the decision problem is algorithmically solvable, or that the set is recursive, or
decidable if there is an algorithm to decide this problem. Equivalently, it means that
the characteristic function of the set is computable.

For example, let P be a program and let the problem be to decide for a given
input, if the program will terminate on the input. Thus we are interested in the set of
inputs on which P terminates. We know that this set is not decidable for some pro-
grams P (in particular for the universal program). Nevertheless, this set is not very
far from computable ones. It can be defined using a single existential quantifier. It is
the set of inputs x such that there exists a terminating computation on x, which we
can represent as a string of symbols y. Notice, that the only noncomputable thing

140 2 Language, Logic and Computations

Fig. 2.6 The diagram of the
Arithmetical Hierarchy. Δ1 is
the class of recursive sets,
Δn =Σn ∩Πn, for
n= 1,2, . . .

...
...

Σ3 Π3

↖ ↗
Δ3

↗ ↖
Σ2 Π2

↖ ↗
Δ2

↗ ↖
Σ1 Π1

↖ ↗
Δ1

is how to get the string y; once we have it, we can verify that it has the required
property. Another such set is the set of arithmetical equations that have a solution.
Again, having a solution we can check by simple computation that it satisfies the
equation, the problem is only how to find it. A very important example is the set of
logically valid sentences of first-order logic. This set can be defined, by the com-
pleteness theorem, as the set of provable sentences. The latter of the two definitions
is based on one existential quantifier: the set all sentences φ such that there exists a
proof of φ.

Formally the relations with one existential quantifier can be defined by a formula
of the form

∃y φ(x, y)

with φ denoting a computable binary relation. They are called Σ1 or recursively
enumerable sets. The Σ1 stands for a single existential quantifier. The name ‘re-
cursively enumerable’ stems from the property of such sets that their elements can
be enumerated by a recursive function. We can similarly define the class of sets
definable using a single universal quantifier. This class is denoted by Π1. As the
negation of the existential quantifier is the universal quantifier, Π1 is the set of the
complements of sets in Σ1. The classes Σ1 and Π1 are incomparable; there are sets
that belong to Σ1 but not to Π1 and vice versa. Then we can use two quantifiers.
Taking two quantifiers of the same kind does not produce new sets, but if we take
two different ones, we get more complex sets. Thus we get the class Σ2 by using
formulas of the form ∃y∀z φ(x, y, z) and class Π2 by using formulas of the form
∀y∃z φ(x, y, z). In general the class Σn (respectively Πn) is the class of sets de-
finable by formulas with n alternating quantifiers starting with ∃ (respectively ∀).
A diagram showing relations between the classes is in Fig. 2.6.

One can show that at each step we get more sets, thus this hierarchy is increas-
ing (but the pairs Σn and Πn are incomparable). Hence using more alternations
of quantifiers we can define more. This has an important consequence for logic. It
proves that in general we cannot reduce the number of alternations of quantifiers in
a formula.

2.4 Programs and Computations 141

It seems that we have exhausted logical means of defining sets, but that is not
quite true. It is true that using only first-order formulas we cannot define more sets
of natural numbers in the structure (N;0,1,+, ·). The sets of numbers definable by
arithmetical formulas are called arithmetical, they are sets that belong to classes of
the arithmetical hierarchy Σ1,Π1,Σ2,Π2,26 But using higher order languages
we can define more sets; we can define sets that are outside the arithmetical hierar-
chy. In higher order languages we can talk not only about numbers, but also about
sets of numbers, sets of sets of numbers, etc. Let us look at the simplest example.
Consider a formula of the form: there exists a set Y such that φ(x,Y) holds true.
Formally, it is written as

∃Y φ(x,Y).

We use the capital letter Y to distinguish sets from numbers. We would like to use
this formula to define the set of all x that satisfy it. It is, of course, important to spec-
ify what relations we should allow for φ because otherwise we could trivially define
any set of numbers. When defining sets in the Arithmetical Hierarchy, we used for-
mulas φ that were recursive relations. But now the formula speaks not only about
numbers, but also about sets. Therefore, we allow φ to be any formula constructed
from recursive relations and relations of the form z ∈ Y with arbitrary first order
quantifiers, by which I mean quantifiers binding numbers. (The first-order quan-
tifiers are much weaker than a single second-order quantifier, so in fact, it would
suffice only to use one universal quantifier for numbers.) Though Y may stand for
arbitrary sets, a formula such as ∃Yφ(x,Y) cannot define arbitrary sets. Notice that
Y is quantified in the formula, it is not a parameter, therefore it is as if we only used
generic properties of all sets, not a particular set. Hence again, we only get some
subset of all sets of numbers. However, we get more than we have in the Arithmeti-
cal Hierarchy.

This is only the first step after the Arithmetical Hierarchy. Then we can use more
alternations of the second-order quantifiers—the quantifiers for sets, then third order
quantifiers—quantifiers for sets of sets, etc. At each step of this construction we get
more and more definable sets. After exhausting all levels of higher order languages
we can invent a new way of defining sets again and go on as far as our imagination
will allow. We will always get more and more sets. The process can never stop
because the number of formulas will always be only countable, while the number of
all subsets of natural numbers is uncountable.

Thus we can draw a crucial conclusion: even if we are only studying numbers,
we may need higher order concepts, namely sets, sets of sets, etc.

Notes

1. Total and partial recursive functions. To make it simpler I have concealed an im-
portant distinction, the distinctions between partial and total functions. A partial

26These symbols are often used with the superscript 0: Σ0
1 ,Π

0
1 ,Σ

0
2 ,Π

0
2 ,

142 2 Language, Logic and Computations

function is like a function, but it is not defined for all arguments. We say that a
function is total to stress that it is not partial. When we have a program that does
not stop on all inputs it defines only a partial function. Formally, we can easily
extend a partial function f to a total one, but this does not solve the problem.
The problem is that it is not algorithmically decidable whether or not a program
stops on a given input (the halting problem). So while we can easily redefine the
function, we cannot rewrite a program P to P ′ so that P ′ prints the symbol∞
when P does not stop. It is also not possible to change the syntax of the pro-
gramming language so that only programs that always terminate can be written
without essentially reducing the class of functions that can be programmed. Fur-
thermore, partial functions are interesting things per se, therefore we should not
prohibit them. In particular, a universal program defines a partial function that
cannot be completed to a total computable function.

When talking about a total function, we say a computable function or a re-
cursive function meaning the same (if we talk about numeric function); if it is a
partial function we call it a partial recursive function.

It is essential to use partial functions when defining universal functions be-
cause of the following:

Theorem 5 The class of total recursive functions does not have a universal
function.

This can be proved very easily. Suppose U(x,y) is a universal function for
total recursive functions of one variable. We fist transform U to a univariate func-
tion u by defining u((x, y))= U(x,y), where (x, y) denotes a pairing function,
(say (x, y)= ((x+ y)2+ 3x+ y)/2). Thus for every unary recursive function f ,
there exists a number n such that for all m, f (m)= u((n,m)). We claim that u
cannot be recursive. If it were, then v, defined by v(x) = u((x, x))+ 1, would
also be recursive. But then, for some n, v(n)= u((n,n)), which is a contradiction
because v(n)= u((n,n))+ 1.

Note that although the theorem explicitly talks about recursive functions, it
concerns total computable functions in any model. Thus

• there exists no Turing machine U that is universal for Turing machines that
halt on every input and such that U also halts on every input,
• there exists no programming language in which all total computable functions

can be defined and only such functions,

and so on. The proof of the theorem is an application of Cantor’s diagonal
method, which we will encounter again in the sequel.

2. Definition of recursive functions. The set of recursive functions is the minimal
set of functions defined on the natural numbers that satisfies the following four
conditions:

a. it contains the following functions: the successor function S(x)= x + 1, the
identity function I (x) = x, the projection function I (x, y) = y and the con-
stant zero (function) 0;

2.4 Programs and Computations 143

b. if f (x1, . . . , xn) and g(y1, . . . , ym) are recursive functions (the sets of vari-
ables of these functions do not have to be disjoint), 1≤ i ≤ n, then

f
(
x1, . . . , xi−1, g(y1, . . . , ym), xi+1, . . . , xn

)
is also recursive;

c. if f (y) and g(x, y, z) are recursive, then the function h(x, y) that satisfies (is
defined by)

h(0, y) = f (y),

h
(
S(x), y

) = g
(
x, y,h(x, y)

)
for every x, y, z, is also recursive;

d. if f (x, y) is recursive and satisfies the condition that for every x there ex-
ists y such that f (x, y) = 0, and h(n) is defined to be the least m such that
f (n,m)= 0, then h is also recursive.

Thus the set of recursive functions is obtained from initial functions of (1) by
applying operators of composition (2), recursion (3) and minimization (4). Note
that the condition in (4) cannot be effectively tested, we can only prove it us-
ing some set-theoretical assumptions. To get an effective definition we have to
consider the larger class of partial recursive functions; then we do not have to
test the condition in (4). Notice that minimization corresponds to loops in the
program, such as do ... while

The name ‘recursive’ probably originated by mistake. Gödel introduced a
class of numeric functions only using 1., 2. and 3. hoping that it would contain
all computable functions. He was shortly corrected by Herbrand, who pointed
out that 4. is also needed. Among these three the most important was 3., the op-
erator of recursion—therefore recursive functions. The class defined by 1.–3. is
a proper subclass of all recursive functions, called primitive recursive functions
nowadays.

3. Definition of Turing machines. A Turing machine is determined by the tape al-
phabet and the control device. The control device is simply a finite automaton.
Thus, formally, a Turing machine is a structure (Σ,Q, τ), where

τ :Σ ×Q→Σ ×Q× {L,R}.
The set Σ is the tape alphabet, Q is the set of states of the finite automaton.
Given a symbol a ∈ Σ and a state q ∈ Q the value of the transition function
τ(a, q)= (b, r, d) determines the symbol b printed by the machine, the new state
r and the direction of the movement of the head d .

A configuration of the machine is determined by (1) the content of the tape,
which is represented by an infinite sequence indexed by integers, (2) the state of
the finite automaton, which is q ∈Q, and (3) the position of the head, which is
an integer.

To define a computation of the machine, one has to define one step transi-
tion from one configuration to the next one. This is easy, provided that we have
in mind the interpretation of the concepts. Then a computation is a sequence of

144 2 Language, Logic and Computations

configurations where the consecutive configurations are obtained by single tran-
sitions.

In order to use such a machine as an algorithm, we have to make several
provisos. Firstly, we want only to process finite sequences of symbols (these are
called words). Thus we define an initial configuration to contain such a word on
a specified part of the tape with the ends of the word marked and the rest of the
tape being uniformly filled with the same symbol. The most convenient way to
do this is to reserve a special symbol of Σ as the blank symbol and require that
the input and output words do not use it. Then we have to fix an initial state of
the automaton, a final state of the automaton and the initial position of the head,
say the index 0. The output is the maximal length word of non-blank symbols
containing the 0 position that appears at the moment when the automaton reaches
the final state. Thus the machine determines a partial mapping on the set of all
words of non-blank symbols.

4. The matrix model of computation—continued. Let Σ be the alphabet of symbols
used in the matrix. To define this model formally, we have to solve the problem
with the boundaries. The standard solution is to add columns on both sides filled
in with an extra symbol, say, #. Then we can say that each entry inside is deter-
mined by the three entries above. Hence the model is given by an alphabet Σ , a
rule ρ :Σ ′ ×Σ ×Σ ′ →Σ , where Σ ′ =Σ ∪ {#}, and the two dimensions of the
matrix.

A computation of a Turing machine can be represented by such a matrix, ex-
cept that we may need infinitely many columns and rows. In the first approxima-
tion we take simply the tapes with their content in the order of the computation
of the machine. This is not quite correct as the content of the next tape depends
also on the state of the control and the position of the head. This can be fixed
by taking a larger alphabet in which we can encode also the state of the control.
Using the notation for a Turing machine above, we take as the larger alphabet the
disjoint union of Σ and Σ ×Q. Then an entry a ∈Σ in the matrix means that
a is on the tape and the head is elsewhere, and (a, q) ∈Σ ×Q means that a is
on the tape, the head is currently on the same square and the control is in state q .
Thus rows encode configurations of the machine. We can make the matrix finite,
if we consider only computations on inputs of lengths up to a fixed number n

and assume that all computations terminate. Then the machine uses only a finite
portion of the tape and we can bound the number of steps.

Other combinatorial models are related to the matrix model, in particular ar-
rays of automata and Boolean circuits. A Boolean circuit consists of gates and
connections between them, called wires. It has input gates, inner gates and out-
put gates. The role of input and output gates is clear; the inner gates process
information that reaches them and send it further by wires. ‘Boolean’ means that
information comes in bits, denoted usually by 0 and 1. In practical circuits feed-
back is very important, but in theoretical studies we mostly use circuits without
any feed-back, just to make the model simpler. A matrix model with the alphabet
{0,1} is a Boolean circuit (the first row being the input gates, the last row the
output gates, etc.). The difference between the two models is not big. As I have

2.4 Programs and Computations 145

noted, we can restrict the alphabet to {0,1} by allowing dependence on a little
more distant places in the matrix. The restriction to a rectangular grid is also
inessential. When it is needed to send a bit to a more distant place, we can do it
in several steps.

5. Relativistic computations. Relativistic computations were proposed indepen-
dently by I. Németi, D. Malament, I. Pitowski and M.L. Hogarth in the late
1980s and early 1990s. The aim of the proposed schemas was to show that it
is consistent with General Relativity that there is a physical process that com-
putes something that is not computable on Turing machines. I will outline the
basic idea using the schema proposed by Németi [206] that uses a highly prob-
able assumption that there are large rotating black holes. Note that all schemas
assume that the universe is infinite in size and time, or at least that the size of the
universe grows beyond any limit.

Consider two entities P (programmer) and C (computer), such that P wants to
learn, using C, something that is not classically computable. Namely, P wants to
know if some efficiently computable predicate R(n) is satisfied by all numbers.
For example, R(n) can express that the nth nontrivial zero of the ζ -function is
on the line Re(x) = 1

2 . Then R(x) is satisfied by all numbers if and only if the
Riemann Hypothesis is true. To this end we need a black hole (with suitable
parameters) and let P fall into it (on a suitable trajectory). Meanwhile C will use
a Turing machine to check all numbers for the property R. One cannot construct
an infinite tape for the Turing machine, but since the universe is infinite, it is
possible to gradually extend the tape beyond any bounds, which is all that C
needs.

From the point of view of C, P will never reach the event horizon of the black
hole. So if C finds a number that does not satisfy R, it can send a signal to P
while P is still before the event horizon.27

From the point of view of P, nothing special happens at the event horizon. In
particular, he will cross the event horizon in finite time according to his watch.
But he can calculate time t1 when he will be crossing the event horizon. So at
time t1 he will know that C tested all numbers (and ceased to exist). If everything
is set up properly, at some time t2 > t1 P will know the answer: if a signal has
arrived, then there is a number that violates R, otherwise R holds true for all
numbers.

This shows that such computations are consistent with general relativity.
Though some effort has been made to include quantum theory into considera-
tion, it is not clear that they are consistent with other theories that describe ba-
sic physical phenomena. Note that we still do not have a consistent theory that
would unite relativity and quantum theory, so the concept of consistency with
known physical phenomena is not precisely defined.

6. Second-order logic is not axiomatizable. This means that there is no formal sys-
tem in which a second-order sentence would be provable if and only if it is sat-

27More precisely, we should talk about the event horizon as seen by C because C is in a finite
distance from the black hole.

146 2 Language, Logic and Computations

isfied by every second-order structure. This implies that higher order logics also
cannot be axiomatized.

One can prove this fact by considering the complexity of the set of logically
valid second-order sentences. Given a formal system Π , the set of sentences
provable Π is recursively enumerable. Recall that recursively enumerable is the
same as being Σ1 in the arithmetical hierarchy. The set of sentences φ provable
in Π can be defined by the condition informally stated as follows:

There exists a Π -proof of φ.

So there is only one existential quantifier, which explains Σ1. But the set of
second-order logically valid sentences is much more complex—it is not con-
tained in any of the classes of the arithmetical hierarchy. Therefore it cannot be
axiomatized.

The reason this set has such a large complexity is that in second-order logic
one can define the standard model of arithmetic. Consequently, all true arith-
metical sentences can be derived in second-order logic. In more detail, let Φ be
the conjunction of the three second-order axioms of Dedekind-Peano Arithmetic
(page 30) and the first seven axioms of Peano Arithmetic (page 116). Then for
every first-order arithmetical sentence ψ , ψ is true if and only if the second-order
sentence Φ→ψ is logically valid. Thus for any arithmetical set X, the decision
problem for X can be reduced to the decision problem of the set of logically valid
second-order sentences.

2.5 The Lambda Calculus

The λ-calculus is a very interesting formal system whose main features are univer-
sality and flexibility. As such, it can be used for various purposes. It also has many
versions which split into two main branches: the type-free λ-calculus and the typed
λ-calculus. The λ-calculus can be used as a logical calculus, a formalism for defin-
ing algorithms and as a formal system for the foundations of mathematics. In the
type-free λ-calculus all of the elements are of the same type. The typed λ-calculus
is based on a hierarchy of functionals (see page 17), in a similar fashion as types
are used in Russell’s Theory of Types, which we will consider shortly, and thus it
can be viewed as a generalization of Russell’s theory. Because of important con-
nections with proof theory, it is often viewed as a branch of it. The typed λ-calculus
also has applications in computer science, especially in functional programming and
automated theorem proving.

Church introduced the λ-calculus in the early 1930s [42]. A little later, he in-
troduced the typed version [44]. Related calculi, called combinatory logic were in-
vented independently by M.I. Schönfinkel and H.B. Curry a little before, but the con-
nection between the two approaches was discovered later. As the title of his seminal
paper ‘A set of postulates for the foundation of logic’ suggests, Church intended to
use his formal system for the foundations of mathematics in a similar way as Frege,

2.5 The Lambda Calculus 147

Whitehead, Russell and other logicists did. Thus the λ-calculus was conceived as a
kind of general logic. His first attempts were plagued with inconsistencies, but soon
after that he found the sound version and proved its consistency.

We will start with the type-free version. The basic idea of the λ-calculus is that
we can think of everything as being a function, an argument and a value at the same
time. Computer programs and computer data are a good example. Since both are just
some files, you can run a program on data, but you can also run a program on a file
that is a program as well, which is sometimes very useful. You can take a file which
is not a program and ask your computer to execute a file like a program, in which
case the computer also does something, though it is hardly of any use. The paradigm
that objects are functions, arguments and values at the same time, is similar to the
one used in set theory, where an object is a set and an element at the same time. In a
sense, it is the opposite of the structural approach to mathematics that we considered
in Chap. 1 (while, in contrast to it, the typed λ-calculus is fully in line with it).

The λ-calculus has one binary operation as the only nonlogical symbol, the inter-
pretation of which is application of a function to an argument. Usually no symbol is
used for the binary operation of application, instead we simply use juxtaposition of
the arguments. So ab means that a function a is applied to an argument b (outside
of the λ-calculus the most common notation for this operation is a(b), but juxta-
position is also frequently used). This notation stresses the identification of objects
and functions. We think of functions in the λ-calculus as being unary, as we apply
them only to one argument, but they can also be treated as functions of arbitrarily
many arguments. For instance, if you want to apply f to x and y, then first apply f

to x. Then, since the result is again a function, you can apply it to y. Formally, this
is written as (f x)y, or simply f xy, using the convention that parenthesis grouped
to the left are omitted.

The essence of the λ-calculus is the principle that every term defines a function
that is an object of the theory. This is not such an obvious principle as it may look at
the first glance and, in fact, in some context it may even be contradictory (recall the
related Comprehension Principle). To formalize this principle, Church introduced an
operator, denoted by λ, from which the name of the calculus stems. This operator
can be applied to any variable x and any term t , not necessarily containing a variable
x, resulting in the expression

λx.t.

In this expression, λ binds the variable x, like a quantifier. The dot between x and
t is a convenient way of separating the operator from the term. (Dots were used
instead of parenthesis very often at the beginning of the 20th century.) The meaning
of the expression is:

the function which to x assigns the value obtained by evaluating the term on x.

Example λx.x is the identity function; λx.y is the function constantly equal to y.
Notice the difference between the expressions x and λx.x—the first one is a variable
and can represent any object, the second one is a constant symbol and it represents
a unique object, the identity function.

148 2 Language, Logic and Computations

The λ-notation is very useful in general, but, unfortunately, most mathematicians
do not know about it, although in mathematical practice we often need to distinguish
a function from its value.

Example One can distinguish a number which is a square x2, from the quadratic
function λx.x2. In the expression

∫ 1
0 x2 dx we use dx to say that we integrate the

quadratic function, but we do not use x2 dx for this purpose elsewhere. If the λ-
notation was used, we would have a more systematic notation. The integral above
would be expressed by

∫ 1
0 λx.x2.

Combinatory Algebras

For main-stream mathematicians, it may be easier to grasp the main ideas of the λ-
calculus using a class of first-order structures that are models of the λ-calculus. The
Extensional Combinatory Algebras is a class of structures defined by the following
axioms:

The Axiom of the Existence of at Least Two Elements There are two different
elements.

This axiom in combination with the others ensures that there are infinitely many
elements.

The Axiom of Extensionality If f x = gx for every x, then f = g.

In words, if function f gives the same value as function g for every argument x,
then f = g. This is essentially the same as the Axiom of Extensionality for sets.

The Axiom Schema of Combinatory Completeness For every term t and every
sequence of variables x1, . . . , xn that includes all variables of t , the following is an
axiom: There exists an f such that for every x1, . . . , xn, f x1 . . . xn = t .

In words, every function that can be defined by a term is present in the universe.
This schema formalizes the basic principle of the λ-calculus. Using the λ-notation
it can be stated as the following schema.

β-conversion For every term t ,

(λx1 . . . λxn.t)x1 . . . xn = t.

In first-order logic we can view the expression λx1 . . . λxn.t as a new constant
introduced to represent the function f from the schema above.

2.5 The Lambda Calculus 149

Curry discovered that it suffices to take only three instances of the Axiom Schema
of Combinatory Completeness. For these special cases, he introduced constant sym-
bols denoting the particular functions. Then all other functions resulting from the
schema can be written as terms using these basic functions, called combinators.
The three combinators are denoted by I, K, S and the three instances of the Axiom
Schema of Combinatory Completeness are:28

1. Ix = x

2. (Kx)y = x

3. ((Sx)y)z= (xz)(yz)

The simplicity of this axiom system is, indeed, striking. Moreover, the first axiom
of the three axioms above is redundant, as one can express I by SKK (an easy
exercise).

In order to get some feeling for this calculus, it is worthwhile to interpret at least
the two simplest combinators I and K. I is clearly the identity function. K is the
function which on argument x produces the function that is constantly equal to x,
(namely, if we apply Kx to any y we get x). In the λ-notation the combinators I, K
and S are defined by

I= λx.x, K= λxλy.x, S= λxλyλz.(xz)(yz).

Nevertheless, to construct a model of an extensional combinatory algebra is not
easy. The consistency of the λ-calculus was proved using combinatory means. The
proof is based on a concept of a normal form of a term, which plays a central role
in the theory. Since we can interpret the theory of extensional combinatory algebras
in the λ-calculus, this implies, by the completeness theorem, that there is a model
of extensional combinatory algebras. However, an explicit construction of such a
model was found only much later by Dana Scott (see Notes).

The following is an important theorem in the type-free λ-calculus.

The Fixed Point Theorem For every f , there exists g such that

fg = g.

Proof Let h= λx.f (xx), let g = hh. Then

fg = f (hh)= (λx.f (xx)
)
h= hh= g. �

This looks like a meaningless manipulation with terms, but it is not. I will not
explain this proof because its essence is self-reference which can be more easily
explained in the context of logic, which I will do in Chap. 4.

28For the sake of clarity I do not use the convention of omitting parentheses here.

150 2 Language, Logic and Computations

The λ-Calculus as Logic

To explain how the λ-calculus can be used as logic, it is better to use the typed λ-
calculus. The objects of this calculus are also functions, but in contrast to the type-
free version, we can apply a function to an argument only if the types match. Starting
form some basic types, new types are formed by taking the set of all functions
mapping objects of a type τ to objects of a type σ . This type is denoted by τ → σ .
If a is of type τ → σ and b is of type τ , we can apply a to b to obtain an element
ab of type σ . In order to formalize functions of two (and more) variables, one can
either introduce the product of types τ1 × τ2 and use τ1 × τ2→ σ , or use the type
τ1→ (τ2→ σ).

In the standard formalization of first-order logic we distinguish formulas from
terms. The reason is that formulas express the truth or the falsehood, while terms
denote objects. If t is a closed numerical term, then it has a value in the domain of
the numbers; if t (x) is a numerical term with one free variable x, then t (x) denotes
a function of one variable, etc. If φ is a sentence, then the value of φ is either truth
or falsehood; if φ(x) is a formula with one free variable x, then it represents a
propositional function of one variable or a set, etc. Church observed that it is only
the range of values that distinguishes these two concepts, and since one can consider
various ranges, there is no need to distinguish the Boolean one from others.

So let us assume that we have the Boolean type B = {0,1} and let us use only
terms. Since we have eliminated sentences, we have to say what we will use instead
of them and what will replace proofs. Sentences are easy: these are just the terms
that are of type B . In order to define proofs, we have to view a proof not as a text
that presents evidence that a sentence is true, but as a process by which we obtain
this evidence. Consider a proof by contradiction of a sentence φ. It starts with writ-
ing ¬φ, then we derive new formulas using logical rules and eventually we derive
contradiction. This process is very much like evaluating a numerical expression: we
start with the expression, apply rules to transform it, and eventually obtain the value.
Again, there is no reason to treat these two kinds of process as being distinct. So in
the λ-calculus we prove a sentence represented by a term t by evaluating it, which
means that we apply rewriting rules until we obtain the Boolean value 1.

In order to embed first-order logic into the λ-calculus, we must define translations
of connectives and quantifiers. Since connectives are, by definition, Boolean func-
tions, their translations are straightforward. For example, negation is represented
by a constant of type B→ B . Since quantification always ranges only over objects
of a given type, we need a constant Πτ for every type τ . This constant is of type
(τ→ B)→ B . Recall that τ→ B are propositional functions of one variable, func-
tions defined by a formula φ(x) with one free variable x. Hence Πτ maps such
functions to the Boolean constants. The sentence ∀x φ(x) is true if and only if the
propositional function is constantly equal to 1. So Πτ is the function that assigns 1
to all functions constantly equal to 1, and 0 to all other functions.

Let a be a term representing a formula φ(x), where x is of type τ . Then

∀x φ(x) is represented by Πτλx.a.

2.5 The Lambda Calculus 151

The use of the letter Π is quite natural: in the standard notation we would express
the same by Πx∈τ a(x).

Describing axioms and rules would take us to far afield and it is not interesting
anyway because we only need to translate the usual axioms into the new formalism.
Let us just observe that axioms are rules that rewrite an expression directly to 1.

Formulas as Types

In the typed λ-calculus we need different combinators for different types. Thus we
have one combinator Iτ for every type τ , one combinator Kτ,σ for every pair of
types τ, σ and one combinator Sτ,σ,ρ for every triple of types τ, σ,ρ. Let us look
the types of these combinators.29

Iτ : τ→ τ

Kτ,σ : τ→ (σ → τ)

Sτ,σ,ρ :
(
τ→ (σ → ρ)

)→ (
(τ→ σ)→ (τ→ ρ)

)
The striking fact is that the types look like propositional tautologies; indeed, if we
interpret the type variables as propositional variables they are tautologies. Moreover,
these three tautologies are often used as axioms of propositional calculus. And this
is still not all, look at this:

If a : τ and b : τ→ σ , then ba : σ .

This rule corresponds to the propositional rule of modus ponens. Thus suddenly,
an axiomatization of a fragment of propositional logic pops up. The fragment is the
restriction of intuitionistic logic to formulas built of implications, the implicational
fragment of intuitionistic logic.

The connection with logic is very close. Not only these three combinators have
types that are intuitionistic tautologies, but all terms have such types. Vice versa, for
every tautology φ of the implicational fragment of intuitionistic logic, there exits a
term whose type represents φ. Hence we can view terms as proofs of the tautolo-
gies that are represented by their types. This correspondence is represented by the
following diagram.

type↔ formula
term↔ proof

Viewing it semantically, as a complex structure, we have types that are empty, which
correspond to non-tautologies, and types that are inhabited, which correspond to
tautologies. To prove a tautology means to show that the corresponding type is in-
habited.

29The column is used to express membership in a type.

152 2 Language, Logic and Computations

Example In Curry’s formalism variables and terms are used without specifying
types. Then there are terms that do not have a type, hence cannot be interpreted
as proofs. Show, as an exercise, that one can assign types to the combinators in the
following term so that it has the specified type:(

S(KS)
)
K : (σ → ρ)→ (

(τ→ σ)→ (τ→ ρ)
)
.

The corresponding tautology is a version of the transitivity of implication. The term
(S(KS))K is a proof of this tautology.

To extend this correspondence to full intuitionistic propositional logic, one has
to use more operations on types, products τ × σ for conjunctions, sums τ ⊕ σ for
disjunctions, and one has to add the empty type ⊥ for false. (The negation of φ is
represented by φ→⊥.)

This correspondence is called the Curry-Howard isomorphism. It has been ex-
tended in many directions. Concerning logic, the correspondence has been extended
to first-order intuitionistic logic, classical propositional logic and some other logics.
Concerning proof theory, connections have been found between certain transfor-
mations of proofs in logic on the one hand, and transformations of terms in the
λ-calculus on the other. In this way the computational nature of the λ-calculus has
been translated to proof theory and one can view certain proof-theoretical operations
as computations.

Notes

1. Composition of functions in the λ-calculus. The binary operation of the λ-
calculus, the application of a function to an argument, should not be confused
with the composition of functions. The latter is definable by means of the com-
binator B defined by ((Bx)y)z = x(yz) (or by the λ-term λxλyλz.x(yz)). The
composition of function y with function x is the function (Bx)y. One can show
that B can be expressed as (S(KS))K.

2. Combinatory logic. The classical presentation of the λ-calculus does not in-
clude the Axiom of Extensionality. The system defined by the axioms 1.–3. on
page 149 with the axiom K = S is Curry’s Combinatory Logic. It is slightly
weaker than the λ-calculus, but it can be made equivalent to it by adding five
more equalities. By adding four other equalities it can be made equivalent to the
λ-calculus with the Axiom of Extensionality. Furthermore, there exists a presen-
tation of the Combinatory Logic with a single combinator.

3. The Church-Rosser Theorem. The great appeal of the λ-calculus stems from the
possibility of manipulations with terms, which can be used to define computa-
tions. In fact, the λ calculus was one of the first systems by means of which
computable functions were defined. The two basic operations are λ-abstraction
and β-conversion. The first of the two is the operation considered above: given a
term we construct another term that represents the function defined by the given

2.5 The Lambda Calculus 153

term. β-conversion is in a sense the opposite operation; it is the transformation
of a term λx.τ (x)a into the term τ(a). This follows from the definition: applying
the function defined by a term τ(x) to an argument a we must obtain the value
of the term on the argument a. At first glance it looks stupid to introduce a λ-
term in order to eliminate it in the next moment, but it is not as simple as it may
appear, and quite interesting things may happen. The point is that τ may also
contain occurrences of the λ-operator. Thus if we have a complex term, there
may be several different places where we can apply β-conversion, hence we can
reduce it in different ways. Furthermore, β-conversion may reduce the size of the
term, but it also may increase it. (If σ is a long term and x occurs in τ more than
once, the term τ(σ) is clearly longer than λx.τ (x)σ .) Consequently, the pro-
cess of successive applying β-conversion may run indefinitely when started on
some terms. The key result of the theory, the Church-Rosser Theorem, says that
if the process converges, then it converges to a unique term, whatever strategy we
choose. By converging we mean that we arrive at a term to which β-conversion
is not applicable anymore. This uniquely determined term is called the normal
form.

There are several interesting applications of this basic result. In particular,
one can use it to prove the consistency of the λ-calculus. One can prove that two
terms that have normal form are equal in the λ-calculus if and only if the normal
forms are equal. Since it is easy to construct two different normal forms we get
immediately the conclusion that the λ-calculus is consistent (meaning that one
cannot prove that all elements are equal).

4. The λ-calculus and computations. In order to define computations, terms of the
λ-calculus will be interpreted in two ways: as programs and as data. The compu-
tation of program τ on input data σ is the β-conversion process on the term τσ .
The output is the resulting normal form, provided it exists, otherwise the com-
putation diverges. To compute functions of more variables we apply program τ

to a string of data σ1, . . . , σn as follows: (. . . ((τσ1)σ2) . . . σn) (according to the
standard convention, the parentheses can be omitted).

In order to compare it with other computational models, we need to encode
some standard structures by terms that are in the normal form. One can define
natural numbers 0,1,2,3, . . . by the terms

λxλy.y, λxλy.xy, λxλy.x(xy), λxλy.x
(
x(xy)

)
,

So, for example, 0 is the function that on every argument gives the identity func-
tion as the value. It is a remarkable fact that every partial recursive function
can be defined by a term. For example, addition can be defined by the term
λxλyλzλu.((xz)(yz))u and multiplication by λxλyλz.x(yz) (which is the com-
binator B).

5. Propositional calculi from the λ-calculus. It is interesting to see what the log-
ical calculi resulting from the Curry-Howard isomorphism are. If we only use
constant terms, as in the example of transitivity of implication, the calculus is
essentially a Hilbert-style calculus (also called Frege system). If we allow vari-
ables and λ-abstraction, the proof system is like the natural deduction calculus.

154 2 Language, Logic and Computations

A variable plays the role of an assumption and when λ-abstraction is applied to
it, the assumption is discharged.

β-reduction has a different role. It corresponds to normalization of proofs, a
transformation related to cut-elimination (which we will consider in Chap. 6).

6. A model of the λ-calculus. The first natural model of the λ-calculus was con-
structed by D. Scott in 1971 [261]. Scott found a general construction that can
be applied to any nontrivial complete lattice. We will only consider the simplest
case, where one starts with the two element lattice. We define a sequence of lat-
tices D0,D1,D2, . . . as follows. D0 is the two element lattice. Having Dn, define
Dn+1 as the set of all order preserving mappings f :Dn→Dn with the ordering
given by the condition that f ≤ g if f (x) ≤ g(x) for all x ∈ Dn. Furthermore,
define order-preserving mappings φn :Dn→Dn+1 and ψn :Dn+1→Dn as fol-
lows. φ0(x) is the constant function equal to x, ψ0(x) is x(⊥), where ⊥ is the
bottom element of D0. Having φn and ψn, define φn+1 and ψn+1 as follows. For
x ∈Dn+1, i.e., x :Dn→Dn, put

φn+1(x)=ψn ◦ x ◦ψn,

and for y ∈Dn+2, (i.e., y :Dn+1→Dn+1) put

ψn+1(y)=ψn ◦ y ◦ φn,

where ◦ denotes composition of functions. Note that φn is an embedding, ψn is
a mapping onto Dn, and ψn ◦ φn is the identity. Put

D∞ =
{
(x0, x1, . . .); ∀n ψn(xn+1)= xn

}
.

D∞ is the universe of the algebra. It is a limit of Dn’s in a well defined sense. In
particular, every Dn is naturally embedded in D∞ by the assignment

ιn(x)=
(
ψn

n (x), . . . ,ψ
2
n(x),ψn(x), x,φn(x),φ

2
n(x), . . .

)
.

Furthermore, D∞ with the natural ordering is a complete lattice. We denote the
supremum of a set X ⊆D∞ by

∨
X; to compute it, take suprema on all coordi-

nates. Now we are ready to define the operation of application. For a, b ∈D∞,
where a = (a0, a1, . . .), b= (b0, b1, . . .),

ab=
∨
n

ιn
(
an+1(bn)

)
.

The trick is that we can think of an element of D∞ as a sequence of elements
and as a sequence of functions at the same time. (It is tempting to define the nth
coordinate of ab simply as an+1(bn), but this does not work.)

To prove the combinatory completeness, one needs to have a natural property
that is satisfied by all functions that are definable by terms of the algebra. To
this end Scott uses a natural topology defined on D∞, and the corresponding
concept of continuous functions. Continuous functions are characterized as the
functions that preserve suprema of directed sets. (A set is directed if for every
two elements there is an element which is larger than both.) For finite lattices,
continuous functions are the order preserving functions. So in the simplified case
here, where all Dn’s are finite, we only needed the property of order preserving.

Main Points of the Chapter 155

It is possible to prove that

(i) The operation a, b �→ ab is continuous in D∞.
(ii) For every continuous function f : D∞ �→ D∞, there exists a ∈ D∞ such

that for all x ∈D∞, f (x)= ax.

In order to get the combinatory completeness, we need a little more in (ii). The
function f may depend on other parameters, and then a is a function of these
parameters. We need a, as a function depending on these parameters, to be con-
tinuous. Then the two statements imply combinatory completeness.

Main Points of the Chapter

• The language of mathematics developed by converging to a minimal and universal
language.
• The primitives of a logical language are: constants, variables, relation symbols,

connectives and quantifiers. The syntax uses the same principles as the syntax of
natural languages.
• The truth of a sentence in a structure can be precisely defined.
• Consequently, the logical validity of a sentence can be defined by the condition

that the sentence is true in all structures.
• The concept of a proof can be made quite precise by postulating syntactical rules

that must be satisfied by every proof.
• The logical calculus is complete: every sentence that is true in all structures can

be proved.
• People are willing to use a completely formal language, if there is a strong incen-

tive to do so.
• We have several precise mathematical concepts that define a class of computable

functions; for example, Turing machines. We believe that this class comprises all
computable functions (the Church-Turing Thesis), but we cannot prove it, as it is
not a mathematical statement.
• There are very concrete noncomputable functions. The problem is not that our

devices are too inefficient or that we do not have enough time to compute these
functions, it is because they are not computable even in principle.
• There are universal Turing machines that can simulate every Turing machine.

Computers are constructed so that they are universal in this sense.

Chapter 3
Set Theory

Meaning! Listen to the mathematician talk. Great space, man,
what has mathematics to do with meaning? Mathematics is a
tool and as long as it can be manipulated to give proper
answers and to make correct predictions, actual meaning has no
significance.

Isaac Asimov, The Imaginary

I BRIEFLY considered sets in Chap. 1. It should be clear to the reader by now that
this topic is extremely important for the foundation of mathematics and thus

deserves more attention. Since the time of Cantor, set theory has developed into
a reputable mathematical field, so it is possible to cover only a small part of the
results in the limited space I have here. I will restrict myself only to the main ideas
and results in this field.

Following the history of set theory in Chap. 1 we paused at the moment when
Russell published his paradox. Cantor did not perceive Russell’s paradox as a dis-
aster; he knew about paradoxes in set theory before Russell and, in fact, Russell
extracted his paradox from Cantor’s. Cantor thought of sets as reality, therefore he
did not see the problem in the concept of sets but in our approach to them. He con-
cluded that some sets, in particular very large sets, are ‘paradoxical’ and we have
to treat them somehow differently. But merely to ignore the paradoxes because they
refer to strange sets which we do not need was not a solution; set theory needed to
be rehabilitated. It was necessary to explicitly say what had to be given up and what
should be preserved. The axiomatic approach was at hand at that time and it was the
most explicit way of saying which assumptions should be used. But in contrast to
geometry, where the object of study was the space in which we live, the universe of
sets seemed elusive. There are no physical objects, situations or phenomena that we
could associate with sets of higher cardinalities.

Frege, a contemporary of Cantor, was more interested in the logical foundations
than in the mathematics of sets. He further developed his ideas of Begriffsschrift in
Grundgesetze der Arithmetik I, II1 published in 1893 and 1903 [78, 79] where he
defined a logical system that, in effect, allows the use of the unrestricted Principle of

1In English: Basic Laws of Arithmetic.

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_3,
© Springer International Publishing Switzerland 2013

157

http://dx.doi.org/10.1007/978-3-319-00119-7_3

158 3 Set Theory

Comprehension. The way the theory is presented is more complicated, but, essen-
tially, one can interpret in it the naive set theory with full comprehension schema,
which is, as we already know, inconsistent. Russell discovered his famous paradox
just when the second volume of Grundgesetze was to appear and notified Frege.
Frege wrote an appendix to the volume in which he explained the contradiction and
proposed a modification of the system that, as he believed, would avoid it. Unfortu-
nately the modified system was also found inconsistent, but Frege did not try to fix
it second time. After years of struggling to have his work published, he apparently
did not have enough energy and optimism left to revise his system.

The logical system that Frege introduced in Grundgesetze was considered inspir-
ing and important for the further advancement of the logical foundations of math-
ematics, but the general opinion was that it was a dead-end—an inconsistent sys-
tem that in principle cannot be fixed. In the 1980s, researchers started looking at
Grundgesetze with a more positive attitude. It turned out that one only needs to state
one of the laws in a weaker form and then Frege’s approach to foundations can be
salvaged.

Those who started later than Frege had the advantage that they knew what they
should avoid. They also were luckier because no new generation of antinomies ap-
peared. The origin of the axiomatic foundations of set theory is due to two logicians,
Bertrand Russell and Ernst Zermelo. Russell, who read Euclid’s Elements at the age
of eleven, naturally aimed at an axiomatic system. Zermelo, who himself contributed
a key result to Cantorian set theory, rather tried to give firm foundations to set theory
in the way it was imagined by Cantor.

I will start with the two approaches and briefly mention some alternative ones.
The main theme of this chapter is: what are the additional assumptions that one has
to use on top of logic in order to be able to develop mathematics? There are some
elementary parts of mathematics on which we can test our hypothesis. An example
is geometry which describes something very real—physical space. If more general
concepts are considered, in particular those that involve infinity, there is very little
we can do to test our theories by experiments. Therefore, mathematicians proposing
axiomatic systems for set theory use various intuitive arguments to justify them. It
may be a ‘higher order’ principle, it may be just an ad hoc way to satisfy the needs
of mathematicians. It is important to realize that there are different and incompatible
ways in which one can axiomatize set theory and mathematics developed in these
systems may also be different. The only test for the theories is that mathematics
‘works’ in them. Eventually mathematics is used for solving problems in physics
and other real world problems. If one system fails in these applications, while an-
other works, then the former one is rightly rejected. But if they do not differ on the
practical type, then it may depend on trends, historical coincidence, etc. which will
be accepted by a majority of mathematicians.

By Gödel’s theorem we know that we will never be able to collect all necessary
axioms needed in mathematics, so the process of extending our axiomatic system is
a never-ending one. In set theory this is connected with large infinite cardinal num-
bers. The study of these cardinals is like exploring the limits of the mathematical
universe. This will be another important topic treated in this chapter.

3.1 The Axioms of Set Theory 159

The last two sections will be about other possible directions in the development of
set theory. I will speak about the slightly controversial Axiom of Choice and axioms
that may be used instead of it. Finally I will briefly mention two different axiomati-
zations of set theory that were proposed as alternatives to the standard axiom system.

3.1 The Axioms of Set Theory

The Theory of Types

Bertrand Russell
Courtesy of
McMaster University
Library

Russell was among the first who tried to resolve set theo-
retical paradoxes. He realized that it does not suffice to ask
‘what are sets?’—one should also ask ‘what causes para-
doxes?’. His thoughts led him to the conclusion that most
paradoxes are caused by what he called the principle of the
vicious circle. The “vicious circle” appears whenever one
wants to define a set x that may contain itself. In order
to form a set x, we have to determine for every element
whether or not it belongs to x. In this process we need to
determine it also for x, namely, we have to answer the ques-
tion whether x is an element of x, and here is the problem:
we have not finished the construction of x, so we cannot
answer this question. Hence, concluded Russell, we have
to prohibit such definitions. To this end, Russell proposed
a theory in which there are different types of sets, hence
the theory is called the Theory of Types. The first version
of this theory appeared in an appendix to his Principles of Mathematics published
in 1903 [251]. A fully developed theory was presented in Whitehead and Russell’s
Principia Mathematica [313–315], a milestone in the foundations of mathematics.
Here, I will deal with a simplified version of Russell’s Theory of Types, which will
be called Simple Type Theory. The reader should be warned that there are different
systems in the literature that use the same name.

The basic idea is to stratify sets into types: the first type are elements, the second
type are sets, the third consists of sets of sets, the fourth of sets of sets of sets,
etc. An element is not a set, a set can only contain elements, a set of sets can only
contain sets, etc. Thus we have various types of objects. We can assign numerals to
the types, thus elements are of type 0, sets of type 1, sets of sets of type 2, etc. An
object of type i may only contain objects of the type i− 1. Then the comprehension
axiom schema is modified as follows:

The Typed Comprehension Axiom Schema For every type i and every formula φ

which mentions only sets of type i, there exists a set x of type i + 1 which contains
exactly those sets of type i that satisfy φ.

The stratification of sets into types is not unnatural. In natural language we tend
to distinguish objects from properties. Objects correspond to type 0, properties to 1.

160 3 Set Theory

Next we can talk about properties of properties, type 2. We can go on, but higher
types practically do not occur in normal speech, even type 2 is not very common.
The doctrine of the Theory of Types is that different types should not be mixed and
each definition leads to a higher type. Such a hierarchical structure occurs also else-
where in nature (or, maybe, we impose such a structure on various phenomena to
understand them better). The smallest particles of matter, according to the present
knowledge, are quarks. Combining quarks we get elementary particles, from ele-
mentary particles we get atoms, from atoms molecules.

How does the Theory of Types avoid Russell’s paradox? Let x be the set of all
sets which do not contain itself. Then x contains all sets, by which we mean all
objects of type 1, since a set can only contain elements (objects of type 0), so it
cannot contain itself. Does x contain x? Of course not, as x is of type 2, hence it can
only contain objects of type 1. This shows that we cannot reproduce the paradox on
the lowest type; the same argument works on any type. But remember, this is not a
proof of consistency.

When introducing types we impose restrictions on how sets can be defined. As a
result we have to sacrifice certain principles available in naive set theory. In particu-
lar, since we have elements that are not sets, we have to abandon the extensionality,
as we cannot distinguish elements by what they contain. However, this only con-
cerns type 0. This is not counterintuitive at all, as in the real world we have objects
which are not sets, and the sets are rather our constructions. Another problem is
that we have to postulate an axiom of infinity. We have to assume the existence of
infinitely many elements of type 0, otherwise we would have only finite sets on all
types. Intuitively, it seems that an axiom of infinity should not create problems: we
encounter infinity in our physical world, so why not to assume it in set theory. What
is disturbing is that we have to add it explicitly, and such an ad hoc action may hide
some inconsistency in itself. In fact, some philosophers claimed that the source of
inconsistencies was a too liberal usage of infinity. After a century of experience with
axioms of infinity we are not so much worried anymore; yet it is good to keep it in
mind.

The Theory of Types also reflects the idea that mathematical objects are mathe-
matical structures. Recall that a structure has a universe, which is a set of elements,
then some relations, for instance unary relations which are subsets of the universe,
then it may contain higher order relations, for instance sets of sets of elements, and
so on. So the universe of objects in the Theory of Types is like a huge universal
structure, except that in structures we only allow objects up to a finite order, while
in the Theory of Types we have all orders. It is not surprising then that the Theory of
Types is able to serve as a foundation for most of mathematics, as has been shown
in Principia Mathematica.

Impredicative Definitions, Semantical Antinomies
and the Hierarchy of Languages

A possible explanation of the vicious-circle principle is by the concept of predicative
and impredicative definitions. Roughly speaking, a set, or a class X, is defined by

3.1 The Axioms of Set Theory 161

a predicative definition if it is defined by a condition φ that only speaks about objects
different from X. Formally, this means that the range of quantifiers in φ must not
include X as an element. Otherwise the definition is impredicative.

Example Let x be the intersection of all sets y that satisfy a given condition φ (in
symbols, x =⋂{y;φ(y)}). This set can be defined as the set of all elements z that
satisfy the following condition:

z is an element of every set y that satisfies φ,

(in symbols, z ∈ x ≡ ∀y(φ(y)→ z ∈ y)). The set x is not mentioned explicitly in the
condition, but it may happen that x satisfies φ. Thus the condition implicitly refers
also to x. Hence this definition of x is impredicative. This example also shows that
there are quite natural and innocent looking definitions which are impredicative.

Although the Theory of Types avoids Russell’s paradox, it does use impredica-
tive definitions—there is no restriction on the quantifiers used in the Typed Com-
prehension Axiom Schema. If we restricted the schema to predicative definitions,
the resulting theory would be very weak. For example, we would not be able to de-
fine the natural numbers as the least set containing 0 and closed under the successor
function S because such a set is defined as the intersection of all sets containing 0
and closed under the successor function S.

Impredicative definitions were one reason for Russell to introduce a more com-
plicated version of the theory; another reason was the aim to avoid semantical anti-
nomies. Although semantical antinomies seem to be less dangerous, we cannot ig-
nore them. It does not make sense to make a system proof against a particular type
of antinomy while allowing a contradiction of another type to sneak in.

Recall Berry’s paradox: the first number that cannot be defined by an English
sentence with at most one hundred letters. One can easily dismiss this paradox by
pointing out that English is a tremendously complicated object, especially when
we want to talk about meaning (semantics), and the meaning of many words and
sentences is vague, so we cannot say that they really define anything. Nevertheless,
we do not have to use a natural language in this paradox. We can take a formal
logical language for which the semantics is clear and which is strong enough to
express all the necessary concepts. So what happens if we state the paradox in such
a precise way?

Recall what we have learned in Chap. 2:

1. for a given language L it is possible to precisely define what it means ‘definable
in L’,

2. but it is not possible to write this definition in the language L itself.

Thus the paradox can be solved by distinguishing between the language and the
meta-language; in other words, by using a hierarchy of languages.

Russell decided to incorporate the hierarchy of languages in his Theory of Types.
For a mathematician, it may seem a useless complication, but for a philosopher, it
perfectly makes sense. Why should one use a formal system with logical derivations

162 3 Set Theory

defined precisely in order to talk about sets, while leaving considerations about the
hierarchy of languages on an intuitive level? The system that he introduced is called
the Ramified Class Calculus [252]; it is an extension and a refinement of the simple
Theory of Types described above. In order to make his system immune against se-
mantical paradoxes, Russell proposed viewing the comprehension principle not as a
property of the set universe, but as an act by which we define a new set. So the set
is not shown to exist in the universe that we study, but merely defined by us. This
implies that the set is on a higher level of the hierarchy of languages no matter what
level of types we are considering. Formally, this means introducing another stratifi-
cation into infinitely many orders. Hence every set has two indices: one for its type
and another for its order. The order does not influence the relation of membership ∈,
so again a set of type i+1 contains sets of type i, the orders do not matter. The order
is important only in the comprehension axiom schema. The variables of the language
of ramified class calculus also have the two indices; for example, 3x2 is a variable
for sets of type 2 and order 3. When applying the comprehension to a formula φ we
take the maximum of the orders occurring in φ and the set which it defines will have
the next order.2 Thus each type ‘ramifies’ into infinitely many orders.

Let’s look at what happens with Berry’s paradox. When we define the least num-
ber satisfying a condition, we have to talk about numbers only up to an order j .
The number that we define will be of order j + 1 so it will be different from those
from which we took the minimum. More precisely, its value as a number will be
the minimum, but it will be a different object. This looks like a very good safeguard
against antinomies and it certainly is, but the price is too high. In particular the least
number principle is the minimum that we would like to have in the arithmetic of
natural numbers. However, the form of this principle that we obtain in the Ramified
Class Calculus is very weak, so weak that it is practically useless.

The Ramified Class Calculus is too weak to be used as the foundations of math-
ematics, unless we add more axioms. In an attempt to save his system Russell in-
troduced the Axiom of Reducibility which says that for every set, there is a set of
the same type and of order 1 (the least order) containing the same elements. Unfor-
tunately, this axiom cancels the effect of orders—one can derive the impredicative
comprehension axiom schema for sets of order 1 and any type. Hence the Ramified
Class Calculus with the Axiom of Reducibility contains the unramified Theory of
Types and, therefore, it is not better in avoiding paradoxes.

The bottom line of this story is that it is hopeless to look for one hundred percent
safe foundations. In order to propose something that mathematicians might accept,
one has to risk that the system will be found inconsistent.

The Theory of Types is not used by mathematicians, but various systems derived
from it play an important role in proof theory, the λ-calculus, intuitionistic founda-
tions and functional programming. What might have been seen as a failure turned
out to be inspiration for many important results.

2More precisely, we have only to worry about the variables that are quantified, as they talk about
the ‘totality of all sets of a given order’, while parameters do not matter, as they talk about particular
elements.

3.1 The Axioms of Set Theory 163

Zermelo Set Theory

Ernst Zermelo
Courtesy of
Universitätsarchive
Zürich3

Zermelo’s aim was to preserve the results in set theory
proved by Cantor and to solve the problem with paradoxes
using Cantor’s suggestion that they are caused by very large
sets. Therefore, we should start with small sets and gradu-
ally produce larger and larger ones, but not create a huge
one all at once. In order to disallow such big jumps, we have
to restrict the comprehension axiom. Let us look at when it
should be safe to use the comprehension axiom according
to the theory that contradictions are caused by large sets.
Suppose we already have produced some sets, so to say, we
have them well in hand. Then for any property φ we should
be able to single out those which satisfy φ. The paradox ap-
peared because we wanted to decide property φ for all sets,
including those which had not yet been constructed.

This seems very plausible, except that we have to say
more precisely what it means ‘to have some sets well in
hand’. There may be different answers leading to different
systems. What Zermelo proposed was very simple and elegant: it means that all
sets from which we want to construct the new set must be contained already in a
previously constructed set. Thus knowing that the previously constructed set was
‘small’, we also know that the new one is small. Therefore, he proposed restricting
the comprehension axioms as follows.

The Restricted Comprehension Axiom Schema For every property of sets φ, if x
is a set, then there exists a set y which contains exactly those elements of x which
satisfy φ.

The difference between the unrestricted and this axiom schema is that we can
only define subsets of a given set. Russell’s paradox cannot be reproduced using
such a restricted comprehension principle, but it is less obvious than in the Theory
of Types, since in Zermelo Set Theory it is possible to have kinds of sets that do not
exist in the Theory of Types.

Because such a restricted comprehension schema does not increase the size of
sets, we cannot prove much from this principle alone. We do need axioms that grad-
ually increase sets. First of all we have to postulate the existence of at least one set.

The Axiom of the Existence of Sets There exists a set.

Sometimes this is assumed to be an axiom of logic; furthermore, it follows from
the Axiom of Infinity. Zermelo postulated the existence of the empty set.

Now we need some way of getting larger sets. Let us first consider axioms which
enable us to construct larger sets from those that we already have.

3Item No. AB.1.1165.

164 3 Set Theory

The Axiom of Pairing For every pair of sets x and y, there exists a set z whose
elements are precisely x and y. (The set z is denoted by {x, y}.)

The Axiom of the Union For every set x, there exists a set y that is the union of
the elements of x. Formally, z ∈ y if and only if there exists u ∈ x such that z ∈ u.

These two axioms enable us to produce the union of two sets. Other boolean
operations can be defined using the Comprehension Axiom Schema. The Axiom
of the Union, in this general form, is not essential for making Zermelo Set Theory
strong, but it will play an important role in Zermelo-Fraenkel Set Theory.

The Axiom of the Power-Set If x is a set, then there exists a set which contains all
subsets of x as elements and no other elements. (The new set is called the power-set
of x and it is denoted by P(x).)

This is a very powerful axiom; it produces very large sets. If x is a finite set with
n elements, the power-set P(x) has 2n elements. In the case of an infinite set x,
Cantor proved that P(x) has larger cardinality than x, so to say, it is ‘more infinite’
than x. Thus, by repeating the power-set operation, we get infinitely many types
of infinity in Zermelo’s universe of sets. But in spite of the strength of the power
set axiom, it still produces finite sets from finite sets. To get infinite sets, we have
to postulate the existence of at least one such set. Hence we start the process of
constructing sets from an infinite set. So, again, we have to postulate:

The Axiom of Infinity There exists an infinite set.

Zermelo Set Theory, as presented in his seminal paper [318] in 1908, contained
furthermore the Axiom of Extensionality and the Axiom of Choice, an important
invention of Zermelo. I will not state the Axiom of Choice now, as it is not important
from the point of view of the consistency and strength of the axiomatic systems. I
only mention a property which distinguishes it from other axioms: All the axioms
added on top of the restricted comprehension schema are special instances of the
schema. The Axiom of Choice is the only axiom of Zermelo Set Theory that is not of
this form. Thus the whole theory can be presented as the Axiom of Extensionality,
some cases of the comprehension schema and the Axiom of Choice.

Today we present Zermelo Set Theory as a theory based on first-order logic, but
Zermelo did not mean it so. He was a platonist, like Cantor, and believed that there
is an actual universe of sets and that the axioms that he proposed were true in this
universe. In particular, he did not think it was necessary to say what the properties
φ in the comprehension schema are. In a truly axiomatic system we must describe
explicitly what we mean by the properties. It was Skolem who in the early twenties
proposed to present Zermelo’s system as a theory based on first order logic and
properties expressible in a formal logical language. Zermelo was strongly against
such an interpretation.

3.1 The Axioms of Set Theory 165

Zermelo-Fraenkel Set Theory

For most results in mathematics, Zermelo Set Theory would amply suffice. In some
cases, however, we do need more. Thus what is now accepted by the majority of
mathematicians as the set theoretical foundations is an extension of Zermelo Set
Theory called Zermelo-Fraenkel Set Theory. The extension was proposed indepen-
dently by Abraham Fraenkel (1891–1965) [74] and Skolem [271] in the early 1920s.
The extended system appeared in Zermelo’s paper [319].

The new idea is just another explication of Cantor’s suggestion that the paradoxes
are caused by large sets. Zermelo allowed turning collections contained in a set into
a set. The idea was that the collection is small as it is contained in a set. Skolem and
Fraenkel took a different interpretation of being small: small means to have a small
number of elements. The point is that for some collection Y which is not known
to be a set, we can define a mapping assigning elements from some set x onto Y .
Then, clearly, if x has a small number of elements, then also Y has a small number
of elements. Thus, according to Cantor, it should be safe to assume that Y is actually
a set.

At first glance it is not clear how strong this principle is, or even it is not obvious
that it allows us to prove the existence of more sets. It turns out that it is a very strong
principle, provided that we add another natural axiom, the axiom of the existence of
the union of sets contained in a set. For now, I will confine myself to stating the new
principle as an axiom schema.

The Replacement Axiom Schema Let F be a function defined on a set y. Then the
image of y, which consists of all F(x) for x ∈ y, is a set too.

To state the axiom formally one has to specify the meaning of ‘function’. This
is done in the same way as in the case of the Comprehension Axiom. Namely, one
has to state it as a schema for every possible definition of a function by a formula
of the language of set theory. I do not know why exactly the word ‘replacement’ is
used here, but the following description of the principle is a likely explanation: If we
replace elements of a set by some other elements, the resulting entity is still a set.

I will use the standard abbreviation ZFC for this theory. The letters ‘Z’ and ‘F’
are, clearly, the initials of Zermelo and Fraenkel. The letter ‘C’ stands for ‘choice’;
it is intended to stress that the axiom of choice is among the axioms.

Set Theories with Classes

Ordinary mathematicians do not like talking about logical formulas; they prefer
real mathematical objects. The axiom schemas of Comprehension and Replacement,
when stated properly, need the concept of a formula, but there is a way to avoid it.
It requires introducing a new type of objects, called classes. The first such system,
introduced by von Neumann [207], was based on the concept of a function, instead

166 3 Set Theory

of sets and classes. Bernays proposed a version based on sets and classes [23], which
was later simplified by Gödel [97]. The resulting system is called Gödel-Bernays Set
Theory, or von Neumann-Bernays Set Theory.

In this system we have two kinds of objects: sets and classes. For the sake of
convenience, it is better to call a class either of the two and say that sets are a special
kind of class. In fact, we define which classes are sets: sets are those classes which
are elements of a class. (Thus what we called The Principle of Being an Element for
sets in Chap. 1, becomes the definition of a set.) A class which is not a set is called
a proper class. We think of proper classes as being too big to be used as elements of
a set. The idea of proper classes corresponds to Cantor’s view that “large sets” may
be paradoxical. Those “large sets” are now called proper classes.

The comprehension axiom schema is modified as follows:

The Axiom Schema of Predicative Comprehension for Classes For every prop-
erty of sets φ, there exists a class which contains exactly those sets which satisfy
property φ.

In particular, we can prove that there exists the universal class V , the class of
all sets, by taking some property that is trivially satisfied by all sets. In the formal
presentation of this axiom schema the property φ should be a formula in which only
sets are quantified. If we treated sets and classes as separate entities, this would
mean that we only allow predicative definitions of classes.

The reason why this formulation of the comprehension principle avoids Russell’s
argument is the same as in the Theory of Types. Indeed, let φ be the property that
the set is not an element of itself. This defines a class and Russell’s argument yields
that the class is not a set, it is a proper class. One can prove that the class of all sets
exists and it is a proper class too. The relation between sets and classes is similar
to the relation between sets of two consecutive types in the Theory of Types, except
that we treat sets as a special kind of class, while the types are disjoint.

The advantage of the Schema of Comprehension for Classes is that it allows us
to identify properties of sets with classes and thus to avoid talking about formulas.
Let us look what happens with the Restricted Comprehension Axiom Schema. We
simply replace ‘property φ’ by ‘a class Y ’. (Note that it is customary to denote sets
by lower case letters and classes, which are not a priori sets, by upper case letters.)
As a result we get a single axiom instead of a schema which reads:

For every class Y and every set x, there exists a set z containing exactly those
elements of x which are elements of Y .

But this is only an awkward way of saying a very simple statement:

The Axiom of Subsets The intersection of a class and a set is a set.

In the same manner the replacement axiom schema is substituted by a single
axiom.

3.1 The Axioms of Set Theory 167

Clearly, we do not get such a simplification for free; we have to postulate some
axioms about classes. What we need is the above Schema of Predicative Compre-
hension for Classes. Too bad, we have again ‘properties’, ‘formulas’, etc.! Fortu-
nately, no—we can now replace the schema by a small number of concrete axioms,
a few instances of the schema. These axioms postulate the existence of the class that
encodes the membership relation ∈, the intersection of two classes, the complement
of a class and a few more slightly more complicated constructions of classes. Thus
eventually the whole system can be presented using a finite number of relatively
simple axioms and no reference to formulas, etc. is needed (see page 174).

Such a system is certainly more appealing to working mathematicians. From the
point of view of logicians, however, the difference between Zermelo-Fraenkel and
Gödel-Bernays set theories is not essential. In particular one can prove that what is
provable about sets in one system is also provable in the other one (a consequence of
the fact that the principle of comprehension for classes is stated only for predicative
definitions). So classes do not make the system stronger.

Zermelo’s Universe

Let us now try to imagine the universe of sets as given by Zermelo’s axioms. All
axiomatic systems for set theory, including Zermelo’s system, are incomplete in an
essential way, hence the universe is not determined uniquely.4 On the one hand,
there are sets that we know for sure that they must exist, namely those for which we
can prove it. On the other, we can disprove the existence of sets satisfying certain
definitions. Such a definition of a set is Russell’s formula from his paradox. We
also know that the universal set, the set of all sets, does not exist. If it existed, we
could use it as the parameter which restricts the comprehension schema and then the
schema would not be restricted, as every set is an element of the universal set. Thus,
using Russell’s paradox, or rather the argument in it, we can derive a contradiction
from the assumption that the universal set exists, hence it does not exist. Finally
there are sets which may but need not exist. This means that we can neither prove
nor disprove their existence. What I am going to describe will be in some, rather
weak, sense a minimal universe.

By the consideration above, the universe will not be symmetric; it will grow from
small sets into larger, infinite, with no largest set. Having at least one set, no matter
whether it is infinite or not, we can apply the comprehension schema with a property
which is never satisfied and we get the existence of the empty set. Now consider the
following operation defining a new set from a given set. Let x be given, take the
power-set of x and then take the union of it with x. Using set-theoretical notation it
is the operation which produces the set x ∪P(x) from x. In words, we extend x by
adding to it all its subsets. Starting with the empty set we will apply the operation

4Even if it were complete, it would not guarantee that there was a unique model.

168 3 Set Theory

Fig. 3.1 The three bottom
levels of the cumulative
hierarchy. Points represent
sets, lines the membership
relation

repeatedly. Let us denote by Vi the ith element in the sequence thus obtained. So
V0 is the empty set ∅, then V1 is ∅ ∪ P(∅), which is just {∅} the one element set
containing the empty set (as you can easily verify). Here are two more sets from the
sequence, see Fig. 3.1:

V2 = V1 ∪P(V1)= {∅} ∪P({∅})= {∅, {∅}}
V3 = V2 ∪P(V2)= {∅, {∅}, {{∅}}, {∅, {∅}}}.

It looks rather complicated, but, in fact, Vi is determined by a simple condition: it
contains all sets that can be written using at most i−1 nestings of braces. These sets
form the cumulative hierarchy. ‘Hierarchy’ because they contain more and more
complex sets, and ‘cumulative’ because the sets preceding Vi are contained in it
as subsets. I am using the more complex operation instead of just the power-set
operations in order to make the cumulative character of the hierarchy quite apparent.
Since we start with the empty set, the power-set operation alone would suffice.

If we do not assume the Axiom of Infinity and instead we only postulate the
existence of at least one set, then every set in the minimal universe is contained in
some Vi . Hence the universe is the infinite union V0 ∪ V1 ∪ V2 ∪ · · · . Let us call
this union Vω. Here the letter ω stands for the first infinite ordinal number. I will
introduce infinite ordinals shortly; for the time being, we can treat it as a convenient
symbol.

Now assume that we do have an infinite set, say a set a. We can construct the
cumulative hierarchy in the same way starting with a. The resulting universe will,
unfortunately, depend very much on the initial set a. The most natural thing then is
to take Vω as the infinite set. This is in accord with the rule of a thumb used to make
set theories stronger: once we can somehow visualize the whole universe given by
our axioms, we can add the axiom that such a collection is also a set.

In order to get a nice picture, we have to introduce more notation. We will denote
by

Vω+1 = Vω ∪P(Vω)

Vω+2 = Vω+1 ∪P(Vω+1)

etc.

So in this way we have extended the cumulative hierarchy of sets beyond the finite
levels. The resulting universe is the union of all levels.

3.1 The Axioms of Set Theory 169

Zermelo-Fraenkel’s Universe

There is no reason not to extend the cumulative hierarchy beyond the levels
Vω,Vω+1,Vω+2, . . . by defining the next level to be Vω+ω =⋃

n Vω+n. Once we
have Vω+ω , the power-set axiom yields Vω+ω+1,Vω+ω+2, The axioms of Zer-
melo Set Theory do not enable us to deduce that Vω+ω is a set. The operation that
we need is the union of an arbitrary number of sets. More precisely, we need the
universe of sets to be closed under taking such an infinite union. In set theory, if
possible, we prefer to break operations into more elementary ones. This union can
be composed of two operations. First we take the set of the sets that we want to unite,
say X. In our case, we can schematically denote it by X = {Vω,Vω+1,Vω+2, . . .}.
Then we take the union of the set X, which means that we unite the elements of X.
In our case it is

⋃
X =⋃n Vω+n.

Thus we need two axioms. One should guarantee the existence of the set X, the
other the existence of the union. For the first one, we use the Replacement Axiom
Schema. The assignment n �→ Vω+n is definable and every n is in the set Vω . Thus
we can deduce that X is a set. The second is the Axiom of the Union.

Equipped with these tools and having Vω+ω,Vω+ω+1,Vω+ω+2, . . . , we can go
on and take the union of this sequence. Let us denote it by Vω+ω+ω . Then we can
apply the power-set operation and so on.

In order to understand this process, we need to study the concept of a transfinite
ordinal number. Furthermore, we should know that each new step in the cumulative
hierarchy introduces a higher cardinality and along with it also larger ordinal num-
bers. I will explain transfinite ordinals and the hierarchy of infinite cardinal numbers
shortly. For now, let us use these concepts intuitively.

Having a countably infinite set, we can show that the cumulative hierarchy con-
tains Vα for every countable ordinal α. It is clear that we obtain a lot of sets and lot
of cardinal numbers in this way. However complicated the structure of sets looks
like already at these stages, this is only a beginning. The first uncountable set ap-
pears in Vω+1; we denote its cardinal number by ℵ1. From this set, we get levels
Vβ for all ordinals of cardinality ℵ1. But we are still extending the hierarchy only
using cardinalities that appear in Vα for α countable, while producing higher and
higher cardinalities. We produce a huge amount of new cardinalities before we use
up ordinals whose cardinalities appear in levels Vα , for α countable. Then we will
use the ordinals whose cardinalities appear in Vβ , for β of cardinality ℵ1, and so on.

Watching the beginning of the process of constructing sets in the cumulative
hierarchy, we see that there is a very strong positive feedback in it that causes a
tremendous explosion of the universe of sets. So the apparently minor extension of
Zermelo’s system of axioms by the Replacement Axiom Schema has a very dramatic
effect.

In mathematics, cardinalities larger than ℵ1 are not used very often. Nevertheless,
human curiosity does not have any limits. The question whether there are even larger
cardinals than those that we obtain in this process has attracted attention since the
very beginning of set theory.

170 3 Set Theory

Cleaning Up the Universe

According to one theory an explosion of a supernova near our solar system swept
away the cosmic dust from our neighborhood. Therefore, our lucky civilization can
watch stars on bright nights. This certainly has greatly helped the development of
all science.

But let’s get back to set theory. The cleaning process that we are going to con-
sider has little to do with that theory. It is rather related to the well-known Occam
razor which suggests getting rid of all unnecessary concepts. Following Cantorian
tradition, it is unpopular to prohibit something in set theory. If a set can exist, then
in “Cantor’s Absolute” the ideal world of sets, it does exist. Hence, by forbidding
some sets, we get narrow-minded, and decide to study only a part of reality. Still
there are sets which most set theorists give up voluntarily. Consider, for example, a
set x which has a unique element which is itself; so x = {x}. Let y be another set
with the same property. By extensionality they are different because they contain
different elements x = y. If we take the elements of their elements, it is the same
and so on. Structurally they are the same, but still they are different. The axioms
considered so far do not exclude such sets, but such sets will never appear in the
cumulative hierarchy of sets {Vα}α∈ON , where ON denotes the class of all ordinal
numbers. On the other hand, those which are in the hierarchy are nice, as they are
in some sense constructed from the canonical set ∅. Therefore, we prefer to have:

The Axiom of Foundation There are no sets outside the cumulative hierarchy.

This axiom may give an impression that we have restricted the universe of sets as
much as possible, which is not true. We will shortly meet another hierarchy, called
the constructive hierarchy, which restricts the universe much more—so much that
set theorists do not consider reasonable to accept the axiom that would only allow
sets from this hierarchy.

All this is only a brief description of what set universes of these theories can look
like. In order to get a more precise idea about it, one has to study models of set
theories. I will have more to say about it in Sect. 4.5.

Notes

1. The contradiction in Frege’s system and how to fix it. In modern terms the log-
ical system that Frege used can be explained as follows. There are two kinds of
entities: elements and classes connected by a membership relation ∈. As usual, I
will use lower case letters for elements and upper case letters for classes.

The first basic principle is Comprehension.

For every formula φ(x),

∃Y∀x (x ∈ Y ≡ φ(x)
)
.

3.1 The Axioms of Set Theory 171

The second principle, Frege’s Basic Law V, states the existence of a function F

from classes to elements such that

∀X∀Y (
F(X)= F(Y)≡ ∀z(z ∈X ≡ z ∈ Y)

)
.

Assuming extensionality for classes, F is a one-to-one mapping from classes to
elements and we can define a binary relation ε on elements by

x ε y ≡ x ∈ F−1(y).

Given an arbitrary formula φ(x), we get a class Y such that ∀x (x ∈ Y ≡ φ(x))

from the Comprehension Principle for classes. Let y = F(Y). Then

x ε y ⇔ x ∈ F−1(y) ⇔ x ∈ Y ⇔ φ(x).

This shows the Comprehension Principle for elements and the relation ε, hence
Russell’s paradox can be derived. (In this proof we have used extensionality for
classes, but one can prove the same without it.)

Frege’s Basic Law V is a special instance of a more general principle: for any
equivalence relation E , one can represent the classes of E by elements. This can
be formalized by introducing functions FE such that

∀X∀Y (
FE (X)= FE (Y)≡X E Y

)
.

In the Basic Law V, the equivalence relation is extensionality. Frege considered
another instance of this general principle where the equivalence E is equinumer-
ousity. (Equinumerousity is defined using binary relations on elements.) This
axiom, called Hume’s Principle by contemporary authors, says that there exists
a function X �→ #X that gives the cardinality of a set X as an element. In the
1980s, researchers studying Frege’s work discovered that in order to develop
arithmetic in Frege’s system, Hume’s Principle suffices and one does not need to
use the Basic Law V (see [30]). The theory with this restriction is equivalent to
Second Order Arithmetic (see page 295 for the definition), which is believed to
be consistent and in which most of main-stream mathematics can be developed.

2. The axioms of the Simple Type Theory. I will only describe a simplified version
of the original system. I will present it as an axiomatic theory based on first order
logic. This is not the way Russell did it. He did not separate set theory from logic.
For him, the entire system was logic; it was logic in a broader sense than we view
logic today.

The Simple Type Theory has infinitely many types of variables, one type for
every natural number. The type of a variable is given by its superscript. Then
the language contains one binary relation ∈ of membership. Only elements of
consecutive types can be in this relation. The elements of different types are
distinct. Therefore, atomic formulas are required to be of the form xi = yi , or
xi ∈ yi+1.

The Axiom Schema of Extensionality For every type i,

∀xi+1, yi+1(∀zi(zi ∈ xi+1 ≡ zi ∈ yi+1)→ xi+1 = yi+1).

172 3 Set Theory

The Axiom Schema of Comprehension For every type i and every formula
φ(xi) not containing variable yi+1,

∃yi+1∀xi
(
xi ∈ yi+1 ≡ φ

(
xi
))
.

Here I am assuming that the formula φ may contain free variables other than
x and I am using the convention that free variables are implicitly universally
quantified. Doing it more formally, one can list all free variables xi,p1, . . . , pn

of φ and write the axiom as follows:

∀p1 . . .∀pn∃yi+1∀xi
(
xi ∈ yi+1 ≡ φ

(
xi,p1, . . . , pn

))
,

where p1, . . . , pn are variables of arbitrary type and yi+1 does not occur among
them. We call p1, . . . , pn parameters.

The Axiom of Infinity There are infinitely many elements of type 0.

The most natural way to state this axiom is to postulate the existence of the
successor function: there exists a function S defined on elements of type 0 (an
object of type 1) that satisfies the first two axioms of Peano, see page 30.

Russell, however, considered such an approach unacceptable. He wanted to
derive the axiom from logical axioms, but since this was not possible, he wanted
at least to state it in such a way that it would not postulate the existence of any
special structure. So Whitehead and Russell observed that one can define a func-
tion S on type 2 objects such that S satisfies the two axioms if and only if there
are infinitely many objects of type 0. Hence, in order to postulate the existence
of infinitely many objects of type 0, one does not have to state the existence of a
special set, one only needs to postulate a property of a definable structure.

The idea of this definition is to think about a number n as a set of all sets with
precisely n elements (of type 0). Thus 0 is the set that contains only the empty
set; 1 is the set of all one-element sets etc. The next idea is that one can define
S(n) by saying that it is the set of all sets that have “one more element” than a
set in n. More precisely, x is in S(n) if and only if there exists a y ∈ n and an
element a ∈ y such that x = y∪{a}. Then, one defines the natural numbers as the
least set N of type 3 that contains 0 and is closed under S. So to state the axiom
of infinity, one only needs to say that this S and this N satisfy the two axioms of
Peano.

This is certainly only a historical curiosity. There are many ways to state the
axiom of infinity and one may argue about which is more “logical” and “natural”.

In the original system Russell and Whitehead considered not only sets, but
also relations of arbitrary large numbers of arguments. In particular, above we
had only sets of type 1, while they had sets, binary relations, ternary relations,
etc. of type 1 and similarly for higher types. As far as the strength of systems is
concerned, we do not loose anything by restricting ourselves to sets. Relations
can be coded by sets of pairs, triples, etc., as we have seen in the previous chap-
ter. But note that using the standard definition of a pair, which is {{a}, {a, b}},
we code binary relations on type 0 by sets of type 3, which is rather unnatural.

3.1 The Axioms of Set Theory 173

Clearly, if one wants to use the system, one takes the system with relations, while
if one wants to study the system, the simpler one is better.

3. The axioms of Zermelo-Fraenkel Set Theory. The language of the theory has one
binary relation ∈, the membership. Unlike the Theory of Types it has only one
sort of object. I use the same convention about free variables (parameters) in the
axiom schemas as above.

The Axiom of the Existence of Sets ∃x(x = x). (Usually this is already as-
sumed in logic.)

The Axiom of Extensionality ∀z(z ∈ x ≡ z ∈ y)→ x = y.

The Axiom Schema of Comprehension (also called, of Subsets or of Separa-
tion) For every formula φ(x) that does not contain the variable z,

∀y∃z∀x(x ∈ z≡ (x ∈ y ∧ φ(x))
)
.

The Axiom of Pairing ∀z∀u∃y∀x(x ∈ y ≡ (x = z∨ x = u)).

The Axiom of the Union ∀y∃z∀x(x ∈ z≡ ∃u(x ∈ u∨ u ∈ y)).

The Axiom of the Power-Set ∀y∃z∀x(x ∈ z≡ ∀u(u ∈ x→ u ∈ y)).

The Axiom of Infinity ∃y(∅ ∈ y ∧ ∀x(x ∈ y→ x ∪ {x} ∈ y)).

The Axiom Schema of Replacement (also called, of Collection) For every for-
mula φ(u, v) that does not contain the variables w, z,

∀u∀v∀w((φ(u, v)∧ φ(u,w)→ v =w
)

→∀y∃z∀v(v ∈ z≡ ∃u(u ∈ y ∧ φ(u, v)
)))

.

The Axiom of Foundation (also called of Regularity)

∀x(x = ∅→ ∃y(y ∈ x ∧ y ∩ x = ∅)).
The Axiom of Choice

∀x(∀y(y ∈ x→ y = ∅)∧ ∀y, z(y ∈ x ∧ z ∈ x ∧ y = z→ y ∩ z= ∅)
→∃u∀y(y ∈ x→|y ∩ u| = 1

))
.

I denote by |x| the cardinality of the set x. I stated the condition on cardinality
in this way for the sake of brevity, but it can easily be expressed using only the
basic notions: ∃v(v ∈ y ∧ v ∈ u∧ ∀w((w ∈ y ∧w ∈ u)→ v = w)). The Axiom
of Foundation is stated differently than on page 170, but the two statements are
equivalent (using the remaining axioms).

The axioms of the Schema of Comprehension are easily derivable from the
axioms of the Schema of Replacement, thus the first schema can be omitted.
Even such a reduced set of axioms is still not independent, but one can prove

174 3 Set Theory

that it cannot be reduced to a finite set—Zermelo-Fraenkel Set Theory cannot be
axiomatized by a finite number of axioms.

One can replace the Axiom of Infinity by the following instance of the com-
prehension schema:

∃u∀v(v ∈ u≡ (∃y(∅ ∈ y ∧ ∀x(x ∈ y→ x ∪ {x} ∈ y
))

→∀y((∅ ∈ y ∧ ∀x(x ∈ y→ x ∪ {x} ∈ y
))→ v ∈ y

)))
.

The Axiom Schema of Replacement can also be stated as instances of the unre-
stricted comprehension schema:

∀y∃z∀x(x ∈ z≡ (∀u,v,w((φ(u, v)∧ φ(u,w)→ v =w
)

∧∃u(u ∈ y ∧ φ(u, x)
))))

.

4. Gödel-Bernays Set Theory (von Neumann-Bernays Set Theory). The objects of
the theory are called classes; they will be denoted by upper case letters. Sets
are defined as those classes that are elements of classes. Sets will be denoted by
lower case letters. Thus ∀x φ(x) means ∀X(∃Y(X ∈ Y)→ φ(X)), and similarly
for ∃.

The axioms are the same as for ZFC with the following changes. The Exten-
sionality is stated for all classes. The Comprehension is replaced by the following
schema and an axiom.

The Axiom Schema of Predicative Comprehension for Classes For every
formula φ(x) that does not contain the variable Y and where all quantifiers bind
only sets,

∃Y∀x(x ∈ Y ≡ φ(x)
)
.

The Axiom of Subsets ∀X∀y∃Z(X ∩ y ∈Z) (The intersection of a class and a
set is a set.)

Furthermore, the axiom schema of Replacement is substituted by:

The Axiom of Replacement If F is a (class) function and x is a set, then the
image of x by F is also a set.

Note that in the axiom schema of Predicative Comprehension only a special
type of formula is allowed. The reason is not that a system with such an unre-
stricted schema would be inconsistent. Such a stronger system has been consid-
ered (it is called Kelly-Morse Set Theory). The reasons are different.

Firstly, the way the schema is stated satisfies the property of predicativity.
Given some classes (the class parameters of the formula φ) we assert that another
class should exist. So in order to obtain this “new” class, we refer only to some
given classes, we do not need to know all classes.

Secondly, it is possible to replace such a schema by a finite number of its in-
stances (which is not possible in the case of Zermelo-Fraenkel and Kelly-Morse

3.1 The Axioms of Set Theory 175

set theories). Thus Gödel-Bernays Set Theory can be presented by a finite num-
ber of axioms. The following eight axioms can be used instead of the Axiom
schema of Predicative Comprehension for Classes:

The Axioms for Class Formation

∃X∀x(x ∈X ≡ ∃y∃z(x = (y, z)∧ y ∈ z))

∀X∀Y∃Z∀x(x ∈Z ≡ x ∈X ∧ x ∈ Y)

∀X∃Y∀x(x ∈ Y ≡ x ∈X)

∀X∃Y∀x(x ∈ Y ≡ ∃y((y, x) ∈X))

∀X∃Y∀x(x ∈ Y ≡ ∃y∃z(x = (y, z)∧ z ∈X))

∀X∃Y∀x(x ∈ Y ≡ ∃y∃z(x = (y, z)∧ (z, y) ∈X))

∀X∃Y∀x(x ∈ Y ≡ ∃y∃z∃u(x = (z, (u, y))∧ (y, (z, u)) ∈X))

∀X∃Y∀x(x ∈ Y ≡ ∃y∃z∃u(x = (y, (u, z))∧ (y, (z, u)) ∈X))

Recall that we define the ordered pair (x, y) as the set {{x}, {x, y}}. The first
axiom says that there is a class that encodes the binary relation y ∈ z; the second
axiom says that for every two classes their intersection is a class; the third axiom
speaks about the existence of the complement; the fourth axiom postulates the
existence of the projection of a binary relation; the rest are “structural” axioms.
Clearly, the axioms correspond to syntactical operations on formulas: the atomic
formula, logical connectives (∧ and ¬, which is a complete basis), the existential
quantifier, a dummy variable and permutations of variables.

We say that this theory is conservative over ZFC. This means that a sentence
that mentions only sets is provable in ZFC if and only if it is provable in the
Gödel-Bernays Set Theory. Nevertheless, the richer language enables us to state
some new axioms that do not have equivalents in ZFC. An example is the Axiom
of Global Choice. It postulates that there exists a class function that chooses an
element from every nonempty set.

Classes are not used in traditional parts of mathematics, but they are useful in
some modern fields (for example, the theory of categories).

5. Finite Set Theory. This theory is closely related to Peano Arithmetic, as I men-
tioned on page 116. It is obtained from Zermelo-Fraenkel Set Theory by replac-
ing the axiom of infinity by its negation:

The Axiom of Finiteness ¬∃y(∅ ∈ y ∧ ∀x(x ∈ y→ x ∪ {x} ∈ y)).

It is not terribly important how we state the Axiom of Finiteness, but one may
prefer a more elegant way than this. The above statement only says that there
do not exist infinite sets of a particular form and we have to prove that there
are no infinite sets at all. Therefore, a more explicit way of forbidding infinite
sets may be more appealing. Furthermore, we may omit the Axiom Schema of
Comprehension, the Power-Set Axiom and the Axiom of Choice because they
are derivable from the remaining ones.

The ‘universe’ (the correct term used in logic is ‘the standard model’) is Vω ,
the set of all hereditarily finite sets (finite sets whose elements are finite sets,
elements of elements are finite sets, etc.).

176 3 Set Theory

3.2 The Arithmetic of Infinity

Infinity is one of the most intriguing concepts. Of course, philosophers have thought
about it a lot and mathematicians have always assumed that there are infinitely many
natural numbers and that lines ‘stretch to infinity’, etc., but as a mathematical con-
cept it seemed elusive for a long time. Cantor was the first one to present a math-
ematical theory of infinity. His most important result is that there is not only one
infinity, but there are higher and higher types of infinity. Another thing for which he
became famous is not a result, but a problem that he tried to solve unsuccessfully.
It is the Continuum Hypothesis which we will consider shortly. Roughly speaking it
is the question whether there is a type of infinity which is between the type of natu-
ral numbers and the type of real numbers. This shows that the realm of infinities is
fairly complex and deserves our attention if we want to understand the foundations
of set theory.

Recall that Cantor used sets in an intuitive way; he did not state and use axioms.
Therefore, we have to consider his results with some reservations. His results may
be false in some axiomatic systems; for instance, an axiomatic system may postu-
late precisely which infinities occur. In this section, therefore, we assume Zermelo-
Fraenkel Set Theory (with the Axiom of Choice), which is the axiomatic system that
corresponds to Cantor’s idea of the Absolute in the best way.

What Is Infinity?

Our everyday experience keeps reminding us of our limitations, our actions take
place in finite time and finite space. We cannot truly perceive infinity, like we cannot
imagine the fourth dimension, but as an arbitrary large number of dimensions can
be perfectly treated in mathematics, also infinity can be precisely defined once we
accept some set-theoretical principles. Mathematicians accepted the infinitude of
the natural numbers already in ancient Greece. In Elements, for example, Euclid
proved that the number of prime numbers is infinite, although he avoided the use of
the word ‘infinite’: “Prime numbers are more than any assigned multitude of prime
numbers.”5

In fact infinity has often been considered the border where problems become
nontrivial and thus interesting. It was used without being defined, which is not very
surprising, since the same was true about other mathematical concepts. However,
infinity was perceived more like a metaphysical problem than an object of math-
ematical research. Back then, it seemed paradoxical that infinite sets have some
properties that finite sets cannot have. Thus the nature of writings about infinity was
rather philosophical.

Galileo Galilei (1594–1642) in his Discourses and Mathematical Demonstra-
tions Relating to Two New Sciences [88], discussed the concept of infinity in arith-
metic and geometry. He also suggested how to resolve some paradoxes.

5Book 10, Proposition 20 [117].

3.2 The Arithmetic of Infinity 177

An essay that deals exclusively with infinity is Paradoxes of Infinity [28] of the
Czech6 mathematician and philosopher Bernard Bolzano (1781–1848). Bolzano no-
ticed that infinite sets have the special property that they have the same number of
elements as some proper subset of them. This is what distinguishes them from finite
sets. Somewhat later Dedekind accepted this property as the definition of infinite
sets. The popular explanation of this “paradox” is as follows. There is an infinite
hotel whose rooms are numbered 1,2,3, . . . which is fully occupied. When a new
guest comes, it is still possible to accommodate him. He will get the room number 1
and each guest already staying in the hotel will be moved to the room with the next
higher number. We can say that this is a “paradox of infinity” as it contradicts our
experience with finite objects.

The property used in Dedekind’s definition of infinite sets, stated more formally,
is that one can move elements of the set inside of the set so that at least one position
remains free. In terms of the arithmetic of infinite sets (which we will consider
shortly) it can be stated as the equation

1+ x = x,

where x stands for the size (cardinality) of an infinite set. Note that the choice of
the property is not completely arbitrary. The minimal requirement is, of course,
that at least one infinite set has such a property. As regards Dedekind’s definition,
clearly, the set of natural numbers has this property. A less trivial requirement is that
all infinite sets satisfy this property. Informally we can argue as follows. Since the
cardinality of the natural numbers is the least infinite cardinality, we should be able
to find a copy of the natural numbers in every infinite set. So we can write the set in
the form x + y, where x is a copy of the natural numbers and y is the rest. Then we
have 1+ x + y = x + y because we already know that 1+ x = x.

Now I hope that you have spotted something odd. We want to define infinite sets,
so how can we prove that the property is satisfied by all infinite sets? Yes, if the
statement above is interpreted literally, it is wrong. To be more precise, I should
have said that we need to show that there is no ambiguity in the definition, which
means that all natural alternative definitions are equivalent to this property. This can
really be proved.

Philosophers, since the time of Aristotle, distinguish two kinds of infinity: poten-
tial and actual. A potential infinity is a process that creates larger and larger finite
sets, sets whose sizes grow beyond any bound. If we view the natural numbers in
this way, it means that at any moment there is only a finite segment of them existing,
but we can extend this segment arbitrarily. If the universe started at certain point of
time and if it is never going to end, then the infinity of time is similar—at any point
in the history only finite time will elapse from the beginning, but still time will go
to infinity.

In Discourses, Galileo considered the following paradox. The set of square num-
bers, 1,4,9,16, . . . seems clearly to be smaller than the set of all positive inte-
gers 1,2,3,4, Yet there is a one-to-one correspondence between the two sets:

6Born and lived in the Kingdom of Bohemia.

178 3 Set Theory

n↔ n2. His explanation (in the words of Sagredo) is that we should only allow
potential infinity. Then we only look at finite intervals [1, n]. As n goes to infinity,
the density of square numbers in these intervals goes to zero, which demonstrates
that the set of squares is smaller than the set of all positive integers. The answer of
modern mathematicians to the question whether the set of squares is smaller than
the set of all positive integers is ‘It depends’. If you use cardinality as your measure,
then they have the same size. If you use density, then the set of squares is smaller.
One reason why the view that infinity can only be potential prevailed for such a long
time was Euclid’s authority. The Common Notion No. 8 of his Elements reads: “The
whole is greater than the part.” This explicitly prohibits actually infinite sets.

An actual infinity is an infinite set that has already been entirely created. View-
ing mathematical objects as structures requires accepting actual infinity. The natural
numbers viewed as a structure is an object that is finished; it is an actual infinite
structure. Probably, one thing that significantly contributed to the shift from accept-
ing only potential infinity to accepting actual infinity was the discovery that the real
numbers can be defined from the natural numbers. Recall that it is easy to define
the rational numbers from the natural numbers. Then the real numbers can be de-
fined using certain sequences of rational numbers or using certain subsets of rational
numbers. Each of these definitions requires infinite series or infinite sets of rational
numbers. For example, if we define a real number by its decimal expansion (which
means as the limit of decimal fractions) we need the entire sequence to specify a
real number. This shift culminated in the work of Cantor whose theory not only
used actual infinity, but also introduced an infinite hierarchy of infinities.

A revival of the philosophy of potential infinity occurred at the beginning of the
20th century as a reaction to the paradoxes in set theory. The proponents of this
view blamed the paradoxes on using actual infinity. Such an approach, however,
requires finding a different way of defining real numbers. Essentially, one has to
abandon the reduction of the real numbers to the natural numbers and introduce the
real numbers as a primitive notion. Most mathematicians prefer the comfort of using
actual infinity, as well as its power.

Counting Infinite Sets

The cardinality of a set is, as usual, the number of elements of the set, except that
now we are considering infinite sets. From now on, I will speak about infinite cardi-
nalities instead of the less precise types of infinity, as it is common in set theory. It
is convenient to represent every infinite cardinality by a fixed set, in the same way
we did for finite numbers; these representatives will be called cardinals. Further-
more, we need symbols to denote infinite cardinals. For this purpose, the first letter
of the Hebrew alphabet has been chosen, the letter ℵ called aleph. Cardinals will be
distinguished by indices at aleph; for example, ℵα .

The first technical problem that we have to solve is how to measure the cardinality
of a set. For finite sets we can use counting which is assigning numbers to the

3.2 The Arithmetic of Infinity 179

elements. This immediately suggests extending this procedure to infinity by saying
that a set is countably infinite, or simply countable if one can assign natural numbers
to the elements of the set in such a way that no element of the set is omitted in the
process. This kind of set is also called ‘denumerable’, but I will stick to the term
‘countable’. Let us assume that there are uncountable sets. Such sets can also be
enumerated in a way, but we need more numbers. This is done using transfinite
ordinals. (We prefer to say ‘transfinite’ instead of ‘infinite’ when speaking about
ordinal numbers.) Before explaining this important, but more complicated concept,
let us ask a more basic question: when are two sets of the same size? This can be,
in fact, defined without much theory. Recall that we say that two sets have the same
cardinality, or are equinumerous, if it is possible to assign elements of one set to the
elements of the other set in a one-to-one way without omitting any element from
either of the sets. This definition also suggests a way to compare the cardinalities.
A set X has cardinality at most as large as the cardinality of Y if we can assign
elements of Y to elements of X in a one-to-one way without necessarily exhausting
the set Y .

Based on our experience with finite sets, these definitions seem obvious and triv-
ial. They are easy, no doubt, but the point is to make the right decision about which
of the concepts that we use for finite sets should be used for infinite ones. We will
see soon that there are big differences in the arithmetic of finite and infinite numbers,
hence we must not expect that everything generalizes in a straightforward way.

It is not difficult to show that countable sets have to have the smallest infinite
cardinality. This cardinal is denoted by ℵ0. One can prove that there is the next
largest cardinality and this will be denoted by ℵ1. You have surely guessed that
there should be ℵ2,ℵ3, . . . , but let me stress that it is not obvious that the smallest
infinite cardinals can be enumerated in increasing order in such a way. As noted
above, Cantor showed that for every cardinal number, there is a larger one, but one
has to prove that among the cardinals larger than ℵ0 there is the smallest one (and
so on for ℵ1,ℵ2, . . .).

Once we accept the definition that two sets have the same cardinality if there
exists a one-to-one mapping from one set onto the other, we are led to a canonical
definition of finite sets and this in turn gives a canonical definition of infinite sets.
Thus a set is finite, if it has n elements, for n a natural number. This means pre-
cisely that a set is finite if it is empty or it can be one-to-one mapped onto the set
{1,2, . . . , n} for some natural number n > 0. A set is defined to be infinite, if it is not
finite. To show that Dedekind’s definition is equivalent to this one, take an arbitrary
set X and pick different elements from X one after the other. Thus we construct a
sequence x1, x2, Now either we exhaust X after a finite number of steps, then X

is finite (the assignment xi �→ i gives the required one-to-one mapping), or we get
an infinite sequence of elements. Having such an infinite sequence x1, x2, . . . we can
show that X satisfies Dedekind’s definition: define a mapping by xn �→ xn+1 for the
elements of the sequence and x �→ x for the remaining elements. It is a one-to-one
mapping and no element is mapped on x1. In particular the smallest cardinality ℵ0
is the cardinality of the set of natural numbers.

180 3 Set Theory

Fig. 3.2 The figure shows a way to enumerate all pairs of natural numbers. The fact that it can be
done was known already to Galileo Galilei. The simple formula for the number of a pair (m,n) in
this enumeration ((m+ n)2 + 3m+ n)/2 is attributed to Cantor

Some Simple Arithmetic

Before we proceed to larger cardinals, let us play with those that we already have
for a while. We need to learn at least some simple properties of infinite cardinals in
order to get an idea about them, although the concrete facts from this section will
not be used later.

We would like to add and multiply infinite cardinals. In order to define these
operations, we have to find set theoretical interpretations of these operations. Again,
it is quite easy. Let X and Y be two sets and suppose they are disjoint (which means
that they do not share a common element). Then the sum of the cardinalities of
the two sets should be the cardinality of the union of them. The product of the
cardinalities should be the cardinality of the Cartesian product of the two sets X×Y

(which is the set of all pairs of elements one from X the other from Y).
Let us consider some simple cases. Let n be a finite cardinal (a natural number).

Then n + ℵ0 = ℵ0. This is obvious, if we add a finite set to a countable set it is
still countable: we can enumerate it by first enumerating the finite set and then the
infinite one. It is not much harder to prove that ℵ0+ℵ0 =ℵ0. Namely, two countable
sets can be enumerated by alternatively taking elements from the first one and from
the second one. This can be expressed by 2 · ℵ0 = ℵ0. This implies 3 · ℵ0 = ℵ0,
4 · ℵ0 =ℵ0, etc., but in fact we have even ℵ0 · ℵ0 =ℵ0. A possible way to visualize
this relation is in Fig. 3.2.

These relations may look familiar to you. You have surely seen equations such
as∞+∞=∞ and∞·∞=∞ when you studied the calculus. The essence is the
same, but in the calculus∞ is merely an auxiliary symbol, it does not represent the
cardinality of a set.

There is nothing special about ℵ0 as far as addition and multiplication are con-
cerned. We have the same relations ℵn + ℵn = ℵn · ℵn = ℵn for any n. In general
both operations reduce to the operation of taking the maximum:

κ + λ= κ · λ=max(κ,λ),

for every two cardinals such that at least one is infinite. Consequently the arithmetic
of infinite cardinals is trivial when only plus and times is used. If you need to eval-
uate an arithmetical expression, just look for the largest term. However, this only

3.2 The Arithmetic of Infinity 181

concerns addition and multiplication. If we include more operations, then there are
many difficult problems about the arithmetic of infinite cardinals.

The arithmetical operations do not help us to get larger cardinals, unless we take
infinite sums or products. Let us consider

ℵ0 +ℵ1 +ℵ2 + · · · .
The meaning of the infinite sum is the same as of the finite one: take the cardinality
of the disjoint union of sets of these cardinalities. It is not difficult to see that this
number must be bigger than all cardinals ℵn (for n a natural number), and is the
smallest one with this property; so it is the next cardinal after all cardinals ℵn.

We need a name for it and you may propose to call it ℵℵ0 . Though ℵ0 and ω

are usually represented by the same set, we prefer to call it ℵω for a good reason.
Consider the next largest cardinal, which is ℵω+1. If you wrote ℵℵ0+1, then this
could mean simply ℵℵ0 , since ℵ0+1=ℵ0. So this would not be a good notation. But
it is not just a matter of notation; you should realize that the indices do not express
cardinalities, they express the position in an order. Therefore, we use ordinals for
indices and you see that we cannot understand infinite cardinal numbers without
understanding ordinal numbers. This is a special property of infinite cardinals; for
finite cardinals, we do not have to develop the theory of ordinal numbers, since the
two concepts coincide.

How to Get a Larger Cardinal Number—Cantor’s Diagonal
Argument7

Isn’t it nonsense to have so many infinite cardinalities? In the real world we meet
only finite structures. Maybe, space and time is infinite, but even this is not clear.
Shouldn’t we allow at most one kind of infinity?

Mathematicians, already before set theory had been developed, thought that there
were different types of infinity. Their intuition was based on experience with contin-
uous structures. They felt that there is a big difference between discrete structures
such as the natural numbers and continuous ones such as the real numbers. On the
real line we can do things which are impossible on integers. (For instance, we can
move smoothly from one number to another, or we can sum an infinite number of
positive reals and still get a finite real number.) This intuition turned out to be cor-
rect, but it is not as obvious as it may seem. Similar intuition suggested that spaces
of higher dimension should have more points; say, there should be more points in
a plane than on a line (more means that the cardinality should be bigger), but this
is wrong; a line, a plane, a 3-dimensional space, etc. all have the same number of
points. This follows from the general law ℵα · ℵα =ℵα .

The reason for accepting more infinities is the following theorem [37].

7The history of the invention of the diagonal argument is not quite clear. Some historians attribute
the idea to Paul du Bois-Reymond.

182 3 Set Theory

Cantor’s Theorem For every set x, the cardinality of the power-set P(x) (the set
of all subsets of x) is bigger than the cardinality of x.8

A nice feature of the theorem is that it holds for any set, finite or infinite. For finite
sets, we know that for a set of cardinality n the power-set has cardinality 2n. Thus
for finite sets the theorem can be proved simply by showing that n < 2n for every
n. In fact, we interpret the theorem in this way for every set: for an infinite cardinal
ℵα we define 2ℵα to be the cardinality of the power-set of a set of cardinality ℵα .
This also explains the use of the term ‘power-set’ for the set of all subsets. Hence
Cantor’s theorem is the inequality κ < 2κ for every cardinal number κ . Since the
Power-Set Axioms ensures the existence of the power-set for any set, we can get
larger and larger cardinalities. Consequently, there is no largest cardinal number.

I will explain the proof in a small example which proves the theorem for n= 4.
Suppose your task is to designate a name for a new product. The main condition that
you need to satisfy is that the name is different from those already being used. Thus
you get a list of the names of existing products and you want to designate a name
which is different. Suppose the list looks like this.

A B B A

B B B A

B A B A

B A A A

There are two more restrictions that need to be satisfied: we need a word using only
As and Bs and it should have length 4. We will use the special property of the list
that the number of words equals the number of letters in the words. Take the word
that appears on the diagonal. It is ABBA; coincidentally it occurs on the list. Let us
switch the first letter to B. The resulting BBBA is on the list, but if we keep B in the
first position from now on, the word will be different from the first word on the list.
If we switch the second letter, we ensure that the word will be different from the sec-
ond word on the list, etc. So, we simply flip all letters and get a word different from
all words on the list. In our example the word obtained by this algorithm is BAAB.

This construction is not very practical, as it can only be used when the number
of words is at most the number of letters in the words, but it is a very general one
and thus it can also be used in the case of infinite words. Furthermore, there are
many other applications of this ‘diagonal method’. The connection with sets is the
following one. Words of length 4, in our example, can be thought of as representing
subsets of a four-element set x. The letter A in the ith position of a word w means
that the ith element of the set x belongs to the set represented by word w, while B
means that it does not belong to it. Hence in general the construction shows that,
given n subsets of an n-element set, we can always construct another subset, which
implies that the number of subsets is bigger than n. The same argument can be used
for infinite sets, hence subsets of a set of cardinality κ cannot be enumerated by κ ,
thus 2κ > κ .

8See also Theorem 2 on page 41.

3.2 The Arithmetic of Infinity 183

Before going on, let us pause and ponder the meaning of such results. Once
we know that there is no canonical way how to choose axioms of set theory and
we are only trying to collect some reasonable and hopefully consistent ones, such
theorems on cardinalities seem of dubious importance. Why don’t we simply first
accept axioms that decide the cardinalities following our intuition and then add other
axioms so that the system is still consistent? There are various reasons for not doing
it in this way. In particular, Cantor’s proof is simple and clear, thus any system which
somehow prohibits such an argument cannot be very natural. The most important
reason, however, is that big cardinalities give big power to the theory, while axioms
prohibiting large cardinals do not make the theory substantially stronger. As long as
they do not lead to a contradiction, it is good to have such strong means. We will
see that in the section on large cardinals.

The Continuum Hypothesis

Cantor denoted the cardinality of the real numbers by c, where c stands for the “con-
tinuum”. He knew that c= 2ℵ0 . Having proved that c> ℵ0 he wondered whether c
is the next infinity after ℵ0, that is, whether c=ℵ1. As he was not able to construct a
subset of reals that was neither countable nor equinumerous to c, he conjectured that
c is, indeed, the next cardinal number. This became known as the famous Continuum
Hypothesis. Hilbert included this conjecture as the first problem, “Cantor’s Problem
on the cardinality of Continuum”, in his list of open problems presented at the In-
ternational Congress of Mathematicians in 1900 [125]. Set theory was not accepted
very eagerly by most mathematicians at that time, so it is rather surprising to find
a problem on set theory on the list of the most important problems of 1900. It was
not only because logic and foundations were areas in which Hilbert was interested,
but also because the question is really fundamental. Stated not quite precisely, but
understandable for everyone, the question is: How many real numbers are there?

Using notation for infinite arithmetic the hypothesis can be stated simply as
2ℵ0 = ℵ1. Thus it can be regarded as a hypothesis about arithmetic of infinities.
Soon it turned out that there were many similar statements that nobody was able to
prove or disprove. In particular for every ℵα , the only available information on 2ℵα
was Cantor’s theorem: ℵα < 2ℵα .

Again it was Gödel who made the first big step towards solving the problem.
In 1938 he proved that the Continuum Hypothesis is consistent with the Zermelo-
Fraenkel axioms (with the Axiom of Choice) [97]. In fact he proved it for the Gen-
eralized Continuum Hypothesis which states 2ℵα = ℵα+1 for every α. This meant
that either the Continuum Hypothesis was provable, or independent. One more gen-
eration of logicians had to grow up before the problem was solved. In 1963 the
American mathematician Paul J. Cohen (1934–2007) showed that the Continuum
Hypothesis is independent from the Zermelo-Fraenkel axioms, provided that they
are consistent [46]. His work has had a tremendous influence on set theory because
he not only solved a deep problem, but he solved it by introducing a method which

184 3 Set Theory

afterwards was used to prove independence results in set theory for many other
statements. (I will give a brief exposition of his proof in Chap. 4.)

Is this a happy ending of a famous problem? For some people, it is, for others, it
is not. Gödel, a prominent figure in this story, was definitely not satisfied because he
wanted to know, whether or not the Continuum Hypothesis is true. He considered
Zermelo-Fraenkel Set Theory as a very imperfect means to learn something about
the true world of sets. Since we can never obtain a complete axiom system, we have
to gradually augment Zermelo-Fraenkel Set Theory in order to decide the truth of
statements such as the Continuum Hypothesis. But how can we tell which axiom is
right and which is not? Gödel’s theorem implies that there is no rule or algorithm
which would enable us to gradually extend the theory into a complete one. Thus
we have to rely on ‘intuition’, a ‘naturalness’ of axioms, etc. (whatever these words
mean).

It may seem very easy to reject such a point of view in set theory, as based on
very vague concepts, some experience does support such a ‘realism’. It happens
sometimes that we cannot solve a problem using available theories, but when we
sort of step back and look at it from a higher perspective, we are able to solve it.
What realists assume is that this is not a rare event, but a general phenomenon.
Namely, there should always be a more general and stronger principle we can use to
enrich our system.

On the other hand, there are mathematicians and philosophers that do not share
this view. They believe that there is no true world of sets—there are only imaginary
worlds given by the axioms we choose, but none of them is more real than others. For
them, the independence of the Continuum Hypothesis on the axioms of Zermelo-
Fraenkel Set Theory and our inability to decide whether or not it is true by stronger
axioms is evidence that supports their belief.

Ordinal Numbers

Ordinal numbers are one of the most important concepts in the foundations of math-
ematics. In set theory they are used to number cardinal numbers, construct models of
set theory, in proof theory constructive ordinals are used to measure the assumptions
that we use in mathematics—the strength of theories, and there are many more uses
of them. The least nonconstructive ordinal (denoted by ωCK

1) is a rather mysterious
object—it is “the first one that we are not able to describe”.

The distinction between cardinal and ordinal numbers is important, since it is
present in natural language. We have one, two, three, etc. and we also have first,
second, third, etc. We have noticed that the two structures are isomorphic in the fi-
nite case. This includes the basic arithmetical operations. For cardinal numbers, the
meaning of+ is the cardinality of the disjoint union. For ordinal numbers, the mean-
ing of + is a little different. Suppose you have two disjoint ordered sets. Then you
can subordinate all members of the first set to the members of the second one. What
you get is an order on the union of the two sets. For example, suppose your team

3.2 The Arithmetic of Infinity 185

is fifth in the second league and the last team in the first league is twentieth. Then
your team is 25th in the absolute ranking. Though defined differently the operation
gives the same numbers.

For infinite ordinals the correspondence between ordinals and cardinals breaks
down. We have already considered the ordinal ω, the first infinite ordinal. While
adding one to the first infinite cardinal does not change it, ω + 1 is a new ordinal.
Let us look at the process by which we have obtained it. There are two basic steps.
First we have obtained ω. This was produced by a limit process; it was a result of
starting with zero and adding one infinitely many times. We imagined that we could
view the whole history of the process as far as infinity and then we applied again
the operation of adding one.

The two operations can be used to define general ordinals. Let us state it explic-
itly.

1. There is the smallest ordinal 0.
2. For every ordinal, there is a successor of this ordinal.
3. For any set of ordinals there is its supremum, which means the least ordinal larger

than all ordinals in the set.

In the third condition we speak about a set of ordinals and a supremum, but it is more
natural to think of it as follows. For every process of producing larger and larger
ordinals, one can find an ordinal that is beyond this process. I will demonstrate it in
some examples.

Let us suppose that we already have ω. Now we can again apply the process of
adding one, according to condition 2. Thus we get ordinals ω, ω+ 1, ω+ 2, ω+
3, According to condition 3, there is a limit of this process. We will denote it by
ω+ω or ω · 2. Take ω · 2 and apply the process of adding one. We get ω · 2, ω · 2+
1, ω · 2+ 2, ω · 2+ 3, The limit is ω · 2+ω= ω · 3, etc.

We see that the limit of the process of adding one results in adding ω. Let us take
this as a single step and let us apply it to 0. Thus we get 0, ω, ω ·2, ω ·3, ω ·4,
It is natural to denote the limit of this process by ω · ω or by ω2. Let us apply the
operation of adding ω to ω2. We get

ω2, ω2 +ω, ω2 +ω · 2, ω2 +ω · 3, ω2 +ω · 4,
The limit of this process is ω2 + ω2 which we can also denote by ω2 · 2. Doing the
same once again yields ω2 · 3. Thus we have described a process of adding ω2. We
can step up to the next level again and take the limit of this process. This will give
us ω3.

Now I could just wave my hands and say that in the same way we could get
ω4, ω5, . . . and eventually ωω. It seems obvious that it should be possible, but doing
it properly would require some work. Recall that even getting ω3 was not quite easy.
But we have barely got off the ground by producing ωω. We would need to define
exponentiation of ordinals in general in order to get to interesting ordinals.

Countable ordinals can be represented as subsets of the real axis. I have drawn
some in Fig. 3.3.

The picture, presented in Fig. 3.4, is different; it shows schematically ordinals
less than ωω. First we have finite ordinals, these are in the first row. Then we have

186 3 Set Theory

Fig. 3.3 Ordinals ω, ω+ 5,
ω2 and ω3

Fig. 3.4 Ordinals less
than ωω

finite multiples of ω. Between each of them we have ordinals ordered as ω. For
example, between ω and ω · 2 we have ω + 1,ω + 2,ω + 3, This is shown
schematically by the box ω . In third row we have finite multiples of ω2. Be-
tween each of them we have ordinals ordered as ω2. Between multiples of ω3 we
have ordinals ordered as ω3, etc. Though the boxes are of the same size in the pic-
ture we should think of the rows as getting denser and denser as we go down, since
in every row all the previous structure is repeated between the boxes.

It was necessary to go through a rather technical construction of these small ordi-
nals in order to observe an important phenomenon. It is the possibility of changing
the point of view and looking at things from a higher perspective. We start with a
simple process (adding one). Then we step up and view the whole infinite process as
a single step and thus we can define a new process whose steps are the infinite runs
of the simple one. We can repeat it and get higher and higher processes. Then we
can look at the hierarchy of these processes and think of going from a lower order
to the next highest order process as a single step of a new process. It may seem that
one can go on in this way forever, but it is only an illusion. Defining a higher order
process is simple only on low levels. When we go far enough, it requires coming up
with a new principle.

The ordinals that we have so far considered are constructive. It means, roughly
speaking, that they can be explicitly described. The theory of constructive ordinals
is very interesting. Although it may seem that constructive ordinals are just some
linear orders and thus have a rather simple structure, the opposite is true. I will
explain their use in Chaps. 6 and 7.

Constructive ordinals form only a small part of all countable ordinals. A fun-
damental theorem, proved by Zermelo, says that there are ordinals of all possible
cardinalities. Consequently, the ordinals play an important role in the universe of

3.2 The Arithmetic of Infinity 187

sets. The standard approach is to represent a cardinal κ by the least ordinal of cardi-
nality κ . In this representation cardinal numbers are some special ordinal numbers.
Consequently, cardinals are well-ordered. Furthermore the cardinal numbers can be
indexed by ordinal numbers and for every ordinal, there is a cardinal with that index.
Using the aleph notation we can state it as follows:

Proposition 4 For every infinite cardinal number κ , there exists an ordinal number
α such that κ =ℵα and, vice versa, for every ordinal α, there is an infinite cardinal
number ℵα .

In set theory an ordinal number can be used to encode the process of constructing
sets. We can think of ordinals as forming the spine of the set universe with other sets
as limbs and flesh around it.

Interlude—Archimedes and Ordinals

Mathematics is not only what is written. It is not possible to express all mathemat-
ical thinking with words and formulas. The same idea may be realized by several
definitions of different concrete concepts, but it is hard to define one common gen-
eralization. In the same way proofs and algorithms are based on tricks and strategies
which one can learn only by reading or talking a lot about mathematics. One of the
main goals of mathematics, and the same is true for all theoretical sciences, is to
develop concepts and theories so that more and more originally different facts are
covered by general results.

Here I want to show that an abstract idea that we use to construct some infinite
ordinals was in some sense used already by Archimedes, the greatest ancient math-
ematician (287–212 BCE). In his letter addressed to the King of Syracuse (the letter
known as The Sand Reckoner) he showed that contrary to the prevailing belief, the
number of grains of sand is finite. Ancient Greeks were very good in mathematics,
so surely many of them accepted the finiteness of the number of grains as a true
fact, but there was another misconception, a more subtle one, that though being fi-
nite the number of grains of sand is so big that such a number cannot be named. To
disprove it was the main goal of Archimedes. In order to refute it once and for all,
Archimedes decided to name a number bigger than the number of grains of sand that
would fill the whole universe. He, of course, assumed that the universe was finite.

In more detail, Archimedes accepted the heliocentric system of Aristarchus of
Samos (approximately 310–230 BCE) and assumed that the universe was a sphere
around the Sun. To estimate the radius of this sphere, he assumed that the ratio of
the distance of the Earth from the Sun to the radius of the Earth is equal to the ratio
of the distance of the Earth from the Sun to the radius of the universe. For us, this
is a ridiculously small estimate, but for the argument it makes little difference, all
the more so that he developed names for much larger numbers than he needed. Most
likely, his numbers suffice even for the size of the visible universe.

188 3 Set Theory

As a matter of fact, the ancient Greeks did not have a system of numerals suffi-
cient for this purpose and Archimedes had to develop a new system in order to be
able to express such a number. This is in parallel with infinite ordinals: to define
a large ordinal α in a constructive way, one has to develop a system of notation
for all ordinals less than α. The largest number for which the Ancient Greeks had
a name was a myriad which is 10,000. Archimedes started by observing that us-
ing the current system one could name numbers up to a myriad myriads, which is
100,000,000= 108 (‘myriad myriads’ is a legal language construction). The actual
number that he started with is not important, but having the initial number large
certainly helps us get bigger numbers. He called the numbers less than a myriad
myriads first numbers. He called units of the second kind the numbers that are myr-
iad myriads of first numbers. Then second numbers were composed (as sums) of
units of the second kind and first numbers. A myriad myriads of second numbers
were units of the third kind and third numbers were composed from units of the third
kind and second numbers. And so on.

To see how one can use Archimedes’ system to name numbers, let us compare
it with the system used nowadays. We use a thousand (103) as the initial number
instead of a myriad myriads (108). So our first numbers are numbers less than a
thousand. Our units of the second kind are numbers

1,000, 2,000, 3,000, . . . , 999,000.

Our second numbers are numbers from 1,000 to 999,999. Our units of the third kind
are

1,000,000, 2,000,000, 3,000,000, . . . , 999,000,000.

Take as an example

22, 354, 781.

It consists of 22 units of the third kind, 354 units of the second kind and a first
number 781. Thus the name of this number would be something like:

twenty two third units, three hundred fifty four second units and seven hundred
eighty one

Instead we call it:

twenty two millions, three hundred fifty four thousand and seven hundred
eighty one

Compared to Archimedes’, our system looks rather stupid. The drawback is
not the fact that we use a smaller initial number, it is the fact that we have only
a limited number of special names for the kinds of numbers. We use thousand,
million, milliard, billion, billiard, etc. in the European system, and thousand, mil-
lion, billion, trillion, etc. in the American system. Theoretically we could have a
kind of number for every number less than one thousand, and maybe more, but
with increasing numbers it becomes a linguistic problem. Thus only a few of these
names are used. In Archimedes’ system the kinds of numbers are directly num-
bered by numbers, so there is no problem to number the kinds of numbers up

3.2 The Arithmetic of Infinity 189

to a myriad myriads. In this way, Archimedes was able to name numbers up to
(108)108 = 100000000100000000 = 108·108

.9

Archimedes did not stop at this point, although these numbers sufficed for his
purpose. He suggested how one could go on using a new name ‘period’. He called
the numbers up to 108·108

the first period. Then he repeated the process described
above with the first numbers replaced by the first period in order to obtain the second
period. These were the numbers up to 108·108

.108·108 = (108·108
)2. Similarly, the

third period were the numbers up to 108·108
.108·108

.108·108 = (108·108
)3, and so on.

The number of periods introduced in this way was myriad myriads. In this way, he
introduced names for all the numbers up to

(
108·108)108 = (108)(108)2

,

which is 108·1016
.

The reason for such a lengthy description was not to calculate the largest number
that Archimedes considered. This is not important, as he was surely able to construct
larger numbers if he had any use for them. What is important is the structure of
the construction. Let us see how it corresponds to infinite ordinals. The point is to
replace the initial (finite) number a myriad myriads by “infinity”, namely by the first
infinite ordinal ω. With ω as the initial number, first numbers are finite ordinals all
natural numbers 0,1,2, Units of the second kind are ω,ω · 2,ω · 3, Second
numbers are ordinals from ω up to (but not including) ω · ω. Third numbers are
ordinals from ω2 up to ω3, etc. Thus we obtain ordinals up to ωω.

The next step was to define periods. Continuing the analogy, the first period are
ordinals up to ωω. The second period are ordinals up to ωω · ωω = (ωω)2, the third
period are ordinals up to ωω · ωω · ωω = (ωω)3, and so on repeating this process
ω-times. In this way we obtain the ordinal

ωω2
.

We did formally everything the same with the ordinal ω what Archimedes did
with 108. It is also possible to do the opposite. Given names for numbers in an
initial segment of natural numbers and a construction of an ordinal one can develop
a system of names for large numbers.

Another possible interpretation of Archimedes’s construction is in terms of com-
putation. We can think of what he did as computation of nn2

with n= 108. There are
several ways of computing this number; the one that corresponds to Archimedes’s
construction is shown in Fig. 3.5. The outermost loop corresponds to periods; y is
the number of first numbers in the zth period; the next loop corresponds to kinds, etc.

What may seem a little puzzling is that the program uses only the successor
functions, whereas I used other operations to define ωω2

. The reason is that I did
not bother to define arithmetical operations on ordinals using the successor function

9I am using the standard convention that xyz
means x raised to the power yz; it should not be

confused with (xy)z which is equal to xyz .

190 3 Set Theory

Fig. 3.5 A program for computing (108)(108)2

and fixed points. If this is done, one gets a complete correspondence between the
program and the ordinal.

Thus you see that there is also a link from ordinals to computations, more pre-
cisely, from notations for ordinals to programs.

Notes

1. The definition of finite sets. Instead of defining infinite sets we can define finite
sets because having such a definition we will define infinite sets simply as those
that are not finite. I will use the following two postulates:

a. The empty set is finite.
b. If x is finite, then by adding one element to x we obtain again a finite set

(formally, x finite implies x ∪ {y} is finite for every y).

It is clear that every reasonable definition of finiteness must imply these two
postulates. It is also obvious that if we have two definitions such that there are
more sets that satisfy the first one than those that satisfy the second one, then
the second definition is better. Hence, if we prove that there is a definition which
postulates the smallest class of finite sets and still satisfies a. and b., then we are
done: this will be the canonical definition of finiteness.

As it is more convenient to talk about classes instead of formulas, I will use
Gödel-Bernays Set Theory. However, essentially the same result can be proved
also for Zermelo-Fraenkel Set Theory. Our goal is to prove that there exists the
smallest class X with respect to the ordering by inclusion whose elements sat-
isfy a. and b. Taking the natural definition of X, which is the intersection of all
classes that satisfy a. and b. does not work. Such a definition uses quantification
of classes, which is not permissible in Gödel-Bernays set theory, so we have to
define X indirectly. The indirect definition is very simple: X is the class of all
sets y such that, for some n ∈ N, y has n elements. The formal definition of

3.2 The Arithmetic of Infinity 191

‘having n elements’ is as usual: there exists a one-to-one mapping from y onto n

(which is {0,1, . . . , n− 1}). It is a trivial fact that such an X satisfies a. and b.;
the minimality of X is proved by induction. Thus the crucial property that one
needs is that induction holds for N.

Now it is not difficult to prove that Dedekind infinite sets are exactly the sets
that are not in the X as defined above. However, the proof requires the Axiom
of Choice. Without this axiom, the definition of finiteness is a more complicated
matter.

2. What is “the true” cardinality of the continuum. There is no test that can confirm
or refute a conjecture about infinite sets. The only facts on which we can rely are
proofs from a set of axioms, and proofs of independence from a set of axioms.
Since the Continuum Hypothesis is independent from the axioms of Zermelo-
Fraenkel Set Theory, we can only use either intuitive arguments in favor of a
particular solution of this problem, or add new axioms that imply a solution and
argue that these axioms are “natural”. Several proposals of what the cardinality of
2ℵ0 should be have been made. Surprisingly there are few advocates of the valid-
ity of the Continuum Hypothesis, whereas there are several arguments supporting
the conjecture that it is false. One of these arguments is due to Gödel [98], an-
other one is based on the axiom Martin’s Maximum, a strengthening of Martin’s
Axiom (see page 363). Cohen’s point of view was more radical. He argued that
the Power Set Axiom, which is needed to obtain the continuum, is a very power-
ful axiom and thus it is unreasonable to expect that the continuum can be easily
reached from below. Thus 2ℵ0 should be very large (namely weakly inaccessible,
which means that it is ℵα with α a limit ordinal and it is not the limit of any set
X of smaller cardinals, |X|< 2ℵ0). I will mention some arguments in Chap. 7.

3. Infinite ordinal and cardinal numbers. An ordered set is said to be well-ordered
if every nonempty subset has the least element. In this definition we use the
most important property of the ordering of natural numbers. An ordinal number
is classically defined as an isomorphism type of a well-ordering. As is the case
with cardinal numbers, it is more convenient to take a representative for each
type of well-ordering and define it to be an ordinal number. The most natural
way of choosing such representatives is to extend the definition of natural num-
bers from page 31 to infinite ordinals. Thus an ordinal α is the set of all ordinals
less than α. In particular

ω= {0,1,2, . . .},
ω+ 1= {0,1,2, . . . ,ω},
ω+ 2= {0,1,2, . . . ,ω,ω+ 1},
. . .

Formally, von Neumann’s ordinals are defined as follows. Say that a set x is
transitive, if for all y and z, z ∈ y ∈ x implies z ∈ x.

Definition 1 An ordinal is a transitive set α such that every element of α is also
transitive.

192 3 Set Theory

Note that this implies that elements of elements of α are transitive and so on.
The apparently mysterious fact that such a simple definition implies that every
ordinal is a well-ordered set (where ∈ is the ‘less than’ relation), has a simple
explanation: it is a direct consequence of the Axiom of Foundation. The latter
axiom says that the relation ∈ is well-founded, which is a natural generalization
of ‘well-ordered’ to relations that are not necessarily orderings. In particular, if
x is a set on which ∈ defines a linear ordering (and this is the case of ordinals),
then this ordering is well-ordered.10

Since every ordinal α is the set of all ordinal less than α and α is well-ordered,
the class of all ordinals is also well-ordered. Let us apply this property to the set
of ordinals of a given cardinality. Thus we get that there exists the smallest ordi-
nal of this cardinality. Then it is quite natural to define that an ordinal number α is
a cardinal number, if no smaller ordinal has the same cardinality as α. For exam-
ple, ℵ0 is ω and ℵ1 is the first uncountable ordinal. We have to prove that every
set X can be “measured by such cardinals”, which means that it is equinumerous
to such a cardinal. The idea of the proof is as follows. Pick successively distinct
elements x0, x1, . . . from X. But instead of stopping after defining the sequence
for all natural numbers, if there are still elements left, we continue and construct
a transfinite sequence, which is a sequence indexed by ordinal numbers. In this
way we construct a bijection between the elements of X and an initial segment of
ordinal numbers. As every initial segment of ordinal numbers is an ordinal, we
thus obtain an ordinal α. Then we take the least ordinal that has the same cardi-
nality as α, which is the cardinal that is equinumerous to X. To do this argument
formally is not quite easy and it is necessary to use the Axiom of Choice. The rea-
son for using the Axiom of Choice is that there is no way to determine uniquely
the next element when defining the sequence; we have to choose an arbitrary one.

It is important to realize that cardinal numbers, as a subclass of ordinal num-
bers, are also well-ordered. Thus, for instance, there is the smallest cardinal
number larger than ℵ0,ℵ1,ℵ2, . . . , which we denote by ℵω. In particular, ev-
ery two cardinal numbers are comparable and for every ordinal α, there exists a
cardinal ℵα (which is typically a much bigger ordinal).

We have been assuming the Axiom of Choice in this note; without it the
structure of cardinalities is much more complicated.

4. Transfinite induction is, essentially, a generalization of mathematical induction.
The latter can be viewed as the special case of transfinite induction for ω. It can
be stated as the following theorem.

Theorem 6 Suppose that for a property of ordinals Φ the following is true. For
every ordinal α, whenever Φ holds for all ordinals less than α, then it holds
for α. Then the property Φ holds for all ordinals.

Property Φ holds for 0 because there are no ordinals less than 0. We cannot
only use an assumption that Φ(0) and Φ(α)→Φ(α + 1), as this does not work

10In theories without the Axiom of Foundation we have to add explicitly that the elements of α are
well-ordered by the membership relation ∈.

3.2 The Arithmetic of Infinity 193

for limit ordinals. Transfinite induction is just the disguised least number princi-
ple, so the theorem is an immediate consequence of the definition of ordinals.

5. Constructive ordinals and ordinal notations. In order to define concrete ordinals,
we need to introduce some structure on the set of all countable ordinals. This is
done mainly using continuous functions and operations. The topology on ordi-
nals is determined in a natural way by the ordering. It simply means that limit
ordinals, those that are not successors, are the limits of the set of ordinals below.
Thus when defining continuous operations we only need to define them on non-
limit ordinals. The operations +, · and exponentiation are defined by the same
clauses as for natural numbers. For example, addition is defined by the equations
α + 0= α and α + (β + 1)= (α + β)+ 1, where +1 is the successor function,
and by the requirement that it is a continuous operation. Note that addition and
multiplication are not commutative, in particular we have absorption 1+ α = α

for every infinite α.
An important set of ordinals is the set of ordinals that can be generated by the

three basic operations from 0 and ω. Let us study this set of ordinals. Observing
that ωα +ωβ = ωβ , if α < β , we get a unique representation in the form

ωα1 + · · · +ωαn, (3.1)

where α1 ≥ · · · ≥ αn for every nonzero ordinal, called the Cantor normal form.
For ordinals that are generated by the basic arithmetical operations, we can re-
cursively represent the exponents in Cantor normal form and eventually obtain
an expression built only using symbols for 0, ω, + and exponentiation. Further-
more, we only need exponentiation with the base ω. To simplify notation, we
write 1 instead of ω0, ω instead of ω1, n · α instead of α added n-times and n

instead of n · 1, for n a positive integer. For example,

ωω2+1 +ω3 +ω · 2+ 5.

There is a canonical sequence of such ordinals which eventually gets larger than

any element of the set, which is the sequence ω, ωω, ωωω
, ωωωω

, The limit
of this sequence, which is the limit of the set of all ordinals constructed in this
way, is denoted by ε0. The ordinal ε0 is considered to be a constructive ordinal
because we can explicitly describe all ordinals below. We have a unique repre-
sentation for every ordinal below ε0 and moreover we have an algorithm that
for every pair of distinct terms, determines which of the terms denotes the larger
ordinal. These two properties define constructive ordinals.

Though, as an ordinal number, ε0 is well beyond the set of natural numbers
ω, it is by no means less explicit than ω. In particular, if we, for some reason,
only trust in natural numbers, we can represent the ordinals below ε0 very easily
by natural numbers. The following is an elegant way of coding ordinals below
ε0 by natural numbers, which not only assigns a unique natural number to every
ordinal below ε0, but also every natural number is a code of such an ordinal. Let
p0,p1,p2, . . . denote the enumeration of primes in the increasing order (thus
p0 = 2, p1 = 3, p2 = 5, etc). For ordinals α < ε0, we define their number codes
N(α) by recursion. We put N(0)= 0 and for an ordinal α in the Cantor normal

194 3 Set Theory

form (3.1) we put

N(α)= pN(α1) · pN(α2) · . . . · pN(αn).

Let us compute the code of ωω + 2 · ω. First we have to rewrite it using 0, ω
and + as follows:

ωωω0 +ωω0 +ωω0
.

Then we can compute

N
(
ωω + 2 ·ω)= ppp0

· pp0 · pp0 = pp2 · p2 · p2 = p5 · 5 · 5= 13 · 5 · 5= 325.

This is, of course, only a technical means given by the need to represent or-
dinals as numbers. Once we have represented ordinals below ε0 by terms, it was
clear that we could do it. Representing ordinals by terms is the standard way
of proving that an ordinal is constructive. The system of such terms is called
an ordinal notation. Thus ε0 (as the set of ordinals less than ε0) has an ordinal
notation based on constant symbols 0 and ω and the operations of addition and
exponentiation. As ε0 cannot be represented by such a term, we have to use a
new name when we want to talk about it.

Going back to our interpretation of Archimedes’s number system in terms of
infinite ordinals, we can think of it as a system based on 0,1,ω, addition, mul-
tiplication and ω new names. If he had not used the new names, he would have
only got ordinals below ωω. Thus, in order to continue, he needed a name for
ωω. Instead of giving a name to this ordinal, Archimedes introduced a new name
‘numbers of the second period’ for the whole segment of ordinals from ωω to
ωω·2. Using a name for the operation α �→ ωα instead of his ω names, he would
get all ordinals below ε0.

Next we define the Feferman-Schütte ordinal Γ0, another of the milestones
in constructive ordinals. Suppose we have reached ε0 and we want to continue.
First we do the same as we did with ω: we start with ε0 and close it off under the
arithmetical operations. Then we repeat this construction again and again. Think
of closing off under the three arithmetical operation as a single step in a new
process. Let us denote ε1 the first that we get after ε0, let ε2 be the next and so
on. Precisely it means that we define εα to be the αth number ξ such that ωξ = ξ .
These numbers are called ε-numbers. Thus we have defined a continuous func-
tion ξ �→ εξ . We can find names for a lot of new ordinals using this function, but
since every continuous function has a fixed point, there is a number α such that
εα = α (namely, it is the limit of ε0, εε0 , εεε0

, . . .). We do not have a name for
this epsilon number, as its index is the same as the number. We have to introduce
a new name (which is not Γ0, be patient). Clearly we can do the same as we did
with exponentiation—we can enumerate the fixed points of the ε-function. Then
we want to do the same again and again. Clearly, we have to introduce notation
to keep this process under control.

Let us call ε-numbers φ1-numbers, and denote by φ1(α) = εα . Let us call
φ2-numbers the fixed points of the φ1 function (which is the ε-function) and
denote by φ2(α) the αth φ2-number. In general, φα(ξ) is defined to be the func-

3.2 The Arithmetic of Infinity 195

tion which enumerates the ordinals that are fixed points of all functions φβ(ξ)

for β < α. This sequence of functions, presented as a function of two variables,
φ(α,β)= φα(β), is called the Veblen function.

The Veblen function is continuous, hence there is a fixed point also of this
process of generating new ordinals. This is the Γ0. One can show that it is the
first ordinal γ such that φ(γ,0)= γ , or the first ordinal that cannot be expressed
in terms of 0, ω, the basic arithmetic functions and the Veblen function. To show
that Γ0 is a constructive ordinal one defines a normal form for the ordinals be-
low Γ0 and from that it is not difficult to define an algorithm for comparing two
ordinals represented in the normal form.

A good exercise is to try to define an ordinal essentially larger than Γ0. It is
not easy, it requires a new idea!

The first nonconstructive ordinal is denoted ωCK
1 . The meaning of this nota-

tion is that it is like ω1 from the point of view of constructive processes: though
countable, it cannot be enumerated by a computable function. The CK stands for
Church and Kleene. Saying that it is the first ordinal that cannot be described
is not precise and sounds paradoxical. It is the first ordinal that cannot be pre-
sented as a recursive ordering of the natural numbers. It is determined by a short
definition, which, however, has a highly nonconstructive nature—it mentions all
recursive orderings.

6. Kripke-Platek Set Theory. This theory is not used as the foundations of math-
ematics, but it is interesting for other reasons. Kripke-Platek Set Theory is a
subsystem of Zermelo-Fraenkel Set Theory obtained by omitting the Axioms of
Power-Set and Choice, and restricting the Axiom Schemas of Comprehension
and Replacement to bounded set formulas. In a bounded set formula the range
of each quantifier is restricted to a set. Thus every quantification has the form

for every x such that x ∈ y . . .

or

there exists x such that x ∈ y . . .

Formally, this is written as ∀x(x ∈ y → ·· ·), respectively ∃x(x ∈ y ∧ · · ·)
(x and y are distinct variables and dots represent the subformula that is the scope
of the quantification,) which is usually abbreviated to ∀x ∈ y(· · ·), respectively
∃x ∈ y(· · ·).

So the axioms of Kripke-Platek Set Theory are:

The Axiom of Extensionality

The Axiom Schema of Comprehension for bounded set formulas

The Axiom of Pairing

The Axiom of Union

The Axiom of Infinity (sometimes this is not included)

The Axiom Schema of Replacement for Bounded Set Formulas

196 3 Set Theory

The Axiom Schema of Foundation Because the Axiom Schema of Comprehen-
sion is limited, we have to state this principle as a schema for all formulas φ(z):

∃z φ(z)→∃y(φ(y)∧ ∀x ∈ y
(¬φ(x)

))
.

An important class of models of ZFC and its subtheories is the class of tran-
sitive models. A transitive model is a model in which the membership relation is
the actual ∈ relation and such that the universe of the model is a transitive set.
The existence of transitive models of ZFC can be shown in a mild extension of
ZFC (ZFC with the axiom postulating the existence of an inaccessible cardinal;
see the next section, page 198, for the definition of this cardinal). In such models
a number of important concepts are absolute, which means that a set x has a
given property in the model if and only if it has it actually. In particular, ordinal
numbers of a transitive model are the usual ordinal numbers.

Transitive models of Kripke-Platek Set Theory play an especially important
role. I will mention only one remarkable fact about them. There exists the least
transitive model of Kripke-Platek Set Theory and the ordinals of this model are
exactly all constructive ordinals. In other words, an ordinal is constructive if and
only if it is in the minimal model of Kripke-Platek Set Theory.

This is a striking result because the axioms do not mention any computations,
yet the theory characterizes constructive ordinals, a concept inherently tied in
with computations. But looking more closely at the theory one can see that it
has a very constructive nature, which explains at least why all ordinals in the
minimal model are constructive. Let us see why the particular restriction of the
axiom system used in Kripke-Platek Set Theory makes the theory look distinctly
constructive. In the full ZFC we also construct sets starting from small ones and
gradually producing larger ones. When applying Comprehension or Replace-
ment it seems that we determine a new set uniquely by a formula φ(x), but there
is a catch. If φ contains unbounded quantifiers, we do not know if φ(x) holds
for a particular set x because φ mentions all sets, which means it mentions also
those sets that are yet to be constructed. This problem is avoided by taking only
bounded set formulas in the schemas. The second difference between ZFC and
Kripke-Platek Set Theory is in omitting the Axiom of Power-Set. Since the Con-
tinuum Hypothesis is an independent sentence of ZFC, we know that we cannot
exhaust all subsets of N by a reasonably constructive process. Thus the power-set
operation has a very non-constructive nature because it posits the existence of a
set whose elements are not constructed yet. The last difference, the omission of
the Axiom of Choice, is not very important because for an explicitly defined set
we can also explicitly define a choice function.

For more detail, see Barwise [14].

3.3 What Is the Largest Number?

We have arrived at one of the most interesting problems in the foundations of math-
ematics. At first it may look like a puzzle from recreational mathematics, but in fact
it has bearings on fundamental philosophical questions about mathematics.

3.3 What Is the Largest Number? 197

Already in ancient times people wondered how large numbers could be. Math-
ematicians in antiquity had essentially the same opinion concerning this question:
there is no largest natural number because operations, such as the simplest operation
of adding one, produce from any number a larger one. So the question is not interest-
ing if we only talk about finite numbers. But we can also ask: How large can infinite
cardinal numbers be? Still it is not clear that we are asking a meaningful question.
Cantor’s theorem says that for every cardinal number, there is a larger one, hence
also there is no largest infinite cardinal number. However, the structure of infinite
cardinal numbers is different from the structure of the natural numbers. Since there
are infinite cardinal numbers of various kinds, it makes sense to ask which kinds of
infinity are possible. This is the question that I am going to discuss now.

Let us explain it in a concrete example. Using the Axiom of Infinity we get that
ℵ0, the smallest infinite cardinal, exists. Using Cantor’s theorem repeatedly we get
that also ℵ1,ℵ2,ℵ3, . . . exist. I have also mentioned the limit of this set which is
the cardinal denoted by ℵω, but does such a cardinal really exist? It is possible to
show that the existence of such a cardinal cannot be proved using only Zermelo’s
axioms. It can, however, be proved using the Replacement Axiom Schema. Thus,
while unprovable in the weaker Zermelo Set Theory, it is a theorem of Zermelo-
Fraenkel Set Theory that such a cardinal number exists.

In general the pattern is the same. We have some description of a property of a
cardinal number and we ask whether we can prove or disprove that such a cardinal
exists. The most interesting case is when we can neither prove it, nor disprove it.
This means that the existence of such a cardinal number is a new principle, a new
kind of infinity. In fact, this problem appears already on the lowest level, namely,
when we add the Axiom of Infinity. The process of adding the Axiom of Infinity to
the basic axioms that only ensure the existence of finite sets is quite analogous to
adding assumptions about the existence of large cardinals. So we can view large-
cardinal axioms as higher axioms of infinity.

A popular way of presenting the large-cardinal theory is by a game where players
are trying to say the largest number. The hypothetical large-cardinal game has the
following rules. Players alternate in turns, where every turn consists of a proposal
of a large cardinal and, if it is not the first turn, a proof that it is larger than the last
one played. Moreover, instead of playing a new cardinal, the player can prove that
one of the considered cardinals is not consistent, in which case it is replaced by the
previous largest one. The game goes on forever, so there is no winner; the only goal
is to have the record.11 But notice that it is worse than in sports: your record can
not only be beaten, it can be completely erased because of inconsistency. Yet, it is
more than just a game: we are trying to reach absolute truth, though we never know
where the border is between the truth and absurdity.

Talking about truth in the context of large cardinals requires to accept the philo-
sophical view of mathematical realism, called platonism. So let us imagine that
there is a universe of sets that exists independently of our theories and the axiomatic

11The explanation of the game by Kenneth Kunen is a little different: “. . . to try to completely de-
molish your ego by transcending your number via some completely new principle”, [172] page 396.

198 3 Set Theory

systems for set theory that we are studying describe this reality. Gödel’s Incomplete-
ness Theorem implies that axiomatization of set theory is an open-ended process;
we will never be able to fully describe the universe of sets. Incompleteness may
concern various properties of the universe among which the questions about its size
seem to be the most important. Essentially, there are two such questions:

1. How “wide” is the universe of sets?
2. How “long” is the universe of sets?

These are certainly very vague questions, but we can make them more concrete
by asking specific problems. Examples of the first kind are problems such as the
Continuum Hypothesis. Roughly speaking, these are problems of how many sets of
limited size there are.

The second kind of problems is of what kind of infinities there are, which is the
subject of the present section. In general, we do not know why some sentences are
independent, but for this kind we do have a natural explanation. The universe of
sets is so long, that is, the types of infinities are so abundant, that we are not able to
describe it by our finite means. We can only approximate its length from below by
describing some types of infinity. Describing more types of infinity requires a lot of
ingenuity because it cannot be a mechanical process.

Let us now assume a pragmatic point of view. The main reason for axiomatizing
set theory was the need to avoid paradoxes. Introducing new, apparently very strong,
axioms goes in the opposite direction—the theories become more likely inconsis-
tent. Do we gain anything by taking higher risk?

Large-cardinal axioms do have important consequences. We cannot ignore large
cardinals even if we reject the platonistic view of the universe of sets. We know
positively that they imply true arithmetical sentences that we are not able derive
without using them. This is because large-cardinal axioms imply the consistency of
theories, the consistencies that we are not able to prove by other means. In principle
these axioms may also be used to decide other problems of low logical complexity,
but we have only a few such examples. However, already the fact that large-cardinal
axioms decide consistencies makes them of prime interest for the foundations of
mathematics.

In this chapter I will describe some large cardinals and give examples of their
applications. Large cardinals will be discussed again in Chap. 7 in connection with
the philosophy of mathematics.

The Inaccessible Cardinal

To get some feeling for large cardinals, we will first study how far we can go in
Zermelo-Fraenkel Set Theory. While in Zermelo Set Theory we could only prove
the existence countably many infinite cardinals ℵ0,ℵ1,ℵ2, . . . , in Zermelo-Fraenkel
theory infinite cardinals have a very rich structure. The additional Axiom Schema
of Replacement increases the power of the theory tremendously.

3.3 What Is the Largest Number? 199

To start, we observe that we have alephs for every countable ordinal, for example,

ℵω2 , ℵωω , ℵε0 (where ε0 is ωωω··
·
). This is only a slow beginning. Then we can take

the first uncountable ordinal ω1 and get ℵω1 . There are various operations which
produce larger cardinals from given ones. One that gives a very large increase is the
operation of using a given cardinal as the index of an aleph: for a cardinal ℵα we
take the smallest ordinal of this cardinality, which is denoted by ωα , and produce
ℵωα .12 Starting with the smallest infinite cardinal ℵ0 and the corresponding smallest
infinite ordinal ω we get by iterating this construction

ℵω,ℵωω,ℵωωω
,

These seemingly large cardinals, hardly ever needed for concrete mathematical con-
structions, still do not exhaust the possibilities that we have in Zermelo-Fraenkel Set
Theory. In fact, we are still rather close to the bottom. The reason is that we have
iterated this construction only countably many times. The power of the replacement
axiom schema lies in the possibility to iterate any construction transfinitely many
times using ordinals whose existence we have already proved. Notice that this gives
a strong positive feedback effect: the larger cardinals we get, the longer we can iter-
ate the construction; thus we get even larger cardinals, so we can iterate even more
and so on.

This self-enhancing principle seems so powerful that one may conjecture that
it is all that we can ever do. One may even suspect that a theory which allows it
cannot be consistent. So far no contradiction has been found and many believe that
Zermelo-Fraenkel set theory describes the true world of sets. Assuming that it does,
there is also a good reason to accept the possibility that the above principle is still
not sufficient to produce all cardinals. If there are cardinals that cannot be reached
in this way, they are certainly extraordinary entities and deserve a definition and a
name.

The Inaccessible Cardinal An inaccessible cardinal is an uncountable cardinal κ
which cannot be reached by any limit process of length less than κ and for every
smaller cardinal λ, its power 2λ is smaller than κ .

The condition about the limit process, stated formally, means that κ is not the
supremum of any sequence of ordinals {μα}α<λ indexed by ordinals less than λ,
where λ is some ordinal less than κ .

By defining inaccessible cardinal we have reached our goal to determine how
far we can go in Zermelo-Fraenkel Set Theory. The existence of such a cardinal
is not provable in the theory. The reason for that is that in Zermelo-Fraenkel Set
Theory we have two means to produce larger cardinals: taking a limit of a sequence
of cardinals and taking the power of a cardinal. The first operation is enabled by
the Replacement Axioms, the second by the Power-Set Axiom. We cannot obtain
an inaccessible cardinal κ as a limit because the sequence itself would have to have

12Recall that in fact the ordinal ωα and the cardinal ℵα are represented by the same set.

200 3 Set Theory

length κ , neither can we get it in the second way because that is explicitly prohibited
by the definition.

A terminological explanation is needed at this point. The definition of an inac-
cessible cardinal uses a property which can be satisfied by many cardinals. What
is important is how large the smallest one is. As we cannot prove the existence of
any inaccessible cardinals in Zermelo-Fraenkel Set Theory, even the smallest one is
beyond the reach of this axiomatic system. Other properties will be used to define
larger cardinals. We will compare the concepts by comparing always the smallest
one from every class.

The theory of large cardinals started as early as in 1908 when Felix Hausdorff
defined inaccessible cardinals. Soon after Paul Mahlo defined a family of cardinals
which are named after him. Mahlo cardinals are strictly larger than the least inac-
cessible cardinal. Roughly speaking a Mahlo cardinal is a cardinal number κ such
that inaccessible cardinals are very frequent (in a precisely defined sense) below κ .
This was a new idea how to get essentially larger cardinals, but in some sense it was
still based on a process of going up from below. Now I turn to examples in which
a cardinal is defined by a property. Such properties can be found in various fields
of mathematics, the one that I am going to consider next comes from the measure
theory.

The Measurable Cardinal and the Measure Problem

This is another example of a large cardinal. The name may be misleading, as one
would expect that ‘measurable’ means ‘not too large because it can be measured’,
which is not true. In fact, the smallest measurable cardinal is extremely large com-
pared to the smallest inaccessible and Mahlo cardinals. Again there are a lot of
Mahlo cardinals below the smallest measurable cardinal, but we have more reasons
to claim that it is much larger. In particular, several types of large cardinals in be-
tween have been defined, each of them being much larger than the previous ones.
The name comes from the measure problem. The problem is to define measure of all
subsets of the real numbers. The measure of a set of reals is a nonnegative real num-
ber which expresses the size of the set; for example, the size of the interval [0,1]
should be 1 and the size of a single point (one element set) should be 0. This does
not seem very interesting at first glance, as one would rather like to define the size
of areas in a plane and volumes of bodies in a three-dimensional space. But, as it is
the case with many problems in mathematics, the general problem can be reduced
to the special one concerning subsets of the space of dimension 1.

Our practical experience tells us that it should not be a problem to define the mea-
sure, though it will often be difficult to compute the measure for particular sets. For
three-dimensional bodies, we can use the famous trick discovered by Archimedes
and measure the amount of water spilled over from a full vessel when an object is
submerged in it. This story reminds us that the concept of the measure of a body is
also a physical concept. Therefore, it seems that we only need to render it properly

3.3 What Is the Largest Number? 201

by a mathematical definition. This was the view of mathematicians until compli-
cated sets appeared in their investigations, which happened roughly in the second
half of the 19th century.

In the early 1900s Henry Lebesgue gave a very general definition of measure.
He essentially solved the problem, as his definition is the best one in a certain
well-defined sense. It works perfectly for everything that we use in analysis. Not
only that, it defines the measure of every set that is explicitly defined. It has only
one defect: it does not define the measure of every set. This was shown quite soon
afterwards (in 1905) by Giuseppe Vitali. He proved that there are sets for which
the Lebesgue measure is not defined. Vitali’s result was actually more general, he
proved that no measure satisfying natural axioms can be defined for all sets of reals.
Thus the measure problem was solved positively for practical purposes by Lebesgue
and negatively, from the point of view of pure theory, by Vitali.

One of the axioms used by Vitali was that the measure was translationally invari-
ant. This means that the measure of a set does not change if it is shifted or rotated.
After Vitali’s 1905 result there was still an open problem left: can there be a measure
which is not translationally invariant, but defined on all sets of reals? Translational
invariance is certainly an important property and it is not clear if there is anything
useful that we can do with a measure which does not have this property, but it hap-
pens so often in mathematics that strange structures turn out to be useful. (Recall the
story about non-Euclidean geometries which was also about omitting one important
axiom, the fifth postulate.) Perhaps such a strange measure could eventually be use-
ful, especially if we could get it as an extension of the Lebesgue measure to all sets.

We are primarily interested in measures on the real numbers, but since we now
do not require translational invariance, we can consider measures defined on subsets
of any set. In order to avoid confusion, we need to introduce some notation.

Since the standard definition of a measure does not require μ to be defined for
all subsets, we will call a measure μ on a set X total if μ(Y) is defined for every
subset Y of X. We are interested in the total-measure problem, which is the question
whether there exists a set with a total measure.

In order to answer this question, we must say what precisely a total measure is.

Definition 2 We will say that μ is a total measure on a set X if it is a function that
assigns a real number from the interval [0,1] to every subset Y ⊆X and such that

1. μ(Y)= 0 if Y is finite,
2. μ(X)= 1, and
3. for every countable family of pairwise disjoint sets Yn, n ∈N,

μ

(⋃
n

Yn

)
=
∑
n

μ(Yn).

The first two conditions ensure that a total measure is not trivial. The third condition
is called countable additivity.

If we do not require other conditions to be satisfied, such as translational invari-
ance, then the only relevant property of X is its cardinality. So the total-measure
problem is:

202 3 Set Theory

Problem 1 For which cardinalities of X, does there exist a total measure?

If we consider different cardinalities, it is also natural to consider different types
of additivity. For a cardinal number κ , we say that μ is κ-additive, if condition 3.
holds true for any family of cardinality less than κ .

One important class of measures are 0/1-measures, the measures that only use 0
and 1. It is like using words small and large to describe the size, instead of using
real numbers. Observe that κ-additivity in this case reduces to the condition: if the
measure of the union of less than κ pairwise disjoint sets is 1, then exactly one of
these sets has measure 1.

Let us start with total 0/1-measures. On a countable set there are total 0/1-
measures provided that we relax the additivity condition to finite additivity. For
higher cardinalities, the measure problem for total 0/1-measures is “solved” not by
a theorem and a proof, but by a definition.

Definition 3 A cardinal κ > ω is measurable, if there exists a κ-additive total 0/1-
measure on a set of cardinality κ .

Why is this accepted as a solution? Can’t we solve every problem in set the-
ory by such a silly trick? The reason is that this definition is a typical definition of
a large cardinal. We do not have a precise definition of large cardinals, but there
are some basic properties that must always be satisfied. First, the cardinal must be
so large that its existence does not follow from the axioms of Zermelo-Fraenkel
Set Theory. Second, it should fit into the hierarchy of large cardinals. This means
that the assumption of the existence of the cardinal must be comparable with other
large-cardinal axioms. If this is the case, then we see that the largeness is an es-
sential property of this definition. If we know that the cardinal is less than some
previously studied large cardinals, then we have some evidence supporting its con-
sistency.

To sum up, it is possible that sets with total 0/1-measures exist, but if they do,
they must have very large cardinalities, so large that its existence is not provable
from the basic axioms.

The general total-measure problem remained open until the mid-1960s when it
was solved by Robert Solovay. The way it was solved is a nice example of an appli-
cation of large cardinals. Solovay showed that if a measurable cardinal exists, then
we can consistently assume that the Lebesgue measure can be extended to a total
measure on the real numbers [279]. He also showed that the assumption about the
measurable cardinal is necessary. Formally, his result is stated as follows.

Theorem 7 [279] The following two theories are equiconsistent.

1. Zermelo-Fraenkel Set Theory with the existence of a measurable cardinal,
2. Zermelo-Fraenkel Set Theory with the existence of a total measure extending the

Lebesgue measure on the real numbers.

3.3 What Is the Largest Number? 203

Recall that the axioms of Zermelo-Fraenkel Set Theory include the Axiom of
Choice. We will see shortly that if one is willing to sacrifice the strong form of this
axiom, then there is an even better solution to the total-measure problem (Theo-
rem 10, page 224).

New Types of Infinity

Each higher cardinal is a new type of infinity. From the point of view of large car-
dinals these new infinities are not so different from previous ones if we only use
the bottom up process of generating them. For example, we know that for every
cardinal ℵα , there is its successor ℵα+1 whose existence is automatically ensured.
On the other hand, the existence of the smallest one, the ℵ0, has to be postulated.
To postulate it, we have used the property schematically expressed by the equation
1+ x = x, which formally means that a set is equinumerous with its proper subset.
In this way we were able to define essentially new type of sets, the infinite sets. It
naturally comes to mind that other properties may give rise to higher order infini-
ties. Paraphrasing Bolzano, there may be even more paradoxical infinities than the
usual ones. In the previous subsection we discussed a large cardinal defined by a
property coming from measure theory. Here we will consider another example. It is
interesting because the defining property is satisfied by ℵ0 and is based on Ramsey’s
Theorem, which is already familiar to us.

The cardinal is called weakly compact. It is a cardinal κ which is larger than ℵ0
and Ramsey’s Theorem is true when we replace the word ‘infinite’ by ‘cardinal-
ity κ’. More precisely:

Definition 4 A cardinal κ is weakly compact if it is uncountable and if for every set
X of cardinality κ the following condition is satisfied. If pairs of elements of a set X
of cardinality κ are colored by two colors, then it is possible to find a subset Y of X
of cardinality κ , such that all pairs of elements of Y are colored by the same color.

It is interesting that the Ramsey property in the definition holds for ℵ0 (this is the
usual Infinite Ramsey Theorem), but to find the next cardinal with this property we
have to go beyond the cardinals whose existence is provable in Zermelo-Fraenkel
Set Theory. Thus a weakly compact cardinal is inaccessible. One can prove that
the least weakly compact cardinal is bigger than the least Mahlo cardinal, but it is
smaller than the least measurable cardinal.

Extensions of Zermelo-Fraenkel Set theory are not always based on postulating
the existence of a large cardinal. Recall that adding Fraenkel’s Replacement Axiom
Schema to Zermelo’s original set of axioms also had a tremendous effect on the
cardinal numbers. Using only Zermelo’s axioms we cannot prove even the existence
of ℵω. Thus the Replacement Axiom Schema can be considered a sort of large
cardinal assumption over Zermelo Set Theory. If we wished to state it as a single
axiom, we would have to use the slightly stronger assumption of the existence of

204 3 Set Theory

an inaccessible cardinal. (Such a theory, though strong enough, would not be very
practical, as it does not imply the Replacement Axiom Schema that is used in many
specific mathematical constructions.) Similar situations have occurred on a higher
level. For example, there is an axiom schema called Vopěnka’s Principle, proposed
by Petr Vopěnka. This schema, like the Replacement Schema, cannot be stated as
a single axiom nor does it speak explicitly about cardinalities. In order to compare
it with large cardinal assumptions, a related concept of the Vopěnka cardinal was
defined.

The Vopěnka cardinal is one of the largest that have ever been studied (and not
found inconsistent). The history of this cardinal is quite amusing. When Vopěnka
discovered his new principle, he thought he could disprove it. Since he did not like
large cardinals, it occurred to him that he could tease the large cardinal community
by proposing it as a large cardinal hypothesis and then, later, showing that it was
not consistent. But when the time came to show the inconsistency, he discovered
a gap in what he thought was a proof. So in spite of his negative attitude to the
large-cardinal theory, his name remains attached to one of the large cardinals.

Cardinals and Braids

The strongest large cardinal axioms are defined by means of elementary embeddings
j : Vα → Vα . Such an embedding is a one-to-one mapping that preserves all true
sentences—if a sentence is true about some elements it is also true about the images.
There is a trivial elementary embedding, the identity mapping. The postulate that
for some ordinal number α there exists an elementary embedding, different from
the identity, is one of the strongest axioms ever proposed. As such it is also one
of the axioms that are more likely to be inconsistent than the other large cardinal
axioms. In order to justify such axioms, one has to study their consequences very
systematically to make sure that there is no easy way to get a contradiction. This
should not be viewed as mere empirical tests of the axioms. The aim is also to see
that it conforms to our expectations about it, and to see that the consequences are
“natural”. One could also say that we want to develop “intuition” about it.

A natural way to study elementary embeddings is to consider them as elements
of an algebraic structure in which the operation is the composition of mappings.
This operation is associative, hence elementary embeddings form a familiar type of
a structure—a monoid. Such an operation appears naturally in many situations and
is well understood. What is peculiar to elementary embeddings is another natural
binary operation, called application. (I will define it in Notes, for now we only
need its properties.) This operation is neither associative nor commutative, instead
it satisfies the following equation, called the left self-distributive law,

x ∗ (y ∗ z)= (x ∗ y) ∗ (x ∗ z).
It is like the familiar distributive law, but it is applied to a single operation, instead
of two. An algebra with a binary operation satisfying this equation is called a left
self-distributive system. Such algebras are much less understood than monoids.

3.3 What Is the Largest Number? 205

The algebraic approach to elementary embeddings of sets Vα was especially pur-
sued by Richard Laver [179]. He discovered remarkable properties of these algebras
which in particular enabled him to solve the word problem for self-distributive sys-
tems in 1989. This means that he found an algorithm to decide which equalities are
derivable from the left self-distributive law, or equivalently which equalities are true
in every self-distributive system. An example of a derived equality is

(x ∗ y) ∗ (x ∗ (z ∗ u))= x ∗ ((y ∗ z) ∗ (y ∗ u)),
(as you can easily check). The striking fact was that for proving that his algorithm
always stops and gives the correct answer, he needed the assumption that there ex-
ists a non-identical elementary embedding j : Vα→ Vα . Thus to prove a theorem
about finite strings of symbols and algorithms, he needed one of the strongest large
cardinal axioms (the axiom called I3).

For logicians this was a truly remarkable result, but at the same time a type of
result that was expected. Logicians knew that large cardinal axioms have low com-
plexity consequences, consequences about finite sets. Thus it was only a matter of
time when such a concrete result was found. Rather unfortunately for logicians, this
situation did not last long. In 1992 Patrick Dehornoy succeeded in eliminating the
large cardinal assumption [60]. It is a pity that we do not have an example of an
algorithm that requires such a strong axiom, but for the problem itself it is good
because we know “for sure” that the algorithm exists and we do not have to worry
about the consistency of an extremely strong axiom.

In fact Dehornoy’s proof had more positive consequences. The spin-off of the
proof were new concepts and new results in the classical field of braids. A braid is
a concept related to a knot. These formal mathematical concepts correspond very
well to the natural meanings of these words. The main difference between knots and
braids is that instead of one string in the case of knots, braids use several strings and
the problem is how they are mutually interlaced. More precisely, a braid consists
of two bars to which n strings are attached. The basic question is, similarly as for
knots, for two braids to determine if they are equivalent, which means that we can
transform one into the other without cutting the strings or disconnecting them from
bars. Two equivalent braids are shown in Fig. 3.6.

Again, the natural way of studying braids is to consider an associated algebraic
structure. This structure is the braid group whose elements are transposition of con-
secutive strings. It is natural to think of such transpositions as operations that form a
group. This group is very complex, but it is an object that has been studied for quite
a long time. It turned out that some problems about left self-distributive systems can
be reduced to braid groups and then solved using means available in this theory. As
I said, this connection also enriched this classical field.

This story shows that new axioms of set theory may be not needed for proving
new results, but sometimes may help very much to discover them.

In any case this is not the whole story. Laver and other mathematicians also
studied some finite left self-distributive systems and proved theorems about their
structure using the same large cardinal assumption. Whether or not these theorems
can be proved without this assumption is still open. (For more detail, see page 215.)

206 3 Set Theory

Fig. 3.6 Two equivalent braids. This equivalence is algebraically expressed by aba = bab. This
equation holds for every pair of transpositions that share a common string, but it is not true in
general. Two transpositions a and b that do not share a string satisfy ab = ba. The braid group is
determined by these two sets of equalities

The Remarkable Linearity of Large Cardinals

A lot of work done in large-cardinal set theory concerns the comparability of large
cardinals. This means that, for a given pair of large-cardinal definitions, the aim is
to decide if the least cardinal satisfying the first definition is smaller, or larger, or
equal to the least cardinal satisfying the second definition. In many cases the answer
is known. In other cases it has been established at least that the consistency of one
axiom implies the consistency of the other one. There are rather few exceptions,
where the axioms are not known to be comparable. (Figure 3.7 shows some large
cardinals that are all comparable with one exception.) Past experience suggests that
eventually those will also be decided. Is there a reason why every two large cardinal
axioms should be comparable?

If our philosophy is platonism, the answer is easy. According to this view, we
are not merely studying axiomatic systems, but we are exploring the true universe
of sets. The axioms are just useful facts that we have found out about it. So large
cardinals are real objects resting in this universe. As all cardinals are linearly or-
dered, our study of the universe of sets will gradually reveal how the large cardinals
corresponding to our axioms compare to each other. Sometimes it may be hard, but
there must be a definite answer in each case.

There is a weaker property that large cardinals satisfy, now, without exceptions.
It is the confluence property: for any pair of large cardinals, there is another large
cardinal that is larger than any of the two. Again, assuming the universe of sets is
real this property is a trivial fact.

Can one give an explanation of these empirical facts without referring to the re-
ality of sets? We can simplify this problem by considering not the large cardinal
themselves, but only their consistency strength. This means that we now only com-
pare the logical strength of the axioms postulating the existence of large cardinals.
For the linearity of the consistency strength, the evidence is even stronger. A pos-
sible explanation, not based on realism in set theory, is that each time one defines

3.3 What Is the Largest Number? 207

Fig. 3.7 Some large
cardinals. I have chosen those
that are mentioned in the text,
plus a pair of cardinals whose
relation is unknown

a new large cardinal, one postulates an assumption so much stronger than previous
ones that it encompasses all of them.

Notes

1. Grothendieck universes. A typical category is a proper class because we want
to include all the structures of a given type in it. For example, the category
of sets consists of all sets, as objects, and all mappings between pairs of sets,
as morphisms. Alexander Grothendieck developed certain important theories
using the concept of category, for which he needed to construct categories from
categories. Namely, the objects of a new category are original categories and the

208 3 Set Theory

morphisms are functors. To this end, he introduced the concept of universes.
Leaving the definition aside, we will only consider what is needed to add to
ZFC in order to formalize universes. This is an axiom first considered by Tarski
(though stated in a different form):

Tarski’s Axiom For every cardinal κ , there exists an inaccessible cardinal λ,
λ > κ .

In set-theoretical jargon this is also stated as: There exists a proper class of
inaccessible cardinals.

Grothendieck theories play an important role in number theory. In particular
they are used in Wiles’ proof of the Fermat’s Last Theorem. All experts believe
that Grothendieck universes are just a convenient environment to work in and
can be eliminated. But, strictly speaking, Wiles’ proof as it stands is a proof in
a theory essentially stronger than ZFC. See discussion in [196].

Postulating the existence of a proper class of inaccessible cardinals may
seem to be an extremely strong axiom, but in fact it isn’t. All consequences
that talk about sets of bounded cardinality, in particular arithmetical sentences,
are derivable from ZFC augmented with the axiom postulating the existence of
a (single) Mahlo Cardinal, the next cardinal in the hierarchy after the inaccessi-
ble cardinal.

2. 0/1-measures and ultrafilters. An ultrafilter U on a set X is a set of subsets of
X such that

a. X ∈ U and ∅ ∈ U ;
b. if U ∈ U and U ⊆ V , then V ∈ U ;
c. if U ∈ U and V ∈ U , then U ∩ V ∈ U ;
d. either U ∈ U or X \U ∈ U ,

for every U,V ⊆X.
A trivial ultrafilter is an ultrafilter such that {a} ∈ U for some a ∈X. In such

an ultrafilter U ∈ U if and only if a ∈U . The existence of a nontrivial ultrafilter
is easily provable (using the Axiom of Choice).

A nontrivial ultrafilter can be equivalently defined as the set of subsets of
measure 1 of a finitely additive 0/1-measure on set X.

More generally, an ultrafilter is κ-complete if every set A of cardinality less
than κ , consisting of pairwise disjoint sets and such that

⋃
A = X contains

an element of U . Nontrivial κ-complete ultrafilters are sets of measure 1 of κ-
additive 0/1-measures. Thus a cardinal κ is a measurable cardinal if and only if
there exists a nontrivial κ-complete ultrafilter on κ .

Ultrafilters are important in model theory and set theory. We will encounter
them again in the sequel.

3. The Ramsey Cardinal.

Definition 5 A cardinal λ is Ramsey, if for every coloring of all finite subsets
of λ, there exists a monochromatic subset X of cardinality λ, which means that

3.3 What Is the Largest Number? 209

for every number k, all k-element subsets of X have the same color (but subsets
of different size may have different colors).

Note that ω does not satisfy this property. Ramsey cardinals occur below
the first measurable cardinal, but they are much larger than the least weakly
compact cardinal.

4. Large constructive ordinals from large cardinals. Large cardinals are one of
the most abstract objects ever considered. Therefore, it is interesting to see any
connections with more concrete concepts. A constructive ordinal has names for
all its elements and an algorithm for deciding the order of the elements; hence
it is very concrete, though it may be quite complicated. In ordinal analysis of
theories one needs very large constructive ordinals and it is a highly nontrivial
task to describe them. Using large cardinals this can be done, sometimes, more
easily.

The idea that an ordinal notation can be produced from an uncountable cardi-
nal appeared in a paper by Heinz Bachmann in 1950 [16]. We start with a simple
observation that any countable set of ordinals, however big the ordinals are, is
a well-ordered set whose order type is a countable ordinal. The first idea is to
take an uncountable ordinal Ω and a few operations. Then we take the closure
under these operations, i.e., ordinals generated from Ω using the operations.
The set of ordinals that is generated from Ω using the operations is countable,
hence the order type of this set is a countable ordinal. If we are lucky, with some
additional work we may be able to prove that it is a constructive ordinal.

To be a little bit more explicit, let us take Ω = ω1. As the operation we
take plus, times and exponentiation (the two argument function ξ, ζ �→ ζ ξ). The
ordinals generated from 0 and 1 are exactly ordinals below ε0. With Ω included
among the initial ordinals, we get more. In particular Ω will be the ε0th element
in the generated ordering. Since the set is closed under exponentiation, its order
type must be at least the next ε-number, which is ε1. This is not a big deal,
so we need another idea. The next idea is that when working with countable
subsets of ordinals that contain uncountable ordinals, we have a lot of gaps, so
we can also generate new ordinals by functions that map large ordinals to small
ones. This produces a loop in which ordinals are mapped back and forth, which
amplifies the production of new ordinals very much.

The key operation is called the collapsing function and is denoted by ψ . In
order to understand what this function does we should interpret Ω and ψ in two
ways:

a. as an ordinal, namely, ω1, and as a partial function defined on ordinals;
b. as a mere symbol and as a function that assigns specific countable ordinals to

terms obtained from Ω and symbols for the operations and the function ψ .

The second interpretation will be used to gradually assign names to or-
dinals that do not have any. The names will be terms in the language
{0,1,Ω,+,×, exp,ψ}. The first interpretation enable us to define the order-
ing on these terms. We will first generate ordinals from 0, 1 and Ω using the
operations +,×, exp. When we cannot produce more ordinals in this way, we

210 3 Set Theory

take the least ordinal that in not in the currently generated set of ordinals X, say
γ , and define ψ(δ)= γ for a suitable δ ∈X. Then we generate a new set from
X and α. We repeat this process transfinitely many times as long as we have
“available names”, i.e., ordinals for which we can define ψ . The great power of
this construction is caused be the fact that as we increase the set X we also get
new available names.

Here is the precise definition of ψ . Define sets of ordinals Xα and partial
functions ψα (approximations to ψ) by transfinite recursion as follows.

a. Let X0 be the set of ordinals that can be constructed from 0,1 and Ω using
the operations +,×, exp, and let ψ0 be undefined everywhere.

b. If α = β+1, let γ be the least ordinal not in Xβ and let δ be the least ordinal
in Xβ that is larger than all ordinals for which ψβ is defined. Then extend
ψβ to ψα by defining ψα(δ) := γ , add γ to Xβ and close it off under the
operations +,×, exp to obtain Xα .

c. If λ is a limit ordinal, then put Xλ =⋃α<λ Xα and ψλ =⋃α<λ ψα .

This process stops when ψ is defined on all ordinals of Xα . The function ψ is
the union of all these ψα and the Bachmann–Howard ordinal is the least ordinal
which is not in any of these sets. Equivalently, the Bachmann–Howard ordinal
is the limit of all countable ordinals that appear in this process.

Let us have a closer look at some initial stages of this process. At the begin-
ning Ω plays no role. As we already know, X0 is the set of all ordinals below ε0.
Hence ψ(0) = ε0. In general, ψ(α) = εα for all α below the fixed-pint of the
function ξ→ εξ , which is denoted by φ2(0) using the Veblen function. At this
point, Ω kicks in: φ2(0) is the lest ordinal not in the currently constructed set
X and Ω is the least ordinal in X that is larger than all ordinals for which ψβ is
defined; so we define ψ(Ω) := φ2(0).

Note that for ordinals α, φ2(0)≤ α <Ω , the function ψ is undefined at this
stage, hence it remains undefined throughout the entire process. The reason for
having this gap is that we would have to put ψ(α)=ψ(Ω) for all these ordinals
because we want ψ to be order-preserving. This would be useless since we
already have a name for this ordinal. (Nevertheless, some authors prefer ψ to
be defined on an initial segment of ordinals and do extend the definition in this
way.) There are many such gaps because ψ is defined only for countably many
values whereas Ω is uncountable.

Another thing to note is that at the stage when we define ψ(Ω) we have more
ordinals between Ω and Ω · 2 than we had originally: we have all ordinals
Ω + α for α < φ2(0). Many more will be added before we use Ω · 2. One
can compute that we get ψ(Ω · 2) = φ2(1). Further we have ψ(Ω2) = φ3(0),
and more generally, ψ(Ωα) = φ1+α(0) for all α < Γ0 (the Feferman-Schütte
ordinal), whence we get ψ(ΩΩ)= Γ0.

Let us now look at the end of this process. Already at the initial stage we have
the ordinals Ω,ΩΩ,ΩΩΩ

, Although we will add a lot of new ordinals in
the construction, each of them will be bounded by one of these. Since Ω = ω1,
we have ωΩ =Ω , which means that Ω is an ε-number; in fact Ω = εΩ . There-
fore the limit of Ω,ΩΩ,ΩΩΩ

, . . . is εΩ+1. If we extended the definition of

3.3 What Is the Largest Number? 211

the collapsing function ψ in a natural way, then the Bachmann–Howard ordinal
would be ψ(εΩ+1). This term is actually used to denote the Bachmann-Howard
ordinal.

The sketch given above is not a proof that the resulting ordinal is construc-
tive. One has to work out representation of these ordinals by terms using the
arithmetic operations and ψ . Then one must show that the ordering is com-
putable from the terms representing the ordinals.

Do we need to use an uncountable ordinal for the construction? Theoretically
no; it would suffice to take a sufficiently large countable ordinal, but there is
no reason why we should do it. To prove that there exists a sufficiently large
countable ordinal we would use the fact that the number of countable ordinals
is uncountable. So why not to take an uncountable one?

Once we see that one uncountable ordinal is useful for constructing ordinal
notations, we may use more uncountable cardinals. It is clear from the example
above that doing the same construction with two initial cardinals, say ω1,ω2,
will produce a larger constructive ordinal. The gain is not very big, so we need
to get more cardinals involved. A way to get substantially larger constructive
ordinals is to generate larger and larger cardinals in the process. Again it may
look like a very nonconstructive process. But remember, the only thing that we
needed from Ω above, was that it was not accessible by any countable process
from below. Eventually Ω was only used as a name. When introducing larger
cardinals in the process, the reason is simply to have an object that is far enough
from the things generated before. Recall that when constructing Γ0, the use of
the indexing function gave significant strength to the process. The new idea now
is that in the construction we can use the indexing function of cardinals, more
precisely, the indexing function of a special class of cardinals.

Let us first try something simple. Let us take the construction above and add
the cardinal indexing function. Thus we close off under addition, exponentia-
tion, ψΩ and the function ξ �→ ωξ . The ordinal that we get is fairly big, but still
not sufficiently big for an ordinal analysis of some theories. This simple con-
struction does not need large cardinals (those whose existence is not provable
in Zermelo-Fraenkel Set Theory). To get a really large ordinal we need a new
idea. In the construction above, Ω helped us to run the process much longer
than we would be able to achieve by only working from below. So let us take
a cardinal that is safely above any cardinal that we would generate from below
using the operations mentioned, including the cardinal indexing function. This
will be our new Ω and then we run the same process (with the cardinal index-
ing function ξ �→ ωξ). The ordinals above Ω will keep injecting new cardinals
below, thus the process will be repeated for a “very long time”. How big must
this Ω be? It is the same type of question, as we asked before when discussing
whether Ω must be uncountable. A cardinal that will easily ensure that we will
never reach it in such a process is the first inaccessible cardinal.

Several cardinals larger than the first inaccessible one have been successfully
used to produce ordinal notations for large constructive ordinals; in particular
the weakly compact cardinal and some larger ones. For more information, see
Rathjen [236].

212 3 Set Theory

5. A nonmeasurable set. I will show how to construct a nonmeasurable subset of
a circle. Using a circle we will not lose much generality and the proof will
be more transparent. A circle can be mapped on a segment of a line so that
rotations correspond to translations. A similar idea will be used in the proof of
the Banach-Tarski paradox, which we will discuss shortly.

Let a measure on a circle C be fixed. The assumptions are that the measure
is rotationally invariant, σ -additive and the measure of C is nonzero and finite,
say 1.

Let ρ be the rotation by an angle α such that α is not a rational fraction of π .
For every point x on the circle, the points ρi(x), i = . . . ,−2,−1,0,1,2, . . . ,
obtained by applying ρ i-times forward or backward, are distinct, since π/α is
irrational. The set of these points is called the orbit of x with respect to the rota-
tion ρ. The orbits form a partition of C, which means that they are disjoint and
cover C. Pick one point from every orbit, ‘a representative’ of this orbit, and
let A be the set of these representatives. To this end we must use the Axiom of
Choice. The rotations of A by an integer multiple of ρ, namely, the sets ρi(A),
for i = . . . ,−2,−1,0,1,2, . . . , form another partition of C. This is a partition
into countably many sets, all congruent to A. If A were measurable with mea-
sure 0, then, by σ -additivity the measure of C would also be 0. If A had a
positive measure, then the measure of C would be infinite. Thus the assumption
that A is measurable leads to a contradiction, hence A is not measurable.

Note that the assumption of σ -additivity is essential. Stefan Banach showed
that finitely additive translationally invariant measures on 1- and 2-dimensional
Euclidean spaces do exist. But this is rather an exception, in three dimensions
there is no translationally invariant finitely additive measure (see the Banach-
Tarski paradoxical decomposition of a ball, page 218).

6. How do we compare large cardinals? Given two definitions of large cardinals,
let κ denote the least cardinal of the first kind and λ the first cardinal of the sec-
ond kind. Suppose the first kind of cardinals should be smaller than the second
kind. The first thing that we want to establish is κ ≤ λ. In most cases this is
done by showing that all cardinals that satisfy the first definition also satisfy the
second one. In particular, all large cardinals (so far considered) are inaccessible,
thus they are at least as big as the smallest inaccessible cardinal. To separate κ

from λ one can use the second incompleteness theorem. If we prove that, as-
suming the existence of λ in ZFC, the ZFC set theory with an axiom asserting
the existence of κ is consistent, then we get that κ = λ is consistent with ZFC,
provided that, of course, λ is consistent with ZFC. Usually one can show much
more—that λ is much larger than κ . This done by proving that cardinals of the
first type are in some sense abundant below λ. The weakest requirement is that
there are λ many cardinals of the first type below λ.

7. Large cardinals and elementary embeddings. The strongest known hypotheses
are stated using the concept of an elementary embedding which is defined as
follows. Let M and N be two structures of the same type, for example, a set
with a binary relation. We say that a function j from M to N is an elementary
embedding if

3.3 What Is the Largest Number? 213

a. j is one-to-one, and
b. for every formula φ(x1, . . . , xn) (in the language of the structures) and for

every a1, . . . , an in M , φ(a1, . . . , an) holds in M if and only if φ(j (a1), . . . ,

j (an)) holds in N .

A special case is when M is a substructure of N and the condition holds for the
identity embedding of M into N . Then we say that M is an elementary substruc-
ture (or elementary submodel) of N and N is an elementary extension of M .

We will say that an embedding j is proper if j is not onto, i.e., there exist
elements in the second structure that are not images of elements of the first
structure.

One of the strongest large cardinal axioms is the following statement.

I3 There exist an ordinal α and a proper elementary embedding of (Vα,∈) into
(Vα,∈).

Let j be such an embedding. Since j is elementary, it maps ordinals on or-
dinals and cardinals on cardinals. One can also show that the condition that j is
proper implies that there exists a cardinal in Vα that is not in the image of j . The
least such cardinal κ is called the critical cardinal of the embedding. Such a κ

is the large cardinal associated with this axiom. Except for a few large cardinals
defined by similar axioms, all others exist below such a κ . This large cardinal
does not have a name yet. Perhaps, it is because people are still too afraid that
it is inconsistent to assume that it exists. Indeed, small modifications lead to a
contradiction. For example, it is known that α cannot be an ordinal of the form
β + 2 (α can only be a limit cardinal or a successor of such a cardinal).

The first cardinal that was characterized by elementary embeddings was
the measurable cardinal. The connection between the existence of a measure
and an elementary embedding is via an important construction used in model
theory called the ultrapower. Given a structure M , the ultrapower construc-
tion provides a proper elementary extension of M . I defer the description of
this construction to page 252. Here we only need to know that it is based on
nontrivial ultrafilters. One can apply the ultrapower construction to the class
structure (V ,∈), where V is the universal class. In general the resulting model
does not have nice properties. What we would like to get is a structure in which
the membership is the usual ∈ and which is a model isomorphic to (M,∈) for
some class M . The stronger condition in the definition of a measurable cardi-
nal, the σ -additivity, ensures that the ultrapower is isomorphic to such a model.
Thus a cardinal is measurable if and only if it is a critical cardinal of an ele-
mentary embedding j of (V ,∈) into some (M,∈). Various larger cardinals can
be defined by postulating that j preserves more of the structure.

8. The operation of application defined on elementary embeddings. The operation
of application of an elementary embedding j to k, where j, k : Vλ→ Vλ is de-
fined for λ a limit ordinal. To get the idea, suppose first that k : Vα→ Vα for
α < λ. Then k ∈ Vα+3 ⊆ Vλ, thus k is in the domain of the mapping j . Let us
see what is j (k). Since j is elementary, it must preserve the properties of k, in
particular, j (k) : Vj(α)→ Vj(α) is also an elementary embedding. In general,

214 3 Set Theory

k : Vλ→ Vλ, k is not in the domain of j and we cannot apply j to k directly,
but we can still do it somehow, which is remarkable. To define the application,
consider approximations to k, apply j to the approximations and take the union.
This operation is denoted by j [k] and it is formally defined by

j [k] =
⋃
α<λ

j (k|Vα).

It is easy to check that j [k] is an elementary embedding.
9. Vopěnka’s Principle. This principle is usually stated in theories with classes:

For any language L, and any proper class X of structures in L, there
are two different structures M1,M2 ∈X such that there is an elementary
embedding of M1 into M2.

Vopěnka’s cardinals are those cardinals κ for which (Vκ ∪P(Vκ);∈) satisfies
Vopěnka’s Principle.

10. The strongest axiom ever proposed. It may be interesting to see the strongest
axiom that has ever been proposed, even without any explanation. By saying
‘the strongest’ I mean ‘the strongest axiom that is not known to be inconsistent’
because, formally, the strongest axiom is any axiom that implies a contradiction.

For a set x let def (x) be all subsets of x that are definable in the structure
(x,∈) by first order formulas in the language with one binary predicate ∈ and
constants for all elements of x. For a set x, define by transfinite recursion,

L0(x)= x, Lα+1(x)= def
(
Lα(x)

)
,

Lλ(x)=
⋃
α<λ

Lα(x), for λ a limit ordinal,

and put

L(x)=
⋃
α

Lα(x).

The strongest axiom is the following statement proposed by W. Hugh Woodin
in 1984:

I0 For some ordinal α there exists a proper elementary embedding of
(L(Vα+1),∈) into (L(Vα+1),∈).

The critical cardinal of such an embedding is the largest ever considered car-
dinal (that was not found inconsistent). It is interesting that since 1984 nobody
has been able to come up with a larger cardinal.

11. The measurable cardinal decides a statement related to the Generalized Con-
tinuum Hypothesis. Put L = L(∅). This class was defined by Gödel and he
proved that (L,∈) satisfies the Zermelo-Fraenkel axioms and the Continuum
Hypothesis (in fact the Generalized Continuum Hypothesis). In this manner he
proved that the Continuum Hypothesis is consistent with ZFC. Hence, if the
Continuum Hypothesis is not true, we must have V = L. The converse is not
true, it is possible that V = L, but the Continuum Hypothesis still holds true.

3.4 Controversial Axioms 215

Table 3.1 A left
self-distributive system with
four elements

* 1 2 3 4

1 2 4 2 4

2 3 4 3 4

3 4 4 4 4

4 1 2 3 4

In 1961 D. Scott showed that the existence of a measurable cardinal implies
V = L [260]. A little later Solovay proved that certain subsets of reals have
more of the desirable properties under the assumption of the measurable car-
dinal than we can prove without it (namely, more sets of reals have the perfect
subset property and the Baire property). This was considered to be evidence
that large cardinals may decide statements about “small” sets. The current pre-
vailing view is that large cardinal axioms alone cannot decide the Continuum
Hypothesis and other sentences that were proved independent by forcing. I will
say more about it in Chap. 7.

12. Laver tables. Working on elementary embeddings of Vλ to itself, Richard Laver
proved a theorem about finite left self-distributive systems [180]. To prove it he
used the axiom I3 and up to the present no proof without this assumption is
known. Unfortunately, there is no result saying that the theorem needs large
cardinals either. If the theorem really needed I3, it would be a remarkable fact,
since the combinatorial result is a type of problem on which algebraists work.

Consider Table 3.1. This is a multiplication table of a left self-distributive
system with four elements 1,2,3,4. Look at the first column of the table, which
defines multiplication by 1 from the right. Notice that it defines a mapping
x �→ x ∗ 1, which is the cyclic shift 1→ 2→ 3→ 4→ 1. One can show that
this property of the table and the left self-distributivity uniquely determines all
other entries of the table. This holds generally: for every n that is a power of 2,
n = 2k , there exists a unique left self-distributive system on the set {1, . . . , n}
in which x �→ x ∗ 1 defines the cyclic shift. This fact is provable without any
strong axioms.

Another peculiar thing in the table above is that except for the last row, the
rows are periodic with a nontrivial period. The periodicity of the rows is the
property to which Laver’s theorem refers.

Theorem 8 The periods of the first rows in these 2k × 2k tables go to infinity
as k goes to infinity.

Does it seem to you that this theorem should require any strong axioms?

3.4 Controversial Axioms

The Axiom of Choice

In a lot of proofs you can find sentences such as ‘Let x be an arbitrary element of
the set Y .’ or ‘Choose an element x which satisfies property Y .’, etc. The freedom

216 3 Set Theory

of choice of an element seems to be one of the basic freedoms of mathematicians.
But this fact is given by logic, not by set theory. Assuming there exists an element
satisfying a property Y , we should be able to speak about such an element, otherwise
we could not make any nontrivial logical deductions. The problem which arises in
set theory is whether one can continue the selection process for an infinite number
of steps. This is outside of the scope of pure logic as it requires the concept of an
infinite set. Let us state it precisely in the form of an axiom.

The Axiom of Choice Let A be a set of disjoint nonempty sets. Then there exists
a set C such that for every element B of A, the set C contains exactly one element
from B .

A real world version of it is the following. Suppose you have many boxes each
containing at least one thing. The task is to choose exactly one thing from every
box. Let me stress that there is no hidden restriction; for example, we do not ask to
choose a random element, as is the case when doing statistics. So it is a completely
trivial task for a human. Now think of a computer. If you have experience with
programming, you know that it is not difficult to program a computer to do it, but in
most programming languages it is rather annoying that it does require some work.
Namely, you must tell the computer which particular elements to choose. You may
employ a random number generator, but it would be only a complication, as we do
not ask for a random choice.

To make it simpler, let us forget about random number generators. In order to
program a computer for such a task, you have to find a rule how to choose one
element from a given variety of elements. In computers data are represented by
numbers, thus a very simple rule is at hand: take the first number. To break the
symmetry, we use the available structure, the linear ordering, on numbers.

Let us return to set theory. The first important observation is that the Axiom
of Choice is provable for finite sets A. So the validity of the Axiom of Choice in
general is again the question of how many properties of finite sets can be transferred
to infinite sets.

Examples 1. Let A be a set of disjoint two-element sets of real numbers. Then we
can use the same idea as with the natural numbers: we pick from every pair the
first element. Of course, we have to show explicitly that the existence of such a
set follows from the axioms of set theory, we cannot rely on intuition. Assuming
that we have already proved that there is a linear ordering on the real numbers, it is
quite easy. In this particular case the elements of the choice set C can be specified
explicitly by the formula saying that an element of C is the first element of an
element B of A. Formally, we apply the comprehension schema to this formula.
Practically, it means that whenever we can define explicitly the set C, there is no
problem with the axiom.

2. Next consider a set A which contains disjoint pairs of subsets of reals. Why
don’t we take a linear ordering of subsets of reals again? There must be many such
things. Well, there is no explicit way of defining ordering on subsets of reals. In

3.4 Controversial Axioms 217

fact, without the Axiom of Choice, it is not possible to prove that there is such an
ordering.

All right then, why don’t we simply accept the axiom? What is controversial
about it? To see why it is controversial, we need some reasons for accepting it
and some reasons against. The supporting reasons are consequences that we like,
that are in accord with our intuition of what should hold in set theory. The reasons
against are consequences that seem counterintuitive. Before presenting such exam-
ples, let me mention some general properties. The general negative feature of the
Axiom of Choice is its nonconstructive nature. Recall that the set existence axioms
of Zermelo-Fraenkel set theory considered so far are special cases of the compre-
hension schema. This means that we postulate the existence of sets whose elements
are determined by some formula. In particular, each of these sets is unique. The Ax-
iom of Choice is different. It postulates the existence of a set which is not uniquely
determined, of which we know only some properties. Thus we should expect con-
sequences which are also nonconstructive; proofs of existence of structures without
having their explicit definitions. On the other hand, a comforting thing is that the ax-
iom does not introduce large sets, it follows the philosophy of building the universe
from the bottom up. Hence we may hope that it will not introduce inconsistency.

The Axiom of Choice was formulated by Zermelo in a paper published in
1904 [317]. He used this axiom to prove that on every set there exists a well-
ordering. This fact greatly simplifies the structure of cardinal numbers. In particular
every infinite cardinal number κ is ℵα , for some ordinal α. We have been using this
fact throughout this chapter. Without the Axiom of Choice there may exist cardinal
numbers which are incomparable. Even more striking is that without the Axiom of
Choice the set of all reals can be13 the union of countably many countable sets.

Having a nice theory of cardinal numbers would not be a sufficient argument for
most mathematicians to accept such an axiom, but the Axiom of Choice has many
important applications in various fields of mathematics, in particular in algebra,
topology and functional analysis. I will only mention three basic results for which
this axiom is needed.

1. Every vector space has a basis.
2. Every field has an algebraic closure.
3. Every subgroup of a free group is a free group (Nielsen-Schreier Theorem).

Let us consider the first of these three theorems. To construct a basis of a finite-
dimensional vector space is easy. We pick vectors one by one so that the next one
is independent from the previous ones. When we cannot go on, the construction is
finished, since a basis is a maximal set of independent vectors. The same is used
for infinite-dimensional vector spaces. The only problem is that again there is no
canonical choice of the next vector. Vector spaces have a nice structure, but they are
too symmetric. In order to show that this infinite process exists, we have to use the
Axiom of Choice.

13More precisely, it is consistent with ZFC to assume that it is.

218 3 Set Theory

The main negative consequence of the Axiom of Choice is the result, which we
have already considered, that there is a nonmeasurable set of reals. This is unpleas-
ant, but it is not in clear contradiction with our intuition. It is conceivable that we
cannot measure a set which is a sort of a fuzzy collection of random points. But there
is a really striking example of pathological subsets of three-dimensional space. It is
the famous theorem of Polish mathematicians Stefan Banach (1892–1945) and Al-
fred Tarski [12]:

Theorem 9 (The paradoxical decomposition of a ball) Assuming the Axiom of
Choice, a ball can be decomposed into ten pieces which can be rearranged into
two balls of the same size as the original one.

This is really difficult to swallow. One thing that may help you is to realize that
all the pieces cannot be measurable. Once we have accepted the possibility that a
set is not measurable, we can also accept the fact that a measurable set, like a ball,
can be decomposed into nonmeasurable ones and then we can assemble it into a set
with a different measure. But it is amazing that the new set can be a pair of balls.
And this is not the end yet. In fact, one can transform a body of any shape into a
body of any other shape and size by using perhaps more pieces, but still only a finite
number of them. For example, it is possible to transform a ball into a cube of an
arbitrary size in such a way. (What I mean by a body here is a very general set of
points where the only restrictions are that it must be of a finite diameter and it must
be possible to cut a ball out of it.)

Why isn’t it enough for rejecting the Axiom of Choice? As I have mentioned,
the concept of an arbitrary set is similar to the concept of an arbitrary function. In
fact, it is possible to develop foundations based on the concept of a function instead
of a set. (Such a theory was proposed by von Neumann in 1925.) The history of
the concept of a function is much longer than that of a set. In the course of making
the concept of a function precise there were similar episodes as the one we have
just seen. The most remarkable example is the existence of a continuous function
which is nowhere differentiable, mentioned in Chap. 1. By the time set theory was
discovered, mathematicians had got used to such pathologies in the theory of func-
tions. They accepted as a fact that it is necessary to distinguish between nice smooth
functions, which occur in nature, and wild artificial ones, which usually do not have
practical applications. Therefore, they accepted the necessity of having to distin-
guish between nice sets of points in space, which are measurable and have other
pleasing properties, and pathological sets, such as those occurring in the Banach-
Tarski paradox.

Thus the problem was not to accept the existence of such examples, but the fact
that they are caused by a new axiom. We should recall that the pathological func-
tions, such as the one mentioned above, were constructed without the Axiom of
Choice or any other special axiom. The positive consequences of the Axiom of
Choice, in spite of being in accord with intuition, actually supported the suspicion
that it is inconsistent. If things work too well in the sense that you are able to prove
many theorems you should be careful because it may be caused by a contradiction in

3.4 Controversial Axioms 219

your theory. Because once you have a contradiction, all statements follow immedi-
ately as theorems. But logical investigations soon showed that the Axiom of Choice
is not dangerous in this sense. In 1938 Gödel proved that if the Zermelo-Fraenkel
theory without the Axiom of Choice is consistent, then it remains consistent when
the Axiom of Choice is included [97]. He proved it by constructing a model of
Zermelo-Fraenkel Set Theory in which the Axiom of Choice is true.14 This was
done by selecting only certain sets from the universe of all sets. The selection was
based on the philosophy that the set universe grows from below, that is, starting from
the empty set gradually extends to larger and larger sets. He called the sets that he
chose constructible; they were obtained by such a process of adding more sets one
by one. The crucial thing was the use of ordinal numbers for enumerating this pro-
cess. Thinking of ordinals as a time scale, a constructible set is a set which occurs at
some moment in the process. Then every constructible set can be naturally associ-
ated with an ordinal, namely, the one on which it first appears. Such an indexing by
ordinals easily gives the choice sets, since ordinals are well-ordered. For instance,
if you have to decide between two sets, take the one which has the smaller index.

The heated discussions about the Axiom of Choice at the beginning of the 20th
century are almost forgotten by now. Today the Axiom of Choice is used as a true
fact and it is mentioned only if one wants to point to the fact that a proof has a
nonconstructive nature.

The Axiom of Determinacy

Philosophically minded people may be attracted by this title, but this axiom has
nothing to do with the question of whether or not the world is deterministic. This
axiom is connected with mathematical game theory. There is a variety of games,
but we will only be concerned with a special type of them. We consider two player
games with no randomness involved and perfect information. Such games are chess,
checkers, go, tick-tack-toe (naughts and crosses) and other board games, while card
games use, as a rule, the random element of shuffling the cards and the players do
not have the same information; this also excludes games in which players toss a dice.
The two players are usually called simply Player 1 and Player 2. When the game
has a small number of possible positions, we can analyze it completely and find a
winning strategy for one of the players, provided a tie is not possible and the number
of moves is limited. This can be done, for example, for some restricted versions of
tick-tack-toe. For most commonly played games, however, the number of possible
positions is so enormous that it is physically impossible to construct a computer that
would manage to search all positions before the end of our solar system. Still, it is
an easy mathematical theorem, attributed to Zermelo, that a winning strategy for
one of the players can always be found. When a tie is possible, or when one can

14More precisely, he defined an interpretation of the axioms of ZFC in the theory without the
Axiom of Choice.

220 3 Set Theory

repeat the same position infinitely many times, this is not true, but there is at least a
strategy to tie.

In particular this is the case for chess. In chess one of the players certainly has a
strategy that guarantees at least a tie.15 However, in spite of the accumulated expe-
rience and developed theory, nobody expects that such a strategy will ever be found.
It is interesting that it may be not only the complexity of finding the strategy, but
just the complexity of the best description that prevents us from using it.

Similarly as for other set-theoretical principles, people wondered whether the
theorem that every finite game has a winning strategy for one of the players holds
for infinite games as well. A possible way to visualize an infinite game is to think
of a game such as go played on an infinite board with infinitely many stones. The
rules of such a game, however, should not allow removing a stone once it was put
on the board. The game ends after playing infinitely many moves. Then we look at
the board and decide who wins. Even for the ordinary game of go it is sometimes
difficult to evaluate the final position, thus it may be really difficult to give a precise
rule for the infinite board. But I do not want to define a particular game, I need the
general concept of an infinite game. Thus every possible rule defines a game, the
only condition being that it classifies all possible final positions into those in which
Player 1 wins and those in which Player 2 wins.

Now I can state the axiom.

The Axiom of Determinacy In every infinite game one of the players has a winning
strategy.

The name ‘determinacy’ is used because we say that a game is determined if
one of the players has a winning strategy. Then the axiom can be stated simply as
follows: Every infinite game is determined. In order to be quite precise, we should
add that by ‘infinite’ we mean ‘countably infinite’, we do not consider larger infinite
games. In order to state the axiom formally, one does not have to talk about a board
or stones; moves are simply represented by natural numbers. Note that we do not
lose any generality by this representation, since for any game where there is only
a finite or a countable number of choices in every move, we can systematically
enumerate them. Thus during the game players construct an infinite sequence of
numbers. Player 1 plays numbers on odd positions, Player 2 plays numbers on even
positions. The game is specified by a set X of sequences of numbers. Player 1 wins
the game if the resulting sequence belongs to the set X, otherwise Player 2 wins.
When the infinite game is presented in this form, it is clearer that the Axiom of
Determinacy has much to do with sets of infinite sequences. As infinite sequences
of numbers can be coded by real numbers, the axiom is, in fact, about the sets of the
real numbers.

The first reason for studying the axiom was probably sheer curiosity whether
the theorem about finite games can be generalized to infinite games. Then it turned

15More precisely, either one player has a winning strategy, or both players have strategies that
guarantee them to win or to tie.

3.4 Controversial Axioms 221

out that whenever a concrete game was defined, a winning strategy was found for
one of the players. However, soon it was shown that using the Axiom of Choice
one can prove the existence of a non-determined game. In light of the Axiom of
Choice being generally accepted this looks like the end of the story. But the axiom
has always had its appeal. An especially interesting consequence of the axiom is
that every set is measurable and it also implies several other nice properties of the
set of reals. If we give up the Axiom of Choice, Zermelo-Fraenkel Set Theory with
the Axiom of Determinacy seems to be consistent. The Axiom of Determinacy also
implies a weak version of the Axiom of Choice. This is important because we would
not like to give up the Axiom of Choice completely. Therefore, it was proposed as
an alternative for the Axiom of Choice.

Which of the two axioms should one choose? Looking at the statements of the
axioms, the Axiom of Choice seems to be a more fundamental principle, as it is
simpler and speaks about sets in general not only about countable sequences, etc.
On the other hand we know that real numbers are the most important structure for
mathematics. So why should we care so much about the arithmetic of infinite cardi-
nal numbers and why should we accept paradoxical statements such as the Banach-
Tarski decomposition of the sphere? Shouldn’t we rather care about having nice real
numbers? We may wonder what would have happened, if Cantor had not become
interested in infinite cardinals, continued his research in analysis and discovered the
determinacy principle. Imagine that the Axiom of Determinacy had been introduced
first, and before the Axiom of Choice was stated the nice consequences of determi-
nacy, such as measurability of all sets, had been proved. Imagine that then someone
would come up with the Axiom of Choice and the paradoxical consequences were
proved. Wouldn’t the situation now be reversed in the sense that the Axiom of De-
terminacy would be ‘the true axiom’, while the Axiom of Choice would be just a
bizarre alternative?

Formulas and Games

Let us prove that every finite game with no tie has a winning strategy for one of the
players. In fact, we only need the length of the game to be finite; there may be an
infinite number of possible choices in each move. The proof is by induction on the
length of the game. The base case is when there is only one move, which means that
only the first player plays and then the game is over. Then either there is a move
for him to win, in which case this move is his winning strategy, or there is none, in
which case the second player always wins, so she has a winning strategy.16

Now suppose that every game with at most n moves has a winning strategy for
one of the players. We are to prove that every game with at most n+1 moves has this
property too. Let a game of length n+ 1 be given. Consider the situation after the

16I am using he for the first player and she for the second.

222 3 Set Theory

first move of the first player and imagine we start a game from this situation using
the same rules. This game has a length of at most n, so by the induction assumption
the theorem holds for it. Consider all possible moves of the first player when he
plays the first move. Thus we get various games where either he or the other player
has a winning strategy. If there is at least one move for the first player such that
he (as the second player now) has a winning strategy in the shorter game, then he
has a winning strategy. Namely, we take this particular move and combine it with
the winning strategy for the shorter game. Otherwise, whatever the first player plays
first, the other has a winning strategy, so the second player has a winning strategy
for the longer game.

There is another proof of this theorem, which is based on logic. It is worthwhile
going through this proof, as it shows a connection of logic with games. For sim-
plicity, consider a game with four rounds. Namely, in the game the players play in
the following order: Player 1, Player 2, Player 1, Player 2. Then the game is over
and the winner is determined by the moves they played. The fact that Player 1 has a
winning strategy can be stated as follows.

There is a move for Player 1 such that for every move of Player 2, there is
a move for Player 1 such that for every move of Player 2, Player 1 wins.

In order to appreciate the logical structure of this statement, we will rewrite it
using logical notation. We will use x1 and x2 for the moves of Player 1 and y1 and
y2 for the moves of Player 2. Let Φ abbreviate the statement that a final position is
reached where Player 1 wins. Then the above statement reads:

∃x1∀y1∃x2∀y2 Φ.

To prove that either Player 1 or Player 2 has a winning strategy I will now apply
the law of excluded middle to this formula. Thus either this formula is true, or its
negation. This formula expresses that Player 1 has a winning strategy, so we only
need to check that the negation says that Player 2 has a winning strategy. Formally,
applying De Morgan’s laws to quantifiers, we get the following as the negation:

∀x1∃y1∀x2∃y2 ¬Φ.

In words:

For every move of Player 1, there is a move for Player 2 such that for every
move of Player 1, there is a move for Player 2 such that Player 1 looses.

This, clearly, expresses that Player 2 has a winning strategy, and we are done.
Thus we proved the existence of a winning strategy for the special type of games

with four rounds. In general the proof is the same, one only needs to use as many
quantifiers as there are moves. In this proof I have described winning strategies using
alternating quantifiers. Quite often this connection is used in the opposite direction.
When we have a formula with many alternating quantifiers, it is difficult to imagine
what it means. Then it helps to think about it as expressing the existence of a win-
ning strategy in a game. Sometimes such a game-theoretical interpretation is used
even for simple formulas. For instance, when we are trying to prove a formula we

3.4 Controversial Axioms 223

identify ourselves with the player who corresponds to existential quantifiers because
we should construct the objects that are claimed to exist. The universal quantifiers
are identified with an opponent. They provide parameters that we cannot control,
so we should be able to handle the problem when the opponent chooses for us the
worst case.

The reason why we have a good capacity for games (and why we, in fact, like
to play them) is that we are all the time involved in playing games with other peo-
ple, institutions or with nature. This concerns not only humans, but all intelligent
beings. Nature does not require us to understand formulas, but it does require us to
be successful players.

Determinacy and Large Cardinals

In spite of its paradoxical consequences the Axiom of Choice is not dangerous.
According to the result of Gödel, we cannot introduce inconsistency by adding the
Axiom of Choice to the other axioms of Zermelo-Fraenkel Set Theory. This is true
not only for Zermelo-Fraenkel Set Theory, but also for various weaker and stronger
systems. So this is a clear advantage of the Axiom of Choice: several things become
simpler and we do not jeopardize the consistency of the system.

The Axiom of Determinacy is different. The axiom was proposed by Jan Myciel-
ski and Hugo Steinhaus in 1962 [204]. At that time it was a very bold proposal.
Being inconsistent with the Axiom of Choice and having strong consequences sug-
gested that it should be inconsistent even if we drop the Axiom of Choice. To ex-
plain its role I need to talk about Zermelo-Fraenkel Set Theory without the Axiom
of Choice. It would very cumbersome to use such a long name for this theory. So
recall that Zermelo-Fraenkel Set Theory (with the Axiom of Choice) is abbreviated
by ZFC, and ZF stands for the theory that we need now, that is, without the Axiom
of Choice. For several decades all the attempts to prove its relative consistency with
respect to ZF failed. It became clear very soon that it was not going to be as simple
as with the Axiom of Choice. For example, Solovay proved that the Axiom of De-
terminacy implies that ℵ1 is a measurable cardinal. In the presence of the Axiom of
Choice the existence of a measurable cardinal is a very strong assumption, but how
strong this assumption is without the Axiom of Choice is not immediately clear; ℵ1
is the second smallest infinite cardinal, so we are not talking about large cardinals.
Nevertheless, this assumption is as strong as the assumption that ZFC is consistent
with the existence of a measurable cardinal.

In 1984 Woodin proved the relative consistency of ZF with the Axiom of Deter-
minacy with respect to ZFC with a large cardinal assumption. This means that ZF
with the Axiom of Determinacy is consistent provided that ZFC with the large car-
dinal assumption is. This is one of the deepest results obtained in set theory. Later,
Woodin was not only able to determine which large cardinals suffice to prove it,
but he determined exactly the strength of the assumption that ZF with the Axiom
of Determinacy is consistent. To this end he introduced new large cardinals, called

224 3 Set Theory

Woodin cardinals. This result has vindicated the large cardinal theory again, and
spurred its further development.

If compared with those we have mentioned, the least Woodin cardinal lies be-
tween the least measurable cardinal and the least Vopěnka cardinal, so Woodin car-
dinals are fairly large. Thus the Axiom of Determinacy is not so safe with respect to
a possible contradiction as the Axiom of Choice, but now we know precisely how
safe it is. If somebody succeeds in deriving a contradiction from a large cardinal,
we will know immediately, if this affects the Axiom of Determinacy. For example,
if such an inconsistent cardinal is higher in the hierarchy, we can still use ZF with
the Axiom of Determinacy.

Solovay’s Model

We see that there are two possibilities for set theories each having its own advan-
tages, but they are incompatible. The one that is commonly accepted nowadays is
ZFC (Zermelo-Fraenkel Set Theory with the Axiom of Choice). It has a nice general
set theory, but reals are rather awkward. The other is ZF with the Axiom of Deter-
minacy. The theory with the Axiom of Determinacy has other drawbacks, the main
problem being that we are not quite sure that it is consistent. To prove that the Axiom
of Determinacy is consistent we have to use a very strong assumption. Maybe, after
all, we should abandon our hopes for having all subsets of reals be Lebesgue mea-
surable? No, there is another option. What is appealing about the Axiom of Determi-
nacy is not so much the axiom itself, but its consequences such as the measurability
of all subsets of reals. If we only want to get those, we do not need Woodin cardi-
nals, it suffices to use a very mild extension of ZFC, namely, ZFC with an axiom
postulating the existence of an inaccessible cardinal. This was shown by Solovay
already in 1964;17 the paper appeared in 1970 [278]. More precisely, he showed:

Theorem 10 If ZFC with the axiom saying that an inaccessible cardinal exists18 is
consistent, then so is the theory with the following axioms:

1. all axioms of ZF (Zermelo-Fraenkel Set Theory without the Axiom of Choice);
2. the Axiom of Dependent Choices (a practical version of the Axiom of Choice

which is weaker than the unrestricted Axiom of Choice, but which implies the
Axiom of Choice for countable sets);

3. all sets of real numbers are Lebesgue measurable;
4. every set of reals has the Baire property and the perfect subset property.

The last two are topological properties. It is not important what they precisely
mean; the point is, as with measurability, that sets of reals behave nicely.

17See [147], page 132.
18S. Shelah proved that even if we only want the Lebesgue measurability, the inaccessible cardinal
is needed [266].

3.4 Controversial Axioms 225

This was the first step in the series of results that eventually led to the proof of the
consistency of the Axiom of Determinacy with respect to a large-cardinal assump-
tion. In fact, determinacy implies the last two conditions and the countable Axiom
of Choice (for subsets of reals). Furthermore, relative to the large-cardinal assump-
tion, the statements above are all consistent with determinacy. So the advantage of
this result is that it only needs the existence of an unaccessible cardinal, which is a
very small extension of ZFC. Theoretically it is possible that ZFC is consistent and
ZFC with an inaccessible cardinal is not, but people will not trust ZFC, if it turns
out that inaccessible cardinals are not consistent.

Solovay’s model might be a nice world to live in if ones concern is analysis,
measure theory and alike. But there are other branches of mathematics that do not
depend on the real numbers and where many results have been derived using the
Axiom of Choice. Therefore, before moving to this ‘new nice world’ we would have
to see what we need to abandon because of loosing the general Axiom of Choice, or
rather, what we can substitute for the lost results.

Notes

1. The Banach-Tarski Paradox. There are many expositions of this result; the proof
below is based on Laczkovich [175].

To prove the theorem we will first sketch a proof of the following often used
result (usually attributed to Cantor and Bernstein, sometimes also to Banach and
Schröder). It should be noted that the proof of this theorem is fully constructive,
in particular, it does not require the Axiom of Choice.

Theorem 11 Given a one-to-one mapping f from a set X into a set Y and a one-
to-one mapping g from Y to X, it is possible to construct a bijection between X

and Y .

Proof To simplify the proof we can assume without loss of generality that Y is a
subset of X and g is the identity mapping. To visualize the proof think of X as a
disc in the plane and Y as a square contained in it and f simply a contraction of
X to a smaller disc Z contained in Y (see Fig. 3.8). Our task is to map the disc
X onto the square Y so that no two points go to one point. First we observe that
what is between the square Y and the disc Z does not have to move. The points
outside Y have to move, so we use f to move them inside. The image of this
part, say U is the disc Z with the image of the square of Y cut out. The points in
U have to move inside, as we have already mapped something on them. But the
situation is exactly the same as at the beginning. So we will continue on and on
in this way, see Fig. 3.9. �

What is actually going on in the proof is that we decompose the disc X into
two parts. Then one part is kept, namely, we use the identity, while the other is

226 3 Set Theory

Fig. 3.8 The square Y is
embedded into the disc X by
the identity mapping; the disc
X is embedded into the
square Y by the mapping
shown by the arrows; the
smaller disc Z is the image of
the bigger disc

Fig. 3.9 The discs with
squares cut off are mapped on
the same shapes of the next
smaller size (indicated by
arrows); the squares with
discs cut off are mapped on
themselves (indicated by
loops)

moved by the mapping f . Thus if f were a rigid motion, we would have trans-
formed the disc into a square as required in the paradox. In two dimensions this is
not possible, but one can prove a more general theorem in three dimensions. We
need to consider mappings f : X→ Y that are piecewise rigid motions, which
means that we can decompose X into a finite number of sets X1, . . . ,Xn such
that f is a rigid motion on each set Xi .

Theorem 12 Let X and Y be subsets of R3. Let f :X→ Y and g : Y →X be
one-to one mappings which are piecewise rigid motions. Then it is possible to
construct a bijection between X and Y which is also a piecewise rigid motion.

Having this theorem, our task looks much simpler.
Free algebras were mentioned in Chap. 2 (see page 91). Here we need one

concrete example of such a structure, the free group F2 generated by two gener-
ators. Let the generators be a and b. The group can be represented by the set of
expressions of the form

ai1bj1ai2bj2 . . . ainbjn,

3.4 Controversial Axioms 227

Fig. 3.10 Cayley diagram of the free group F2. The decreasing size of the arrows indicates that it
is a process going to infinity, but when embedded on the sphere, the lengths of the arcs will be the
same

where n is a natural number and ik and jk are integers different from 0, except
possibly for i1 and jn. If n = 0, the expression is empty, so we rather denote it
by 1, the unit of the group (see Fig. 3.10). F2 contains as a subgroup the free
group with one generator F1; for example, the powers of a is such a subgroup.
F1 is isomorphic to the additive group of integers. We used it in the construction
of a nonmeasurable set, where we embedded F1 into the group of rotations of
the circle, by assigning the rotation ρ to a. Now we will use an embedding of F2
into the group of rotation of the sphere S. (We cannot embed it into the group
of rotations of a circle, since that group is commutative, while F2 is not. That’s
why the paradox cannot be done in two dimensions.)

To embed F2 we take two orthogonal rotations by the same angle α such that
cosα is a transcendental number; we will use the same letters a and b also for
the chosen rotations. It can be proved that this ensures that different elements of
F2 are represented by different rotations. Let G be the group of the rotations that
represent F2. Let x be a point on the sphere S. Again we take the orbit of x as
all points to which x can be moved using a rotation from G. A typical orbit of x
can be visualized as a drawing of the Cayley graph of F2 on the sphere. All the
arrows have the same length and at every vertex of the graph the arrows labeled
a are orthogonal to the arrows labeled b. There are also some exceptional orbits,
namely, the orbits of points which are fixpoints of some rotations from G. For
every rotation, there are exactly two fixpoints, the points where the axis of the

228 3 Set Theory

Fig. 3.11 Sets Bv

rotation intersects the sphere. As there are only countably many elements in the
free group, there are only countably many such fixpoints, whence there are count-
ably many exceptional orbits and countably many points on them. Let C be the
union of the exceptional orbits. The presence of exceptional orbits complicates
the proof a little, but it is not essential.

The next step is similar to the construction of a nonmeasurable set on a circle.
We choose a representative from every unexceptional orbit. As noted before, this
is the step where the Axiom of Choice is needed. You may be a little confused, as
the Cayley graph in the picture seems to contain a distinguished vertex, the vertex
in the middle, but this is only because of the drawing. In reality all the points
on the orbit are equivalent, there is no way to distinguish between them. We
know this positively, since the Banach-Tarski paradox cannot be done without
the Axiom of Choice.

Consider an unexceptional orbit O and its representative v. Viewed as the
Cayley graph of F2, the orbit consists of four parts connected to v. Let Bv be
the union of the two parts connected by arrows labeled a to v (see Fig. 3.11).
First observe that by repeated application of rotation b we get infinitely many
disjoint copies of Bv . Secondly, by shifting it only once by a we cover all the
remaining points of O , thus O ⊆ Bv ∪a(Bv). The chief point of the construction
is that we can do these operations in parallel in all unexceptional orbits. Namely,
let B be the union of all Bv’s. Then by rotating by multiples of b we can embed
infinitely many copies of B in the sphere. On the other hand, the sphere can be
covered by two copies of B and the countable set C. As there are only countably
many distances between points in C, there exists a rotation which moves S \ C
so that it covers C. Thus we can conclude, that S can be covered by the union
of 4 copies of B . This implies that we can cut S into 4 pieces, each of which fits
into B .

The two emphasized relations between S and B enable us to construct the
decomposition of the ball K surrounded by the sphere S. Let B ′ be the section of
the ball K determined by B with the center of K excluded. Given two copies of

3.4 Controversial Axioms 229

K we can cut them into 8 pieces and two points, such that each piece fits into 8
copies of B ′. But we can cut out infinitely many copies of B ′ from a single ball,
so we certainly have 8 copies plus a lot of points left.

If we construct the two new balls from one in this way, there will still be some
material left from the original ball. To get a decomposition where nothing is left
we finally apply the Cantor-Bernstein construction.

2. Two Solovay’s theorems on measures. To avoid confusion, I repeat the two results
of Solovay mentioned above.

The first theorem talks about general measures on the set of real num-
bers, measures that do not have to be translationally invariant and about ZFC,
Zermelo-Fraenkel Set Theory with the Axiom of Choice.

Theorem 13 The existence of a measure on the real numbers is consistent with
ZFC if and only if the existence of a measurable cardinal is.

The second theorem talks about a very special measure, the Lebesgue measure
and about ZF, Zermelo-Fraenkel Set Theory without the Axiom of Choice.

Theorem 14 If the existence of an inaccessible cardinal is consistent with ZFC,
then ZF is consistent with the following statements:

a. all subsets of the real numbers are Lebesgue measurable,
b. the Axiom of Dependent Choices,
c. every set of reals has the Baire property and the perfect subset property.

The Axiom of Dependent Choices says that if R is a binary relation on a
nonempty set such that for every x, there exists y such that xRy, then there
exists an infinite sequence x1Rx2Rx3Rx4 This axiom is weaker than the
general Axiom of Choice, but it suffices for most proofs in calculus. A set is
perfect if it is nonempty, closed and has no isolated points. A set has the perfect
subset property if it is either countable or it contains a perfect subset. Any perfect
set is of cardinality c (the cardinality of the real numbers). Hence if every set of
reals has the perfect subset property, then every set of reals is either small, mean-
ing countable, or large, meaning of cardinality c. So in this sense the Continuum
Hypothesis holds in Solovay’s model. The more common way of stating the Con-
tinuum Hypothesis is c=ℵ1, but this statement is false in the model because the
real numbers cannot be well-ordered. (We will not define the Baire property.)

3. Woodin cardinals. Woodin cardinals are defined using elementary embeddings of
V into transitive class models M . (Models that are proper classes are also called
inner models.) A Woodin cardinal is a cardinal κ such that for every function f :
κ→ κ , there exists a cardinal λ < κ that satisfies the following two conditions:

a. for all β < λ, f (β) < λ;
b. there exist an M and an elementary embedding j : V →M with a critical

point λ such that Vj(λ) ⊆M .

230 3 Set Theory

The least Woodin cardinal is below a superstrong cardinal and above a measur-
able cardinal.

4. The consistency of the Axiom of Determinacy. Soon after people started working
on the consistency of determinacy it was proposed to prove that the (L(R),∈)
satisfies the Axiom of Determinacy assuming a large cardinal. It turned out to be
the right approach. Indeed, in 1984 Woodin proved that assuming the existence
of I0, the Axiom of Determinacy holds in (L(R),∈) (see [147], page 449). His
subsequent work enabled him to reduce the large-cardinal assumption to a sub-
stantially weaker one and eventually he determined precisely the strength of the
statement that ZF with the Axiom of Determinacy is consistent [309].

Theorem 15 The following theories are equiconsistent (meaning that one is
consistent if and only if the other is):

a. ZF with the Axiom of Determinacy;
b. ZFC with the assumption that there exist infinitely many Woodin cardinals.

To prove that the Axiom of Determinacy holds in (L(R),∈), one needs a
stronger assumption: there exists a measurable cardinal with infinitely many
Woodin cardinals below it. If (L(R),∈) satisfies the Axiom of Determinacy,
then we also obtain other nice properties of the real numbers, as mentioned
above.

To give an example of an application of the Axiom of Determinacy, we will
show that the perfect subset property for the Cantor discontinuum follows from
the axiom. The Cantor discontinuum will be represented by the set of all count-
able strings of zeros and ones {0,1}ω. We will use the modification of the game
in which Player 1 plays arbitrary strings of zeros and ones (including the empty
string) and Player 2 plays only one bit—zero or one. Let A be an arbitrary sub-
set of {0,1}ω. We will think of A as the winning positions for Player 1, so A

defines a game. According to the Axiom of Determinacy we have two possibil-
ities, either Player 1 has a winning strategy, or Player 2 has a winning strategy.
We will show that any winning strategy for Player 1 determines a perfect subset
of A and any winning strategy for Player 2 determines a countable enumeration
of A.

The first statement follows immediately from the definition of a winning strat-
egy. Consider all the infinite strings that can appear when Player 1 uses his strat-
egy. All these strings must be in A, since it is a winning strategy for Player 1.
Now look at the structure of these strings. They form an infinite binary tree
whose vertices (the places where the strings branch) are places where Player 2
plays. The tree must branch there because Player 2 can choose any of the two
values. The fact that this is a perfect subset is just the property that any branch
of the tree is in A.

Now suppose that Player 2 has a winning strategy σ . Let a ∈ A and let us
play (simulating Player 1) against the strategy σ as follows. Our first move will
be the shortest initial segment of a such that when Player 2 extends it by one bit

3.5 Alternative Set-Theoretical Foundations 231

determined by the strategy σ , the resulting string will still be an initial segment
of a. If no such initial string exists, we stop. Otherwise we continue in the same
way: we play the shortest string so that the extension determined by σ will still
be in a, and repeat it as long as such strings exist. This has to stop after finitely
many steps because if we could play in this manner for infinitely many steps,
the resulting sequence would be outside of A, since σ is a winning strategy for
Player 2, but, at the same time the resulting sequence is a ∈ A. So let us take
the finite initial part that we have produced from A in this way. Let f (a) be the
set of indices of the bits played by Player 2. It is a finite set of natural numbers,
hence if we show that these sets are different for different elements of A, we will
have a one-to-one mapping f from A into a countable set. Indeed, let a, b ∈ A

be two different strings. Let n be the first index of a bit on which they differ.
Then, clearly, n is exactly in one of the sets f (a) or f (b), thus f (a) is different
from f (b). Thus if Player 2 has a winning strategy, A is countable.

3.5 Alternative Set-Theoretical Foundations

We can view the history of Zermelo-Fraenkel Set Theory either as the history of
discovering the true principles of set theory, or as the history of one particular ax-
iomatic system that became the standard because of pragmatic reasons. Many al-
ternative systems have been proposed, but it does not make much sense to survey
them all without explanation. Therefore, we will rather focus on two and explain
them in more detail. They are not real competition to Zermelo-Fraenkel Set The-
ory, nevertheless, they are quite interesting and everybody seriously interested in
the foundations of mathematics should know about them. These systems are based
on classical logic. There have been more radical alternatives proposed based on dif-
ferent logics, but I am not going to talk about those.

It is good that mathematicians are united in their opinion of what are the founda-
tions and they accept Zermelo-Fraenkel Set Theory as the foundations. But we have
witnessed above that the things are not that bright. Zermelo-Fraenkel Set Theory, as
any reasonable axiomatic system, is incomplete and there is no common agreement
about how to decide some independent sentences such as the Continuum Hypothe-
sis. Mathematicians left the decision to logicians; logicians usually only give vague
arguments that set theory in which the Continuum Hypothesis fails is richer, but no
definite answer. The Axiom of Choice is nowadays accepted, but there still remain
some doubts about it because there are better alternatives for studying subsets of the
real numbers. Only the large cardinal theory, at least so far, does not lead to such
dilemmas. Thus our inability to decide the Continuum Hypothesis and the presence
of alternatives to the Axiom of Choice should be a warning that we should not be
so sure about being right in choosing Zermelo-Fraenkel Set Theory. Studying alter-
natives may be fruitful, as it was within Zermelo-Fraenkel Set Theory, where the
Axiom of Determinacy, an alternative to the Axiom of Choice, opened new areas of
descriptive set theory and the large cardinal theory. Moreover, studying alternatives

232 3 Set Theory

to Zermelo-Fraenkel Set Theory may help us to justify the position of Zermelo-
Fraenkel Set Theory, when it turns out that other theories have too many negative
properties.

Mathematicians should be informed about alternative approaches to the founda-
tions, but it is naive to think that they will easily switch from Zermelo-Fraenkel Set
Theory to something else. It is not their conservatism, or their dislike of logic, there
are deeper reason. The most important one is that Zermelo-Fraenkel Set Theory is a
very strong theory. In this theory it is possible to model essentially all known situa-
tions very efficiently. Formally, it means that we can construct structures with given
properties, provided that the requirements are consistent.

Quine’s New Foundations

New Foundations is an axiomatic system for set theory conceived by Willard Van
Orman Quine (1908–2000) in the 1930s. The name comes from the title of the paper
New Foundations for Mathematical Logic [231] in which it first appeared. It can be
briefly characterized as an attempt to make the Theory of Types attractive to math-
ematicians while preserving its apparent consistency; unfortunately, it has not quite
succeeded in either of its goals. Though more recently the concept of typing has got
much attention in programming, for ordinary mathematicians it is rather artificial.
Once there is a system, namely Zermelo-Fraenkel Set Theory, which works well
without this burden, the systems using types must offer some additional advantages.
So the idea is to give up types, but keep the property that seems to ensure the con-
sistency of the theory. According to Russell, paradoxes are caused by ‘the vicious
circle’ and he suggested to solve this problem by introducing the doctrine of types.
Quine realized that the problem may only occur when we apply the comprehension
axiom, thus only then we have to be careful. So he proposed to get rid of types and
instead to restrict the comprehension axioms so that they would only allow the form
of formulas that one can use in the Theory of Types.

Formally, the theory can be presented as having the Axiom of Extensionality and
a Comprehension Axiom Schema restricted to certain formulas. Roughly speaking,
an instance of a comprehension axiom schema is admissible, if we can assign types
to all variables occurring in the axiom so that it becomes an instance of such an
axiom in the Theory of Types. Practically it amounts to assigning integer indices
to the variables of the formula in such a way that whenever two variables occur in
the formula in relation ∈, the index on the right-hand side must be larger by one
and if they occur in an equality the indices must be same. Such formulas are called
stratified.

Examples 1. The formula x = x is stratified because we can assign type 1 to x

and then we have the same type on both sides of the inequality. According to the
Comprehension Axiom Schema restricted to stratified formulas there exists a set V
such that

x ∈ V ≡ x = x,

3.5 Alternative Set-Theoretical Foundations 233

which is the universal set (the set of all sets). Similarly, the stratified formula x = x

gives us the empty set.

2. The formulas x ∈ x and x ∈ x are not stratified because for any assignment we
have the same type on both sides of ∈. Therefore we cannot reproduce Russell’s
paradox.

It should be noted that non-stratified formulas are not disallowed in general.
One can use any formulas in proofs. Furthermore, some sets which have only non-
stratified definitions are proved to exist by indirect arguments.

Example The formula x ∈ y ∨ x = z is stratified (assign 1 to x and z, and 2 to y).
Hence for every y and z, there exists the set y ∪ {z}. This does not exclude y = z,
so we have y ∪ {y} for every y, although x ∈ y ∨ x = y is not stratified.

The main objection to this system is that the restriction of the comprehension
schema is not given by a general set theoretical principle (such as ‘small sets are
consistent’, used in Zermelo-Fraenkel Set Theory), but a syntactical condition. So
to say, you cannot teach set theory based on this system without talking about logic.
Recall that the universe of the Theory of Types and the universe of Cantorian set
theories such as Zermelo-Fraenkel Set Theory are not very different. The universe
of Zermelo-Fraenkel Set Theory is also divided into levels (namely Vα); the differ-
ence is only that the hierarchy is transfinite and cumulative (level Vα contains Vβ for
all β < α). So typing is not unnatural even from the point of view of Cantorian set
theories. Therefore, the condition used to restrict the comprehension schema is also
not as unnatural as it may seem at first glance. The main argument for New Foun-
dations is the fact, proved by the Swiss mathematician Ernst Specker (1920–2011),
that New Foundations are equivalent to the Simple Type Theory with an additional
axiom saying that all types are isomorphic [283]. A model of this theory is a struc-
ture that we can easily imagine, but, unfortunately, are not able to construct.

If we disregard the objection about the syntactical nature of the restriction on
the Axiom of Comprehension, the theory looks quite appealing. It has some means
that we are lacking in Zermelo-Fraenkel Set Theory. We have the universal set, we
can define the number n to be the set of all sets of cardinality n, we can prove the
existence of the set of natural numbers without augmenting the theory with the Ax-
iom of Infinity, the Power-Set Axiom is an instance of the schema and so on, while
in Zermelo-Fraenkel Set Theory we had to add several other axioms on top of the
restricted comprehension schema. Furthermore, New Foundations is finitely axiom-
atizable. J.B. Rosser has shown that mathematics can be founded on this system
very well [250].

Clearly, there must be aspects of the theory in which it deviates from Cantorian
set theories. One such an anomaly is the fact that, in general, the natural bijection
that to every element x of a set A assigns the set {x} (the set containing x as the
unique element) cannot be represented by a set, unless New Foundations is incon-
sistent. This is to be expected because such a set would allow us to circumvent the

234 3 Set Theory

restriction to stratified formulas. One can show that among sets that are in some
sense small such anomalies do not arise. One can also add axioms that guarantee
that some concrete sets are small in this sense. However, this cannot be used as an
argument for accepting New Foundations; on the contrary, it shows that it is better
to stick to ZFC which uses the paradigm of small sets explicitly.

The most intriguing problem is the consistency of New Foundations. The The-
ory of Types is quite weak and its consistency is readily provable in ZFC. New
Foundations looks like an extension of the Simple Type Theory, so one would ex-
pect that it is not much stronger. But so far nobody has succeeded in proving its
consistency in ZFC or its extension. The canonical way of proving the consistency
of a theory in ZFC is to construct a model of the theory, a structure that satisfies
the axioms of the theory. Because of the rather strange (or just unusual) way in
which sets behave in New Foundations, to construct such models directly seems
hard. Instead one can use Specker’s reduction to the construction of a model of New
Foundations to a model of the Simple Type Theory with an isomorphism between
the types. Having this reduction, the task of proving the consistency of New Founda-
tions does not look so hopeless; nevertheless, the problem has remained open since
1937!

The fact that we are not able to prove the consistency of New Foundations rela-
tive to ZFC and its extensions is rather alarming. Quine was hoping that the theory
would be safe against antinomies because it uses the Theory of Types as a paradigm,
but suddenly we are confronted with a theory that we cannot show to be consis-
tent using means that suffice for all other theories. Furthermore, the advantages
that it offers are not so great. While, for example, the Axiom of Determinacy has
dramatic consequences for subsets of reals, no such results are known about New
Foundations. Moreover, almost nobody uses the theory, so the practical experience
is close to zero. Put otherwise, in New Foundations sets behave quite differently
than we are used to, hence there may exist simple proofs that we are overlooking,
and there may even exist such a simple proof of contradiction. T. Jech [137] sug-
gested that in such a case it may be better to let a computer look for inconsistency
and he actually performed such experiments. That he did not find a contradiction
does not mean much, as the current theorem provers are still very inefficient com-
pared to a human. The possibility of New Foundations being inconsistent is still
very real.

New Foundations is often considered to be only a nice curiosity in logic with
no practical relevance to mathematics. If a contradiction is eventually found, it will
probably be forgotten completely. If a model is found in ZFC, then it may encour-
age more people to study it, and some may even use it for doing mathematics, but
in that case it would only strengthen the general belief that ZFC is omnipotent.
From the point of view of foundational studies, the most interesting case would be
if New Foundations were consistent and there were no proof of it in ZFC or its
natural extensions. This is as it appears now, but, unfortunately, if this is really the
case, we will never be sure that it is so. According to Gödel’s second incomplete-
ness theorem we can prove the consistency of New Foundations only relative to
another theory, but if we cannot prove the consistency in ZFC, then what else can
we do?

3.5 Alternative Set-Theoretical Foundations 235

Robinson’s Nonstandard Analysis and Vopěnka’s Alternative Set
Theory

‘New Foundations’ and ‘Alternative Set Theory’ may sound similar, like catchy
names for new products, but the philosophy behind them is completely different.
Vopěnka claims that, in fact, he did not invent a completely new theory, but sim-
ply reconstructed mathematicians’ past views on the foundations of mathematics,
mainly the views of Leibniz, who introduced differential calculus using infinitely
small quantities. Infinitely small quantities helped the development of calculus and
mathematicians have been using them in an intuitive way all the time. Though stim-
ulating, the concepts of infinitely small and infinitely large led often to nonsensical
results. When the formal foundations of calculus were being developed, no con-
sistent formalization of infinitely small and infinitely large was available, therefore
these concepts were completely eliminated. Instead an approach based on the con-
cept of a limit was accepted. The usual definition of the limit starts with ‘for every
ε > 0 there exists δ > 0 . . .’, thus this method is also called the ε–δ formalization. I
prefer to use the latter term, since the limit itself can be defined by infinitely small
quantities.

As an example, consider the definition of the limit of a function f (x) at x0.
Roughly speaking, y0 is the limit of f (x) at x0, if f (x) tends to y0 when x tends to
x0. Here are two possible definitions:

1. Using Infinitely Small Quantities y0 is the limit of f (x) at x0, if f (x) is in-
finitely close to y0 whenever x is infinitely close to x0.

2. ε–δ Definition y0 is the limit of f (x) at x0, if for every ε > 0, there exists δ > 0
such that whenever the distance of x from x0 is less than δ then the distance of f (x)

from y0 is less than ε.

It is interesting to note that the first definition talks about infinity directly, while in
the second one it is only implicit. It is like using actual infinity in the first definition
and potential infinity in the second. Although actual infinity is generally accepted,
infinitely small quantities are not.

The first definition is clearer and it is the one that mathematicians originally
used, but the problem is how to interpret the term ‘infinitely close’. Contemporary
mathematicians are so much used to the second approach that they would argue that
the second one is clearer and that, in fact, if you try to make the first one precise,
you end up with the second one.

For some period of time, the general opinion was that the only rigorous definition
was the second one. When logic, in particular its branch model theory, developed
into a modern mathematical area it turned out that it was possible to speak about
infinitely small and infinitely large quantities in a way that does not lead to a con-
tradiction. As envisioned by Leibniz, it is possible to extend the structure of real
numbers so that it contains numbers that we can interpret as infinitely small and
infinitely large numbers.

236 3 Set Theory

The basic idea is not difficult. First, realize that infinitely small quantities are
reciprocals of infinitely large quantities and vice versa, thus only one of the two
needs to be explained. We will use infinitely large quantities because then it suffices
to speak about natural numbers. A positive real number is infinitely small, if it is
less than 1

n
for an infinitely large natural number n, and a real number is infinitely

large, if it is larger than an infinitely large natural number.
To get infinitely large numbers we will consider a nonstandard model M of nat-

ural numbers. Recall that in such a model we have elements that interpret the stan-
dard natural numbers 0,1,2, . . . , and furthermore we have others, which necessarily
must be larger than the standard ones (see page 87). In spite of being different from
the standard model, M can be constructed so that exactly the same sentences are
true in M as in the standard model. The apparent paradox that the standard model
and M , which is different from the standard model, satisfy the same axioms is ex-
plained by the limited possibility of the language that we consider. The properties
that distinguish the two models are not expressible in the language. In particular,
no formula can define the standard numbers in M . We say that inside of M this
set is not definable. However, when studying the model, we do not have to restrict
ourselves to a particular language. In particular we can speak about arbitrary sub-
sets, including those that are not definable inside of M . So to say, looking at it from
outside we see more. The standard numbers in M are also called finite numbers; the
others are called nonstandard numbers, or infinite numbers, and will be used as the
infinitely large numbers in definitions such as the one above.

Thus in a nonstandard model we can distinguish finite and infinite integers. This
enables us to use the terms infinitely small and infinitely large in the sense that these
concepts were used in the past. In particular, in the first definition we only need
to define what it means to be infinitely close which is now clear: it means that the
difference must be less than 1

n
for some infinite number n. Recall that we cannot

make the distinction between finite and infinite numbers using the original language
of the model M ; we say that these concepts are external, as opposed to internal
concepts that are those that can be defined in the language of M . In order to talk
about external concepts, we must use a richer language. This presents no problem,
it suffices to add a predicate symbol whose interpretation is the set of finite numbers.
Let us call this predicate FN. We are, of course, prepared for some complications,
as nothing is for free. The main complication is that the concepts defined using FN
behave differently than those defined using the original language. To see that just
realize that the principle of mathematical induction fails for FN (it contains 0, it is
closed under the successor function, but it does not contain all numbers). Therefore,
one has to be careful and distinguish when only inner language is used and when
an external concept is involved. In the second case we are not allowed to apply the
principle of induction. I should stress that this restriction does not affect the internal
concepts at all; we keep the same true statements as they are in the standard natural
numbers. We have learned that in order to avoid some paradoxes, it is necessary to
distinguish between the object language and the language that we use to describe
the object. Thus the necessity to use a hierarchy of two languages here should not
seem so alien to us.

3.5 Alternative Set-Theoretical Foundations 237

So far we have only talked about natural numbers, which may have given the
impression that we have to restrict ourselves to a particular language that uses only
arithmetical operations. But this approach is very general. The model M can be a
model of set theory, the real numbers, or anything you like. In such a case we do not
have a canonical model, thus we use the distinction ‘standard’ and ‘nonstandard’ ac-
cording to what the natural numbers in M look like. In order to be able to introduce
the nonstandard concepts such as infinitely small numbers, we need a model M in
which natural numbers form a nonstandard model of arithmetic. The construction
of such a model does not present any problems.

Several logicians (including C.S. Pierce and A.A. Fraenkel) considered the prob-
lem of designing a structure that would represent infinitely small quantities. The
problem was solved in 1960 by Abraham Robinson (1918–1974). He coined his
method nonstandard analysis. The name is derived from the application of nonstan-
dard models to “standard” problems, mostly in analysis. The most amazing thing is
that it really works perfectly. One can prove, quite easily, that definition 1. is equiva-
lent to definition 2. The same is true for all the main concepts concerning functional
analysis, metric spaces and some parts of the measure theory. Robinson showed in
his book devoted to this subject [247] that one can introduce the concepts of analy-
sis and prove basic theorems using exclusively infinitely small numbers. The most
impressive was his solution of a problem of P.R. Halmos and K.T. Smith, an open
problem about infinite-dimensional Hilbert spaces. Robinson solved this problem
using his nonstandard analysis. The basic idea is that the problem has a positive
solution in finite-dimensional spaces. In a nonstandard model ‘finite dimension’ is
interpreted as ‘dimension n, for some natural number n’, but then n can be also
infinitely large. Hence the theorem is also true for spaces with dimensions finite in
the model but in reality infinite. Let me stress that this is only a rough idea and
considerable ingenuity was needed to obtain the result. (An exposition of the proof
is in Notes.) Nonstandard analysis does not give an automatic process of reducing
theorems on infinitely large entities to theorems about finite entities, but it gives
us a different angle from which we can view problems and thus we can get more
inspiration.

Robinson successfully applied his method in a number of other fields of math-
ematics ranging from number theory to mathematical economics, in which he also
solved an open problem. He found many followers and a number of striking appli-
cations were found later. A notable example of these is J. Hirschfeld’s nonstandard
proof of Hilbert’s fifth problem [131].

Vopěnka’s work [301] can be viewed as a part of nonstandard analysis, but there
is an essential difference between his approach and Robinson’s. While Robinson
thought of nonstandard analysis as a tool for proving theorems in the classical the-
ory, Vopěnka proposed to use nonstandard analysis as the foundations of mathemat-
ics. Instead of studying nonstandard models in Zermelo-Fraenkel theory, he sug-
gested stating the principles of nonstandard analysis as axioms and working in such
an axiomatic system. Once we start in this way we are not dependent on Zermelo-
Fraenkel Set Theory and we have the freedom to rethink all axioms of set theory.
The aim is to develop a theory that would be close to the intuition we use in calculus

238 3 Set Theory

and enable us to reason with infinitely small numbers. Since, according to Vopěnka,
the intuition of contemporary mathematicians is greatly distorted by being educated
exclusively in the ε–δ formalism, he studied the ideas of mathematicians of the
past and his theory is inspired by the views that were common before calculus was
formalized. His explanation of the name of the theory is as follows. When mathe-
matics progressed to the point that it was necessary to set precise foundations for
mathematical analysis, there were two main possibilities: one was to use the ε–δ
formalization, the other was to develop a consistent theory of infinitesimals. The
first one was chosen and the second one was completely abandoned. In Alternative
Set Theory we are exploring the second alternative.

Here are the main principles of Alternative Set Theory.

The Axiom of Finiteness Every set is finite.

It should be noted that the word ‘finite’ is used in Alternative Set Theory with a
different meaning, and hence also the axiom is stated in a different way. This needs
an explanation, but let us first look at Vopěnka’s justification of this axiom.

In the real world we observe only finite entities, infinite sets are only abstractions.
We use infinite sets in mathematics because without infinity we would loose most
parts of it. In Alternative Set Theory we do not loose those parts because infinity
is present there, but it is introduced in a different way, using nonstandard concepts.
This is the crucial discovery, so let me spell it out:

It is possible to introduce infinity in a totally different way than it is done in
the classical Cantorian set theory.

According to Vopěnka, if mathematicians knew this possibility at the time when
concepts in calculus were formalized, then perhaps Cantor’s theory of infinite cardi-
nals would not have been introduced, as large infinite cardinalities are artificial and
they do not occur in the physical world.

The Axiom of Finiteness alone, of course, does not suffice to develop a theory
of finite sets; we need some construction axioms. One possibility is to accept all
axioms of Zermelo-Fraenkel Set Theory, except for the Axiom of Infinity. This is
not in contradiction with what I said about being independent of Zermelo-Fraenkel
Set Theory. As far as finite set theory is concerned, there is good agreement on
what axioms should be in a basic theory of finite sets and Zermelo-Fraenkel Set
Theory less the Axiom of Infinity is just one possible set of axioms that defines the
natural theory that we call Finite Set Theory (see page 116). Finite Set Theory can
be axiomatized in a simpler way, which is what Vopěnka did. In particular, instead
of the Replacement Schema, he took the Axiom Schema of Induction (in a form
adapted for finite sets, see Notes).

Alternative Set Theory contains also classes. As usual, it is more convenient to
consider sets as being a special type of classes. Hence, all objects of the theory are
classes and a class is a set, if it is an element of a class, otherwise it is called a
proper class. In contrast to other theories a proper class does not have to be large.
Vopěnka defined that a class X is a semiset, if it is a subset of a set. A class is a

3.5 Alternative Set-Theoretical Foundations 239

proper semiset, if it is a semiset, but it is not a set. (The concept of a semiset goes
back to his earlier research, where he studied extensions of Zermelo-Fraenkel Set
Theory allowing semisets. The purpose of that was to have a theory in which one
could prove independence results without referring to models of Zermelo-Fraenkel
Set Theory.) The existence of a proper semiset is another basic axiom.

The Axiom of a Proper Semiset There exists a proper semiset.

There are sets that do not contain a proper subsemiset. A trivial example is the
empty set whose only subclass is the empty set itself. More generally, any concrete
finite set does not contain a proper semiset. This suggests that sets that do not contain
a proper semiset are small and only large sets can contain a proper semiset.

To distinguish small and large sets we will change our terminology. Since all sets
are finite, the adjective ‘finite’ is superfluous in connection with sets. Therefore,
from now on we will only use it for small sets. Thus we call sets that do not contain
a proper subsemiset finite and those that do contain a proper semiset infinite. After
this change, one must also state the Axiom of Finiteness in a different way.

The new terminology is in accord with the usage of these terms in nonstandard
analysis.19 The class of finite numbers is denoted by FN. This is a proper semiset,
in particular it does not contain all numbers. One can easily show that a set is finite
if and only if its cardinality is a finite number. Having numbers divided into finite
and infinite ones, one can develop analysis in a similar way to Robinson’s.

Vopěnka took pains to explain all axioms. The Axiom of a Proper Semiset needs
special care, as this is the one which distinguishes the theory from all others. When
justifying the Axiom of Finiteness, we claimed that actually observable sets are
finite. Now we are introducing some sort of infinity, so we must demonstrate that
it also occurs in the real world. An interpretation of proper semisets is given by
some vague, or not precisely specified concepts. Such concepts are excluded from
classical mathematics, but they are frequently used in ordinary speech. For example,
a pile of sand, forest, etc. How many grains of sand constitute a pile? How many
trees do you need to call it a forest? They concern finite, but big numbers. Others
refer to discrete, but gradual changes. For instance, from which generation on should
we call our ancestors homo sapiens? Such examples are almost ubiquitous. Thus
sometimes Alternative Set Theory is promoted as a theory that is able to handle
vagueness. I think this is not correct. We can use these examples as explanations,
but the theory cannot be applied to practical situations where we need to handle
vagueness. As we have observed, every concrete number that we write down is finite
from the point of view of Alternative Set Theory and we can write down an upper
bound on the number of grains of sand on the whole Earth (as already Archimedes
did), thus there is no proper semiset of grains of sand on the Earth. In fact, we can
never observe a proper semiset in the sense of the theory. So the relation to vague
concepts cannot be taken literally.

19Note, however, that nonstandard analysis uses models, whereas here we are talking about a the-
ory.

240 3 Set Theory

Another argument that Vopěnka gave to justify the Axiom of a Proper Semiset
is that proper semisets can be used to explain some paradoxes, namely, Berry’s
paradox. For this paradox, the explanation is: there is no first number that cannot be
defined by an English sentence with at most one hundred letters because the class
of numbers that can be defined in such a way is a proper semiset and the induction
principle fails for semisets. Unfortunately, there is the same problem. The set in
which this semiset should be included, is a concrete set, its size is 27100. Such sets
do not contain proper subsemisets. So either we separate the language of the theory
from the language that we use to argue about it and the paradox disappears in the
same way, as in other theories, or we get a contradiction anyway.

The Prolongation Axiom Every function defined on FN can be extended to a func-
tion which is a set.

This is a rather delicate statement. Think of a function defined on the finite num-
bers as a procedure that is doing something useful for us. Then the axiom says,
roughly speaking, that we can run this procedure successfully not only on finite
numbers, but, in fact, on some initial segment of numbers [0, n] where n is an in-
finite number. In spite of looking very technical, this axiom has a very natural ex-
planation. Look at the milestones along a road going to the horizon, or at ties on a
railway. You expect that the same pattern continues, at least some distance, beyond
the horizon. What we see are the pieces enumerated by the semiset FN, the finite
numbers. FN is a proper semiset, while roads and trucks are real objects. As real
objects are sets, they cannot be restricted to FN, therefore roads and tracks must
continue beyond our horizon, at least a little bit. Again, we cannot take this explana-
tion literally. It is more persuasive, if instead of watching a landscape we talk about
measurements performed in physics. When we investigate the micro-structure of
space and matter, or aim our telescopes into the most distant parts of the universe,
we are always limited by the instruments available. The horizon of our observations
is not fixed, but due to the progress in science and technology it encompasses more
and more. This brings new discoveries, new phenomena, but in most cases we as-
sume that a small increase of our observational horizon will not require changing
our basic physical theories.20 The same can be said about some parts of mathemat-
ics. Consider number theory and the particular branch studying natural numbers.
Most of the research concerns general laws, but recently a field called experimental
number theory became popular because computers enable us to do experiments that
were impossible before.21 The part of the set of natural numbers that humankind,
or any intelligent beings, will ever explore is small. Nevertheless, we firmly believe,
as in other sciences, that what we have learned on a finite part of N extends beyond

20An important exception is high energy physics. Physicist hope to discover new particles by using
more powerful accelerators.
21However, experimental computations with natural numbers are perhaps as old as mathematics
itself.

3.5 Alternative Set-Theoretical Foundations 241

these limits; in particular, the basic arithmetical laws should hold true for arbitrarily
large numbers.

An important consequence of this axiom is that there are at least two infinite car-
dinalities: one is the cardinality of FN, another one is the cardinality of N . They
correspond to ℵ0, the countable cardinality, and 2ℵ0 , the cardinality of the contin-
uum. Note that the existence of two infinite cardinalities is proved in an essentially
different way than in Cantorian set theory.

The complete list of axioms is in Notes, page 250.
Most mathematicians are sceptical about the idea that an extensive use of non-

standard analysis may bring a revolution in some fields of mathematics. They agree
that reformulating a problem using different concepts often helps, but when you are
confronted with a really difficult problem, you need much more than that. What
seems more promising is proving theorems that do not have a standard counterpart,
but which have a lot of consequences in the standard world of mathematics.

Notes

1. Categorical foundations. As the name suggests, this is an approach where one
uses the theory of categories instead of set theory. The key concept there is a
topos. The idea of using topoi as a foundation of mathematics is due to F.W. Law-
vere [181]. Topoi are a class of categories that are very universal in the sense that
a lot of concepts can be formalized in them. In particular one can interpret Zer-
melo Set Theory in a topos satisfying some additional axioms (a well-pointed
topos). In this setting it is also possible to reproduce the proofs of the indepen-
dence of the Axiom of Choice and the Continuum Hypothesis [189].

In principle, one can interpret the whole Zermelo-Fraenkel Set Theory and
its extensions in topoi satisfying more axioms. However, it would be more inter-
esting to find natural categorical axioms that transcend axioms proposed in set
theory.

2. The axioms of New Foundations. The language has ∈ as the only nonlogical
symbol. The axioms are:

The Axiom of Extensionality

x = y ≡ ∀z(z ∈ x ≡ z ∈ y).

Stratified Comprehension Axiom Schema

∃x∀y(y ∈ x ≡ ϕ(y)
)
,

where ϕ is stratified and x does not occur in it.

A formula is stratified, if it is possible to assign integer indices to its variables
(all occurrences of a variable get the same index) so that for every subformula
of the form x = y, the variables x and y have the same index and for every
subformula of the form x ∈ y, the index of y is equal to the index of x plus 1.

242 3 Set Theory

3. The relation of New Foundations to the Simple Type Theory. Consider a model of
the Simple Type Theory (U0,U1,U2, . . . ,∈) together with a function f which
is a bijection between Ui and Ui+1 and satisfies x ∈ y ≡ f (x) ∈ f (y). In
other words, f determines an isomorphism between every pair of structures
(Ui,Ui+1,∈) and (Ui+1,Ui+2,∈) (hence iterations of f give an isomorphism
between every (Ui,Ui+1,∈) and (Uj ,Uj+1,∈)). Such a model exists if and only
if there exists a model of New Foundations.

To prove the equivalence, first let M be a model of New Foundations. Let
Ui be copies of M and f the natural bijection between the consecutive sets. To
be more explicit, take Ui =M × {i} and f ((a, i))= (a, i + 1). Then define the
membership relation by setting (a, i) ∈ (b, i+1) in the new model, if a ∈ b holds
true in M . The resulting structure is a model of the Simple Type Theory because
every formula corresponds to a stratified formula in M , hence the comprehension
axioms follow from the comprehension axioms for stratified formulas in M .

Conversely, given a model of the Simple Type Theory (U0,U1,U2, . . . ,∈)
with such an f , one defines a model of New Foundations by taking U0 as the
universe and setting x ∈ y in this model, if x ∈ f (y). Then stratified formulas in
the new model are translated to well formed formulas of the model of the Simple
Type Theory.

To see how it works consider the following theorem of New Foundations:
∃x(x ∈ x). It holds because the set of all sets contains itself. This is translated as
∃x(x ∈ f (x)) in the Simple Type Theory with an isomorphism. There it is true
because the universal set of type i is mapped by f on the universal set of type
i + 1 and the latter contains the former.

Specker showed (using model theory) that this model-theoretical relation can
be replaced by a syntactical relation. Namely, New Foundations are consistent if
and only if the Simple Type Theory is consistent when we add a rule saying that
all types are equivalent. More precisely the rule means that for any sentence ϕ,
we add ϕ ≡ ϕ+ as an axiom, where ϕ+ is ϕ with all type indices increased by
one.

4. Jensen’s model with urelements. Of the variants of New Foundations that
were proved to be consistent the most interesting is the one considered by
R. Jensen [139]. It is also a nice example of an application of Ramsey’s theo-
rem.

Suppose we want to construct a model of the Simple Type Theory with
the additional Specker’s axioms using the cumulative hierarchy {Vα}α∈ON . It
can easily be seen that we cannot take Vα,Vα+1,Vα+2, . . . , as the ordinals
α,α + 1, α + 2, . . . are definable in the corresponding levels and they are distin-
guishable. However, it is possible to take Vα0,Vα1 ,Vα2 , . . . , where α0, α1, α2, . . .

are not consecutive ordinals. There is only one problem: there are sets in Vαn+1

that are not subsets of Vαn , as they may also contain other elements which ap-
pear on the intermediate levels. If we follow the construction of a model of New
Foundations of the previous paragraph, the only thing that breaks down is the
extensionality axiom. But it does not break in too bad a way. The elements that
appeared on the intermediate levels enter into the model as urelements. Recall

3.5 Alternative Set-Theoretical Foundations 243

that these are elements that do not contain other elements, in other words, they
are not sets, they can only be elements of sets. This, of course, violates the ex-
tensionality, since the extensionality would make them all equal to the empty
set. For other elements of the model, namely those which contain at least one
element, the Axiom of Extensionality remains valid. Having urelements is not
so unnatural. Things in the real world are urelements—we do not think of them
as sets of atoms (if we did, then atoms would be urelements, etc.). Furthermore,
urelements naturally occur, for instance, in the Theory of Types in which the
bottom type consists of urelements.

Constructing the model in the form Vα0 ,Vα1 ,Vα2 , . . . would need large car-
dinals, but this is overkill; to prove the consistency, one needs relatively little.
Let us take Vω,Vω+1,Vω+2, . . . and let φ be a sentence of the Simple Type
Theory which mentions types up to k. Now color every k-tuple (n1, . . . , nk),
n1 < · · · < nk red, if φ holds in Vω+n1 , . . . , Vω+nk

, otherwise color the k-tuple
blue. By Ramsey’s theorem we can find an increasing sequence i1, i1, i2, . . . such
that either the formula holds for all choices of k-tuples from this sequence, or it
does not hold for any. Thus we have achieved for φ what we need for all sen-
tences. By repeated applications of Ramsey’s theorem we get it for any finite set
of sentences. Once we have it for arbitrary finite sets, we have the consistency of
all sentences by compactness.

Jensen’s New Foundations with urelements seems to be close to the original
system, but there are facts that indicate otherwise. In the modified system it is
consistent to assume the existence of a well-ordering of V , which implies the
Axiom of Choice, while in the original theory the Axiom of Choice has been
disproved. Jensen’s construction has the property that many sentences valid in
ZFC are also true in this model; the Axiom of Choice is only one of them. If
we want to construct a model of New Foundations along these lines in ZFC, we
have to start with something that already captures the differences between ZFC
and New Foundations. Hence a substantially new idea is needed.

The relation of the type-free λ-calculus to its typed version is similar to the
relation of New Foundations to the Simple Type Theory. So the ideas used to
construct models of the λ-calculus, perhaps, may be used to construct a model of
New Foundations. Attempts of this kind have already been made.

5. Hao Wang’s system Σ . One of the many systems based on the Theory of Types
that have been proposed is the system Σ , due to the Chinese American logician
Hao Wang (1921–1995) [302] (see also [305], Chaps. XXIII and XXIV). The
details are not important, what I want to mention is one particular idea, which
possibly can be used not only in connection with the Theory of Types. When
proposing a system for the foundations of mathematics, our goal is to present it
as a formal system so that the correctness of syntax (formulas, axioms, proofs,
etc.) can be efficiently tested. The general consensus is that the right framework
for formal systems is finite combinatorics, or if we want to be more specific,
the combinatorics of finite sequences of symbols. This is also apparent from the
rather obsolete term symbolic logic, for which we nowadays use the term mathe-
matical logic. But one can question this restriction: why should elementary com-
binatorics of finite sequences be more basic than other mathematical concepts?

244 3 Set Theory

Consider, say, ordinals. The finite ones are natural numbers and they are always
accepted. Now take the ordinals ω,ω + 1,ω + 2, . . . , the infinite ordinals less
than ω+ ω. They are considered bad, as they are infinite objects; already ω has
infinitely many ordinals before it. Nevertheless, as a structure, where you do not
analyze the substance of the elements, ω+ω is as transparent as ω. Take a sym-
bol representing ω, then all ω+n are only finite sequences. Surely, you cannot do
the same for all countable ordinals, but whenever you have a system of notation
for some segment of ordinals, you can think of those ordinals as finite objects.
The best example is the segment of ordinals below ε0. These ordinals can be rep-
resented in the Cantor normal form (see page 193) which is essentially a finite
tree.

The cumulative hierarchy of sets in Zermelo-Fraenkel Set Theory suggests
considering theories of types with transfinite types indexed by ordinals. If one
has a system of notation for a segment of ordinals and restricts the types to this
segment, the resulting system is perfectly formal. The advantage of using trans-
finite types is that we obtain stronger systems: the longer segment of ordinals we
take, the stronger system we get. But how strong a system do we need and how
big a segment should we take? For practical purposes, doing ordinary mathemat-
ics, we do not need much: Russell’s Theory of Types, having only finite types,
amply suffices. The appeal of this approach is not in that it enables us to create a
sufficiently strong system, but in the possibility of avoiding the incompleteness
phenomenon. Unlike in other systems, here, it seems, there exists a clear way of
extending the system indefinitely by taking larger and larger constructive ordi-
nals. Wang’s proposal was to use all constructive ordinals as types. As a result
the entire system is not constructive, but each part determined by the types up to
a constructive ordinal is a constructive system. Thus one should rather think of it
as an evolving system, in which we take larger and larger constructive ordinals,
but never work with the entire system.

How strong is this system? Wang claimed that the consistency of Σα , the
system restricted to types below the ordinal α, is provable in Σα+2 and that the
system avoids the basic problems of formal systems such as the possibility to be
easily extended “to a new system which at the same time contains new theorems
and yet can be proved to be no less reliable than the original”, [305], pages 564–
565.

All this looks like a wonderful thing, almost like achieving the ultimate goal
of foundations, but optimism is not warranted. By using constructive ordinals
we are only sweeping the problems under the rug. Taking larger constructive
ordinals is not an automatic process. It requires a high degree of ingenuity to find
a system of notations for higher constructive ordinals. Once we have it we are
not finished, we have to prove that it determines a well-ordering. Where should
we prove it? Moreover, there is an even more fundamental problem: what is a
natural ordinal notation? We cannot use an arbitrary one because this would lead
to trivialities. We will learn more about it in Chap. 7.

6. Basic concepts of nonstandard analysis. Let M be a mathematical structure. M
is associated with a logical language L that contains the necessary means for

3.5 Alternative Set-Theoretical Foundations 245

expressing statements true in M . In particular, if M is a structure of order n then
so is the language. But we do not have to use higher order languages, since we
can assume that M is a model of a theory that contains the concept of a set, hence
sets are the usual first order elements of the structure.

Definition 6 An enlargement (also called nonstandard extension) of M is a
structure ∗M and a mapping x �→ ∗x which satisfy the two conditions below.

1. x �→ ∗x is an elementary embedding22 of M into ∗M , in particular, the same
sentences of L are true in ∗M as in M .

2. Let Ri , i ∈ ω be sets or relations of the same type definable in ∗M (however,
we do not require that the sequence {Ri}i∈ω is definable in ∗M). Suppose that⋂n

i=0 Ri = ∅, for every n ∈ ω. Then
⋂

i∈ω Ri = ∅.

Various modifications of condition 2. are used in the literature; here we are
using the strongest form. In model theory this condition is called ℵ1-saturation;
in Alternative Set Theory the Prolongation Axiom is used instead of it.

For a set or a relation (of arbitrary type) R definable in M , we will denote
by ∗R the relation defined in ∗M by the same formula that defines R in M . Thus
the mapping x �→ ∗x is naturally extended to all entities of M .

When having an embedding it is often a good idea to identify elements with
their images, but here it is better to do so only for some elements. In particular, I
will assume n= ∗n for all standard integers, but not for real numbers. The general
rule is that we put x = ∗x for elements that have finite structure and otherwise
not. The explication of having finite structure is that the element is represented
by a hereditarily finite set.23

In nonstandard analysis we use the pair (M,∗M) to prove theorems about
structure M . To this end we do not have to restrict ourselves to language L, on
the contrary, in order to be able to distinguish the substructure M in ∗M , we have
to use more. We use L only when we want to deduce that a particular sentence
holds in ∗M . The concepts definable in L are called internal, all others are called
external. According to condition 1., ∗M satisfies exactly those sentences of L

that are true in M . We call elements of M standard elements, and elements in
∗M \M nonstandard elements. As regards natural numbers, we also use terms
finite numbers and infinite numbers.

For some elements one can define the standard part. In particular this can be
done for finite real numbers. A real number in ∗M is finite, if its absolute value
is less than a finite natural number. Let us use decimal representations of real
numbers. Thus a real number r ≥ 0 of ∗M is a sequence {rn}n∈∗N, where rn are
numbers between 0 and 9 with one exception which is the decimal point. Then
r is finite, if the point occurs on a finite position. For such an r , the finite part is
simply the standard number represented by {rn}n∈N.

22See page 212.
23See page 175.

246 3 Set Theory

Let me express it ‘pictorially’. Let

3.141592622209072117012003 . . .

be a finite nonstandard number. Then its standard part is

3.1415926 . . .24

An infinitely small real number is a number whose absolute value is less than
1/n for every finite positive integer. Clearly, a real number is infinitely small, if
and only if it is finite and its standard part is 0. I will say that r is infinitely close
to s, and write r ≈ s, if r − s is infinitely small.

Let us consider some examples. For a standard function f and a standard real
number a, we want to define the derivative of f at a. We define f ′(a) to be the
standard part of

∗f (∗a + η)− ∗f (∗a)
η

for η > 0 infinitely small, provided that this number does not depend on the
particular choice of η. Thus the expression above defines a number which is
infinitely close to ∗(f (a)′). Let us prove the formula for differentiation of the
product of two functions.

∗((f (a)g(a)
)′)

≈
∗f (∗a + η)∗g(∗a + η)− ∗f (∗a)∗g(∗a)

η

=
∗f (∗a+η)∗g(∗a+η)−∗f (∗a)∗g(∗a+η)+∗f (∗a)∗g(∗a+η)−∗f (∗a)∗g(∗a)

η

≈ ∗(f (a)′
)∗g(∗a + η

)+ ∗f (∗a)∗(g(a)′)
≈ ∗(f (a)′g(a)+ f (a)g(a)′

)
.

In the last step I am using g(a + η)≈ g(a) which is the continuity of g at a (a
consequence of the existence of the derivative at a). To get the derivatives we
take the standard parts. Since the standard parts of infinitely close numbers are
the same, the formula is proved.

Next consider infinite sums. We want to define the sum of a series of standard
real numbers A= {an}∞n=0. We define

∑∞
n=0 an to be the standard part of

κ∑
n=0

∗an

for κ an infinitely large integer, provided that this number does not depend on
the particular choice of κ . Thus the expression above defines a number which is
infinitely close to ∗(

∑∞
n=0 an).

24It is not clear that the two numbers can be ∗π and π ; to this end one would have to prove that
the strings 222090721 and 17012003 occur infinitely often in the decimal expansion of π .

3.5 Alternative Set-Theoretical Foundations 247

The classical paradox of summation is based on the following series:

1− 1+ 1− 1+ 1− 1+ 1− 1+ 1− 1 . . .

By distributing parentheses in two ways we get two contradictory conclusions,

(1− 1)+ (1− 1)+ (1− 1)+ (1− 1)+ (1− 1) . . .= 0,

1+ (−1+ 1)+ (−1+ 1)+ (−1+ 1)+ (−1+ 1) . . .= 1.

Using our definition we also get these two values, depending on the parity of κ ,
but because of the proviso, it means that the sum does not exist.

Notice that in the example above we spoke about the parity of an infinite num-
ber. Apparently this is the thing that confused mathematicians who had consid-
ered the problem of using infinitesimals prior to Robinson. They knew the basic
property of infinite cardinals, which is x+1= x, so how can one speak about the
parity of x? In an enlargement the cardinality of sets {0,1,2, . . . , κ − 1} may be
the same for all infinite κ , but this cardinality and the position of κ in the struc-
ture are different things. The cardinality of {0,1,2, . . . , κ − 1} is not definable in
the enlargement ∗M , it is an external concept, whereas parity is definable because
it is an internal concept. We used a very simple property of integers (parity) for
showing that the series above does not converge, in general, one may need much
more complex properties.

A simple model in which one can talk about infinitesimals was known already
in the 19th century. An ordered field is called archimedian if for every number
x, there exists a natural number n such that |x| ≤ n̄, where n̄ denotes the sum
of n ones of the field. The first nonarchimedian field was constructed using for-
mal power series. In a nonarchimedian field we have numbers that are finite and
those that are infinite according to the aforementioned definition, thus one can
develop some rudiments of nonstandard analysis. However, such a field does not
have to contain an enlargement of the natural numbers, thus we cannot use such
fields for infinite sums and similar more complex concepts. The crucial insight
of Robinson was that infinite entities should have the same properties as finite
ones. But to achieve this, one has to distinguish the languages that one uses to
speak about them because infinite objects are different from finite ones.

7. A theorem that was first proved by means of Nonstandard Analysis.

Theorem 16 Let T be a bounded linear operator on an infinite-dimensional
Hilbert space H such that p(T) is compact, for some a nonzero polynomial p.
Then T has a nontrivial closed invariant subspace.

Recall that a linear operator is compact, if it maps the unit ball onto a set
whose closure is compact. A subspace L is invariant for T , if T maps L into
itself, i.e., T (L)⊆ L. A subspace is called nontrivial, or proper, if it is different
from {0} and from the entire space H .

This theorem was proved for p(z) = z2 by Robinson which solved a well-
known open problem. The proof was generalized to arbitrary nonzero polynomi-
als by A.R. Bernstein and then published in a joint paper [15]. I will try to give a
brief overview of the proof below.

248 3 Set Theory

First we recall a classical result of Schur.

Theorem 17 Every complex square matrix A can be expressed in the form

A=UTU−1,

where U is unitary and T is upper triangular.

Notice that this entails that in a finite-dimensional space any linear opera-
tor has a lot of nontrivial invariant subspaces. Indeed, the application of the
unitary matrices means only an orthonormal change of the basis, thus we can
assume M already is upper triangular. For such a matrix, the space of vectors
(c1, c2, . . . , ci,0,0, . . . ,0) is an invariant subspace for every fixed i.

It is clear that we cannot use Schur’s theorem to directly obtain the theo-
rem about infinite-dimensional spaces because it does not mention compactness
or polynomials. However, we can get something else that seems to be close to
the solution. To this end let us make some preliminary considerations. Take σ

a nonzero element of H and consider the set {σ,T σ,T 2σ, . . .}. If the set is not
linearly independent, then we get a nonzero finite invariant subspace. If it does
not generate H (in the sense of Hilbert spaces, which means by infinite sums),
then its closure is a proper invariant subspace. Thus we can assume in the rest
of the proof that neither of the two holds, so the set is independent and gener-
ates H . Apply the Gram-Schmidt orthonormalization to this set and denote by
Z = {η1, η2, . . .} the resulting orthonormal basis (in the sense of Hilbert spaces).
For every n, the sets {σ,T σ, . . . , T n−1σ } and {η1, η2, . . . , ηn} span the same sub-
space, whence T σ,T 2σ, . . . , T nσ ∈ {η1, η2, . . . , ηn+1}. This means that if we
take the infinite matrix A = (aij)

∞
i,j=1 that defines T in the basis Z, then A is

almost upper triangular, meaning that aij = 0 for i > j + 1. Now I can state the
key lemma.

Lemma 2 There exists κ such that aκ+1,κ is infinitely small.

The point is that if instead aκ+1,κ were zero, we would be done. The invariant
subspace would be again the space of all vectors (c1, c2, . . . , cκ ,0,0, . . . ,0). So
we are closer again, but more work is needed, as one cannot eliminate aκ+1,κ
completely (otherwise we would get a finite invariant subspace, which does not
exist in general).

To state this lemma precisely and to prove it, we have to talk about enlarge-
ments. I will assume that an enlargement ∗H of H is given and that H is a subset
of ∗H . The latter assumption is perhaps not quite natural, but simplifies notation
considerably. Also we have enlargements ∗N of the natural numbers N and ∗C
of complex numbers C. Elements of ∗H are represented by infinite sequences
{cn}n∈∗N of complex numbers cn ∈ ∗C.

Lemma 3 Let (bij)i,j∈∗N be the matrix of a compact linear operator S. Then for
every fixed i, bij is infinitesimal for every infinite j .

3.5 Alternative Set-Theoretical Foundations 249

If D is a compact subset of H , then for every ε > 0, there exists a finite subset
Kε ⊆D such that:

every element of D is in distance less than ε from Kε .

The last statement is stated in the internal language, thus the same must hold in
the enlargement. Since Kε is finite we get:

every element of ∗D is in distance less than ε from Kε .

Hence every element of ∗D is arbitrarily close to an element of H , in other words,
every element of ∗D is infinitely close to an element of H . Now let ∗D be the clo-
sure of the set to which the unit ball is mapped by S. By definition ∗D is compact.
Take a basis element ηj . This element is in the ball, so it must be mapped to an el-
ement that is infinitely close to an element of H . But all coordinates with infinite
indices of an element of H are infinitely small. Thus also Sηj has all coordinates
with infinite indices infinitely small, which proves Lemma 3.

Now we can finish the proof of Lemma 2 very quickly. I will only do it for
p(T) = T 2 leaving the easy generalization to arbitrary nonzero polynomials to
the reader. Let (bij) be the matrix of T 2. Clearly, bi+2,i = ai+1,iai+2,i+1 because
A is almost upper triangular. If i is infinite, then by Lemma 3, bi+2,i is infinitely
small, whence either ai+1,i , or ai+2,i+1 is infinitely small.

The plan of the rest of the proof is as follows. Fix a number κ such that aκ,κ+1

is infinitely small. Let Eκ be the subspace of elements whose coordinates with
indices larger than κ are zero. Then T “almost leaves Eκ invariant”; more pre-
cisely, if ξ ∈ Eκ is an element with finite norm, then T ξ has κ + 1st coordinate
infinitely small and all coordinates with larger indices are zero. We take an op-
erator T ′ that leaves Eκ genuinely invariant and that is “infinitely close” to T .
Referring to Schur’s Theorem, we take invariant subspaces of T ′

E0 ⊆E1 ⊆E2 ⊆ · · · ⊆Eκ

such that dim(En)= n, for n= 0,1, . . . , κ . We define ◦En to be the subspace of
H of elements that are infinitely close to En ∩H . Then we show that every ◦En

is invariant under T and at least one of them is nontrivial.
Here are more details. Let P denote the projection operator on Eκ . We define

T ′ = PT P . Let E0,E1,E2, . . . ,Eκ be as above, and let Pn be the projection
operators on En, for n= 0,1, . . . , κ . The following facts can be proved easily:

1. ◦En, as defined above, are invariant under T ;
2. ◦E0 = {0} and ◦Eκ =H ;
3. dim(◦En/

◦En−1)≤ 1, for n= 1,2, . . . , κ ;
4. if ξ ∈Eκ has a finite norm, then p(T)ξ is infinitely close to p(T ′)ξ .

Here it may seem that the first three facts should be enough, but be careful. The
mapping En �→ ◦En is not definable internally, as we speak about infinitely small
elements in the definition! Therefore, we cannot guarantee that there exists the
smallest n such that ◦En =H .

250 3 Set Theory

Thus we need a different argument. Fix an element ξ ∈ H of a finite norm,
say ‖ξ‖ = 1, and consider the norms

rn =
∥∥p(T ′)ξ − p

(
T ′
)
Pnξ

∥∥,
for n= 0,1, . . . , κ . Then r0 = ‖p(T ′)ξ‖> 0 because if p(T ′)ξ = 0 then, by 4.,
p(T)ξ would be infinitely small, hence also equal to zero because T and ξ are
standard. But we assume that ξ, T ξ,T 2ξ, . . . are linearly independent, so it is not
possible. Since ξ is standard, ‖ξ − Pξ‖ is infinitely small (all coordinates of ξ

with infinite indices are infinitely small). Hence

rκ ≤
∥∥p(T ′)∥∥ ‖ξ − Pκξ‖ =

∥∥p(T ′)∥∥ ‖ξ − Pξ‖,
is also infinitely small (T is standard and ‖P ‖ ≤ 1, so ‖p(T ′)‖ is finite). Thus we
can take the least n such that rn < r0/2. Now such an n exists because the num-
bers ri were defined in the internal language of the expansion, i.e., the definition
does not mention any infinitely small or large quantities.

We will show that ◦En = {0} and ◦En−1 =H . This immediately implies that
either ◦En−1 or ◦En is a proper subspace of H . If it were not, then the only re-
maining possibility would be that ◦En−1 = {0} and ◦En =H . But that is excluded
by 3.

So suppose that ◦En = {0}. Let ζ = p(T ′)Pnξ . As p(T ′) leaves En invariant,
ζ ∈ En. Furthermore, ζ ≈ p(T)Pnξ by 4. Since p(T) is compact, there is a
standard element ◦ζ ≈ p(T)Pnξ ≈ ζ . According to ◦En = {0} we have ◦ζ = 0,
thus ζ is infinitely small. But

rn ≥
∥∥p(T ′)ξ∥∥− ∥∥p(T ′)Pnξ

∥∥= r0 − ‖ζ‖,
which is in contradiction with rn < r0/2.

Now suppose that ◦En−1 =H . Then ‖ξ − Pn−1ξ‖ would be infinitely small.
But rn−1 ≥ r0/2 is not infinitely small and rn−1 ≤ ‖p(T ′)‖ ‖ξ − Pn−1ξ‖. So this
is also not possible. This finishes the proof.

Hilbert’s fifth problem was solved by A. Gleason and by D. Montgomery and
L. Zippin in 1952. The answer was given by proving the following theorem.

Theorem 18 Every locally Euclidean group is a Lie group.

In 1990 J. Hirschfeld published a proof of this theorem based on nonstandard
analysis [131].

8. The axioms of Alternative Set Theory. The theory has one binary relation ∈ denot-
ing the membership. The objects of the theory are called classes. Those classes
that are elements of other classes are called sets. As usual, in order to simplify
notation, we distinguish sets from classes by using upper case letters for classes
and lower case letters for sets. Note that Alternative Set Theory was proposed
as an open system to which more axioms can be added. Thus the list of axioms
below consists only of basic axioms and stronger systems can be found in the
literature.

The Axiom of Extensionality (as usual)

The Axiom of the Empty Set ∃x∀Y(Y ∈ x); this set is denoted by ∅.

3.5 Alternative Set-Theoretical Foundations 251

The Axiom of the Set-Successors ∀x, y∃z∀u(u ∈ z≡ (u ∈ x ∨u= y)); this set
is denoted by x ∪ {y}.

The Axiom Schema of Induction For every formula φ(x) in which only sets
are quantified, (

φ(∅)∧ ∀x, y(φ(x)→ φ
(
x ∪ {y})))→∀xφ(x).

Note that the Comprehension Schema for sets and the Axiom of Foundations
are derivable from this schema.

The Axiom Schema of Comprehension for Classes For every formula φ(x)

which does not contain the variable Y ,

∃Y∀x(x ∈ Y ≡ φ(x)
)
.

A semiset is a class that is a subclass of a set. A proper semiset is a semiset
that is not a set.

The Axiom of the Existence of a Proper Semiset There exists a proper semiset.

A class is finite, if it does not contain a proper semiset. FN is the class of
all finite numbers. One can prove that FN is a semiset, hence there exist infinite
numbers. A set is finite if and only if it is equinumerous to a finite number.

The Prolongation Axiom Every function defined on FN can be extended to a
function which is a set.

The Axiom of Cardinalities Every class is either finite, or equinumerous to
FN, or equinumerous to the universal class.

Vopěnka does not consider this axiom to be essential and is willing to replace
it by a an axiom postulating a larger number of infinite cardinalities if this turns
out to be useful.

Collections of classes can be coded by binary relations: a relation R codes the
classes {x;R(x, y)}, for y ∈ V . Such a coding is said to be extensional, if no two
rows are equal.

The Axiom Schema of Extensional Coding Every codable collection is exten-
sionally codable, i.e., for every relation R, there exists a relation S that codes
the same classes and is extensional.

This axiom is only given as an example of a variety of axioms on classes by
which the theory can be expanded.

9. Models of nonstandard analysis and Alternative Set Theory. Enlargements and
models of Alternative Set Theory are best constructed using ultrapowers. I have
briefly mentioned this construction in connection with measurable cardinals (see

252 3 Set Theory

page 213). Let me now describe the construction in more detail. Let M be an
arbitrary model. Let U be a nontrivial ultrafilter on ω. Let Mω be the set of all
functions f : ω→M . For two functions, we define an equivalence relation by

f ∼U g ≡ {n;f (n)= g(n)
} ∈ U .

The universe of ∗M is Mω/ ∼U , the equivalence classes of ∼U . Given a func-
tion f , we will denote by [f] its equivalence class. For a k-ary relation R of the
structure M , define ∗R by

∗R
([f1], . . . , [fk]

)≡ {n;R(f1(n), . . . , fk(n)
)} ∈ U .

To define operations in the ultrapower we treat them as relations with one more
argument.

The most important information about the ultrapower is given by Łos’s The-
orem which states that the above formula is true for all definable relations in
M . The proof is a simple argument using induction on the complexity of the
formula defining R. The embedding x �→ ∗x is given by ∗a = [ca], where ca is a
function constantly equal to a. The fact that it is an elementary embedding is an
immediate consequence of Łos’s Theorem.

The proof of the condition 2. of the definition of an enlargement (the ℵ1-
saturation) is also easy. Let ∗Si , i ∈ ω be sets definable in ∗M . So Si , i ∈ ω are the
corresponding sets defined by the same formulas in M . Suppose that

⋂n
i=0
∗Si is

nonempty for every n ∈ ω. Since the mapping x �→ ∗x is an elementary embed-
ding, this implies that also

⋂n
i=0 Si is nonempty for every n ∈ ω. It is because

each condition
⋂n

i=0 Si = ∅ speaks about only a finite number of definable sets.
For the sake of simplifying the proof, let us assume that ∗Si , and hence also Si ,
i ∈ ω are sets. For every n, pick an element an ∈⋂n

i=0 Si and let f : ω→M

be defined by f (n) = an. We will show that [f] ∈⋂i∈ω ∗Si . Again it follows
immediately from Łos’s Theorem. Let n be given. Then [f] ∈ ∗Sn if and only if
{m;f (m) ∈ Sn} is in U . But {m;f (m) ∈ Sn} ⊇ {m;m≥ n}, so indeed it is in U .

A model of Alternative Set Theory is constructed by taking an ultrapower
of the structure (Vω,∈), where Vω denotes the set of all hereditarily finite sets.
Sets in the model are elements of ∗V ω , classes are subsets of ∗V ω, but we have
to identify (or simply remove) those that are extensional with sets. The semiset
FN is N. The Prolongation Axiom is proved in the same way as condition 2.
of Nonstandard Analysis. (In fact, because FN = N and we take all subsets as
classes, the Prolongation Axiom is equivalent to ℵ1-saturation.) The only axiom
that we do not get automatically is the Axiom of Cardinalities. For this axiom to
hold in the model described, we need the Continuum Hypothesis. But this is also
not a problem. There are models of Zermelo-Fraenkel Set Theory in which the
Continuum Hypothesis holds true, thus we can do the ultrapower construction
inside of such a model and we get all axioms of Alternative Set Theory.

Main Points of the Chapter 253

Main Points of the Chapter

• The two major axiomatic systems for set theory are Bertrand Russell’s Theory of
Types and Zermelo-Fraenkel Set Theory. Today the latter one is accepted by most
mathematicians as a theory describing the true universe of sets.
• Though based on different ideas, the Theory of Types and Zermelo Set Theory,

a basic part of Zermelo-Fraenkel Set Theory, are essentially the same. Zermelo-
Fraenkel set theory is conceptually simpler, it is stronger, and it can be naturally
extended to much stronger systems.
• Infinite sets are defined as sets satisfying a certain property that is not satisfied by

finite sets.
• In Zermelo-Fraenkel Set Theory there are infinitely many different infinite cardi-

nalities and there is no largest one.
• The cardinality of the real numbers is bigger than the cardinality of natural num-

bers, but we do not know, and, maybe, never will, whether there are other infinite
cardinalities in between.
• Large cardinal axioms are new axioms that serve to make Zermelo-Fraenkel Set

Theory stronger. Using these axioms we can decide some important statements
that are undecidable in pure Zermelo-Fraenkel Set Theory.
• The problem with such axioms is that the stronger they are the greater the danger

is that they are inconsistent. There is no way to secure their consistency; we can
only rely on experience that a lot of research has been done and no contradiction
has been found.
• The Axiom of Choice has some consequences which look paradoxical, but it does

not introduce an inconsistency into Zermelo-Fraenkel Set Theory.
• It is possible to replace the Axiom of Choice by axioms that make sets of real

numbers look better. In particular, it is consistent to assume that all subsets of the
real numbers are measurable, provided that we abandon the unrestricted Axiom
of Choice and use only its weaker version.
• The particular set of axioms that we are using may be the result of a historical

accident. It is conceivable that if the Axiom of Determinacy had been discovered
before the Axiom of Choice, it may have become the preferred one.
• Various other axiom systems for set theory have been proposed, but only the

Zermelo-Fraenkel system has been accepted by working mathematicians. A likely
reason is that it is the strongest available theory.
• New Foundations is an interesting system because we still do not know whether it

is consistent. More precisely, we do not have proof of contradiction in the system,
nor are we able to prove its consistency using Zermelo-Fraenkel Set Theory (even
with the help of large cardinal axioms).
• Nonstandard analysis offers a different way of developing the foundations of cal-

culus and in some cases has helped solve open problems.

Chapter 4
Proofs of Impossibility

“He is right,” Watson nodded. “The essential thing about
mathematics is that it gives aesthetic pleasure without
coming through the senses.”

Rudy Rucker, A New Golden Age

TO prove that something is impossible is usually much harder than the opposite
task. To find the proverbial needle in a haystack is hard, but it is much harder

to prove that it is not there. The point is that you may find the needle by chance
and then you are sure that it is there, but to be completely sure that it is not there,
you have to systematically search every piece of the haystack. In court it is the
prosecution who must prove allegations, because it is much more difficult for the
(presumably innocent) defendant to disprove them. The same can be observed in
mathematics. More often it is harder to prove a negative statement, a theorem saying
that something does not exist, than a positive one, which shows the existence of a
particular mathematical structure. Not only the proofs of non-existence are as a rule
more difficult, they also require greater ingenuity on the part of authors. In such
proofs one must use some general properties of all possible entities; in other words,
it is necessary to develop a theory.

There are many such negative results in mathematics—results saying that an
equation does not have a solution, a structure with certain properties does not exist,
a proof of a given sentence does not exist etc. However deep and interesting these
results may be, I am going to consider only a special kind of negative results in
mathematics, those that have something to do with foundations. I call these results
proofs of impossibility, but the name does not quite convey the intended meaning. A
little better, but rather long description would be ‘negative results somewhat related
to the foundations of mathematics’. These mathematical results often had been very
difficult problems, open for a long time. As there were no mathematical tools avail-
able for solving them, they attracted the attention not only of professional math-
ematicians, but also amateurs. (In some cases, such as the trisection of the angle
and the incompleteness theorem, amateurs have not given up, in spite of the ex-
isting impossibility proofs, and they keep annoying mathematics departments with
their meaningless writings.) Some of these problems go back to the ancient Greeks,
some appeared in 20th century mathematics when studying foundations. There are

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_4,
© Springer International Publishing Switzerland 2013

255

http://dx.doi.org/10.1007/978-3-319-00119-7_4

256 4 Proofs of Impossibility

also problems in contemporary mathematics that ask for proofs of impossibility. (As
they are still open, we are not sure that the answer is negative, thus it may turn out
after all that they do not fall into this category.) These problems come from the new
branch of mathematics and theoretical computer science called complexity theory.
I will argue in the chapters to follow that these problems may be relevant to founda-
tions. Facing these new problems now, we have no idea what to use to solve them,
exactly as our ancestors who wanted to solve the old ones. It may be therefore useful
to go back to the old impossibility proofs and look at how new ideas emerged and
how they led to the solutions.

4.1 Impossibility Proofs in Geometry and Algebra

I will start with problems that are very old and nowadays may seem completely
unimportant. Who might ever care about using a ruler and a compass to draw ge-
ometrical figures, when a computer can do it in a split second? Who could be so
naive as to try to compute solutions of algebraic equations using cube, fourth and
higher roots, which you can hardly compute without a computer or an advanced cal-
culator anyway? The problems are completely unimportant from the point of view
of practical computations, no doubt, and that was the case already before they were
solved. But they were a big challenge—do we have enough means to answer such
questions? Once the means had been developed, they turned out to be very useful
for a lot of other problems in mathematics. It would certainly be very interesting
to trace the consequences through the history of mathematics up to some contem-
porary applications, but that is a topic for a different book. This book is about the
foundations of mathematics, so I want only to offer you a glimpse of how one can
prove such impossibility results.

Irrational Numbers

Proofs of impossibility are almost as old as mathematics. Mathematicians knew
that some problems have solutions and others don’t. This is not a special feature of
mathematics, everyday tasks may be realizable, or may be not. But mathematicians
have had the advantage of being able, at least in some cases, to prove that something
is impossible. The first historically recorded proof of impossibility can be stated as
the insolubility of a certain equation. This may seem an unimportant event, but it
had a big impact on the understanding of the concept of a number. It was the proof
of the existence of an irrational number. Recall that rational numbers are those that
can be expressed as fractions n/m with n, m integers, m = 0. Numbers that are not
rational are called irrational. Rational numbers are very concrete things, as concrete
as integers. We need only two integers to represent a rational number. If we want to
represent natural numbers by some real things, we may identify them with symbols
representing them. It does not matter whether we represent five by 5, or by 101, or

4.1 Impossibility Proofs in Geometry and Algebra 257

by |||||; what is important is that we can do it, in principle, for every natural number.
The same is true for rational numbers; we can use pairs of symbols that represent
natural numbers (and a symbol for minus). Unfortunately, we cannot interpret all
numbers in this way as there are irrational numbers. This was discovered already by
the ancient Greeks. Nowadays we feel quite comfortable with irrational numbers,
but it wasn’t always so. According to one legend, Pythagoreans could not bear this
disharmony in the world of numbers and drowned the fellow who found it. One
reason why this result was discomforting for ancient Greeks was that they could not
avoid such numbers in geometry. We get

√
2 as the length of the diagonal in the unit

square (by the Pythagorean Theorem).
The proof that

√
2 is irrational is very easy. As is typical for negative results, the

proof is by way of contradiction. Suppose
√

2= n/m for some integers n, m > 0.
Squaring the equation we get 2= n2/m2 and then

2m2 = n2.

We have reduced the problem to the insolubility of the above equation in the do-
main of integers. Now we need some basic number theory, namely, the result that
every positive integer has a unique factorization into the product of powers of prime
numbers. In fact we need only to know that every positive integer can be uniquely
written as 2kp with p odd. So let n= 2kp and m= 2lq , with p, q odd. Substituting
these into the equation above we get 2(2lq)2 = (2kp), which is

22l+1q2 = 22kp2.

Now we have on the left hand side a number that is the product of an odd power
of 2 and an odd number, while on the right hand side we have a number that is the
product of an even power of two and an odd number. By the uniqueness of such
representations, these two number cannot be equal. This contradiction shows that
the equation above does not have integer solution and thus

√
2 is irrational.

But this is not the end of the story.
√

2 is a solution of an equation with rational
(in fact integer) coefficients, the equation x2 = 2. There are numbers that do not
have even this property, they are not solutions of any equations with rational coef-
ficients. Such numbers are called transcendental. One of these numbers was well
known in the old ages, the π , but it took more than two millennia before a proof
of its transcendence was found. The numbers that are solutions of equations with
rational coefficients are called algebraic; thus

√
2 is algebraic, whereas π is not, it

is transcendental.
The proof of the existence of transcendental numbers was not a surprise. Math-

ematicians had suspected that π and e are transcendental, but it was difficult to
prove it. Even today we are not able to prove that, for example, πe is transcenden-
tal (or disprove it).1 But let us look at what consequences it has for the concept of
a number. If we need to denote the positive solution of an equation xn = b, for b

positive rational and n ≥ 2 natural, we use the symbol n
√
b. But for transcendental

1Note, however, that eπ is known to be transcendental.

258 4 Proofs of Impossibility

numbers we need new symbols. We may introduce symbols for the transcenden-
tal numbers that we frequently use, and we may try to introduce some system of
notation for some classes of transcendental numbers, but it is impossible to name
every number. This follows from Cantor’s theorem that the set of real numbers is
not countable and from the fact that any system of notation can give names only to
countably many elements. A consequence for foundations is that in order to define
real numbers, we need the concept of an infinite set or an infinite sequence. We
write π = 3.1415926 . . . , but this is not a definition; the dots give us no clue how
to continue. We may identify real numbers with infinite decimal expansions, but the
infinite expansion are not things that we could write down.

Cantor’s theorem can be used to prove that there exist transcendental numbers.
By Cantor’s theorem, there are uncountably many real numbers, thus to prove the
existence of a transcendental number it suffices to show that there are only count-
ably many algebraic numbers. We can enumerate algebraic numbers by enumerating
equations and their roots. In this way we surely overcount, as an algebraic number
is a root of many equations, but this does not matter as long as we show a countable
upper bound. Every equation with rational coefficients is determined by its coeffi-
cients, hence it is given by a finite number of rational numbers, hence finite number
of integers. The number of finite sets of integers is countable. Thus there are only
countably many equations with rational coefficients. An equation of degree d has at
most d solutions, according to a well-known result in algebra. Thus we have count-
ably many equations, each having finitely many solutions. Therefore, there are only
countably many algebraic numbers.

The three classes of numbers give us a scale by which we can classify real num-
bers according to their complexity:

1. rational numbers—simple;
2. algebraic numbers that are not rational—moderately difficult;
3. transcendental numbers—difficult.

One would expect that the simplest task should be to prove that the two extremes
are distinct, a difficult thing is not simple, and that it should be harder to show that
simple is not moderately difficult, or moderately difficult is not difficult. Thus we
would expect that the first result was a proof that a transcendental number was not
rational. But this is not the case. Looking at the dates2 when particular results were
proved we see clearly that it isn’t so:

1. the proof of the irrationality of
√

2—approximately 430 BCE (probably by the
Pythagorean school);

2. the proof of the irrationality of π—1761 (by J.H. Lambert);
3. the first example of a transcendental number with a proof—1844 (by J. Liou-

ville);
4. the proof that e is transcendental—1873 (by C. Hermite);
5. the proof that π is transcendental—1882 (by F. von Lindemann).

2See [150, 287].

4.1 Impossibility Proofs in Geometry and Algebra 259

The explanation is that a number such as
√

2 has a very simple definition, so we can
work with it more easily, while merely to define a number such as π we have to use
infinitesimal calculus. In the next chapter we will observe the same phenomenon
in complexity theory, but there we have only reached a very early stage: for very
simple functions we can prove that they are somewhat complex.

Cantor’s result that implies the existence of transcendental numbers dates 1874,
but it is not the most difficult one, on the contrary, as we have seen in the previ-
ous chapter, it is quite simple. The reason why it was discovered so late is not the
complexity of the proof, but the lack of precise concepts of sets and infinity in the
pre-Cantorian mathematics. Another reason why this proof had not been discov-
ered earlier is its non-constructive character. Cantor’s proof shows that almost every
number is transcendental, but it does not provide a single concrete example of a
transcendental number. We will also watch a parallel of Cantor’s non-constructive
proof with non-constructive proofs in complexity theory in the next chapter.

Constructions with a Ruler and a Compass

The ancient Greeks achieved great ingenuity in solving geometrical problems using
a ruler and a compass. The part of geometry in which constructions of geometrical
figures were studied used to be an important field of applied science. It wasn’t so
long ago that engineers still used these instruments. A ruler and a compass were
not important for the foundations of geometry. Nobody was so naive as to define
the circle as the form obtained by using a compass. But these two instruments were
important for developing the concept of an algorithm. To define a concept of algo-
rithm, as the method to construct something from given data, you need to say what
are the elementary operations that are allowed. Performing an algorithm means do-
ing such elementary operations one after the other. As the ancient geometers were
so successful in using rulers and compasses, it was only natural to suggest that the
basic elementary operations were those that can be done using a ruler and a compass
and that using these operations one could construct everything.

Though everybody has learned constructions with a ruler and a compass in the
school, it is worthwhile to write down explicitly what are the rules of this game.3

• We are given some points, circles and straight lines in the plane and we are to
construct certain other points, lines and circles. Thus input and output data are a
finite number of points, circles and lines.
• We can use two operations:

1. given two points we can draw the line through the points;
2. given two points we can draw the circle with the center at the first point and

passing through the second point;

3Another reason for stating the rules explicitly is that it has been shown that using these instruments
in a special way one can solve the trisection of the angle.

260 4 Proofs of Impossibility

3. it is tacitly assumed that whenever circles and lines intersect, we get also the
intersection points as the result of the operations above.

In practice one is also allowed to choose a “random” point on a line on a circle
or outside of them. This operation can be avoided, though it may be a little cumber-
some. It is important for us not to use this option, as we want to know what can be
constructed using the above operations. A random choice may result in an accidental
solution, however unlikely it may be.

It turned out that there are problems that the ancient Greeks could not solve using
these constructions. Three of them became especially famous:

1. duplication of the cube, (given a line segment x construct a line segment y such
that the cube with a side of length y has double volume as the cube with side x);

2. quadrature of the circle, (given a circle construct a square with the same area);
3. trisection of the angle, (divide a given angle into thirds).

It has been proved that these problems are not solvable using a ruler and a com-
pass in the way defined above. The quadrature of the circle is even used as a syn-
onym for an unsolvable problem.

To show that these problems are unsolvable using a ruler and a compass, the first
step is to transform them into algebraic problems. Using elementary analytic geom-
etry one gets that 1. asks for constructing a line segment of length 3

√
2 given a unit

line segment and 2. asks for constructing a line segment of length 1/
√
π given a unit

line segment. It is not difficult to show that given 1/
√
π , one can construct π and

vice versa, so the problem is equivalent to constructing π . The last one transforms,
using a little trigonometry, to constructing a solution of the equation

4x3 + 3x − a = 0

given a unit line segment and a line segment of length a.
The next question is to find out what lengths can be constructed from the unit

line segment. Again, only elementary considerations are needed to show that the
lengths that can be constructed from a unit line segment are exactly those that can
be expressed using the basic arithmetical operations and the square root operation.
For example,

5+ 4
√

8−
√

7+√2

9−√23

is a number that can be obtained as the length of a line segment constructed from a
unit line segment. The form of these numbers is given by the equations of the geo-
metrical figures that one uses. Straight lines are given by linear equations and circles
are given by the familiar quadratic equations. The coordinates of the intersections
are obtained by solving systems of such equations. For solving linear equations, we
only need the arithmetical operations, for solving quadratic equations we also need
square roots. The distance of two points can be computed from their coordinates
using the Pythagorean theorem, which, again, only needs a square root.

4.1 Impossibility Proofs in Geometry and Algebra 261

Let us focus on the first problem, which is the simplest one. What remains to
do now is to prove that 3

√
2 cannot be expressed only using square roots. This is,

of course, the hardest part. The key tool is number fields. Several number fields are
familiar to us: rational numbers, real numbers and complex numbers. In general a
number field is a substructure of complex numbers that contains 0 and 1, in which
addition, subtraction and multiplication is defined for all elements and in which it
is possible to divide by a nonzero element. Shortly stated, it is a substructure that
shares the basic properties with the structure of rational numbers. Then the idea is
to assign a number field to a particular type of numbers and study the properties of
these fields. Using these properties one shows that the numbers that are expressed
in a specified way cannot be expressed in another specified way. In particular the
number 3

√
2 that is expressed using the cube root, cannot be expressed using square

roots.
The introduction of number fields for solving such problems is an important

twist. The original problem is very much combinatorial. We have expressions of
certain form, namely expressions with square roots. We need to show that a cube
root cannot be expressed in this way. But instead of analyzing these expressions we
introduce new structures. These structures are more complex objects; according to
logical classification, they are higher order structures, but in some sense, they are
much better. Furthermore, they provide us with information that is not apparent in
the original objects. This is very typical for contemporary mathematics. So as to
introduce order into the problem that we are studying, we embed the studied objects
into larger structures. Then we see that the apparently accidental relations that we
observed initially are, in fact, a special case of a general law.

Logic provides a general explanation why applying higher order structures is
often successful, though particular cases may have its own special features that need
different explanations. The explanation is that using higher order structures also
means using larger sets. We know from set theory that the larger cardinalities we
introduce the stronger theory we get.

Example Let us look at the idea of the proof that 3
√

2 cannot be expressed using a
single square root, say

√
2. It is ridiculous to use number fields for such a purpose,

the statement has an easy direct proof, but it will give us an idea of what happens in
more difficult cases. In our little example one can easily show that

1. the field generated by
√

2 consists of all numbers of the form

a + b
√

2,

a, b rational numbers; moreover each element of the field has a unique represen-
tation of this form;

2. the field generated by 3
√

2 consists of all numbers of the form

a + b
3
√

2+ c
(3
√

2
)2
,

a, b, c rational numbers; moreover each element of the field has a unique repre-
sentation of this form.

262 4 Proofs of Impossibility

Now the argument continues as follows. Suppose 3
√

2 is expressible using
√

2. This
means that 3

√
2 is in the first field. Then the whole second field must be contained

in the first field, since every element of the second field can be obtained from 3
√

2.
So it remains to show that the second field cannot be contained in the first one. The
reason for that is size. The first field is parameterized by two parameters, the second
by three. Therefore, the second field is larger, hence cannot be a part of the first one.

You see that the crucial property, the number of parameters, the degree, is a very
natural invariant of the fields, but it only appeared when the new structure was as-
sociated with the particular number.

Solutions of Equations by Radicals

We have seen that solving geometrical problems using a compass and a ruler is
equivalent to finding expressions with square roots for certain numbers. Now we
extend our tools to all roots: cube roots, fourth roots, etc. These roots are also called
radicals, thus we speak about solving problems by radicals. We know that there
are transcendental numbers and such numbers cannot be expressed using radicals.
Hence the only numbers that we can hope to be expressible by radicals are solu-
tions of algebraic equations. For quadratic equations, there is a well known formula.
For cubic equations the formula is more complicated. If we consider the following
special form of the cubic equation

x3 + px + q + 0,

to which any general one can be easily transformed, then one of the solutions is
given by

x = 3

√√√√−q

2
+ 2

√(
q

2

)2

+
(
p

3

)3

+ 3

√√√√−q

2
− 2

√(
q

2

)2

+
(
p

3

)3

. (4.1)

For quartic (degree 4) equations, the formula is quite involved, but there is one. For
quintic (degree 5) equations

x5 + ax4 + bx3 + cx2 + dx + f = 0, (4.2)

one would expect some horrible formula, but, surprisingly, there is no formula at
all; such equations cannot be solved by radicals. More precisely this means: there is
no general formula that expresses a root of quintic equation (4.2) in terms of a, b,
c, d , f . In fact, an even stronger theorem is true: there are explicit quintic equations
with integer coefficients none of which solutions can be expressed using rational
numbers and roots of arbitrary degree. For example, the following equation, which
has three real roots, cannot be solved by radicals:

x5 − 4x + 2= 0. (4.3)

4.1 Impossibility Proofs in Geometry and Algebra 263

The spirit of this problem is the same as the one concerning constructions with a
ruler and a compass. The essential difference, however, is that the solution of this
problem led to a new deep theory. This new theory is based on the concept of a
group, something that was not used before. The most important aspect of it is that
the theory needs to study arbitrary finite groups. Thus it works not with a few given
structures, as was the case before, but with a whole class of structures. This has
influenced the development of mathematics towards the structural approach that we
use nowadays. Contemporary mathematics studies not only numbers, geometrical
figures and functions, but also various structures and classes of structures. Instead
of numbers, number fields become more important, instead of function, function
spaces dominate and instead of symmetries, mathematicians study groups.

This topic is connected with three important names, Paolo Ruffini (1765–1822),
Niels Henrik Abel (1802–1829) and Évariste Galois (1811–1832). These three
mathematicians worked on the solvability of algebraic equations by radicals, in par-
ticular on the problem of the solvability of quintic and higher degree equations.
Ruffini got very close to solving this problem. His proof that quintic equations are
not solvable by radicals contained a gap that he might have corrected, had anybody
cared to point it out. Independently, a correct proof was given by Abel.4 Galois de-
veloped a theory that now bears his name and that plays a key role in algebra. He
also introduced the concept of a group into this field.

Interestingly, these mathematicians had a hard time persuading others about the
importance of their work. Ruffini sent a number of papers to Lagrange, Galois sent
his papers to Cauchy and Fourier, but in both cases either the papers were lost, or
no response was given, or the work was proclaimed incomprehensible. It took some
time before the mathematical community recognized that the theory developed for
solving this problem surpasses the importance of the problem itself and that there
was a new type of mathematics emerging from it—mathematics that was not in the
main stream of infinitesimal calculus, but that was as interesting and as important as
calculus. One should never underestimate results only because they do not belong
to the main-stream research.

Galois Theory

I will sketch some ideas that are used in the proof that quintic and higher degree
equations are not solvable by radicals. These results are part of what is called now
Galois theory, an important research field in algebra.

We will need the concept of field extensions. We have used it already implicitly
when considering the constructions with a ruler and a compass. In general, it is a
pair of fields K and L such that K is a subfield of field L; we also say that L is an
extension of K , or simply write L/K . We can view this pair as a composed structure.

4Note that Gauss claimed that he also had a proof.

264 4 Proofs of Impossibility

The key idea is that one can get a lot of important information only knowing the
symmetries of this structure.

The most familiar extension is C/R, the extension of real numbers R to complex
numbers C. Every complex number can be uniquely expressed as

a + ib

with a, b reals. If you know how to compute with reals, then all you need to compute
with complex numbers is the identity i2 =−1. For example, the inverse of 1+ i is
computed as follows:

1

1+ i
= 1

1+ i
· 1− i

1− i
= 1− i

1− i2
= 1− i

1+ 1
= 1

2
+ i

2
.

We also have the identity (−i)2 =−1, which means that −i satisfies the same iden-
tity as i. Hence, if we have a computation with complex numbers (expressed using
reals in the form above), then we can replace systematically all occurrences of i by
−i (in particular, −i will be replaced by −(−i) which is i) and we get a valid com-
putation again. Thus there is no way to distinguish i from −i; it is only a matter of
notation that we denote one by i and the other by −i.

The extension C/R does not have other symmetries, except for the trivial one
that does not do anything. So we have two symmetries, the trivial one, which we will
denote by I and the one that transposes a + ib and a − ib, which we will denote by
σ . Saying ‘symmetry’ is not quite precise; the technical term is automorphism. An
automorphism is a permutation of the set C that preserve the arithmetical operations.
Both I and σ are trivial on R, as they do not move any element of R. Permutations
can be composed, which means that given two permutations we apply the first one
and then the second one. In the case of I , σ , I is the identity and σσ = I , so we get
a very simple group with the following multiplication table:

I σ

I I σ

σ σ I

But what does this have to do with equations? The above extension is connected
with the equation

x2 + 1= 0.

Namely, the two critical elements i and −i are the two roots of this equation. We
think of extending R to C as a process of adding the roots of this equation to R. Since
the extension is determined by the roots of the equation, also the automorphisms are
determined completely by their actions on the roots of the equation. Hence we may
view the group as the group of permutations of the roots.

Thus we have learned that a group is associated to each field extension. This
group is called the Galois group of the extension. Let us look at another example,
the equation

x2 − 2= 0. (4.4)

4.1 Impossibility Proofs in Geometry and Algebra 265

Now we will concentrate on extensions of the field of rational numbers Q, which is
what we need for the problem of solubility of equations by radicals. We extend Q

to the field that contains the roots of the equation (4.4). We will denote this field by
Q(
√

2). This is an extension that we have considered on page 261. Now it seems
that the two roots can be distinguished, as one of them,

√
2, is positive and the other,

−√2, is negative. But in Galois theory we only take the arithmetical structure of the
fields, but we do not include the ordering of reals. The two roots are indistinguish-
able with respect to the arithmetical structure. Again, all the information that we
have about them is that their squares equal 2. Thus we can swap the two roots as
we did in the previous extension. The two extension we have considered, though
different, look very similar. Indeed, their Galois groups are isomorphic.

If we extend a field by adding one root of a quadratic equation, we get automat-
ically the second root. This is not the case in general. It is possible to add some
roots without adding others. Those extensions that are obtained by adding all roots
of an equation play a special role in the theory and they have a special name: Ga-
lois extensions.5 A nice property of Galois extensions is that their Galois groups say
a lot about them. The main theorem of Galois theory states, among other things,
that there is a unique correspondence (called Galois correspondence) between sub-
groups of the Galois group and intermediate fields. In particular, knowing only the
Galois group one can determine whether or not the equation is soluble by radicals.

So far everything has been ‘Galois’ and nothing ‘Abel’. But Abel will also get
some credit. The commutative law does not hold in all groups; those that satisfy it
form an important class of groups. Such groups are called either commutative, or,
more often, abelian. Naturally, when the Galois group of an extension is abelian, we
call such an extension abelian. Let p(x) = 0 be an equation with coefficients in a
field K and let L be the Galois extension obtained by adding all roots of p(x)= 0. If
L/K is an abelian extension, then the roots can be expressed as radicals of elements
of K .

But being abelian does not characterize the solubility by radicals; there are equa-
tions that give non-abelian extensions, but still can be solved by radicals. Consider
the following situation. Let p(x) = 0 and q(x) = 0 be two polynomial equations
with rational coefficients; let K and L be their Galois extensions. Suppose that L is
an extension of K , L/K is abelian and K/Q is also abelian. Yet it may happen that
L/Q is not abelian. On the other hand, the roots of p(x) = 0 are radicals of ratio-
nal numbers, hence all numbers in K are radicals of rational numbers. The roots of
q(x)= 0 are radicals of the numbers contained in K , hence also radicals of rational
numbers.

Fortunately this is the only complication and we can state the characterization.

Theorem 19 Let p(x)= 0 be a polynomial equation with rational coefficients and
let L be the extension of Q by adding the roots of p(x) = 0. Then the equation is
solvable by radicals if and only if there exists a chain of abelian Galois extensions

5This is not a precise definition, but it suffices for this rough description of the theory.

266 4 Proofs of Impossibility

starting at Q and ending at L (i.e., Q ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Kn ⊆ L, with K1/Q

abelian Galois, K1/K2 abelian Galois, etc.).

The main theorem of the Galois theory, the Galois correspondence, enables us to
give similar characterization in terms of subgroups of the Galois group. Finding the
Galois group may be a difficult task, but once we have it, is not difficult to check
this property. The Galois groups of equations are finite, as they can be represented
by groups of permutations of the roots of the equation. Thus, in principle, we can
search them completely and determine all their properties.

Of course, one needs much more theory to explain the group theoretical condition
of solubility and why the abelian extensions are soluble and so on. I will present the
theory in a bit greater detail in Notes. To conclude this part I will only explain why
the degree five is crucial. Given a degree d equation, the group can be represented
as a group of permutations of d elements. The largest such group is the group of all
permutations of the d elements; it has d! elements. If d is at most four, the groups
are quite small and therefore all have the property that ensures solubility. The first
permutation group that does not have the property occurs on five elements. One such
group is the group of all permutations of the five elements. Then one can also show
that there are equations with such a Galois group. One such equation is (4.3) on
page 262.

Notes

1. A transcendental number. Liuville’s proof is based on the theory of approxima-
tions of real numbers. Consider the following two numbers in decimal represen-
tation:

ξ = .001000001000000000000000001 . . .=
∞∑
n=1

10−3n

,

1/99= .0101010101

In a certain sense ξ is easier to approximate than 1/99. Namely, .001 is a 3 digit
approximation of ξ with a precision of 8 digits, .001000001 is a 9 digit approx-
imation of ξ with a precision of 27 digits, etc., while 1/99 can be approximated
with n digits only to a precision of n+ 1 digits. In general, rational numbers that
are not decimal fractions are difficult to approximate by decimal fractions. Liou-
ville proved a general theorem about approximation of algebraic numbers. The
special case of the theorem for decimal representations says that an irrational
number that is a root of a rational equation of degree d cannot be approximated
by n digits to a precision bigger than (d + ε)n for infinitely many n’s for any
ε > 0. A corollary of this theorem is that the following number is transcendental

∞∑
n=1

10−n!.

4.1 Impossibility Proofs in Geometry and Algebra 267

Note that the best theorem about approximations, Roth’s theorem, eliminates the
dependence of the approximation on the degree of the polynomial (one conse-
quence is that the number denoted by ξ above is also transcendental). But to
prove the transcendence of e and π a completely different approach is needed.

2. The number fields for the ruler and compass constructions. To make the argu-
ment that 3

√
2 cannot be expressed using

√
2 precise, we define the degree of the

filed over the field of rationals Q. If K is a filed that extends rationals, we can
think of K as a vector space over Q. So elements of K are thought of as vectors
and elements of Q are scalars, i.e., only elements of Q are scalars. Then the de-
gree of K over Q is simply the dimension of this vector space. In the same way
we can define the degree of L over K for an arbitrary field K and its extension L.

The example above that shows that 3
√

2 cannot be expressed using
√

2 is sim-
ple, but not very persuasive because of two reasons. First, the degree of the exten-
sion is the same as the degree of the roots in the two fields considered. Secondly,
by taking more square roots we easily get a field of degree larger than 2, thus
we get no contradiction. Before going to theory, let us consider a slightly bigger
example. Suppose we have two square roots, say

√
2 and

√
3. Then the associ-

ated number field is neither of degree 2, as you may try to deduce from having
only square roots, nor of degree 3, as one may guess because of having one more
term, but 4. Namely, every element in the field is uniquely expressible in the
form a+b

√
2+ c
√

3+d
√

2 ·√3, with a, b, c, d rationals. Furthermore, we will
see shortly that every subfield of such a field has degree 1, 2 or 4, i.e., only the
divisors of 4. Hence the field generated by 3

√
2 is not a subfield of this field. The

reason is that 3 does not divide 4.
Let me now mention a few basic results in field theory from which the insolu-

bility of the duplication of the cube follows. Above we only considered number
fields which are subfields of the field of complex numbers. The elementary re-
sults we need are true for general fields. We will denote by [L :K] the degree of
an extension L of a field K . The degree may be an infinite cardinal, but here we
will need only finite extensions.

The first result that we need is the following. Let L be an extension of K and
let M be an extension of L then

[M :K] = [M : L][L :K]. (4.5)

A corollary of the formula is that [L : K] divides [M : K]. The proof of this
formula, as well as of the second result, is easy.

The second result is about extensions obtained by adding a root of a polyno-
mial. Let L be an extension of K again. Let p(x) be a polynomial with coeffi-
cients in K and suppose that p has a root α in L, but it does not have one in K .
Then there exists a minimal extension of K contained in L that contains α. It is
denoted by K(α). The result that we need is:

Proposition 5 If p is irreducible over K (cannot be factored into a product of
two non-constant polynomials) and the degree of p is d , then[

K(α) :K]= d.

268 4 Proofs of Impossibility

In the case of the constructions with a ruler and a compass, we start with the
field of rational numbers Q and we are only adding roots of quadratic polynomi-
als. Consequently, we get, by the two formulas, that degrees of such extensions
over Q are always powers of 2. On the other hand, the degree of Q(

3
√

2) over Q
is 3. Since 3 does not divide any power of 2, 3

√
2 is not contained in any extension

obtained by adding square roots. Hence the cube cannot be duplicated.
(To apply the results we need also to show that the polynomial x3 − 2 is

irreducible over Q. This is also easy. Suppose it is not irreducible. Then one of
the factors must be linear. This means that one of the roots of the polynomial is
in Q. But this can be disproved in the same manner as one shows that

√
2 is not

in Q.)
To show the insolubility of the trisection of the angle one needs only to find

a rational number a such that the polynomial 4x3 + 3x − a is irreducible over
Q, which is not a difficult task. Thus in principle it is the same argument as for
the duplication of the cube. To show the insolubility of the quadrature of the
circle, one can use another basic fact that says that [K(α) :K] is infinite if α is
not a root of any (nonzero) polynomial with coefficients in K . Then one can use
the nontrivial result that π is not algebraic. Hence [Q(π) : Q] is infinite, while
adding finitely many quadratic roots (in fact, adding any roots) we only get finite
extensions.

3. Some Galois theory. Even though this is just a brief sketch of the theory needed
for the insolubility by radicals, a fair amount of concepts have to be defined. To
simplify it, we will only consider fields that contain Q and every extension will
be of finite degree. I will not give proofs, but where a proof is simple, I will give
at least a hint.

Given a field extension L/K , we will denote by G(L/K) the Galois group
of the extension. It is the group of automorphisms of L that do not move any
element of K . An extension L/K is a Galois extension if every polynomial p(x)
that has coefficients in K is irreducible in K and has a root in L has all its roots in
L. We say that p(x) splits completely because then it can be factored into linear
terms of the form (x − α), α a root of p(x). The extension of K generated by
adding the roots of p(x) is called the splitting field of p(x).

We will need the following easy fact:

Lemma 4 If M/K is a Galois extension and L is an intermediate field, then
M/L is also a Galois extension.

The hint is that the irreducible polynomial over L of an element a ∈M \ L
divides its irreducible polynomial over K .

A subgroup N of a group G is called normal if for every x ∈G and y ∈ N ,
we have xyx−1 ∈N . If N is a normal subgroup of G, then we can form a group
G/N , the factor group. There is a group homomorphism from G onto G/N

whose kernel is N . Also any kernel of a group homomorphism is a normal group.
Let M/K be a Galois extension. The Galois correspondence is the following

relation between the subgroups of G(M/K) and the fields intermediate between
K and M . Given a field L between K and M , we assign to it G(M/L); given a

4.1 Impossibility Proofs in Geometry and Algebra 269

subgroup H of G(M/K), we assign to it F(H), the fixed field of H , that is the
intermediate field of all elements of M that are not moved by any of the auto-
morphisms from H . In this situation a number of useful conditions are satisfied.
Here are some of them:

1. the degree of M/K equals the order of G(M/K);
2. the mappings L �→G(M/L) and H �→ F(H) are inverse each to the other,

thus F(G(M/L))= L and G(M/F(H))=H ;
3. the mappings reverse the inclusion relation: if L1 ⊆ L2, then G(L1/K) ⊇

G(L2/K); if H1 ⊆H2, then F(H1)⊇ F(H2);
4. L/K is a Galois extension if and only if G(M/L) is a normal subgroup of

G(M/K);
5. if G(M/L) is normal, then G(L/K)=G(M/K)/G(M/L).

M/K is called a radical extension if it is obtained by successively adding nth
roots (for various n’s). More precisely, it means that there exists a chain of ex-
tensions

K = L0 ⊆ L1 ⊆ · · · ⊆ Lk =M

such that each Li+1 is the splitting field of some polynomial of the form xn − a

for a ∈ Li . It seems that we are asking for more than needed, as one may prefer
to take only a, which is a positive real and add only the positive real root of
xn − a. However, it not difficult to see that solubility in this more general sense
is equivalent to the solubility in the restricted sense.

Example Consider the equation x3+px+ q = 0 with p, q ∈Q. Suppose it does
not have rational roots and it has only one real root. To get a radical extension
that contains roots of this polynomial, we first take the extension of Q to the
splitting field L of the polynomial

x2 −
(
q

2

)2

−
(
p

3

)3

.

Let us denote, as usual, by
√
(
q
2)

2 + (
p
3)

3 the positive real root of this polyno-

mial. (The assumptions ensure that we take the square root of a positive number.)
Thus

L=Q

(√(
q

2

)2

+
(
p

3

)3)
.

Then we extend L to the splitting field M of the polynomial

x3 + q

2
−
√(

q

2

)2

+
(
p

3

)3

.

Thus we get the first term of the expression for a root of x3 + px + q = 0

3

√√√√−q

2
+
√(

q

2

)2

+
(
p

3

)3

.

270 4 Proofs of Impossibility

But the second term of (4.1), page 262, is also in M , hence M is a radical ex-
tension that contains the roots of x3 + px + q = 0. (The reason why we get the
second term automatically is that the degree of the extension M/Q is already 6
which is the degree of the splitting field of x3 + px + q .)

Theorem 19 (page 265) gives a characterization of solubility by radicals in
terms of field extensions. (It was only stated for extensions of Q, but it holds
in general.) The corresponding group-theoretical concept is the soluble group.
A group G is soluble if there exists a chain of subgroups starting with the triv-
ial group end ending with G, say {1} = G0,G1,G2, . . . ,Gn−1,Gn = G, such
that Gi is a normal subgroup of Gi+1 and Gi+1/Gi is an abelian group. The
equivalence follows from the Galois correspondence. Consider a Galois exten-
sion M/K and let

K = L0 ⊆ L1 ⊆ L2 ⊆ L3 ⊆ · · · ⊆ Lk =M,

G(M/K)=G0 ⊇G1 ⊇G2 ⊇G3 ⊇ · · · ⊇Gk = {1}
be chains of intermediate fields and the corresponding groups. According to
property 4. of the Galois correspondence, L1/L0 is a Galois extension if and only
if G1 is normal in G0. Since M/L1 is also a Galois extension (by Lemma 4), we
can continue and consider the shorter chains starting with L1 and G1 respec-
tively. Then we get that L2/L1 is a Galois extension if and only if G2 is normal
in G1 and so on. If the consecutive extensions are Galois, we get from the Ga-
lois correspondence that Li+1/Li is an abelian extension if and only if the group
Gi+1/Gi is abelian. Thus the two conditions are equivalent. Let me state it ex-
plicitly.

Theorem 20 An extension is radical if and only if its Galois group is soluble.

I will only explain why a radical extension has a soluble Galois group, the
other direction is not needed for the insolubility. First we need to show that by
adding nth roots we get soluble extensions. It suffices to prove it for n prime, as
a general root can be obtained by successively applying prime roots.

Lemma 5 Let K be a field, a ∈K and p a prime number. Then the Galois group
of the splitting field of xp − a over K is soluble.

To prove it, we construct the splitting field of xp − a in two stages. First we
construct L, the splitting field of xp − 1 over K , and then M the splitting field
of xp − a over L. Thus we have a chain of extensions K ⊆ L ⊆M . It will be
clear in a moment that M is also the splitting field of xp − a over K . Then we
will prove that both L/K and M/L are abelian which implies that G(M/K) is
soluble. Note that the Galois group G(M/K) is not abelian, except for p = 2,
but it has an abelian normal subgroup G(M/L) such that G(M/K)/G(M/L) is
abelian.

Viewed geometrically, the roots of xp − 1 are the vertices of a regular p-gon
in the plain of complex numbers with vertices on the unit circle and one vertex

4.1 Impossibility Proofs in Geometry and Algebra 271

being 1. Namely, the roots are 1, ξ, ξ2, . . . , ξp−1, ξ = cos(2π/p)+ i sin(2π/p).
The automorphisms of L over K are determined by their actions on the roots, but,
in fact, we only need to know the image of the generator ξ . If ξ �→ ξn, then the
automorphism maps every root y to yn. Since (yn)m = (ym)n, automorphisms
of L/K commute, thus G(L/K) is abelian.

To prove that G(M/L) is abelian is also easy. The roots of xp − a are
p
√
a, ξ p
√
a, ξ2 p

√
a, . . . , ξp−1 p

√
a.

Since ξ , ξ2, . . . , ξp−1 are in L, an automorphism of M over L is determined
by its action on p

√
a. If it maps p

√
a to ξn p

√
a, then it maps every ξ i p

√
a to

ξ iξn p
√
a. Hence the action of an automorphism on the roots is simply multi-

plication by some ξn. As multiplication of numbers is commutative, the Galois
group G(M/L) is commutative.

Now the part of Theorem 20 that we are interested in follows easily. If we
have a chain of extension where each consecutive extension is the splitting field
of some polynomial xp − a, we can refine it to get a chain of abelian Galois
extensions (it will be twice as long).

4. The insolubility of the quintic equation. We need a quintic polynomial with in-
teger coefficients whose Galois group (more precisely, the Galois group of its
splitting field) is not soluble. Such a polynomial is the polynomial x5 − 4x + 2
from page 262, but in fact any polynomial with the following two properties
will do:

1. it has three simple real roots (and two complex roots that are not real) and
2. it is irreducible over Q.

To see 1, simply look at the graph of the function y = x5 − 4x + 2. This is not a
proof, but using elementary calculus it is easy to verify that the graph crosses the
x-axis exactly three times. Proving that a polynomial with integer coefficients
is irreducible over Q is harder, but it is facilitated by the Gauss lemma. This
simple result says that if such a polynomial is not irreducible over Q, then it can
be factored into a product of polynomials with integer coefficients. In general,
the factorization problem for rational polynomials is algorithmically solvable.
To show that our polynomial is irreducible, it suffices to consider the divisibility
by powers of 2 of coefficients in an alleged factorization of the polynomial. This
is similar to showing that

√
2 is irrational.

Now we need an insoluble group. In Chap. 1 we have defined simple groups
as those that have only trivial homomorphic images (a one-element group or an
isomorphic group). An equivalent condition is that the group does not have a
proper normal subgroup. Thus we get examples of insoluble groups by taking
non-abelian simple groups. Such a group that is a permutation group on a five
element set, called alternating group and denoted by A5.6 The elements of this

6Finite groups are often presented as groups of symmetries of some structures; when introducing
groups I mentioned the group of symmetries of the regular triangle. A5 can be presented as the
group of symmetries of the regular icosahedron; therefore it is also called the icosahedral group.

272 4 Proofs of Impossibility

group are all even permutations, permutations that have an even number of inver-
sions; equivalently, the permutations that have an even number of even cycles.
To show that it is not abelian just take two suitable even permutations. To prove
that A5 is simple requires considering several cases, but we do not need to use
essentially any theory.

Using elementary group theory one shows that any group that contains an
insoluble group is also insoluble. In particular S5, the group of all permutations
of five elements is insoluble. Now we will show that the splitting field of any
degree 5 polynomial satisfying 1 and 2 above has S5 as the Galois group. To
prove it we will show that the group contains a 2-cycle (a transposition) and a
5-cycle. Then we will refer to the easy and well-known fact that a 2-cycle and an
n-cycle generate whole Sn (the group of all permutations on an n-element set).

To show the 2-cycle in the Galois group of the splitting field of our polyno-
mial is very easy: the complex conjugation swaps the two complex roots while
keeping the real ones fixed. To show the 5-cycle, take any root α of the equation
and consider the extension Q(α) obtained by adding only this root. The degree
of this extension is 5 by Proposition 2 above. Unfortunately, it is not a Galois
extension, so we cannot argue that a 5-cycle is in its Galois group. We have to
use a less direct argument. Since Q(α) is an intermediate field in the extension
that we consider, we get, by the multiplication formula for degrees (see (4.5) on
page 267), that the degree of the splitting field is divisible by 5. Hence also the
size of the Galois group is divisible by 5. According to a basic result in group
theory (attributed to Cauchy), if the size of a group is divisible by a prime p,
then it has an element g of the order p, which means that gp = 1 and gi = 1 for
1 < i < p. Thus the splitting field contains an element of order 5. The only type
of a permutation on five elements that has such an order is a 5-cycle. Thus we
are done.

This shows that a concrete quintic equations with integer coefficients is not
solvable by radicals, which implies that there is no general formula for quintic
equations such as the formulas for equations of degrees less than five. The latter
fact is weaker and is also a little easier to prove because to this end, it suffices to
find an insoluble quintic equation with coefficients in some field, not necessarily
the field of rational numbers.

4.2 The Incompleteness Theorems

The incompleteness theorems are the most important results in the foundations of
mathematics. These theorems are well known, but still many mathematicians do not
fully realize their consequences. It is, perhaps, because the theorems do not have
much to do with the everyday work of a mathematician. But for those who study the
foundations of mathematics, those who wonder what mathematical reality is and
what mathematical truth is, this is the most important information. The incomplete-
ness phenomenon ruins the hope that we could build a formal system for the whole

4.2 The Incompleteness Theorems 273

of mathematics that would be complete and for which we could prove the consis-
tency. Instead, we are facing a much more complex situation. In spite of the many
decades that have passed since this breakthrough result appeared, we have not been
able to find satisfactory answers to all the problems raised by the incompleteness
theorems.

In this section we will be mainly concerned with the proofs of these theorems.
They are a kind of results that can be easily explained on an informal level. But one
has to be very careful when using imprecise descriptions of mathematical results
and such descriptions must not be confused with real proofs. An informal argument
used instead of proof may easily lead to false statements, especially in this case.
Such wrong deductions, unfortunately, have been used to derive “consequences” of
Gödel’s theorems that have little to do with reality. (I will mention some in Chap. 7.)

Let us recall the theorems.

Gödel’s Incompleteness Theorems

1. Any consistent formal theory T able to formalize a certain part of arithmetic is
incomplete. More precisely, there is an arithmetical sentence φ such that neither
φ nor it negation ¬φ is provable in T .

2. If T is a consistent formal theory able to formalize certain part of arithmetic,
then T does not prove its own consistency.

Self-reference

One of the key ingredients of Gödel’s proof is what is often called self-reference.
This is a situation in which some subject expresses facts about itself. More generally,
we may include also situations in which a program processes its own code and
similar ones. Why self-reference is important is clear—the proof is based on the
liar paradox and for that we need a kind of circular statement. Let us look at the
following statement.

This sentence has 24 letters.

The sentence refers to itself by the word ‘this’. In natural languages we do not
have problems stating such sentences, but in formal systems the language is re-
stricted and it is not clear if one can make such statements. What precisely does
‘this’ mean in the sentence above? We know that it refers to the sentence itself, but
we deduce it from the context (there is nothing else to which the word might point).
Let us take another sentence.

The following sentence has 24 letters “It’s a beautiful day today.”.

(The sentence is false, but this is of no concern now.) Here we point to a sentence
by words ‘the following’. This way of referring to a sentence is much less ambigu-
ous. It is customary to refer to a sentence by putting it between quotation marks,
so that the sentence is determined uniquely. Furthermore, the sentence to which we

274 4 Proofs of Impossibility

refer is given more explicitly. In the first case, we had to finish reading and then
we had to go back to read the sentence that is referred to. This is not the usual
way one reads the text. Returning back to the beginning of the sentence is not the
main problem. What matters more is that the second time we read it we do not read
the sentence in order to get a message, but we take it as plain text, as a sequence
of symbols. While in the first case we may doubt whether we should allow such
constructions in formal systems because it leads to paradoxical sentences such as:

This sentence is false.

the second kind of referring to sentences seems quite innocent. Often the first thing
that you learn when studying a programming language is how to make a computer
to print a sentence on the screen, for example:

printf(“Hello world!”)

This is another example of a direct reference; we are not greeting the computer,
we are asking the computer to greet. In fact, even if we wanted we could not forbid
such a direct reference in programming languages. A sentence is merely a sequence
of letters; we cannot prohibit talking about sequences of concrete symbols. Input
data for a computer are such sequences, numbers represented in decimal or binary
forms are such sequences, etc.

So let us assume that direct reference is possible in a formal language that we are
using in logic. This can be easily checked for concrete versions of logical calculi,
but we do not have to do it, as we know that a system without this property would
be very limited. Contrary to what the above examples may suggest direct reference
alone enables us to write down self-referential sentences. Of course, we need a little
trick. To discover this trick let us try to do it directly. Our first attempt would look
like this:

The following sentence has 32 letters “The following sentence has 32 letters.”.

This is true, but the sentence does not refer to itself. It refers to a sentence that is
only a part of it. Doing it in such a straightforward manner we will never succeed,
for the whole sentence must always be as long as the sentence that we refer to.
The sentence above is twice as long as the sentence that it refers to. But there is
something even more conspicuous in that sentence: it consists of two copies of the
same sentence, some quotation marks and periods. Perhaps, we can make use of this
property? Yes we can! Look at this:

The following sentence written once with no modification and then once again
between the quotation marks has 100 letters “The following sentence written
once with no modification and then once again between the quotation marks
has 100 letters”

This is a sentence that speaks about itself. (To make it simpler I left out the
periods, thus it is not quite grammatically correct, but this is only a minor point.) It
is clear that this trick works in general and we can say whatever we want about the
sentence. It is worthwhile to repeat it with the liar paradox sentence.

4.2 The Incompleteness Theorems 275

The following sentence written once with no modification and then once again
between the quotation marks is false “The following sentence written once
with no modification and then once again between the quotation marks is
false”

Self-reference is a very interesting phenomenon, but what we need for the proof
of Gödel’s Theorem is merely a simple technical trick based on saying that the sen-
tence should be written twice. So do not confuse the incompleteness, which is the
impossibility of proving all true sentences, with the impossibility of referring to it-
self. The latter is false—sentences can refer to themselves! So can also axiomatic
theories express things about themselves (but for this we even do not need any spe-
cial tricks). The reason why people often confuse these two things is the following.
In order to resolve the liar paradox, one has two possibilities: either to say that it is
caused by self-reference, or by the impossibility of defining truth for every sentence.
We have seen that it is impossible to forbid self-reference without severely restrict-
ing the language. Hence the problem is in the definition of truth. For some people,
this seems less acceptable, therefore they mistakenly think that self-reference is the
problem.

To conclude this section, here is a simple exercise in programming in which you
can check the possibility of self-reference in a computer language.

Exercise Write a program (in your favorite language) that prints its own code. (The
program should run on any machine, so you cannot cheat by telling the program
the place where the code is stored. Check the Internet for the shortest known such
program!)

Arithmetization of Syntax

When trying to learn Gödel’s theorems you may have come across such a rather
strange title. Maybe, that was the reason why you gave up reading on. In fact, there
is nothing deep behind it, and my aim in this section is to show you that this is not
such an essential part of the argument as often believed to be.

Let me start with formalization of syntax. By this we mean giving a precise math-
ematical definition of the concept of a proof and proving the basic properties of this
concept. From Chap. 2 we know that proofs can be rigorously defined. Furthermore,
we know that essentially all mathematics can be formalized in Zermelo-Fraenkel Set
Theory. Thus we have a formal definition of axiomatic systems, and we have one
axiomatic system in which we can formalize axiomatic systems. In particular in this
system we are able to reason about the system itself. This suffices for the proof of
the First Incompleteness Theorem. In particular, it enables us to prove the First In-
completeness Theorem for Zermelo-Fraenkel Set Theory. But notice that we have
only used that Zermelo-Fraenkel Set Theory is strong enough to prove basic proper-
ties about the syntax of logic. Hence, if we take a stronger theory, we will be able to

276 4 Proofs of Impossibility

prove its incompleteness again. On the other hand, if we take a weaker theory, then
it is trivially incomplete, since it does not prove all the axioms of Zermelo-Fraenkel
Set Theory.

Thus as long as we are only interested in proving the incompleteness of set the-
ories compatible with Zermelo-Fraenkel Set Theory, we can simply refer to the fact
that logic can be formalized. When we want to prove the second incompleteness
theorem, we have to be more careful. In order to prove that the consistency of a the-
ory T is not provable in T , we have to formalize syntax in T . It does not suffice to
do it in an extension of T . So the question of what is the minimal strength of axioms
which suffice for formalization is relevant. One can show that we do not need such
a strong theory as Zermelo-Fraenkel Set Theory; it suffices to use Finite Set Theory
(which is Zermelo-Fraenkel Set Theory less the Axiom of Infinity). The reason is
that syntactical entities are finite, thus we only need finite sets. Hence the Second
Incompleteness Theorem can be proved for all extensions of Finite Set Theory.

Syntax can be formalized not only in set theories, but also in arithmetical theo-
ries. When we formalize the concept of a proof in arithmetic, we call it arithmetiza-
tion of syntax. We do not get such a formalization automatically as in set theory. In
arithmetic we do not have the concept of a sequence of symbols, hence we have to
simulate it by a number-theoretical concept.

Gödel first proved the First Incompleteness Theorem for the Theory of Types,
the system introduced by Russell and Whitehead in Principia Mathematica. In this
theory a logical calculus can be represented directly, which means that the defini-
tions of formulas and proofs can be literary used—in the same way as in Zermelo-
Fraenkel Set Theory. Gödel used such a natural formalization in his proof—numbers
to represent symbols, sequences of numbers to represent formulas and sequences of
sequences of numbers to represent proofs. (The reason for choosing the Theory of
Types instead of Zermelo-Fraenkel Set Theory was simply the fact that the latter
was not as well established as it is now.) So Gödel did not use arithmetization of
syntax in his first proof and the resulting independent sentence was a sentence of
set theory. After presenting his proof in Königsberg in 1930, von Neumann asked
him whether he could construct an independent sentence that would be purely arith-
metical. It was a challenge, since such sentences would concern number theory, the
heart of mathematics, rather than axiomatic set theory, an invention of logicians.
Gödel succeeded in finding such sentences shortly after that. To this end, he had to
represent all syntactical objects, not only symbols, by numbers. In other words, he
had to arithmetize syntax.

In retrospect, this does not seem like a very difficult task. We are now used to the
fact that all finite structures can be encoded by strings of bits and strings of bits can
readily be interpreted as digits of numbers. But that was more than a decade before
the first digital computers appeared.

Let me briefly sketch the main ideas of the arithmetization of syntax. The key
observation is that syntactical objects can be viewed as texts, which are sequences
of symbols. We start with identifying the finitely many symbols of logic with
some numbers. Say, if we have 26 symbols, we can identify them with numbers
1,2, . . . ,26. Then we need to code sequences of symbols, which means to code

4.2 The Incompleteness Theorems 277

sequences of numbers. The most popular way is to use exponents in prime fac-
torizations of numbers. In this encoding the number 1500 represents the sequence
(2,1,3), since 1500 = 22 · 31 · 53. Since Peano Arithmetic does not have a sym-
bol for the operation of exponentiation, we have to show that exponentiation can
be defined. This is a little tricky and Gödel invented an ingenious way of defining
sequences without exponentiation (see page 293). Anyway, it is only a technical
detail, since if we include exponentiation as a basic operation, we can avoid this
complication.

Formalization does not mean only to assign certain sets or numbers to syntactical
entities. We need also to prove that the representations behave as they should. Fur-
thermore, we need to formalize syntactical concepts by formulas of low quantifier
complexity. This is the reason the incompleteness theorems require that the set of
axioms of the theory be decidable.

To summarize the preceding paragraphs, we need formalization of syntax for
the incompleteness theorems, but it does not have to be arithmetization. If we want
to prove the theorems for set theories, we can use standard formalizations, if we
want to prove them for theories of arithmetic, we have to use formalization based
on numbers, called arithmetization, and if we wanted to prove them for some other
theory, we would need a formalization based on the concepts of that particular the-
ory.

This brings us to the natural question: which are the theories to which incom-
pleteness applies? Recall that there are two kinds of theories. The first kind are
theories that define a class of structures and the aim is to define a large variety of
structures of a certain type. For example, we define groups by a set of equations,
but we do not want to decide properties, such as the commutativity of the group
operation. We want to study commutative groups as well as non-commutative ones.
Thus such a system of axioms is designed to be incomplete.

The incompleteness of the type that appears in Gödel’s Theorem is different. It
applies to theories that attempt to describe a single structure, such as the universe
of sets, the algebraic structure of the natural numbers or real numbers. There we
would like to get a complete theory, but sometimes it is impossible. It is this second
kind of theories for which we use Gödel’s theorems, but not all such theories are
incomplete. There are important mathematical structures that can be completely
axiomatized.7

It is difficult to state exactly for which theories T one can use Gödel’s argument,
since the proof can be generalized in various ways. Essentially, we need three con-
ditions.

1. The theory T is consistent.

In the proof below we will use a stronger condition:

7An example of an important structure with a decidable set of axioms is (R;+, ·,≤), the structure
of real numbers with operations + and · and the relation ≤, see the Theory of real closed fields on
page 91.

278 4 Proofs of Impossibility

1′. The theory T is sound.

This means that all sentences provable in T are true. Condition 1′ clearly implies
Condition 1 (indeed, if T is inconsistent, then it proves 0= 1, which is a false arith-
metical sentence). The reason for using this condition is twofold. First, the proof
is simpler and, second, I can explain the original proof of Gödel, which will also
enable me to explain the proof of the Second Incompleteness Theorem. Since only
sentences of certain logical complexity play a role in the proof, one can weaken the
condition and only require that provable sentences of that complexity are true. This
is what Gödel actually did by using the ω-consistency. (Defining this concept here
may obscure the essence of the proof, so I prefer to do it in Notes.)

2. The set of axioms of the theory T is decidable.

I have already explained this condition in Chap. 2, so let me only briefly remind you
its meaning: there exists an algorithm for deciding whether a sentence is an axiom
or not. In this book I am only considering such theories and using the term ‘a formal
theory’ to stress this fact when needed. Other authors use the term ‘a formal system’
meaning essentially the same thing.

3. T is compatible with a theory in which it is possible to formalize syntax.

This means that it is possible to extend T to a consistent theory in which it is possible
to formalize syntax. This suffices for the First Incompleteness Theorem, but for the
Second Theorem we need more:

3′. It is possible to formalize syntax in T .

Conditions 3 and 3′ are stated informally, since I have not explicated what a formal-
ization of syntax means. This can be made precise by saying that there is a formal-
ization of the provability predicate that satisfies certain derivability conditions (see
page 297). Condition 3 is not quite convenient for applications; it is much better to
give some minimal requirements about what should be provable in theory T . One
can show, in particular, that it suffices that T proves some very basic properties of
arithmetical operations, or in the case of set theories, some very simple theorems
about sets. (For more, detail see Notes.)

The Proof of the First Incompleteness Theorem

Now that we have all the ingredients for the proofs of the incompleteness theo-
rems, we can start with the proof of the First Incompleteness Theorem. As explained
above, in order to make the proof simpler, we will assume that T is a sound theory.

We need to construct a sentence that is not provable in T . It will be a self-
referential sentence, which will be called γT . Informally, the sentence expresses
the following:

This sentence does not have a proof in T .

4.2 The Incompleteness Theorems 279

Stated more precisely, γT is a sentence such that the following is provable in T :

γT is true if and only if γT does not have a proof in T .

This is the sentence that Gödel used in his proof. In the preceding pages I have
explained why it is possible to write down such a sentence in a formal logical lan-
guage.

First I will prove that γT is true. This is proved by arguing by contradiction as
follows. Suppose that γT is provable in T . Then γT is false, since γT asserts that γT
is not provable. On the other hand T can only prove true sentences, hence assuming
that γT is provable, γT must be true. So, assuming that T proves γT , we have proved
that γT is false and true at the same time, which is a contradiction. Thus γT is not
provable.

Once we know that γT is not provable, we are done because we have:

1. γT is unprovable, and
2. γT is true because it expresses the statement above.

This finishes the proof of the First Incompleteness Theorem. In order to fully un-
derstand what is going on in the proof it may be helpful to consider all of the possi-
bilities concerning the provability and truth of the Gödel sentence. These four cases
are listed in the table below.

γT is true ¬γT is true

γT is provable in T impossible: γT asserts impossible: only true

that γT is unprovable in T sentences are provable in T

γT is unprovable in T the only possible case impossible: ¬γT asserts

that γT is provable in T

The two possibilities on the diagonal (left upper rectangle—right lower rectangle)
are impossible because of the self-referential nature of the sentence. The possibility
in the right upper rectangle is excluded due to the soundness of the theory T .

The proof resembles very much the liar paradox, more precisely, the paradoxical
sentence ‘This sentence is not true.’ The difference is in using the predicate ‘prov-
able in’ T instead of ‘true’. The concept of a proof in a formal theory is a precise
mathematical concept. Moreover, it is a combinatorial concept, a concept that does
not require infinite sets. On the other hand, the concept of truth is not a syntactical
concept and thus cannot be defined in combinatorial terms. We will see in the se-
quel that actually this paradoxical sentence proves limitation on how truth can be
defined.

The Proof of the Second Incompleteness Theorem

The Second Incompleteness Theorem asserts that, assuming that T is a sufficiently
strong theory, T cannot prove the sentence expressing that T is consistent. Hence, if

280 4 Proofs of Impossibility

T is sound, then the Second Incompleteness Theorem extends the first one by giving
an explicit statement that is unprovable. Furthermore, the unprovable sentence is a
very important one, since it concerns the problem of consistency. Note that the proof
of the first incompleteness theorem does give quite a concrete independent sentence,
but it is a rather strange sentence.

Let us denote by ConT the statement that T is consistent. We want to prove that T
does not prove this sentence. The idea of the proof is to show that ConT implies the
Gödel sentence γT . Then ConT cannot be provable in T because otherwise also γT
would be provable and we know that the latter is not the case. To prove this implica-
tion, we do not need any technicalities. This is done simply by analyzing the proof
of the First Incompleteness Theorem. However, instead of the First Incompleteness
Theorem, we will use the following lemma.

Lemma 6 If T is a consistent formal theory able to formalize certain part of arith-
metic then T does not prove γT .

The difference is that we do not assume the soundness of T and that we do
not claim that γT is independent. When showing the unprovability of γT we used
soundness only to exclude the case that γT is provable, but not true. So we need to
show that it suffices to assume the consistency of T to exclude this case.8

By way of contradiction, suppose that γT is provable in T . We want to prove
that T is inconsistent. Let d be a proof of γT in T . Depending on how we formalize
syntax, d is a concrete finite set, number, or a finite string. Checking that d is a proof
can be done by a simple procedure. Assuming T is a sufficiently strong theory, we
can formalize the steps of the procedure applied to d , and thus we show that T can
verify that d is a proof of γT . Whence it is provable in T that

γT is provable in T .

But this statement is equivalent to¬γT in T . Hence¬γT is provable in T . Putting
it together with our assumption that T proves γT , we get that T is inconsistent,
which finishes the proof of the lemma.

Now we can finish the proof of the Second Incompleteness Theorem. Recall that
γT says that “γT is not provable in T ”. Hence the statement of Lemma 6 can be
simplified to

If T is consistent, then γT .

Thus the sentence ConT implies the sentence γT . This is true in the “real world”,
but this does not suffice, as we need to prove this implication in T . However, look at
the argument above—it is completely elementary. Hence any theory that is able to
formalize basic things about finite sets can also prove this implication. To complete
the proof of the Second Incompleteness Theorem, it remains to combine the two
facts that we have obtained:

8We used the soundness in the proof above because the argument is simpler when this assumption
is present.

4.2 The Incompleteness Theorems 281

1. T proves ConT → γT (which is the formalization of Lemma 6), and
2. T does not prove γT (which is exactly Lemma 6).

These two sentences clearly imply that T does not prove ConT .
Although we do not need it for the proof, it is worthwhile noting that γT is equiv-

alent to ConT . This means that each formula implies the other and this is provable
in T . We have already shown that ConT implies γT . The converse implication is
even simpler. The sentence γT asserts that something (namely γT) is not provable
in T . However, if some sentence is not provable, the theory must be consistent, for
in an inconsistent theory everything is provable. Hence γT entails ConT .

In general, the Second Incompleteness theorem does not imply that theories are
incomplete. The proofs above show that γT and ConT are not provable in T , pro-
vided that T is consistent, but we cannot conclude that T is incomplete, for it can
happen that ¬γT and ¬ConT are provable. Indeed, take a theory S to which Gödel’s
Theorems apply and extend it by the axiom ¬ConS . This theory is consistent be-
cause its consistency is equivalent to the statement that S does not prove ConS (the
negation of the added axiom), which is the content of the Second Incompleteness
Theorem. Let T be the theory S extended with ¬ConS . Since the inconsistency of
S entails the inconsistency of T , T proves its inconsistency ¬ConT . Now, ConT is
equivalent to γT , so ¬γT is also provable in T .

Thus Gödel’s Theorems do not exclude the possibility that one could find an
extension, say of Peano Arithmetic, which would be a consistent complete theory
(for every sentence φ, either φ or¬φ would be provable in the theory). The theorems
only imply that such an extension cannot be a theory that only proves true sentences.
Nevertheless, one can construct just a slightly more sophisticated self-referential
sentence ρT such that neither ρT nor ¬ρT are provable in any sufficiently strong
consistent T (see Rosser’s sentence, page 291).

The Undefinability of Truth

Gödel showed the impossibility to realize Hilbert’s program by his second incom-
pleteness theorem. Interestingly enough, he discovered it while working in the di-
rection that Hilbert proposed. Gödel wanted to show that assuming that a first order
theory of arithmetic, is consistent, then also a second order theory of arithmetic
is consistent. The way Gödel arrived at the Incompleteness Theorem is briefly de-
scribed in Wang’s article [306]. Unfortunately, Wang was very terse and we can only
guess the details. So, let us try to reconstruct what could have been Gödel’s train of
thought.

Suppose we want to reduce the proof of consistency of Second Order Arithmetic
(see page 295 for the list of axioms) to Peano Arithmetic. Second Order Arith-
metic differs from Peano Arithmetic in that it has two sorts of objects: numbers and
sets of numbers. The most important axioms are instances of the Comprehension
Axiom Schema that says that every formula with one free variable defines a set. The
natural idea that Gödel tried to use was to represent sets by formulas. In this way

282 4 Proofs of Impossibility

one can automatically satisfy the Comprehension Axiom Schema—given a formula
φ(x), the set that it defines will be represented by φ(x). Furthermore, a formula can
be represented by a number if we use a suitable coding. There is, however, one es-
sential problem: in order to define the membership relation ‘n is in a set represented
by φ(x)’ we need to be able to define the relation ‘n satisfies φ(x)’. This is possible
for a single formula, or for some restricted classes of formulas, but, as we know
now, not in general.

It is likely that Gödel realized at this point that if a definition of satisfiability
were possible, one would be able to reproduce the liar paradox and thus prove the
inconsistency of the theory. Hence, if the theory is consistent, there is no definition
of satisfiability.

Now, suppose that Second Order Arithmetic is sound and complete. Then we
can replace satisfiability by provability because a sentence is true if and only if it
is provable. Provability, unlike satisfiability, has low logical complexity and can be
formalized in Peano Arithmetic. However, we know that this cannot work, since
satisfiability is not definable. So the assumption that Second Order Arithmetic is
sound and complete must fail. Hence if it is sound, it must be incomplete.

We are talking about Second Order Arithmetic, but by now it is already clear that
the argument is quite general; it holds for any T containing Peano Arithmetic. Thus
we have obtained the Incompleteness Theorem.

The next question is: can we give an example of a sentence that is true, but
unprovable? If we look at the proof of incompleteness above, we notice that it uses
the sentence ‘I am false’ from the Liar Paradox, but where ‘false’ is replaces by
‘unprovable’, which is exactly Gödel’s sentence γT . As we have seen, it is possible
to eliminate the concepts of satisfiability and truth from the proof completely.

In Gödel’s paper the fact about the undefinability of truth does not appear, but is
clear that he was aware of this fact. The theorem on the undefinability of truth was
published by Tarski in 1936 [290].

Before stating the theorem, let us recall some basic facts about first-order struc-
tures. A structure, which is called a model in logic, consists of a universe X, some
relations R1, . . . ,Rk and some functions f1, . . . , fl defined on X. Let us denote this
structure by M . The relations and the functions determine the language of the struc-
ture, which will be denoted by L. In this language we have a relation symbol for
every relation and a function symbol for every function. Formulas are constructed
from these symbols, connectives, quantifiers and brackets. It is possible to define,
for every formula φ with n free variables and every string of n elements a1, . . . , an
of M , if the formula is satisfied by these elements. In particular, if φ is a sentence
(no free variables), then we say that φ is true in M if it is satisfied.

The question is whether or not the property ‘φ is true in M’ (or more gener-
ally, the relation ‘φ is satisfied by elements a1, . . . , an’) is definable in the language
L. However, this question is meaningful only if we have a natural representation
of formulas of L by elements of M . Hence the class of structures for which we
can state and prove the theorem corresponds to the class of theories to which the
First Incompleteness Theorem is applicable. I will state the theorem using Peano
Arithmetic, but, in fact, for both the First Incompleteness Theorem and the theorem

4.2 The Incompleteness Theorems 283

below, a much weaker fragment of arithmetic, Robinson Arithmetic (see page 116),
suffices.

The Gödel-Tarski Theorem Let M be a structure in which a model of Peano Arith-
metic can be defined. Let L be the language of M . Then there is no formula Tr(x)
in L such that for every sentence φ in L,

φ ≡ Tr
('φ()

holds true in M.

The symbol 'φ(denotes the element representing φ in M .
The proof is a straightforward application of self-reference. Suppose one can

define truth in M by some formula Tr(x). Construct a formula φ that says ‘I am not
true’. Then we get a contradiction as in the liar paradox. If we do it formally, the
property of φ is that it satisfies

φ ≡¬Tr
('φ(),

which is in contradiction with the formula in the theorem.
The proof of the undefinability of truth also explains in which context the defi-

nition is possible and where it is not. The proof requires self-reference, in order to
formalize the liar paradox. If we talk about a structure from outside, there is no self-
reference. See also Fig. 4.1 for a schematic explanation of the levels of discourse.

Rather than having deep consequences, this theorem provides explanations.
Firstly, it explains semantic paradoxes such as the liar paradox, (explanation being
that truth is not definable) and Berry’s paradox (explanation being that ‘definable’
is not definable). Secondly, it helps us understand why a theory cannot prove its
own consistency. The most common way of proving the consistency of a theory is
to provide a model of it. To use the model to prove that the theory is consistent we
need a definition of truth for the model. In set theory, if the model is a set, there is no
problem. We can also define class models, but for such models truth is not definable
because “classes are too big”. In particular, the universe of all sets can be viewed as
a class model. If we could define truth for it, we could use this class model to prove
the consistency of the theory in itself. So the explanation that the theorem provides
is roughly the following. The universe in which we argue is too big to be described
by itself, hence there is no way to prove that it is consistent.

This may suggest that the theorem about the undefinability of truth says that,
after all, a certain type of self-reference is impossible, namely, in a language L we
cannot define the truth about L. It is disputable whether this should be called self-
reference, but words are not important. The difference between the self-reference
used in the proofs of Gödel’s theorems and the undefinability of truth is that the
former concerns syntax whereas the latter concerns semantics. In a given language
we may be able to define its syntax, but not its semantics.

284 4 Proofs of Impossibility

Fig. 4.1 A picture showing the hierarchy of systems in which we speak about concepts of logic.
The largest box is the highest level. This is the level on which we communicate; here we use
a natural language, such as English, and we assume the most common mathematical principles,
such as mathematical induction (however, it is possible to use a formal system, for example, a
programming language, also on this level). At this level we define when a sentence φ is true in
a model M . If M has sufficiently rich structure, we can define logical concepts inside of M ; in
particular, we can define when a sentence ψ is true in a model N which is defined in M . But in M

we do not have a general definition of the truth of sentences in M itself

Interlude—Free Will and the Hierarchy of Observers

In order to explain the necessity of distinguishing the two levels of discourse, we
will make a short digression to an apparently unrelated topic. A classical problem
in philosophy is whether free will is compatible with the idea that everything is
determined by the laws of physics. The problem is complicated by the fact that ac-
cording to the laws of quantum mechanics randomness is an inherent factor in the
basic laws. So let us consider a simplified problem, a thought experiment, whether
or not free will is compatible with a world based on completely deterministic laws.
‘Deterministic’ means that the future state of the universe is uniquely determined
by the present state (or the state at any given moment). The well-known Laplace
daemon, an entity that knows the positions of all atoms, can determine all events in
the future. Such a deterministic world seems clearly in contradiction with free will:
a person does not have the possibility to choose his or her action, as all actions are
completely determined by past events. Nevertheless, many people believe that this
is only an apparent contradiction. The German physicist Max Planck gave an expla-
nation of this paradox based on the role of observers [218]. According to Planck,
free will is a subjective feeling caused by the fact that we are not able to predict our
own decisions. We can, of course, observe ourselves, we can realize what we are
thinking about, recall what we remember, but in observing our mind we are limited;
we cannot observe completely the state of our mind, thus we miss many details that
may be important for the decision that we are making. Therefore, we can only partly

4.2 The Incompleteness Theorems 285

predict our future actions. On the other hand, such limitations do not apply to an ex-
ternal observer. An external observer may have, at least theoretically, the complete
information about the state of our mind, and thus the observer may be able to predict
our next action.

Let us consider an even simpler situation. Let us imagine a computer trying to
predict its own actions in the future. (Incidentally, the problem of free will is also
important in artificial intelligence.) Suppose it does it in the middle of a difficult
computation for which it needs essentially all its power. Clearly, to predict the out-
come of the computation before it is actually performed, it would have to find a
more efficient way to solve the given task, but, maybe, there isn’t any. Then the
only way to find the truth is to go on and compute. On the other hand, the computer
can be built so that we can stop it at any moment and copy the state of all logical
gates and the content of the memory. As the computer is stopped, we have plenty
of time to compute what it will do next when we let it go on. Thus we can know
what it will do before it will actually do it. Whether you are willing to accept that
computers may eventually have free will, or not, you have to admit that this is quite
a general argument and it applies to any information processing devices, including
human brains.

We are studying mathematical structures and logical theories and they certainly
do not have free will. Yet the role of observers is similar. The difference is in that
we do not talk about predicting the future, but about the possibility that a structure
or a logical theory contains information about sentences that are true in it.

Some Peculiarities of Incompleteness

People are often baffled by the fact that for an arithmetical formula ϕ(x) it can
happen that the sentence

for every number x,ϕ(x)

is unprovable, but all sentences

ϕ(0), ϕ(1), ϕ(2), ϕ(3) . . .

are provable. We are talking, of course, about provability in a fixed theory T . When
writing ϕ(0), ϕ(1), ϕ(2), ϕ(3) . . . , we assume that either T contains explicitly all
numerals 0,1,2, . . . , or we have some representation of them by suitable terms in
T . If, for instance, T contains constants for 0 and 1 and the operation of addition,
then we can use 0,1,1+ 1,1+ 1+ 1, . . .; thus we get

ϕ(0), ϕ(1), ϕ(1+ 1), ϕ(1+ 1+ 1) . . .

The first thing one should realize is that the first expression is a single sentence
Φ , whereas the second one is an infinite set of sentences. Clearly, using basic logical
rules we can derive every sentence of the set from Φ , but there is no rule in logic that
allows us to do the opposite. Since all proofs in logic are finite, any proof can use

286 4 Proofs of Impossibility

only a finite number of premises. Hence, if we had a proof of the sentence Φ from
the infinite set {ϕ(0), ϕ(1), ϕ(2), . . .}, it would use only a finite number of sentences
of the form ϕ(n), for n a numeral. Clearly, a statement about all numbers does not
logically follow from a finite number of special cases.

Suppose Φ expresses the fact that an algebraic equation does not have a solution
in the domain of natural numbers. We know that it may be very difficult to prove
such a sentence. For example, to prove Fermat’s Last Theorem for the exponent 3,

(x + 1)3 + (y + 1)3 = (z+ 1)3,

is a nontrivial task. However, to prove that a given concrete number is not a solution
is trivial and everybody can do it. To this end you simply need to evaluate the terms
of the equation and compare them. Such a computation constitutes a proof, in fact,
it is the most basic kind of proof.

To be quite precise, mathematicians accept computations as proofs, or parts of
proofs, but computations are not explicitly included in the logical calculus. In order
to be able to use computations as formal proofs, we have to assume as axioms some
basic properties of the operations. In the case of arithmetic computations with inte-
gers we need a few simple axioms that are present in any reasonable axiomatization
of the arithmetic of natural numbers. In particular the axioms of Peano Arithmetic,
even without the axioms of induction, suffice for this purpose.

It is not difficult to find sentences ϕ(x) with the property stated at the beginning
of this subsection. As a matter of fact, every unprovable true sentence which is a
universal finite formula provides us with such an example. Let us consider Gödel’s
formula ConT which expresses that a theory T is consistent. It is a statement of the
form

Every string of symbols is not a proof of contradiction from the axioms of T .

Suppose T is consistent. Then by Gödel’s Theorem this sentence is unprovable
in T , but for every given string of symbols, we can verify that it is not a proof.
This verification can again be written as a formal proof in T (provided that T is
sufficiently strong to prove basic properties of strings of symbols).

Flexible Formulas and Unpredictable Programs

In the literature there are a variety of results inspired by Gödel’s incompleteness
theorem. One of these which strikes me most is the flexible formula of the Polish lo-
gician Andrzei Mostowski (1913–1975), [201]. Let T be a sufficiently strong theory
that contains arithmetic. Then it is possible to construct a formula μT (x) with one
free variable x with the following property. Not only is μT (n) independent from T

for every numeral n, but also these sentences are mutually independent. This means
that the axioms of T together with sentences of the form μT (m) or ¬μT (m) for
m = n are still unable to decide if μT (n) holds. Formally, it is stated by saying that

4.2 The Incompleteness Theorems 287

if we choose arbitrarily μT (n) or ¬μT (n), but not both, for every n, then this set of
sentences together with T is consistent for every such choice. For example,

T ∪{μT (0),μT (1),¬μT (2),¬μT (3),μT (4),¬μT (5),μT (6),¬μT (7),μT (8), . . .
}

is a consistent theory, whatever the continuation of the sequence of formulas is.
The unpredictable program is an example of the same flavor. We already know

that it is algorithmically undecidable whether a given program stops. When we are
not able to decide if the program stops, can we at least prove something about what
the program will do? For instance, can we at least prove that the program is not
a virus that will damage our computer? The answer is again no, but again, as in
all independence results, the unpredictability depends on the theory T in which we
argue about the program.

Here is a program which, from the point of view of T , can print any string. More
precisely, we cannot prove in T that the program will not print y for any given
string y.

Program UnprT .

1. systematically search all proofs of T ;
2. if you find a T -proof of the sentence “UnprT does not print

y”, for some string of symbols y, then print y.

This is not an explicit definition of a program because it refers to itself, but we al-
ready know how to replace self-reference by direct reference. So the above program
can be written explicitly in every reasonable programming language.

Let us show that assuming that T proves only true sentences, it is consistent with
T that UnprT prints an arbitrary string y. Arguing by contradiction, let y be an
arbitrary string and suppose that T does prove that UnprT never prints y. Let d be
this proof. It may happen that there are actually several proofs of this statement,
moreover there may exist such proofs for other strings too. Thus we consider the
order in which UnprT searches proofs and take the first such proof d0. Let y0 be
the string to which this proof refers to. Then, by definition, UnprT must print y0.
But this is impossible because T proves only true sentences. We got a contradiction,
hence the assumption that T proves that UnprT never prints the string y is false.

Having the unpredictable program, it is easy to construct the flexible formula.
Define

μT (n) is true if and only if UnprT prints a string w of 0s and 1s of length at
least n+ 1 such that the n+ 1-st element of w is 1.

If we are given an infinite sequence (a0, a1, a2, . . .) of 0s and 1s, then for ev-
ery finite initial segment (a0, a1, a2, . . . , an) of it, it is consistent that UnprT prints
(a0, a1, a2, . . . , an). Thus

T ∪ {μT (a0),μT (a1),μT (a2), . . . ,μT (an)
}

is consistent for every n, whence T with the infinite sequence of sentences,

T ∪ {μT (a0),μT (a1),μT (a2), . . .
}
,

is also consistent.

288 4 Proofs of Impossibility

Looking at UnprT from a higher perspective we can show that it will never stop,
so it will not print any string. But notice that this requires the assumption that T

is consistent. Indeed, if T is inconsistent, then T will stop and print some string
because if T is inconsistent, there are proofs of all sentences in T and it is only the
matter of which string y will occur in these proofs first. You may counter by saying
that we can prove in T that UnprT is quite innocent—it will either run for ever, or
print a string and stop. So look at the following modification.

Program Unpr+T .

1. run UnprT ;
2. if UnprT prints a string y which is a code of a program,

then run y.

Now you cannot prove using only T that this program will not destroy your
computer.

Notes

1. Doing things formally. . . may obscure the main ideas, but once the essence of
the proof is clear, seeing more precise arguments will certainly be useful. The
only technical part in the proofs of incompleteness theorems is constructing
self-referential sentences, so we will concentrate on it.

As I said, writing correct formulas which express facts about formulas re-
quires representation of formulas by terms. Suppose we have a theory T that
contains arithmetic of natural numbers and we want to speak about a concrete
number, such as 3 or 2001. It is possible that T contains decimal numerals as
constants and there is no problem, but it does not have to be the case. In such a
case we have to describe the number somehow. When the theory contains con-
stants and function symbols, we may use terms. For example, using the constant
1 and the binary function symbol + we write 3 as 1+ 1+ 1. Some theories do
not have constants or function symbols. Then we can still describe a concrete
number (for example, 0 is the least number, 1 is the next after the least, etc.).
Also in programming languages some data can be expressed directly (certainly,
numbers) and some have to be described. When talking about syntactical ob-
jects we have to be more careful. We cannot assume that each syntactical object
can be used also as the name of itself. This is not possible even in natural written
language. Consider the sentences:

I am talking about you.

and

I am talking about “you”.

4.2 The Incompleteness Theorems 289

We have to use quotation marks to distinguish you as a person from you as a
word. To make this distinction in formal languages people use various nota-
tions. Here we will use '. . .(as such quotation marks. Thus 'φ(is a term that
represents the formula. In the case of a theory that only speaks about numbers,
we first represent formulas as numbers, and then 'φ(will be a term represent-
ing the number assigned to the formula φ. (Should it sound confusing, think of
'. . .(simply as quotation marks.)

The next thing is to represent functions. Suppose, for instance, that we want
to talk about squaring numbers. If we have × in T , then we can use the term
x×x. Having only a small number of function symbols and constants we cannot
hope to represent all functions. There will be a lot of functions that we can
describe by formulas, but not by terms. For presenting the proof, it is, however,
very convenient to assume that we can represent one particular function by a
term. Namely, we need the doubling function

σ(x) �→ σ
('σ(). (4.6)

This is the function that given a formula σ(x) with a free variable, substitutes
the term representing σ(x) for the variable x. We will denote this function by
d and assume that it can be defined by a term in T (and use the same symbol
for the term). Function d is the function ‘write the following sentence twice. . . ’
from the verbal exposition of self-reference in the previous section. Formally,
we need the following to be provable in T for every formula σ(x),

d
(⌈

σ(x)
⌉)= ⌈σ (⌈σ(x)

⌉)⌉
. (4.7)

This is a formalization of the fact that d represents the function defined by (4.6).
Now let φ(x) be an arbitrary formula. We will prove an important lemma
which is a formal statement of self-reference. The lemma is called the Diag-
onal Lemma or the Fixed Point Theorem. The idea is due to Gödel, but in an
explicit form, it first appeared in Carnap [38].

Lemma 7 Given a formula φ(x), it is possible to construct a formula ψ such
that the following equivalence is provable in T

ψ ≡ φ
('ψ().

The meaning of ψ is the self-referential statement

This formula satisfies condition φ.

We already know how to do it:

The following formula written twice satisfies condition φ: “The following
formula written twice satisfies condition φ”.

(To be precise, one has to add that the second occurrence is after a colon and in
the scope of quotation marks.)

290 4 Proofs of Impossibility

To do it formally, we use the doubling function d . Thus ψ is

φ
(
d
(⌈

φ
(
d(x)

)⌉))
. (4.8)

It is worth checking that the formula expresses the same as the sentence above:
φ(. . .) stands for satisfies condition φ, d(. . .) for written twice and 'φ(d(x))(
is the direct reference “The following formula written twice. . . satisfies condi-
tion φ”.

Now we will show that the sentence expresses what it should. Notice that ψ
has the form φ(t), where t is the term d('φ(d(x))(). Thus we need to prove in
T that t = 'ψ(. Indeed, by (4.7) and (4.8),

d
(⌈

φ
(
d(x)

)⌉)= ⌈φ(d(⌈φ(d(x))⌉))⌉= 'ψ(.
Hence ψ is equivalent to φ('ψ().

Note that this proof is almost identical with the proof of the Fixed Point
Theorem of λ-calculus (see page 149). This is not surprising, especially for
those who solved the problem on page 275. That exercise asks for a fixed point
of the function computed by the compiler for the programming language—
giving the compiler the program it simply prints the program.

For the proof of the incompleteness theorem we take a special formula for
φ(x), the formula saying that x has no proof in T . Let us denote this formula
¬πT (x). Then there exists a formula γT such that in T

γT ≡¬πT

('γT ().
To finish the proof we need one more fact: if a sentence φ is provable in T , then
πT ('φ() is also provable in T . This is a special case of the following general
principle, called Σ -completeness:9

If ψ is a true Σ1 sentence, then ψ is provable in T .

So if a true sentence is sufficiently simple, then it is provable. Here is the idea
of why it is true. Consider the following very simple true sentence.

(1+ 1) · (1+ 1)= 1+ (1+ (1+ 1)
)
.

This equality can be easily derived using the distributive and associative laws.
We have such laws in any reasonable arithmetical theory. Now consider the
following Σ1 sentence (a sentence asserting that 4 is even).

∃x(x · (1+ 1)= 1+ (1+ (1+ 1)
))
.

An important observation is that to derive this sentence from the one above, we
need only logic. So the same theory that proves the first sentence, proves the
second one. In Σ1 sentences we may also use bounded universal quantifiers, so
we may have a sentence of the form

(∀x ≤ 1+ 1)α(x).

9It would be more appropriate to call it Σ1 completeness, but I will stick to the traditional notation.

4.2 The Incompleteness Theorems 291

Proving such a sentence reduces, using only some basic axioms of arithmetic,
to proving three sentences

α(0), α(1), α(1+ 1).

In such a way we can gradually reduce proving a Σ1 sentence to proving sim-
ple equations and inequalities of the type above with no free variables. The
proofs of such equations and inequalities are essentially numerical evaluations
of terms.

Now we need to check that the concept of provability in T is Σ1. This is
the part of the proof that uses the fact that the set of axioms of T is decidable.
This condition on T is, in fact, stronger than what is needed for the proof; it
suffices only to assume that the axioms of T form a recursively enumerable
set (a Σ1 set). However, axiom systems with a recursively enumerable set of
axioms never occur in practice, and, furthermore, any such set of axioms can
easily be replaced by recursive set of equivalent axioms. So let us assume that
the set of axioms is decidable. The statement that a sentence φ is provable has
the form:

there exists a sequence of formulas such that every formula in the se-
quence is either an axiom of logic, or an axiom of the theory T or it fol-
lows from some previous formulas by a logical rule, and the last formula
in the sequence is φ.

Clearly, the only quantifier is ‘there exists a sequence’; the remaining part is a
statement that can be decided by an algorithm. This is exactly the form of Σ1

sentences.
Now we can finish the proof quickly. Suppose that γT is provable in T . Then,

by Σ -completeness, also πT ('γT () is provable in T . But γT is equivalent to
¬πT ('γT (). Hence we have both πT ('γT () and ¬πT ('γT (), which means that
T is inconsistent. Thus, assuming that T is consistent, γT is not provable in T .
Furthermore, γT is true because γT is equivalent to¬πT ('γT () which expresses
the true fact that γT is not provable in T .

2. The General Diagonal Lemma. Often a more general version of the Diagonal
Lemma is needed in which a parameter is allowed.

Lemma 8 Given a formula φ(x), it is possible to construct a formula ψ(y)

such that the following sentence is provable in T

∀y(ψ(y)≡ φ
(⌈

ψ(ȳ)
⌉))

.

The expression 'ψ(ȳ)(is the Gödel number of the formula ψ(ȳ), where ȳ

is the numeral y, which is the term SS . . . S(0) with y occurrences of S.
3. Rosser’s sentence. In the exposition above, we used the assumption that the

theory T was sound. Gödel stated his theorems in greater generality by using
the weaker assumption of ω-consistency. This property is the restriction of the

292 4 Proofs of Impossibility

assumption that T is sound (proves only true sentences) to the class of Σ1
sentences. Thus ω-consistency means that if a Σ1 sentence ψ is provable in
T , then ψ is true. Equivalently we can say that if ∃xφ(x) is provable in T for
a Σ0 formula φ(x), then φ holds for a concrete number. (One can also view
this property as the converse of Σ -completeness.) The reason for introducing
this concept was not only to get a more general theorem, but also because the
concept of a sound theory is rather vague. By restricting this property to Σ1
sentences about natural numbers, he was able to avoid such ambiguities.

Thus Gödel’s results left open the possibility that some ω-inconsistent the-
ories were complete. However, it is not difficult to rule out also this strange
possibility. This was done by J.B. Rosser [249] shortly after Gödel. Rosser de-
fined the following self-referential sentence ρT :

For every proof of ρT , there exists a shorter proof of ¬ρT .

The idea behind this construction is to obtain a sentence that is symmetric in the
sense that the sentence and its negation behave in the same way. The sentence
ρT is, clearly, not quite symmetric. It says that “if there exists a proof of ρT ,
then. . . ”, whereas its negation says “there exists a proof of ¬ρT . . . ”. However
we get symmetry if we assume that either there exists a proof of ρT or there
exists a proof of ¬ρT . Under this assumption, ρT is equivalent to:

the shortest among the proofs of ρT and ¬ρT is a proof of ¬ρT ,

and ¬ρT is equivalent to:

the shortest among the proofs of ρT and ¬ρT is a proof of ρT .

After these preliminary considerations, the proof is easy. Assume that ρT is not
independent. Well, this is exactly the assumption that guarantees the symmetry.
Furthermore, according to the Σ -completeness this statement is also provable
in T .

So it suffices to consider one of the two (non-exclusive) possibilities, say
that ¬ρT is provable in T . Let d be such a proof of ¬ρT . Since T is consistent,
there is no proof of ρT in T , in particular, there is no such proof below d . The
sentence “d is a proof of ¬ρT and there exists no proof of ρT below d” is a Σ1
sentence (in fact even Σ0), thus, by Σ -completeness, it is provable in T . But
this sentence implies ρT , hence T is not consistent. Thus we got a contradiction,
which shows that ¬ρT is not provable in T .

4. Some attempts to get round the second incompleteness theorem. Gödel’s The-
orem excludes the possibility for a theory to prove its consistency. To check
that you understand this theorem and the concepts involved, it is instructive to
look at some attempts to extend a given theory T so that the extension proves
its consistency. In the sequel we will write Con(T) instead of ConT in order to
avoid indices with indices, and use the expression T + φ to denote the theory
obtained from a theory T by adding a sentence φ as an additional axiom.

(1) Define T0 = T , T1 = T0+Con(T0), T2 = T1+Con(T1) and so on. Let S be
the union of theories T0, T1, T2, Assume that T is a sound theory. Then,

4.2 The Incompleteness Theorems 293

not only is T consistent, but also T1 because Con(T) is sound. Moreover,
T1 is also sound. In the same manner we can prove by induction that all Tn

are sound.
Here is a wrong argument that S proves its consistency.

Suppose that a contradiction can be derived from S. Then it must be
derived from some finite part, say Tn. Now, Con(Tn) is provable in S

because it is already provable in Tn+1.

What is wrong in this argument? We want to prove Con(S) in S. Let us
see what is the sentence Con(S) that we want to prove. It says that S is
consistent, hence it must imply that every part of S is also consistent. Thus
in S the following implication is provable Con(S)→ ∀x Con(Tx). One
can prove in S also the converse implication. In fact, if we formalize the
above wrong argument we get a correct proof of ∀x Con(Tx)→ Con(S)
in S. So the problem with the above argument is that we are trying to use
concrete instances Con(T0),Con(T1),Con(T2), . . . instead of the sentence
∀x Con(Tx).

(2) Since the above construction did not produce what we wanted, one may
try to construct a kind of limit of the process of adding consistencies. The
Fixed Point Theorem mentioned above seems the right tool for this purpose,
since usually a limit is a fixed point. So what we want is a sentence δ such
that

δ ≡ T together with δ is consistent,

or, using the Con notation

δ ≡ Con(T + δ).

Our hope is that T + δ is consistent and proves its own consistency. The
second condition follows immediately from the construction of δ. Hence,
by Gödel’s Theorem, the other condition must fail, so T + δ is not consis-
tent. As the proof of the Second Incompleteness Theorem is not difficult,
we can find where the contradiction appears by following its proof for this
particular theory line by line, but an intuitive explanation is more useful.
If we add consistency statements one by one as in (1), we get stronger and
stronger theories. In T + δ we add a sort of loop that generates automat-
ically all such extensions. Because of that the strength of the theory goes
beyond any limit and thus becomes too strong—inconsistent.

(3) Another process that has been studied is to extend the process of adding
consistencies transfinitely. I will have to say more about it in Chap. 7.

5. Arithmetization of syntax in Peano Arithmetic. Peano Arithmetic has only 0,
S, + and × as primitives. Therefore, arithmetization of syntax in Peano Arith-
metic is not quite easy. The problem is that all natural ways of coding sequences
of numbers by numbers are based on exponentiation which is not among primi-
tives. Exponentiation can be defined, but again it is hard to do it without having
a way of coding sequences.

294 4 Proofs of Impossibility

Gödel devised a tricky way of coding sequences that avoids exponentiation,
his β-function:

β(u, d, i)= Rem(u, id + 1),

where Rem(x, y) denotes the remainder of x after division by y. Using this
function one can code arbitrary finite sequences of natural numbers. Given a
sequence a1, . . . , an, the code is a triple (u, d,n) such that for all i = 1, . . . , n,
ai = β(u, d, i). We can find such a code as follows. Let d = (maxi ain)!. Then
the numbers d + 1,2d + 1, . . . , nd + 1 are pairwise relatively prime, thus, by
the Chinese Remainder Theorem, there exists some u such that

u≡ ai mod (id + 1), for i = 1, . . . , n.

Since ai < id + 1, we have ai = Rem(u, id + 1) = β(u, d, i). When proving
properties of the β function, we cannot assume that we have the factorial func-
tion, but we can easily prove by induction that for every x, there exists a number
y divisible by all the numbers z≤ y, which suffices for our purpose.

Furthermore, β-function has a simple arithmetical definition:

β(u, d, i)= a ≡ ∃z∃w(u= (id + 1)z+ a ∧ a +w = id
)
.

Several other methods of coding finite sequences have been found. For example,
it is possible to first define exponentiation and then use definitions of sequences
based on it.

Peano Arithmetic is certainly not the weakest theory for which one can prove
the incompleteness theorems. One can show that the first incompleteness the-
orem holds true for any consistent theory that contains Robinson Arithmetic,
which is the theory axiomatized by the basic seven axioms of Peano Arithmetic,
without the schema of induction (see page 116).

For such a weak theory, it is not clear whether it makes sense at all to ask
whether the second incompleteness theorem holds in it. Proving the second
incompleteness theorem means proving that it is consistent to assume in T that
there exists a proof of contradiction in T . However, if we cannot prove the
basic properties of the formalized syntax, the proof of contradiction would only
be some number satisfying some strange formula.

Thus it is a bit surprising that one can prove a meaningful version of the sec-
ond incompleteness theorem even for such weak theories. The point is that one
can define an interpretation of a much stronger theory in Robinson Arithmetic,
a theory that is not as strong as PA, but strong enough to properly formalize syn-
tax. The interpretation is defined by a suitable formula ν(x). The numbers that
satisfy ν form an initial segment of the whole universe of numbers of Robinson
Arithmetic, a segment closed under addition and multiplication. The interpre-
tation is the restriction to ν. Then one can prove that it is consistent to assume
that there exists a proof of contradiction already in the segment defined by ν.
Since we have all the basic properties on the segment, such a contradiction is
represented by a number that indeed encodes a proof of contradiction.

4.2 The Incompleteness Theorems 295

6. Second-Order Arithmetic. The theories I am going to describe are axiomatized
by sentences that are true in the structure(

N,P(N);0, S,+,×,≤,∈).
This structure has two sorts of objects: numbers and sets of numbers. Corre-
spondingly, the language of these theories L2 has the constant 0, the arithmeti-
cal operations (defined only on numbers), the relation ≤ (defined only on num-
bers) and the membership relation x ∈ Y that expresses that a number x is in a
set Y . I will use lower case letters for numbers and upper case letters for sets of
number.

The role that Peano Arithmetic plays for the structure of natural numbers
(N;0, S,+,×,≤) is now played by Second Order Arithmetic, which is usually
denoted by Z2. The axioms of Z2 are the axioms of Robinson Arithmetic, the
Schema of Comprehension and the Axiom of Induction.

The Schema of Comprehension For every formula φ(x) of L2 (possibly with
other free variables treated as parameters),

∃Y∀x (x ∈ Y ≡ φ(x)
)
,

where φ(x) may contain parameters. This schema enables us to define a set of
numbers by any formula in the language of Z2.

The Axiom of Induction

∀Y (0 ∈ Y ∧ ∀x(x ∈ Y → S(x) ∈ Y
)→∀x x ∈ Y

)
.

The schema of induction for all formulas φ(x) of L2,

φ(0)∧ ∀x(φ(x)→ φ
(
S(x)

))→∀xφ(x),

is a consequence of the Schema of Comprehension and the Axiom of Induction.
7. Proofs of the impossibility of impossibility. Sometimes people ask if it possible

to prove some kind of higher level incompleteness in the sense that the state-
ment of unprovability itself is unprovable. A trivial example of this kind is the
question of whether a contradiction, say φ ∧¬φ is provable in a theory T . By
Gödel, T is unable to decide if it is consistent, so it is unable to decide if φ∧¬φ
is provable in T or not. To get something a little bit more interesting, suppose
we want to have theories S and T and a sentence φ such that

1. it is provable in S that T is consistent;
2. it is consistent with S to assume that φ is provable in T ;
3. it is consistent with S to assume that φ is not provable in T .

Again, the existence of such theories and such a sentence is a straightforward
consequence of the second incompleteness theorem. Take T a sound theory that
is strong enough for Gödel’s Theorem to be applicable. Let S be T + Con(T),
thus 1. is satisfied. Let φ be ¬Con(T). By Gödel’s Theorem, we have both S is
consistent with¬Con(S) and S is consistent with Con(S). Note that¬Con(S) is
¬Con(T +Con(T)), which means that T proves ¬Con(T) which is φ. Thus we
have 2. Furthermore, Con(S) is Con(T +Con(T)), which means that ¬Con(T)

is not provable in T , thus we get also 3.

296 4 Proofs of Impossibility

A more interesting question is the following. Is it possible that we prove
that φ is undecidable in some theory without knowing whether φ is true or
false? The Continuum Hypothesis is probably an example. However, the ques-
tion whether it is true, or false is rather delicate and it is even not clear that
one can answer this question. So we would prefer an arithmetical sentence. The
least arithmetical complexity for which such independence can occur is Π2 and
Σ2 (see Proposition 13). In a short unpublished note Petr Hájek described a
contrived example of such an independence result. Here is a brief sketch of a
version of his result. Let PPA(x), respectively PZFC(x), denote formulas ex-
pressing the provability predicates of Peano Arithmetic, respectively Zermelo-
Fraenkel set theory. Applying the Diagonal Lemma construct a sentence δ such
that PA proves

δ ≡ PZFC
('δ()→ PPA

('¬δ(). (4.9)

Since ZFC proves all theorems of PA, the equivalence above is also provable in
ZFC. We will show that

a. it is provable in ZFC that δ is independent from PA and
b. δ is independent from ZFC.

(For the second part of the statement we need to assume that ZFC is consistent
and does not prove that it is inconsistent; needless to say, these assumptions are
accepted as true by almost all mathematicians.)

First we will argue in ZFC and prove the independence from PA. We will
use the fact that for every arithmetical formula ψ , we can prove in ZFC

PPA
('ψ()→ψ.

This is called the reflection principle for PA and it is an assumption stronger
than the statement that PA is consistent.

Still arguing in ZFC, suppose PA) δ, then we get PA) PPA('δ(), by Σ -
completeness, and also PA) PZFC('δ(), as PA can see that ZFC is at least as
strong as PA. From PA) δ and PA) PZFC('δ() we get PA) PPA('¬δ() using
the definition of δ and modus ponens. Thus PA proves that it is inconsistent.
By the reflection principle, we also have that PA is inconsistent, but in ZFC we
know that PA is consistent. Thus PA does not prove δ.

Now suppose PA) ¬δ. Then PA) PPA('¬δ(). Note that ¬δ is
PZFC('δ()∧¬PPA('¬δ(), so we also have PA)¬PPA('δ(). Thus PA is incon-
sistent, which is not true. Hence we have shown in ZFC that δ is independent
from PA.

Now we prove that δ is independent from ZFC.
Suppose ZFC) δ. Then ZFC) PZFC('δ(), hence ZFC) PPA('¬δ(). By

reflection, ZFC)¬δ, thus ZFC would be inconsistent. So ZFC) δ.
Suppose ZFC) ¬δ. Then ZFC) PZFC('¬δ() and ZFC) PZFC('δ() ∧

¬PPA('δ(), by the definition (4.9) of δ. Whence ZFC) PZFC('¬δ() ∧
PZFC('δ(). Thus ZFC proves that it is not consistent, which is not true. Hence
δ is independent from ZFC.

4.2 The Incompleteness Theorems 297

8. Modal logic of provability. Let PPA(x) denote, as above, that the formula with
the Gödel number x is provable in PA. In particular it defines an operator that
from a given formula φ produces another formula PPA('φ(). It is natural to
think of this operator as a modality, as the meaning of PPA('φ() is that φ holds
in some stronger sense, namely, we have a proof of it. So let us use � for it and
let us see what kind of modal logic it gives. Again, we will only be interested in
the propositional fragment of such a logic. We will only consider the provability
in PA, but the results are valid for a large class of theories. Nevertheless, you
should keep in mind that the properties of this modality may depend on the
theory whose provability we consider.

It has been shown that this gives rise to a modal logic which can be axioma-
tized by a few simple axiom schemata and rules. This logic is called Provability
Logic. It is not very difficult to prove that the provability predicate for PA sat-
isfies all axioms and rules of the Provability Logic. The difficult part of the
characterization is to show that all true statements about provability in PA ex-
pressible in modal logic can be proved in Provability Logic. This was proved
by Solovay in 1976 [280].

Provability Logic, PRL, is axiomatized by the standard axioms and rules of
the classical propositional calculus and the following modal ones: the general-
ization rule

(1) from φ, derive �φ,

and three axiom schemas

(2) �(φ→ψ)→ (�φ→�ψ),
(3) �φ→��φ,
(4) �(�φ→ φ)→�φ.

The rule (1) and the axioms (2) and (3) are satisfied by the usual provability
predicate of Peano Arithmetic. They are also called the derivability conditions,
as they axiomatize which properties the provability predicate must satisfy so
that we can prove Gödel’s Theorem. In this book we have always assumed
that the provability predicate is formalized in a natural way. This means that
we express the syntactical concepts needed in the formalization in the most
direct way. However, it is natural to ask for which other formalizations Gödel’s
Theorem still holds true. One possible answer to this question is that these are
all predicates that satisfy conditions (1), (2) and (3) above.

The axiom (4) is the opposite of the axiom �φ→ φ of S4, which is not valid
in PRL. It says, in terms of provability in PA, that the only way one can prove
PPA('φ()→ φ is to prove φ. This statement is known as Löb’s Theorem, thus
the axiom is also called Löb’s axiom.

G. Sambin and D. de Jongh independently proved that in PRL one can define
explicitly fixed points. This is the following schema that corresponds to the
Diagonal Lemma.

(5) Given a modal formula φ(x) in which the propositional variable x occurs
only in the scope of the modality �, one can find a modal formula δ such
that δ ≡ φ(δ) is provable in PRL.

298 4 Proofs of Impossibility

We will prove Gödel’s theorems in this formalism. By (5) we get a formula δ

such that

δ ≡¬�δ. (4.10)

Then, in particular, we have

δ→¬�δ.

Applying generalization (1), axiom (2) and modus ponens we get

�δ→�¬�δ.

By (3) we also have

�δ→��δ.

The last two give together

�δ→��δ ∧�¬�δ.

Using classical rules and (2) one can easily show ��δ ∧ �¬�δ→ �(�δ ∧
¬�δ) which gives

�δ→�(�δ ∧¬�δ).

Let us abbreviate �δ by φ. Thus the last formula is

�δ→�(φ ∧¬φ).
Now the meaning of the consequent is clear: it says that a contradiction is prov-
able. (The contradiction is represented by φ ∧¬φ, but we know that all contra-
dictions are equivalent.) Let us take the contrapositive implication

¬�(φ ∧¬φ)→¬�δ. (4.11)

The meaning is that if a contradiction is not provable then δ is not provable.
But if δ is not provable then, by (4.10), δ is true. Thus we have obtained the
First Incompleteness Theorem. The Second Incompleteness Theorem follows
immediately by observing that the meaning of ¬�(φ ∧¬φ) is the consistency
of PA and that it implies δ.

9. A definition of a provability predicate for which Gödel’s Theorem fails. Let
T be an arbitrary (recursively axiomatized) theory. Let PT (x) be the natural
definition of the provability predicate for T . Define

P ∗T (x)≡ PT (x)∧Con(T).

Then we can prove ¬P ∗T ('0= 1(), the consistency expressed using P ∗T , without
knowing almost anything about T . The argument is: either Con(T) is true and
then we cannot derive a contradiction from the axioms of T , or it is false, in
which case the provability predicate P ∗T (x) defines an empty set.

If T is consistent, then PT (x) and P ∗T (x) define the same set of sentences
provable in T . Thus, for example, P ∗PA(x) defines (in N) the sentences provable
in Peano Arithmetic, and Peano Arithmetic proves ¬P ∗PA('0= 1().

This definition is, clearly, not natural. In particular it has higher quantifier
complexity than is needed in the proof of Gödel theorems and thus it does not
satisfy the provability condition (3).

4.2 The Incompleteness Theorems 299

10. A decreasing sequence of theories. S. Feferman and H. Friedman [275] proved
that it is possible to construct a sequence of theories with decreasing consistency
strength—a sequence of recursively axiomatized theories S0, S1, S2, . . . such
that Sn proves the consistency of Sn+1 and every Sn is consistent. Equivalently,
the strict ordering of theories, defined by T < S if S proves the consistency
of T , is not well-founded.

The basic idea can be explained as follows. Take an increasing sequence of
consistent recursively axiomatized theories T0, T1, T2, . . ., where Tn+1 proves
the consistency of Tn. We know how to construct such a sequence: given a
theory T , define T0 = T and, for n > 0, Tn+1 := Tn + Con(Tn). Now consider
a nonstandard model of arithmetic M . In this model we have theories Tν also
for infinitely large numbers ν. Thus in M we can take an infinite number ν

and define Sn = Tν−n for all finite n. What remains to do is to simulate this
construction without referring to a nonstandard model. The trick is that, due
to the incompleteness theorem, for every recursively axiomatized extension of
Peano Arithmetic T , we can define a number which either does not exist, or
is infinitely large, and it is consistent with T that the number exists. Namely,
take ν to be the least number that encodes a proof of contradiction in T and for
n≥ 0, put Sn = Tν−n if ν exists, otherwise Sn = T .

To prove that the consistency of Sn+1 is provable in Sn, we argue in Sn as
follows. Either T is consistent and Sn+1 = T , so Sn+1 is consistent. Or there
exists ν and then Sn = Sn+1 + Con(Sn+1), hence we have Con(Sn+1) as an
axiom. Let us observe that the theories Sn are not only consistent, but also
sound provided that we start with a sound T .

11. The undefinability of truth and complexity hierarchies. The undefinability of
truth in a language L can also be explained using the concept of complexity:
the definition of truth for L has higher complexity than any relation that can be
defined in L.

This is best seen on the example of the natural numbers. Consider the
structure with the usual arithmetical operations and the relation of inequality
(N;0,1,+,×,≤). The sets definable in this structure are classified into the
arithmetical hierarchy consisting of classes Σi and Πi (see page 141). We know
that the hierarchy of classes Σi is strictly increasing and every definable set and
relation is in Σi for some i. Using a definition of truth, one can define every
definable set without using additional quantifiers. If the definition of truth were
in some Σi , it would not be able to define sets in Σi+1. So the complexity of
the truth predicate in (N;0,1,+,×,≤) is higher than all Σi and Πi .

12. A curiosity. I am indebted to A. Visser and A.C. Franco for the following ob-
servation.

Theorem 21 For every sufficiently strong finitely axiomatized arithmetical the-
ory T , one can construct a sentence αT such that

a. Peano Arithmetic proves αT ,
b. T proves αT ≡ ConT .

300 4 Proofs of Impossibility

‘Sufficiently strong’ means that T is sequential (see page 574) and proves
the cut-elimination theorem; ‘T is arithmetical’ means that it is formalized in
the standard language of arithmetic; ConT is the standard formalization of the
consistency of T .

We will use the following result from [222].

Lemma 9 For every finitely axiomatized sequential theory T , there exists a
formula ν(x) such that T proves

a. ν(0)∧ ∀x (ν(x)→ ν(x + 1)),
b. there is no cut-free proof of contradiction in T whose Gödel number satis-

fies ν.

If T is arithmetical, then ν(x) is also an arithmetical formula. Let

β := (ν(0)∧ ∀x (ν(x)→ ν(x + 1)
))→∀x ν(x).

This is just an instance of the induction schema, hence it is an axiom of PA.
By the lemma, it is provable in T that β implies that there is no cut-free proof
of contradiction in T . Since T proves the cut-elimination theorem, this implies
ConT . So β→ ConT in T . To make it equivalent, put αT := β ∨ConT .

To see that this theorem has nothing to do with Hilbert’s Program, just notice
that there is no assumption about the consistency of T in the theorem. So even
if T is inconsistent, PA proves αT .

4.3 Algorithmically Unsolvable Problems

We will now consider problems that have an infinite number of instances. The in-
stances are determined by parameters. We would like to know whether a uniform
way of solving all instances of a given problem exists. More precisely, we ask
whether there is an algorithm that, for every parameter, finds a solution of the prob-
lem. When there is no such algorithm, we say that the problem is algorithmically
unsolvable. Note that this does not exclude the possibility to solve the problem for
some instances. We will focus on decision problems, the problems for which the
answer is yes or no.

This question is, certainly, relevant for practice. When the problem is algorithmi-
cally unsolvable, we cannot program it. However, the question is also very important
for foundations. We will see connections between algorithmic unsolvability and un-
provability.

The Halting Problem

The most basic algorithmically unsolvable problem is the halting problem. The
problem and its algorithmic unsolvability is formally stated in the following the-
orem due to Turing [293].

4.3 Algorithmically Unsolvable Problems 301

Theorem 22 The following problem is algorithmically undecidable: Given a code
of a program P and input data D, to decide whether or not P will halt after a finite
number of steps when run on data D.

We are talking about programs, but one may replace programs by Turing ma-
chines (as was in Turing’s paper), or any other concept that formalizes computations.
In the sequel we will simply say that “a program P halts on data D” assuming im-
plicitly that the program will compute for a finite number of steps and then it will
halt.

Here is a sketch a proof of this theorem. In fact, we will prove a stronger theorem:
it is undecidable if a program P will halt when run on its own code. The proof is
easy and it goes by contradiction. Suppose the problem is decidable. Let Q be a
program that decides it. Thus Q does the following:

1. Q always outputs 0 or 1;
2. if Q(P)= 0, then P does not halt on its own code;
3. if Q(P)= 1, then P halts on its own code.

Now we modify Q so that instead of printing 1, it will run for ever. To obtain the
modified program Q′ we only need to replace the command ‘print 1’ by a few
lines that will define a loop from which there is no escape; for example

while n > 0 do n := n+ 1

Let us see now what happens if we run Q′ on its own code. To this end we first
run Q on the code of Q′ and when Q(Q′) = 1 we apply the modification. Thus
there are two possibilities.

1. If Q(Q′)= 0, then also Q′(Q′)= 0, in particular, Q′ halts. This is a contradic-
tion because, if Q does what we assume, Q(Q′)= 0 implies that Q′ should not
halt on its own code.

2. Now assume Q(Q′) = 1. then Q′ will use the modification and run into an in-
finite loop. This is again a contradiction because according to Q(Q′) = 1, Q′
should halt on its own code.

As there are no other possibilities, we have shown that the assumption that
there exists a decision algorithm for the halting problem is false. Hence the the-
orem is proved.

Clearly, the proof uses the same type of self-reference as Russell’s paradox and
Gödel’s Theorem. While the two concern rather abstract areas—set theory and proof
theory—here we are dealing with a very concrete problem. In spite of that the proof
is weird: who would ever want to run a program on its own code? Thus one may
propose to forbid running programs on their codes and hope the undecidability will
be eliminated. This should be taken seriously because somebody may conclude that
only computers may do stupid things such as running a program on its own code
and, therefore, computers are inferior to humans in their computing abilities (if we
disregard their speed). This conclusion is totally wrong. To explain why, let us as-
sume that we have two programming languages L1 and L2. Let us now change the

302 4 Proofs of Impossibility

problem a little and ask if a program P written in L1 halts on the code of the same
algorithm written in L2. The proof above remains correct with this modification.
Hence it does not matter how we encode the program before we give it as an input,
as long as the encoding is computable. Now suppose that we get a program P and
arbitrary data D. It is always possible that D encodes P in some, perhaps strange,
way. So the restriction to programs running on their own codes is only a means to
prove the undecidability, but the result is really about the general halting problem.

Furthermore, an easy consequence of the result is that we can find one program
for which it is undecidable if it halts on given data. Such a program is any universal
program (see page 130). A universal program U simulates what an arbitrary given
program does with given input data. In particular, if we apply U to an input that
encodes a program P and data D, then the computation of U on this input will halt
if and only if the computation of P will halt on D. Hence, if we could solve the
halting problem for U , we could also solve the halting problem for P .

The undecidability of the halting problem is a basic result that is used to prove a
number of other undecidability results. In fact all undecidable problems of a certain
form (those that define recursively enumerable sets, see page 140) are derived from
it. This is done by encoding computations by the mathematical structures appearing
in those problems. I will describe several such concrete undecidability results in
the following sections. One of these is the problem about tiling the plane with a
given set of tiles. In this particular case the reduction is very complicated, but it is
easy to imagine what is going on. We want to represent the computation process
of a Turing machine. What the machine does in one computation step is not so far
from putting a tile next to others. If we allow sufficiently complex shapes or color
patterns of tiles, we can encode by them the rules that the machine uses to move its
head and to write symbols on the tape. For other problems, the reduction may be
even more difficult; in particular, the undecidability of Diophantine equations is one
of the major results obtained in the 20th century, but again, the whole point is how
to encode computations.

Tilings of the Plane

Of all the concrete computationally unsolvable problems the problem of tiling the
plane has always attracted the most attention. The statement of the problem is: given
a finite set of shapes of tiles, decide whether the entire plane can be tiled only using
tiles of these shapes. A more general problem is with tiles having colored patterns
and with the additional requirement that the patterns must match.

If the problem were to tile a given finite region of the plane, the problem could
be solved by exhaustive search, but we are asked to tile the whole infinite plane. In
some cases we may be sure that it is possible; in particular this is the case when
the set of tiles can be used to tile the plane in a periodic way (see Fig. 4.2). When
trying to construct such a tiling, as soon as we see that the pattern is repeating, we
conclude that we can continue in the same way ad infinitum. But, assuming that a
given set of tiles can be used to tile the whole plane, is it always possible to find a
periodic tiling with the same tiles?

4.3 Algorithmically Unsolvable Problems 303

Fig. 4.2 A periodic tiling of
the plane by three Wang tiles

At first glance, one necessarily gets the impression that it is a typical example
of a completely useless problem that mathematicians study only for their pleasure.
However, the contrary is true. The problem originated in connection with a question
about decidability of a certain part of first order logic. Thus the tiling problem is
related to one of the fundamental problems of mathematics. Subsequent research
led to further interesting results, even with applications in physics.

The problem was first posed by Hao Wang in 1961 [304]. He considered square
tiles with colored edges. In an admissible tiling the colors of neighboring tiles must
match. Such tilings are also called domino tilings, since the rule which tiles match
is essentially the same as in dominos; however, Wang tiles are not allowed to be
rotated or flipped, they can only be translated. Hao Wang became interested in the
problem because he was able to reduce this problem to a problem in logic. He proved
that the existence of such domino tilings of the plane can be expressed by sentences
of a certain type. Hence, if the former problem was undecidable, then so was the
problem of deciding if a sentence of this type is true. He also noticed that if every
domino tiling of the plane were periodic, then the problem would be decidable.

The domino tiling problem was solved by R. Berger in 1966 [21]. Berger proved
that there is no algorithm for deciding if a given finite set of tiles can tile the plane.
This implies that there must exist finite sets of tiles which admit only non-periodic
tilings. Berger’s proof gives a concrete set of tiles by which the plane can only be
tiled in aperiodic ways, however, this set is very large (20,426 tiles). Subsequently
R.M. Robinson reduced the number to only six tiles and eventually R. Penrose to
two. Penrose found two such pairs, neither of which consists of Wang tiles. The
Penrose tiles are not squares; they can be represented by simple shapes with more
complex color patterns, or colorless tiles with more complicated shapes. Penrose
obtained a US patent for his tiles in 1979. It is an open problem whether or not there
exists a single “aperiodic” tile.

By definition, aperiodic tilings do not possess symmetries which are (nontrivial)
translations, but they may be symmetric with respect to rotations. Penrose tilings
are especially interesting. They may have rotational symmetry, but those that do
not have such a symmetry possess at least quasisymmetries which means, roughly
speaking, that when they are suitably translated and rotated by an angle 2π/5 they
match very well, although not completely. A matter formed from atoms or molecules

304 4 Proofs of Impossibility

Fig. 4.3 A section of an aperiodic tiling by the Penrose rhombi. There are other tilings of the plane
that use the same two tiles, but all are aperiodic. Every angle in the two quadrangles is a multiple
of π/5. Consequently, any two edges in a tiling of the plane determine an angle that is a multiple
of π/5. The projections and indents ensure that the rules about which edges of the tiles and how
they are matched are satisfied

that would behave like these tiles would exhibit a fivefold symmetry on the macro-
scopic level. Such symmetries are impossible in true crystals, therefore such materi-
als were coined quasicrystals. First quasicrystals were synthesized from aluminium-
manganese alloy in 1984. In 2011 the Nobel Prize in chemistry was awarded to Dan
Shechtman for the discovery of quasicrystals. Thus a problem in mathematical logic
is connected with a Nobel Prize in chemistry!

The growth of quasicrystals does not have a simple explanation such as for or-
dinary crystals. It might be a phenomenon that cannot be efficiently simulated by
classical computers and thus might require quantum computers. (Quantum compu-
tations will be treated in the next chapter.)

Algorithmically Unsolvable Problems in Number Theory

Undecidable problems can be found in almost every field of mathematics. Num-
ber theory is particularly interesting because it is one of the oldest fields. The most
important problem among the unsolvable problems in number theory is the prob-
lem of deciding whether or not a given Diophantine equation has a solution. Re-
call that a Diophantine equation is an equation with integral coefficients and we
are only looking for integral solutions (see page 56). This problem was among the
problems that David Hilbert selected for his famous list in 1900; it was problem
number 10:

“Given a Diophantine equation with any number of unknown quantities and with rational
integral numerical coefficients: To devise a process according to which it can be determined
by a finite number of operations whether the equation is solvable in rational integers.”10

10See [125], page 458. ‘Rational integers’ are the usual whole numbers. Since the concept of
integers can also be defined in number fields which are different from the field of rational numbers,
he used the specification ‘rational’.

4.3 Algorithmically Unsolvable Problems 305

Hilbert did not speak about algorithms as the concept had not been precisely defined
and the wording also suggests that he thought that an algorithm could be found.
At that time it was hard to imagine that such a concrete finite problem could not
be solved by an algorithm. The progress in number theory, to which Hilbert con-
tributed a lot, was evidence that the solution should be positive. For more and more
classes of Diophantine equations, theories were developed and this gave decision
procedures for many kinds of equations. Yet the general problem is unsolvable. Let
me stress again that this fact is more important for theory than for practice. The
Diophantine equations that we encounter in practical problems are usually solv-
able; the problem is only that the algorithms are not efficient enough for being used
in practice. The consequence for number theory is more relevant: in contrast with
the special classes of equations that we now understand well, it is not possible to
design a theory of general Diophantine equations that would give us a decision pro-
cedure.

The algorithmic unsolvability of the Diophantine problem was proved by Yuri
Matiyasevich in 1970 [193]. As substantial work on the problem had been done
before, part of the credit should also be given to Martin Davis, Julia Robinson and
Hillary Putnam whose fundamental results were used in Matiyasevich’s solution of
the tenth Hilbert problem.

It is always good to see a concrete example. Below I present a compact set of 18
Diophantine equations found by J.P. Jones [143].

q = b560

l = A+ tθ

e = C+mθ

n = q16

r = [g + eq3 + lq5 + (2(e−Dλ)
(
1+Bb5 + g

)4 + λb5 + λb5q4
)
q4
](
n2

− n
)+ (q3 − bl + l + θλq3 + (b5 − 2

)
q5
)(
n2 − 1

)
p = 2ws2r2n2

k = r + 1+ hp− h

a = (wn2 + 1
)
rsn2

c = 2r + 1+ φ

d = bw+ ca − 2c+ 4aγ − 5γ

τ 2 = p2k2 − k2 + 1

k2 = 4
(
c− ksn2

)2 + η

d2 = (a2 − 1
)
c2 + 1

f 2 = (a2 − 1
)
i2c4 + 1

b5 = θ + 2D
λ+ q4 = 1+ λb5

elg2 + α = (b−BC)q2

(d + of)2 = ((a + f 2
(
d2 − a

))2 − 1
)
(2r + 1+ jc)2 + 1.

306 4 Proofs of Impossibility

In these equations A, B, C and D are parameters and all remaining letters are un-
knowns. Jones proved that the problem to determine, for given natural numbers A,
B, C, D, whether the system has a solution in the domain of natural numbers is
undecidable. Notice that one can eliminate the first 10 equations by substituting the
right hand side expressions for q, l, e, . . . , d . The reason why Jones did not do it was
that he aimed at the most compact presentation—the substitutions would increase
the size of equations substantially. This set of equations is not exactly what Hilbert
had in mind; his original problem was about single equations. But there is a simple
way to transform a finite set of Diophantine equations into one that has exactly the
same set of solutions. For every equation from the set, we subtract the left hand side
from the right hand side and take the square. If some numbers satisfy the equation
then we get zero, otherwise we get a positive number. Hence if we sum all these
squares we get zero if and only if all equations are satisfied. This transformation
produces the following equation from the 18 equations above:[

q − b560]2 + [l −A− tθ]2 + [e−C−mθ]2 + · · ·
+ [(d + of)2 − ((a + f 2(d2 − a)

)2 − 1
)
(2r + 1+ jc)2 − 1

]2 = 0. (4.12)

Thus we have a single equation such that it is undecidable for which parameters A,
B, C, D it has a solution. This is similar to the halting problem. We have observed
that the halting problem is undecidable for a universal program (or Turing machine).
The equation above is also in a sense universal: taking suitable parameters we can
encode every Diophantine equation.

Unprovability from Undecidability

The most important algorithmically unsolvable problem from the point of view of
the foundations is the problem to decide whether or not a given sentence is prov-
able in first order logic. By the Completeness Theorem, this is the same as asking
to decide the logical validity of the sentence. The history of this problem, Entschei-
dungsproblem, was mentioned in Chap. 2.

Having algorithmically undecidable problems, it is a simple matter to show that
the provability in first order logic is also undecidable. The essence is that in first
order logic we are able to speak about programs, Turing machines, tiles, and, of
course, Diophantine equations. So we are able to express statements such as ‘pro-
gram P halts at data D’, ‘a set S of tiles can be used to tile the whole plane’, etc.
If provability in logic were decidable, then we could also decide these statements,
which we know is not possible.

Here is a description of this argument in more detail. The undecidable problem
that best suits this purpose is the undecidability of the Diophantine problem. (Note,
however, that one does not need such a strong result for this proof.) The undecid-
ability of the Diophantine problem means that it is not possible to find an algorithm
that would decide for a given polynomial equation

p(x1, . . . , xn)= q(x1, . . . , xn),

4.3 Algorithmically Unsolvable Problems 307

where p and q polynomials with integral coefficients if there exists an integral so-
lution. This is the same as asking whether or not a sentence of the form

∃x1 . . .∃xn p(x1, . . . , xn)= q(x1, . . . , xn)

is true. Thus the truth of such sentences is undecidable. However, we need to show
that the provability of some sentences is undecidable. The provability in first order
logic and the truth of an arithmetical sentence are different things, so we have to
use provability in some theory. We need a finite set of axioms, which is the same as
asking for one sentence α (the conjunction of the axioms), such that in the theory
axiomatized by α every sentence of the form above is provable if and only if it is
true.

By the incompleteness theorem, we already know that there are no theories that
would satisfy this property for every arithmetical sentence, but the sentences that
we consider here are very special. Suppose such a sentence is true; how should we
prove it? If the sentence is true, the polynomial equation has a solution. Now, given
a solution to a polynomial equation it is very easy to verify it—simply evaluate the
polynomials (see the example on page 290). Computations are not formal proofs,
but it is clear that there must be a simple theory that formalizes such computations.
Such a theory is the theory of rings (see page 20). Hence if α is the conjunction of
the axioms of rings,

α→∃x1 . . .∃xn p(x1, . . . , xn)= q(x1, . . . , xn)

is true if and only if it is provable in first order logic. This is exactly what we need for
reducing the undecidability of the Diophantine problem to the undecidability of first
order logic: since there is no algorithm for deciding if a Diophantine equation has a
solution, there is also no algorithm for deciding the provability of such sentences in
first order logic.

In a similar vein we can, furthermore, derive Gödel’s incompleteness theorem.
Arguing by contradiction, suppose that we have a complete axiomatization of arith-
metic by a decidable set of axioms. Recall that this means that the set of axioms is
decidable. Then we claim that there is also an algorithm to decide if a sentence is
provable in this system. The point is that we can systematically generate all proofs
in T . Hence if we want to decide a particular sentence φ, we generate proofs until
we find a proof of φ or a proof of ¬φ. The completeness of T , the fact that always
either φ is provable, or ¬φ is provable, guarantees that this procedure always halts.
We do not know how many proofs we need to generate, but we will always find a
proof of φ or a proof of ¬φ.

Example Let φ be a sentence that expresses that a program P halts on data D. If
we had a complete axiomatization of arithmetic, then we would always be able to
find a proof either of φ or of ¬φ, and thus decide the halting problem. Thus there
is no complete axiom system for arithmetic (whose axioms could be systematically
generated).

This proof does not point to an explicit sentence not provable in T , but more
detailed analysis of this argument does give a procedure for constructing such an

308 4 Proofs of Impossibility

independent sentence. It can also be shown that we do not get anything new—the
sentence that we obtain is equivalent to the Gödel sentence for T . So, clearly, the
two proofs, one showing the incompleteness, the other showing the undecidability,
share a common principle, a principle appearing in various disguises such as the liar
paradox, Cantor’s diagonal method, and self-reference.

Using this connection we can produce a lot of “concrete” independence results.
Here are three such results stated in the form of a theorem.

Theorem 23 Let T be a consistent theory11 in which it is possible to express facts
about finite structures. Then one can find

1. a program P and data D such that P does not halt on D,
2. a finite set of tiles S that can tile the whole plane,
3. a Diophantine equation p = q that does not have a solution,

such that none of these three sentences is provable in T .

These sentences are very explicit, yet they have an unpleasant property, which
is, paradoxically, the universal applicability of this theorem. This is best seen in the
following version of sentence 3:

3′. one can find four natural numbers such that the Diophantine equation (4.12)
with these numbers substituted for parameters A, B, C, D is unsolvable, and this
fact is not provable in T .

Hence the unprovable sentences obtained in this way are all the same except for the
four numerical parameters. We would like to see a relation between the theory T

and the unprovable sentence, but all this is hidden in the four numbers. If number
theorists would like to understand such equations, they would have to analyze the
structure of the numerical parameters, since the overall structure of the sentence
does not provide relevant information. The same concerns the logicians who would
like to show the unprovability of a well-known problem in Diophantine theory by
reducing it to such a sentence. Therefore, such sentences do not count as truly con-
crete. In Sect. 4.4 we will see independence results that do not suffer this drawback.

We can also use the connection between unprovability and undecidability to ex-
plain why there are algorithmically undecidable problems. Many problems have the
following form: given a computable relation R(x, y), we are to decide, for every x,
whether there exists y satisfying the reaction. Suppose a is an element for which
there is no such y. This is expressed by the formula

¬∃y R(a, y). (4.13)

The question is: how difficult is it to prove this sentence? One can show that if the
problem is algorithmically unsolvable, then there is no bound on how hard is to
prove such sentences—whatever theory T one takes, there are always instances that

11Recall that in this book a theory is always axiomatized by a decidable set of axioms.

4.3 Algorithmically Unsolvable Problems 309

are unprovable in T . Moreover, this characterizes precisely when such a problem is
algorithmically unsolvable.

This is summarized in the following theorem (for the proof, see Notes).

Theorem 24 Let R(x, y) be a computable relation. Let P be the problem: for a
given x, decide whether there exists a y such that R(x, y). Then the following are
equivalent.

1. The problem is algorithmically undecidable.
2. There is no theory T such that for every a, the sentence (4.13) is true if and only

if it is provable in T .

The Complexity of Ramsey’s Theorem

Instead of continuing the list of concrete undecidable problems I will turn now to
one of the recurring motifs of the book, which is Ramsey’s Theorem. The result
that I am going to present here is also a good example of a different type of result
connected with algorithmic undecidability, a result whose nature is impossibility
rather than undecidability. We already know that the Ramsey property that is proved
to hold for every subset of the natural numbers is so complex that if applied to higher
cardinalities it defines extremely large cardinals. Thus we will not be surprised that
there is something computationally hard in the theorem.

Let us start with a very simple example. Suppose we are given a computable
function f on the natural numbers which has two values 0 and 1. The function is
given as a program to compute f . Suppose our task is to determine a value a such
that f (n)= a for infinitely many natural numbers. Is this a decidable problem?

The answer is no, and the proof is easy. It suffices to reduce the halting problem to
it. Let a program P and data D be given. Let f be the function defined by f (n)= 0
if P does not halt during the first n steps of the computation, otherwise f (n)= 1.
Then f (n) is always 0 or it is 0 only for a finite number of natural numbers n

according to whether or not P halts on D. As we cannot decide the latter, we also
cannot decide the former.

In Ramsey’s theorem we consider a function f that gives one of the two values
(usually we call it colors) to each k-element subset of integers. The claim is that
there exists an infinite subset such that all its k-element subsets get the same value.
We call such sets homogeneous. Now we can ask again: given a program for f ,
can we compute a value a such that there exists an infinite homogeneous set of this
color? Since the above toy problem is a special version with k = 1, the answer is no;
in fact, for every k, it is undecidable.

As the undecidability arises already at the trivial level k = 1, this is not inter-
esting. What is an interesting problem is this: how difficult is it to describe an infi-
nite homogeneous set? There always exist uncountably many homogeneous sets, so

310 4 Proofs of Impossibility

there are certainly very difficult ones, but what the problem is about is to find the
simplest ones.

In particular we can ask the following.

Assume that f is a computable function, does there exist an infinite homoge-
neous set X such that X is decidable?

Now if k = 1, then trivially such an X exists—take the color a that occurs in-
finitely many times and take all numbers such that f (n) = a. The algorithm for
computing f can also be used to decide if a number is in this set. However, for
k ≥ 2 it is different. The proof of Ramsey’s Theorem does not produce a decid-
able set because when constructing a homogeneous set we have to decide an infinite
number of questions of the form: is a particular set finite or infinite. This suggests
(but it does not prove!) that for some computable f there exists no infinite decidable
homogeneous set. This intuition was eventually confirmed by a theorem proved by
C.G. Jockusch [141].

Theorem 25 There exists a computable partition of pairs of natural numbers such
that there exists no computable infinite homogeneous set.

This theorem does not have direct consequences of the form of unprovable true
sentences, but the techniques used in the proof are closely related to those that
are used in the unprovable version of Ramsey’s Theorem, which we will consider
shortly.

Notes

1. Proof of Theorem 24. Suppose that the problem P is decidable. Then the set of
true sentences of the form ¬∃yR(a, y) is decidable. So we can simply take this
set of sentences as T .

Now suppose that T proves ¬∃yR(a, y) if and only if this sentence is true.
Then, for a given a, we can decide the truth of ∃yR(a, y) as follows. We system-
atically check R(a, y) for all elements y and in parallel we also check all proofs,
looking for a proof of ¬∃yR(a, y). One of these must always succeed.

Note that Theorem 23 is a corollary of Theorem 24.
2. Computability theory, also called recursion theory, is an important field in math-

ematical logic. Some basic concepts of this theory were introduced in Chap. 2.
Here we will continue with a few more facts. We will start with repeating the
definitions of the most important concepts.

The most important concept is the concept of an algorithmically decidable
set, also called simply decidable set, or recursive set. These are sets for which
there exists an algorithm for deciding if a given element is in the set. By the el-
ements we mean numbers, or strings of symbols in a finite alphabet, or another
natural class of finite structures. The second most important concept is a com-
putable function, also called a recursive function. This is a function f for which

4.3 Algorithmically Unsolvable Problems 311

there exists an algorithm to compute f (x) from a given element x. Thus we can
identify recursive sets with recursive functions that have two values 0 and 1.

The next most important concept is a recursively enumerable set. A set X is
recursively enumerable if there exists an algorithm that halts exactly on the ele-
ments of X. A related concept is a partial recursive function, which is a function
computable by an algorithm, but it does not have to be defined for all inputs.

The following are basic facts concerning these concepts:

• A set X is recursive if and only if both X and the complement of X are recur-
sively enumerable.

The proof is trivial: given an x run the two algorithms, one for X and the other
for the complement. One of them must stop, and then we know the answer. No-
tice, however, that this principle has non-constructive nature: we have no a priori
bound on the time we need to run the two algorithms. We have used this fact to
show that a complete theory is decidable.

• A set is recursively enumerable if and only if it is the domain of a partial
recursive function.
• A set is recursively enumerable if and only if it is the range of a partial recur-

sive function.
• A set is recursively enumerable if and only if it is the range of a recursive

function.

The last fact justifies the name recursively enumerable.
The new concept that we will consider here is the reducibility of one set to

another one. By this we want to express the intuitive notion that sometimes we
can reduce one decision problem to another one. There are several nonequivalent
ways one can define it. The following is the most useful one.

A set X is reducible to a set Y if there exists a computable function f such
that

x ∈X if and only if f (x) ∈X.

Let us denote by H the halting set, which is the set of programs that will halt
when run on their own code. Clearly H is recursively enumerable.

Theorem 26 Every recursively enumerable set X is reducible to H .

Thus H is the most complex set among recursively enumerable sets. We say
that H is complete in the class of recursively enumerable sets. On the other hand,
all natural undecidable problems that are recursively enumerable are proved to be
undecidable by reducing H to them, hence all such sets are complete. It is natural
then to ask if there are other recursively enumerable undecidable sets. That it is
so, is a theorem of R.M. Friedberg [80] and A.A. Mučnik [202]. They also proved
that there are pairs of recursively enumerable sets such that they are incompara-
ble with respect to the relation of reducibility. Their proof furthermore gives that
for every two recursively enumerable sets X and Y such that X is reducible to Y ,

312 4 Proofs of Impossibility

there exists a recursively enumerable set Z which is strictly in between. To state
these results, it is better first to factorize the set of all recursively enumerable sets
by the relation of mutual reducibility, and talk about the resulting ordering. Then
the class of complete sets becomes the largest element of the ordering and the
two properties can be expressed by saying that this ordering is not linear and it is
dense.

Friedberg and Mučnik introduced a proof technique called the priority
method, which soon became the main tool in recursion theory. It can be viewed as
an essential extension of the diagonal method. When using the diagonal method
to show that a set X is not in a class C, we run an infinite process which at stage
n ensures that X is different from the nth set of C. Many problems in recursion
theory, including the problem solved by Friedberg and Mučnik, can be presented
in a similar way: we need to construct a set that satisfies an infinite list of re-
quirements. However, the requirements may be conflicting, thus by satisfying a
requirement n we may injure an already satisfied requirement m. Therefore, it is
much harder to define a process that would accomplish it. Essentially, it amounts
to carefully define which requirements have higher and which lower priorities
to be satisfied. The concrete applications of this method cannot be presented
without introducing more concepts from recursion theory and proving several
auxiliary results, which is outside of the scope of this book.

3. Tilings and formulas. Once we know that first order logic is undecidable, it is
natural to ask what is the smallest complexity of formulas for which there is no
decision procedure. The answer, of course, depends on the parameters by which
we measure the complexity of formulas. The basic classification is by the number
and the type of quantifiers. We consider sentences in the prenex form, i.e., with
all quantifiers in front of the formula and classify them by the type of prefix.
From this point of view the simplest undecidable class consists of sentences of
the form

∀x∃y∀z φ(x, y, z).

Recall that a sentence is a formula that does not have any free variables. Hence
formulas of this type have only the three explicitly mentioned variables. Further-
more, we assume that the sentences contain binary relations, but no constants or
function symbols. (The reason for disallowing constants and function symbols is
that they could simulate quantifiers.) The undecidability of this class of sentences
was proved by A.S. Kahr, E.F. Moore and H. Wang [146]. Below we will sketch
main ideas of a reduction of the domino tiling problem to the problem of logical
validity of sentences of this class.

A set of Wang tiles can be defined as follows. S will be the set of tiles, H will
be a binary relation that specifies which tiles can be placed next to each other
horizontally, and V is the relation that specifies which tiles can be placed next
to each other vertically. A tiling of the plane T is an assignment which for every
pair of integers, determines the tile with these coordinates and which respects the
relations H and V .

Having such a formal description it is routine to write down a formula that
expresses the existence of a tiling. However, we need a very special formula:

4.3 Algorithmically Unsolvable Problems 313

it must not use any function symbols or constants and it may use only three
quantifiers (of a particular type). To express the existence of a tiling by such a
simple formula is quite tricky. First we need a different formalization. We will
imagine a tiling to be a structure whose universe are integers and the presence
of a tile t with coordinates (i, j) will be expressed by a binary relation Rt(i, j).
Here is the formula:

∀x∃y∀z
(∧

t =t ′

(¬Rt(x, z)∨¬Rt ′(x, z)
) ∧ ∨

(t,t ′)∈H

(
Rt(x, z)∧Rt ′(y, z)

)

∧
∨

(t,t ′)∈V

(
Rt(z, x)∧Rt ′(z, y)

))
.

Let us denote this formula ∀x∃y∀z τ(x, y, z). Our goal is to prove that
∀x∃y∀z τ(x, y, z) has a model if and only if there exists a tiling of the plane
by tiles defined by (S,H,V). Since the tiling problem is undecidable, we will
obtain that it is undecidable if formulas of the form ∀x∃y∀z φ(x, y, z) have a
model, which is equivalent to the undecidability of the problem if formulas of
the form ∃x∀y∃z ψ(x, y, z) are provable (φ and ψ are quantifier-free).

Given a tiling by (S,H,V), it is very easy to check that the tiling is a model
of ∀x∃y∀z τ(x, y, z). Interpret y as x + 1, then the first part of the formula
says that for every pair of coordinates (x, z), there is at most one tile with these
coordinates; the second part says that next to the right from (x, z) there is a tile
that satisfies the relation H ; the third part says that next upwards from (z, x)

there is a tile that satisfies V .
The opposite direction is more difficult. Given a model M of ∀x∃y∀z

τ(x, y, z), we should prove that there exists a tiling. We cannot assume that M
itself is a tiling—if the formula has a model then it has infinitely many differ-
ent models. Thus we will only show that M has a submodel which is a tiling,
albeit a tiling only of one quadrant. This suffices for proving that there is a tiling
of the entire plane. To construct the submodel we recall an idea of Skolem (see
page 89). We enlarge M to a model M ′ by adding a unary function f so that M ′
satisfies

∀x∀z τ
(
x,f (x), z

)
. (4.14)

For every x, the value f (x) is simply one of the elements y such that
∀z τ(x, y, z). Pick an arbitrary element a0 of M ′ and let a1 = f (a0), a2 =
f (a1), Take the submodel M ′′ of M ′ induced by the universe {a0, a1, a2, . . .}.
We claim that if we interpret elements an as coordinates n, then M ′′ is a tiling
of the quadrant of the plain whose points have nonnegative coordinates. To see
that we observe that formula (4.14) is a universally quantified conjunction of
three formulas, hence it is equivalent to the conjunction of the following three
formulas:

∀x∀z
(∧

t =t ′

(¬Rt(x, z)∨¬Rt ′(x, z)
))

,

314 4 Proofs of Impossibility

∀x∀z
(∨

(t,t ′)∈H

(
Rt(x, z)∧Rt ′

(
f (x), z

)))
,

∀x∀z
(∨

(t,t ′)∈V

(
Rt(z, x)∧Rt ′

(
z, f (x)

)))
.

These three sentences express precisely what we need for M ′′ to be a tiling of
the nonnegative quadrant. (Note that if the set {a0, a1, a2, . . .} is finite, we get a
periodic tiling.)

Concerning the proof that the tiling problem is undecidable, let me only men-
tion the main difficulty that one has to overcome. The basic idea is to encode
Turing machine computations by tilings, so that we can reduce the halting prob-
lem to the nonexistence of a tiling. In Chap. 2 we introduced the matrix model of
computation (see page 137), which is almost a reduction to tilings. In the matrix
model the dependence of the entries in the matrix is vertical and diagonal. But
this is only a minor difference; it is a simple task to replace diagonal relations by
vertical and horizontal relations. What is a problem is that in the matrix model
(as in any other straightforward simulation of Turing machine computations) we
have a special part, the first row, that corresponds to the initial configuration of
the simulated machine. We would like to reserve a special configuration of tiles
for the initial configuration, but the following fact is an obstacle.

Proposition 6 If a finite configuration of tiles occurs in a tiling of the plane only
finitely many times, then there exists another tiling of the plane in which it does
not occur at all.

This can easily be shown using König’s Lemma.
Consequently, the initial configuration cannot be encoded on one particular

place of the tiling, it must be encoded on infinitely many places in the tiling.
4. Aperiodic sets of tiles. It is always more difficult to work with objects that are

irregular than regular ones. Thus the task of proving that a particular set of tiles
can produce only aperiodic tilings seems quite intriguing. But in reality it is not
very difficult. The point is that in spite of the fact that aperiodic tilings (such as in
Fig. 4.3) look very chaotic, some sort of regularity is always present. The most
straightforward way of proving aperiodicity is to prove that there is a unique
way of tiling the plane and to describe explicitly this tiling, or at least some key
properties of it. However, this is not always possible; in particular the Penrose
tiles (both types shown above) produce an infinite number of different tilings of
the plane. The basic idea of proofs of the aperiodicity for such sets of tiles is as
follows.

Let S be a set of tiles. For the sake of simplicity, suppose that the tiles do
not have any pattern or colors, so only the shape matters. First we need to show
that there is at least one tiling of the plane. Suppose it is possible to reduce the
size of the tiles uniformly so that the set of reduced tiles S′ can be used to tile
each tile of S. Then, of course, we can reduce S′ to even smaller tiles S′′ so that

4.3 Algorithmically Unsolvable Problems 315

each tile of S′ can be tiled by tiles from S′′ and so on. Now pick an arbitrary tile
t from S and apply this process of decomposition into smaller tiles for several
steps. Thus we obtain a tiling of t by small tiles that have the same shape as the
original ones, except that they are reduced. Blow up this tiling so that the small
tiles become tiles of the original set S. Then we obtain a tiling of a large region
by tiles S. Hence, we can tile arbitrarily large regions of the plane. This implies
that the whole plane can be tiled.

The idea of proving that only aperiodic tilings are possible is based on a re-
verse process. Let a tiling T of the plane by a set of tiles S be given. Suppose
that it is possible to connect groups of tiles in such a way that we obtain a tiling
T ′ by a set S′ of larger tiles. Now we have to suppose moreover that this can be
done in a unique way. Then we can conclude that every symmetry of T must also
be a symmetry of T ′ because otherwise it would be possible to enlarge T in at
least two possible ways to a tiling by tiles S′. If such a symmetry is a nontrivial
translation, then it must be a translation by at least the distance equal to the inner
diameter of the tiles of S′ (the maximal diameter of a circle that can fit in every
tile of S′). Hence if we can enlarge T (say, by repeating the same process) to
a tiling by arbitrarily large tiles (more precisely, by tiles with arbitrarily large
diameter) in a unique way, then no translation preserves T , which means that T
is aperiodic.

To apply these ideas to Penrose tilings some modifications are needed. The
main trick is to split each of the two rhombi into two triangles. Thus, for example,
the two rhombi are replaced by four triangles—two pairs of congruent triangles
with different color patterns. Whereas it is not possible to tile a Penrose rhombus
by smaller Penrose rhombi because one has to preserve the color patterns on the
edges, there is a way to combine pairs of triangles into larger triangles in a unique
way. It is necessary to check a number of details, but no higher mathematics is
involved in this proof.

The mathematics of aperiodic tilings is very interesting. For example, it is
well-known that any configuration that occurs in a tiling by Penrose rhombi must
occur infinitely many times in every tiling by Penrose rhombi; furthermore, in
different tilings these configurations may occur with different frequencies. Alain
Connes proposed to study Penrose tilings using his new theory Noncommutative
Geometry.

5. Matiyasevich’s theorem. Discussing details of the proof of Matiyasevich’s theo-
rem would take us too much into number theory, therefore, I will mention only a
few ideas, mainly those that concern logic. Several different proofs were discov-
ered later; here we will follow, more or less, the original approach.

We will use polynomials with integer coefficients, positive and negative. How-
ever, we will consider only nonnegative solutions to polynomial equations. We
will call a relation R(x1, . . . , xk) on the natural numbers Diophantine if for some
polynomial equation the relation can be represented as the set of parameters for
which the equation has solutions. Formally, it means that R(x1, . . . , xk) has a
representation of the form

∃y1 . . .∃yn
(
p(x1, . . . , xk, y1, . . . , yn)= q(x1, . . . , xk, y1, . . . , yn)

)
,

316 4 Proofs of Impossibility

for some polynomials p and q with integral coefficients and the quantifiers range
over natural numbers. We will call x1, . . . , xk parameters, and y1, . . . , yn un-
knowns. Hilbert posed the question about solutions in the ring of integers, but
one can easily prove that the algorithmic solvabilities of these two versions are
equivalent. Here we only need to prove that the unsolvability of the Diophantine
problem in the domain of the natural numbers implies the unsolvability of this
problem in the domain of the integers. This follows from Lagrange’s Theorem:
Every natural number is the sum of four squares. Hence, if we substitute for ev-
ery unknown yi the sum y2

i,1+ y2
i,2+ y2

i,3+ y2
i,4, then the equation has a solution

in the natural numbers if and only if it has a solution in the integers.
The first step of the proof is to show that every recursively enumerable relation

can be defined by an arithmetical formula in a prenex form where all universal
quantifiers are bounded, a Σ1 formula. Once we know that there exists a schema
of coding finite sequences by numbers which can be described by an arithmetical
formula (for example, Gödel’s β-function, see page 294), this is a routine though
rather tedious task. A computation can be represented by an n×m matrix and
the matrix can be coded as a string of length nm. We know that everything is
finite, except that we do not know how long the computation is. That is why we
need at least one unbounded existential quantifier.

The next step is to show that we can use arithmetical formulas of a very special
form. The result is due to Davis.

Lemma 10 Every recursively enumerable relation R(x1, . . . , xk) on natural
numbers can be defined by a formula of the form

∃y∀z≤ y∃y1 ≤ y . . .∃yn ≤ y p(x1, . . . , xk, y, z, y1, . . . , yn)= 0,

where p is a polynomial with integral coefficients.

This is very close to Matiyasevich’s theorem, the only problem is the universal
quantifier. If it were not there, we would only need to get rid of the bounds in
∃yi ≤ y, which is very easy. But this apparently small kink is an essential obstacle
that requires ingenious tricks to be overcome.

To prove the lemma we need to do two things with the Σ1 formula: (1) re-
place the general quantifier-free arithmetical formula by an equation, (2) put the
quantifier prefix into the special form.

We can assume that the quantifier-free formula is in the CNF form, which
means that it is a conjunctions of disjunctions of equalities and nonequalities. A
nonequality p = q can be replaced by

∃y . . . (p+ y + 1= q ∨ p = q + y + 1).

The dots indicate that we put the quantifier in front of the whole formula. To
eliminate disjunctions and conjunctions we use the following transformations:

p1 = q1 ∨ p2 = q2 �→ (p1 − q1)(p2 − q2)= 0,

p1 = q1 ∧ p2 = q2 �→ (p1 − q1)
2 + (p2 − q2)

2 = 0.

The solution of (2) is based on two transformations:

4.3 Algorithmically Unsolvable Problems 317

(a) switching bounded universal quantifies with an existential quantifier;
(b) contracting two quantifiers of the same type into one.

I will explain (a) in an example. Suppose we have a formula

∀u≤ v∃w α(v,u,w).

As was observed by Skolem, such a formula is equivalent to

∃f ∀u≤ v α
(
v,u,f (u)

)
,

where f is a variable for a function. Since u≤ v, f needs to be defined only on
a finite domain, in other words, f is a finite sequence. Thus we can apply the
β-function and get

∃p,q∀u≤ v α
(
v,u,β(p,q,u)

)
,

where now p and q are numbers. We still have to describe the β-function by an
arithmetical formula. This will result in new existential quantifiers after ∀u≤ v,
so apparently we have not gained anything, but we have. The point is that we
only need to collect all universal quantifiers at one place of the prefix and we
do not have to put the existential quantifiers from the definition of β-function
immediately after ∀u ≤ v. Suppose α(v,u,w) is of the form Q γ (v,u,w, z̄),
where Q denotes a quantifier prefix. Then we can put the existential quantifiers
of the definition of the β-function between Q and γ (v,u,w, z̄). Thus we can
move all bounded universal quantifiers to one location in the quantifier prefix.

To contract quantifiers one uses a pairing function defined by a polynomial,
for example, Cantor’s pairing function

(x, y) �→ (
(x + y)2 + 3x + y

)
/2.

Since we rather need the two inverse functions, this also introduces new existen-
tial quantifiers, but again, we can put them at the end of the prefix.

It still remains to show that we can bound all quantifiers uniformly by y. We
leave out this part and pass immediately to the next step of the proof Matiyase-
vich’s theorem. This is a result of Davis, Putnam and Robinson [57].

Lemma 11 Every recursively enumerable relation R(x1, . . . , xk) on natural
numbers can be defined by a formula of the form

∃y1 . . .∃yn∃z1 . . .∃zm p
(
x1, . . . , xk, y1, . . . , yn,2z1 , . . . ,2zn

)= 0,

where p is a polynomial with integral coefficients.

Due to the previous lemma we only need to get rid of one bounded universal
quantifier and we can use exponential terms. Let us consider a slightly simplified
situation. Let a polynomial of two variables q(x, y) be given and suppose we
want to remove the universal quantifier from the formula

∀y ≤ x q(x, y)= 0. (4.15)

We will use the Chinese Remainder Theorem and modular arithmetic. Let x be
fixed and let m0,m1, . . . ,mx be pairwise relatively prime numbers, all larger

318 4 Proofs of Impossibility

than maxy≤x q(x, y). Then, trivially, for y ≤ x, q(x, y) = 0 if and only if my

divides q(x, y). Take u such that

u≡ y mod my, for all y ≤ x.

Then the equation (4.15) is equivalent to

q(x,u)≡ 0 mod (m0m1 . . .mx),

which is the same as saying that m0m1 . . .mx divides q(x,u). The relation “a
divides b” has a simple Diophantine representation ∃c(b = ac). Hence we only
need to define the product of a sequence of sufficiently large pairwise relatively
prime numbers and a u satisfying the relation above. To define the product of
a general sequence is a hard problem, but we can take a very simple sequence,
essentially the same as for the β-function:

my = (y + 1)d + 1,

where d = k! for a sufficiently large k. (A definition of the factorial function is
explained below.) The product m0m1 . . .mx =∏y≤x((y+ 1)d + 1) is congruent
to 1 modulo d , hence ∏

y≤x

(
(y + 1)d + 1

)= (u+ 1)d + 1,

for some u. Coincidentally, for every z≤ x,

u≡ y mod
(
(z+ 1)d + 1

)
.

Indeed,

(u+ 1)d + 1=
∏
y≤x

(
(y + 1)d + 1

)≡ 0≡ (z+ 1)d + 1 mod
(
(z+ 1)d + 1

)
.

We subtract 1 from both sides, then divide by d (which is relatively prime with
the modulus) and subtract 1 again, to get the congruence above. Hence (4.15) is
equivalent to

∏
y≤x

(
(y + 1)d + 1

)= (u+ 1)d + 1∧ q(x,u)≡ 0 mod

(∏
y≤x

(
(y + 1)d + 1

))
,

plus a condition that d is sufficiently large, which we omit for the sake of brevity.
The definition of the product would require two more pages, so let me only

give a hint. The binomial coefficient is defined as the fraction of two products(
n

m

)
= n(n− 1) . . . (n−m+ 1)

m(m− 1) . . .1
= n(n− 1) . . . (n−m+ 1)

m! .

Thus if we could define
(
n
m

)
and m!, we would also get the product n(n −

1) . . . (n − m + 1), which is the product of an arithmetic progression with dif-
ference 1. The product of a general arithmetic progression, which is what we

4.4 Concrete Independence 319

need, can also be obtained from a binomial coefficient, a factorial and an ex-
ponential term, but it is more complicated. The binomial coefficient

(
n
m

)
can be

defined as follows. Take A> 2n, and consider

(A+ 1)n =
n∑

i=0

(
n

i

)
Ai =

m−1∑
i=0

(
n

i

)
Ai +

(
n

m

)
Am +

n∑
i=m+1

(
n

i

)
Ai.

The three terms in this decomposition are determined by these conditions: the
first is less than Am, the second is xAm for some x < A, the third is divisible by
Am+1. So the binomial coefficient is uniquely determined as the x.

The definition of the factorial m! is based on the formula

m! = lim
n→∞nm

(
n

m

)−1

.

Let us skip to the last part of the proof, the part that is due to Matiyasevich.
What remains is to find a Diophantine representation of the binary relation y =
2x . It had been known before the problem was solved that it sufficed to find
a Diophantine representation of the graph of a function that is approximately
exponential. Originally Matiyasevich used the Fibonacci numbers defined by

F(0)= 0, F (1)= 1, F (n+ 2)= F(n)+ F(n+ 1).

Later proofs used solutions of the Pell equations of the special form

x2 − (a2 − 1
)
y2 = 1.

The solutions are some pairs (x1, y1), (x2, y2), If we enumerate the se-
quences xn and yn in increasing order, then they grow exponentially ((2a −
1)n/2a < xn ≤ (2a)n−1, (2a − 1)n ≤ yn ≤ (2a)n). These numbers are solutions
of a Diophantine equation, but this not very important. The really difficult thing
is to show that the relation ‘x is the nth solution’ is Diophantine. It would take
us too far afield to discuss this part of the proof.

6. More on the complexity of Ramsey’s Theorem. Jockusch proved a more general
theorem [141].

Theorem 27 Let k ≥ 2. Then

a. for every computable partition of k-element subsets of N, there exists an infi-
nite homogeneous set in the class Πk ;

b. there exists a computable partition of k-element subsets of N, such that there
is no infinite homogeneous set in the class Σk .

4.4 Concrete Independence

By Gödel’s Theorem, we know that for every sound theory, there are true state-
ments that are not provable in it. We also know that the axioms that mathematicians
use can be collected into one theory because we have set theoretical foundations

320 4 Proofs of Impossibility

of all present mathematics. Hence there are sentences that cannot be proved using
currently accepted postulates. Contrary to this, the experience of working mathe-
maticians is that every problem, however difficult it is, is eventually solved, and the
difficulty lies not in discovering new axioms, but it is only the complexity of a proof
that makes the problem hard. The only exception is set theory in which we have
many mathematically interesting independence results. It is not quite clear whether
it is because set theory is inherently incomplete, or because we possess a power-
ful technique of proving independence. However, all these independent sentences
concern properties of infinite sets. When we focus our attention on finite problems,
problems in finite combinatorics and number theory, problems about finite alge-
bras, etc., the situation is dramatically different. Until the late 1970s all independent
sentences of this type were only of the type discussed in the previous section. Our
ultimate goal is to be able to prove that some well-known mathematical problems
are not solvable in particular theories. Sentences that look the same for every theory
can hardly be used for this purpose.

In the mid-1970s, J.B. Paris came up with a very nice idea: to use concepts from
the theory of large cardinals to study models of Peano Arithmetic. Peano Arith-
metic is essentially the same theory as Finite Set Theory, thus there are no infinite
cardinals, let alone large cardinals, definable in it. However, a nonstandard model
of Peano Arithmetic (a model that is not isomorphic to the natural numbers) is an
ordered set with a very rich structure. Though a nonstandard model of Peano Arith-
metic is never well-ordered, still it resembles infinite ordinal numbers. The com-
plexity of these models suggested looking for properties similar to the properties of
large cardinals. Paris managed to define initial segments of nonstandard models that
satisfy properties analogous to those used to define large cardinals [213]. Then he
realized that since the models are essentially the models of Finite Set Theory, there
must be some finite concepts associated with these initial segments. This eventu-
ally led to the construction of very explicit sentences that are true but not provable
in Peano Arithmetic (and Finite Set Theory). His method was later used to find a
number of other concrete independence results.

Fast Growing Functions

Let us consider the game of playing the largest number again, but now let us be fair
and disallow infinite numbers. Is this a trivial matter once we can use only natural
numbers? No, in fact, playing such a game we face similar problems as when we
played it with infinite numbers. It is because we do not restrict the way a number
is defined. There may be a simple clever definition of a very large number, but the
problem may arise whether or not the definition is correct, that is, whether such
a number actually exists, similarly as it was with large infinite cardinal numbers.
Let us try to define some big numbers. Already arithmetic operations enable us
to define huge numbers. In the times of Archimedes mathematicians did not use
exponentiation as we do now, so Archimedes could not simply write 108·1016

. We

4.4 Concrete Independence 321

get large numbers using exponentiation once, or twice, but a much more efficient
way is to use it iteratively. Thus

22222

is much larger than 22222, though it uses the same number of the same characters.
Iterated exponentiation of 2 is, sometimes, called superexponentiation and denoted
supexp. The value of supexp on 1000 (the stack of 1000 twos) is an unimaginably
large number, but we can go on and iterate superexponentiation to get another func-
tion and so on.

Iterating functions in the manner described above we get larger and larger num-
bers, but there is no problem with their existence. However large the numbers are,
we are sure that they exist, although we cannot evaluate them in decimal representa-
tion nor can we run the computer for so many steps. It is a different thing, however,
if we define a number implicitly, say, as the solution of an equation, or as the number
obtained by some algorithm. Then the existence of the numbers is not obvious at all.

A very nice example was given by R.L. Goodstein in 1944 [105]. He defined,
for every number n, a sequence, which we will call the Goodstein sequence of n.
First we consider a simplified version of such sequences (“Goodstein sequences for
beginners”). The first term of the sequence is n. Then we extend the sequence by
applying an operation to the last term. To apply the operation on the m-th term of
the sequence we first represent the number in base m+ 1, then we change the base
to m+ 2 while keeping the representation. Finally we subtract one. The sequence
stops when it reaches 0 (but we do not know yet whether it ever reaches 0).

Example Start with 5, which is in binary 1012. The next term is obtained by tak-
ing 1013, that is, interpreting the number in ternary and subtracting 1, which gives
1003 = 9. The next number in the sequence is 1004 − 1= 334 = 15.

Though this was only a simplified version, it may also be an interesting concept.
The original Goodstein sequence is more complicated. Note that the binary repre-
sentation of 5 can be written using arithmetic operations as 22 + 1. Now 2 occurs
also in the exponent, thus it should also be changed to 3. The general rule is to write
also the exponents as the sum of powers of the basis considered at a particular step,
then the exponents of the exponents, etc. We add, though it may seem ridiculous
at this point, that the sequence stops when it reaches 0. Here is an example of the
beginning of a genuine Goodstein sequence starting at 21:

222 + 22 + 1,

333 + 33,

444 + 44 − 1= 444 + 3 · 43 + 3 · 42 + 3 · 4+ 3.

Another example is in the middle column of Table 4.1; it is the Goodstein sequence
starting at 4. The numbers increase very rapidly. If we look only on their numeri-
cal values, then they show no tendency to eventually stop increasing and decrease.
The remarkable fact is, however, that no matter which number we start with, the

322 4 Proofs of Impossibility

Table 4.1 The Goodstein sequence starting at 4. The number n of an element of the Goodstein
sequence is in the first column; the value G(n) is in the second column and it is represented in base
n+ 1; the corresponding ordinal numbers are in the third column. The maximal value of G(n) is
attained for n such that the corresponding ordinal is 2ω, then it stagnates until one step after ω,
from which point on it decreases

n G(n) Ordinal

1 22 ωω

2 2 · 32 + 2 · 3+ 2 2 ·ω2 + 2 ·ω+ 2

3 2 · 42 + 2 · 4+ 1 2 ·ω2 + 2 ·ω+ 1

4 2 · 52 + 2 · 5 2 ·ω2 + 2 ·ω
5 2 · 62 + 6+ 5 2 ·ω2 +ω+ 5
.
.
.

.

.

.
.
.
.

10 2 · 112 + 11 2 ·ω2 +ω

11 2 · 122 + 11 2 ·ω2 + 11
.
.
.

.

.

.
.
.
.

22 2 · 232 2 ·ω2

23 242 + 23 · 24+ 23 ω2 + 23 ·ω+ 23

24 252 + 23 · 25+ 22 ω2 + 23 ·ω+ 22
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

3 · 2402653209 − 3 2 · (3 · 2402653209 − 2)+ 1 2 ·ω+ 1

3 · 2402653209 − 2 2 · (3 · 2402653209 − 1) 2 ·ω
3 · 2402653209 − 1 (3 · 2402653209)+ 3 · 2402653209 − 1 ω+ 3 · 2402653209 − 1

3 · 2402653209 (3 · 2402653209 + 1)+ 3 · 2402653209 − 2 ω+ 3 · 2402653209 − 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

3 · 2402653210 − 3 (3 · 2402653210 − 2)+ 1 ω+ 1

3 · 2402653210 − 2 (3 · 2402653210 − 1) ω

3 · 2402653210 − 1 3 · 2402653210 − 1 3 · 2402653210 − 1

3 · 2402653210 3 · 2402653210 − 2 3 · 2402653210 − 2
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

3 · 2402653211 − 4 2 2

3 · 2402653211 − 3 1 1

3 · 2402653211 − 2 0 0

4.4 Concrete Independence 323

Goodstein sequence eventually does reach 0. This seems very unlikely, since the
operation of changing the base of the representation of the number increases the
number so much that subtracting 1 afterwards apparently cannot help, but it is true.

To see why a Goodstein sequence has to terminate look at the example in Ta-
ble 4.1. In the last column there is a sequence that follows the pattern of the num-
bers, but the base is replaced by the symbol ω. Think of ω as an infinite number.
Doing the proof formally we would take the first infinite ordinal number, but we
only need a few basic properties, so one can follow the proof without being familiar
with infinite ordinals. If you do not like infinite numbers, think of ω simply as a
huge natural number, bigger than every number that we may ever need during the
computation. Interpreting ω in this way the sequence in the third column decreases
from the very beginning! If ω is a large number, then surely ωω is much larger than
2 ·ω2 + 2 ·ω+ 2.

Let us look more closely at what is going on in the third column. When going
from 2 to 3 or 3 to 4, it is simple, we decrease the finite term by one. It more
interesting what happens when going from step 1 to 2, or 4 to 5 or 10 to 11. Let us
consider the last one. The smallest term in 10 is ω; in 11 we replace it by 11 (we first
replace it by 12 and then subtract 1). Thus the infinite number is replaced by a finite
number, hence the number decreases. If we interpret ω as a large natural number,
then this large number is replaced by a small number.

The argument with taking ω a very large finite number looks quite persuasive,
but there is a loophole in it. For that argument, we must take ω larger than any other
number that may occur in the computation. If the computation were finite, then we
could certainly find such a number, but the finiteness of the computation is exactly
what we want to prove. Thus we only know ex post that taking a finite number works
as well. Therefore, we rather interpret ω as an infinite number and then there is no
problem with showing that the infinite numbers in the third column decrease. Still,
the fact that they decrease does not automatically guarantee that they eventually
reach 0. To this end we have to apply a property of infinite ordinal numbers, the
property of being well-ordered, which is exactly what we need: every decreasing
sequence must get to 0 after finitely many steps. Notice that the numbers in the
third column copy the process in the second column. In particular, when we get a
finite number in the third column it is the same as in the second column. Thus the
two sequences reach 0 after the same number of steps. We can conclude that every
Goodstein sequence reaches 0 eventually.

This argument uses a principle (that a particular set of ordinals is well-ordered)
which is not difficult but it is intrinsically based on infinite sets and thus is unprov-
able in Finite Set Theory. Hence the termination of Goodstein sequences cannot be
proved in Finite Set Theory using this argument. That a particular proof cannot be
formalized in some theory does not imply that the theorem is not provable in this the-
ory. However, for this particular theorem, L. Kirby and J.B. Paris proved that there
is no proof of it in Finite Set Theory [152]. Let us denote by G(n) the number of
elements of the Goodstein sequence starting at n. The reason why we cannot prove
that every Goodstein sequence terminates is the very rapid growth of the function
G(n). (It is difficult to watch this growth by computing the values for some small

324 4 Proofs of Impossibility

numbers, since the numbers are extremely large already starting with G(4).) Intu-
itively, the sequence grows so rapidly that Finite Set Theory cannot prove that such
large numbers exist. (More precisely, it can prove for every given number n that
G(n) exists, but it cannot prove the general statement that G(x) exists for every x.)

One can show that every sound theory is able to manage only some limited
growth. If a function grows faster than this bound, the theory is not able to ver-
ify that the function is properly defined, which means that it is consistent with the
theory that for some argument n the value of the function is undefined. G(n) is such
a function for Finite Set Theory. Constructions of such functions for Finite Set The-
ory based on other combinatorial principles and for other theories have been given;
we will consider some of these results below.

Unprovability of the existence of rapidly growing functions is an important as-
pect of the incompleteness, but there are also unprovable true sentences that have
nothing to do with any rapid growth. In particular, Gödel’s sentences are such.

Interlude—Hercules and Hydra

Here is an even more entertaining problem. In the old legend Hydra had the miracu-
lous ability to grow two heads for each head chopped off. Hercules had to use fire to
defeat it. We will see that in fact he did not need to use fire; mere chopping off heads
would suffice—at least if the rules were set suitably. However, this would take him
a tremendously long time to win.

The idea of presenting an unprovable sentence as a game with Hercules and Hy-
dra is due to L. Kirby and J.B. Paris [152]. They defined Hydras to be rooted finite
trees. A tree is simply an acyclic connected graph; ‘rooted’ means that one node
is distinguished (and called the root). A head is an end node, a leaf, with the arc
connecting it to the rest of the tree. At each stage Hercules chops off one head. If
the head is attached to the root, nothing happens. If the head is attached to a node N

which is not a root, then the node N splits into several ones and the subtrees above
it are replicated. The number of nodes into which it splits depends on the stage: in
the first stage it doubles, in the second it triples and so on. An example is shown in
Fig. 4.4.

So the position of Hercules seems to be even worse than in the legend. However,
notice the minor modification that the new parts of Hydra do not grow from the
scar, but from the next place below, if there is any. This seemingly innocent change
gives Hercules an advantage. A big advantage—Hercules wins whatever he does!
Any strategy he uses to chop off heads succeeds; everything will be removed, only
the root will remain.

The counterintuitive character of this theorem suggests that it should be difficult
to prove it, or at least that it should require some trick. The trick is the same as
used for Goodstein sequences. Assign ordinals to Hydras and show that the ordinals
always decrease (while the size of the tree may temporarily increase). An intuitive
explanation is that the number of heads at first increases, but always a complex head
is replaced by (several) simpler ones. This proof is fairly simple, but it requires

4.4 Concrete Independence 325

Fig. 4.4 After Hercules chops off the head H at stage 2, the remaining part above N will triple.
Note that each of the three subtrees is smaller than the original subtree above the node N because
it does not contain the head H . This is the reason why Hercules always wins

means not available in Finite Set Theory. The statement that Hercules always wins
is not provable in this theory. Furthermore, as in the case of Goodstein sequences,
one can show that the reason for unprovability is, again, the big growth rate of the
number of steps needed to reduce the tree to a single node.

The Collatz Problem

Goodstein’s Theorem had been proved long before it was shown that it is unprov-
able in Finite Set Theory. So it is not an ad hoc manufactured sentence. Later we
will consider the Continuum Hypothesis, a famous open problem in set theory that,
instead of being solved, was shown independent of Zermelo-Fraenkel Set Theory.
In this section we are interested in combinatorial or number theoretical indepen-
dent sentences, sentences that do not speak about infinite sets. There is nothing like
the Continuum Hypothesis if we restrict our attention to such statements: there is no
open problem in combinatorics or number theory that we can show to be unprovable
from some reasonable set of axioms.

Here is an open problem that is somewhat reminiscent of Goodstein’s theorem.
The problem was posed by L. Collatz in 1937 and is known under a half a dozen
names; most frequently it is called the Collatz Problem and 3x + 1 conjecture. As
we did above, we start with a number and define a sequence by applying a certain
operation to get the next term of the sequence. The operation is now defined by the
following simple rule:

1. if the number is even, then divide it by two;
2. otherwise multiply it by three and add one.

Example Starting with 9 we get

9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.

After reaching 1 we always stop because then the sequence would repeat 4,2,1 for
ever.

326 4 Proofs of Impossibility

The open problem is whether or not the same happens for every number, namely,
if for every positive number, the sequence starting with this number will eventually
reach 1. With the advent of computers this problem attracted also a lot of computer
scientists because it is very suitable for experimental testing. So far experiments
confirm the conjecture that every Collatz sequence reaches 1. At the time of writing
these lines, the conjecture was confirmed for numbers up to 20× 258.

A weaker conjecture is that there are no finite cycles defined by this rule, except
for the trivial one 1,4,2,1. We only know that any such cycle would be at least
272,500,658 long. This problem is equivalent to whether or not starting with some
number the sequence goes to infinity. Indeed, if the sequence does not go to infinity,
then, necessarily, it must hit the same number twice. Once it hits the same number
twice, it has to repeat. Thus we can rephrase the weaker problem as follows. Is it
possible to give a bound on the numbers occurring in the sequence in terms of the
initial number?

We know that intuition may be misleading, but the process of discovering a proof
always starts with some vague ideas, which sometimes lead to a solution, sometimes
not. Thus let us try some heuristic arguments, arguments based on not completely
justified assumptions. The first reaction to the problem is that the process is not
balanced: we multiply by 3 but divide only by 2, hence we are more increasing than
decreasing the numbers. Moreover we are adding 1 after multiplying by 3. Hence
the sequence should typically go to infinity. This argument is definitely wrong, as it
ignores an important fact: after multiplying by 3 (and adding 1) we always divide
by 2, while after dividing by 2 we may sometimes divide by 2 again. Sometimes
there may be many divisions by two before we hit an odd number. It turns out that
if we could assume that we get a completely random even number, then division by
two would, in fact, prevail. Let us do a simple calculation. Think of the number as
written in binary, then the number of divisions by 2 is the number of zeros at the end
of its binary representation. A random even number has at the end

1 zero with probability 1/2,
2 zeros with probability 1/4,
3 zeros with probability 1/8,
. . .

Hence, the expected number of zeros at the end of a random even number written in
binary is

1 · 1

2
+ 2 · 1

4
+ 3 · 1

8
+ · · · = 2.

Thus on the average we divide by 4 before we apply the 3x + 1 rule again. Hence,
if we could assume that the even numbers occurring in the process are random,
we could view it as alternations of steps in which we multiply by 3 and add 1 and
steps in which we divide by four. Each pair of steps would decrease the number
approximately by a factor 3/4. Consequently, such a sequence would converge very
rapidly to 1.

Summing up, if we could somehow justify the assumption that the even numbers
that occur in the sequences are generated randomly, we would have a proof of the

4.4 Concrete Independence 327

conjecture. However, that is impossible: the sequences are given by rules that deter-
mine the numbers uniquely, hence there is no randomness in it. Yet it is possible to
compare what we get by computing with what we should get if the sequences were
random. The Collatz problem is an ideal object for experimental mathematics, since
the computation of the sequence is very simple and only rarely it is necessary to
do many iterations. In particular we can compute the average number of iterations
needed to obtain 1 for very large sets of natural numbers. The results of these com-
putations are in good agreement with what the heuristic argument above predicts.
For some other quantities, the experiments were even more successful.

Though the analogy with random numbers does not give a proof of the conjecture
it can be used to prove some partial results. A more sophisticated argument was used
to prove that the conjecture is true for almost all numbers. Thus if you pick randomly
a natural number n, then with high probability the sequence started at n will reach 1.
In other words, either the conjecture is true, or the exceptions are very rare.

The similarity with Goodstein sequences is rather superficial and it does not seem
likely that one can prove the independence of Collatz’s problem from the axioms of
Finite Set Theory using methods similar to those used for Goodstein sequences. The
main problem is that there does not seem to be any fast growing function involved.
If Collatz’s sequences behave like random ones, then each sequence reaches a cycle
quite soon. So the problem is rather to prove that they do behave like random se-
quences. What is possible, however, is to prove an independence result for a problem
similar to the 3x + 1 conjecture.

Let us first state the 3x + 1 conjecture more formally. We will call the function
C defined by

C(x)=
{
x/2 if x is even,
3x + 1 if x is odd,

the Collatz function. The problem is then what happens if we iterate this function
starting with a natural number n: does it eventually reach 1? We can ask the same
question about the convergence of iterations for other functions. A natural general-
ization, however, must preserve the spirit of the problem. J. Conway came up with a
class of functions that generalize the Collatz function. A function in this class is de-
fined by considering the remainders of x when divided by a number k, and defining
the value of the function to be a linear function in each case. One of such functions,
different from the Collatz function, which has been studied is:

U(x)=
⎧⎨
⎩

7x + 3 if x ≡ 0(mod 3),
(7x + 2)/3 if x ≡ 1(mod 3),
(x − 2)/3 if x ≡ 2(mod 3).

Conway proved that it is an undecidable problem to determine for a given function
from the class if the analogue of the 3x+ 1 conjecture holds [47]. So this is another
number-theoretical undecidable problem. Since the undecidability is again proved
by a reduction of the halting problem, it is a universal problem in the sense explained
in the previous section. Consequently, also here we can derive independence results:

328 4 Proofs of Impossibility

Theorem 28 For every theory T , it is possible to find a function f in the class
defined by Conway such that it is undecidable in T whether for every n, the sequence
n, f (n), f (f (n)), . . . contains 1.

This gives us evidence that problems of this type are difficult, but it does not say
anything about the 3x + 1 conjecture itself.

An Unprovable Version of the Finite Ramsey Theorem

The most interesting unprovable combinatorial sentence was found by J.B. Paris and
L. Harrington in 1977 [214]. This is a sentence that is true, but unprovable in Finite
Set Theory and it is a formally minor modification of the well-known and important
Ramsey theorem. Recall that the Finite Ramsey Theorem says that, for every r , if
we color k element subsets of a sufficiently big set by two colors in an arbitrary
way, then one can find a subset of size r on which all the k-element subsets have the
same color. (For the sake of simplicity, we consider only two colors.) The precise
statement is as follows.

The Finite Ramsey Theorem For every k and r positive natural numbers, there
exists a natural number n such that for every coloring of k-element subsets of the
set {1,2, . . . , n} by two colors, there exists a subset X ⊆ {1,2, . . . , n}, X having size
r such that all k-element subsets of X have the same color.

The set X is called monochromatic.
In this theorem it is irrelevant what the underlying set is; the only thing that

matters is its size n. So we take {1,2, . . . , n} as a suitable representative of an n-
element set. However, it will be important to talk about subsets of natural numbers
when we consider the unprovable modification. To this end we also need to define
a special property of finite subsets of natural numbers. We say that a finite set X of
natural numbers is relatively large if its size is greater or equal to the least element
of X. Here is the modification invented by Paris and Harrington.

The Paris-Harrington Theorem For every k and m positive natural numbers,
there exists a natural number n such that for every coloring of k-element subsets
of the set {m,m + 1, . . . , n} by two colors, there exists a relatively large subset
X ⊆ {m,m+ 1, . . . , n} such that all k-element subsets of X have the same color.

Let us look at what the modification does. Since we now consider subsets X of
{m,m+ 1, . . . , n}, the least element of X is at least m. Hence, since X is relatively
large, it has a size at least m. This only serves us to take off from the ground; the
seemingly innocent requirement of being relatively large has a much more dramatic
effect. Here is why. We can easily deduce from the Finite Ramsey Theorem that

4.4 Concrete Independence 329

there exists an m-element monochromatic subset of {m,m+ 1, . . . , n} if n is suffi-
ciently large, but it can happen that none of these sets contains m. Hence the minimal
elements of these sets are at least m+ 1. Thus we have to look for monochromatic
sets of a size of at least m+ 1. Again, taking n is sufficiently large, we can ensure
that there are monochromatic subsets of size m + 1, but we have to take n larger
than in the previous case. Now, again, the Finite Ramsey Theorem only says that
there are such monochromatic sets, but does not guarantee that one of them con-
tains m+ 1. So we may be forced to look for even larger monochromatic sets. Thus
it seems that it may happen that we never ensure the existence of a relatively large
monochromatic subset, however big n we take, because the bigger monochromatic
sets we take the bigger their least elements will be. This is not true, but the positive
feedback has the same effect as in the combinatorial sentences that I described be-
fore. If we define a function PH(k,m)= n as the least n that satisfies the condition
of the Paris-Harrington theorem, the function has again a tremendous rate of growth.
As it is not quite clear what is the growth of a function of two variables, we should
rather say that the “diagonal” function PH(x, x) grows very rapidly, so rapidly that
one cannot prove in Finite Set Theory that it is defined for all arguments.

First we have to prove, say in Zermelo-Fraenkel Set Theory, that the function
is properly defined, which means simply proving the Paris-Harrington theorem. If
infinite sets are allowed in the proofs, the proof is quite easy. In fact, essentially the
same proof that shows that the Infinite Ramsey Theorem implies its finite version
(see page 24) gives the Paris-Harrington theorem. I can explain it without going into
the details of that proof. Fix k, the size of colored subsets. We have argued by con-
tradiction and assumed that the Finite Ramsey Theorem fails for some r . Namely,
however large n we take, there is some coloring of k element subsets of {1,2, . . . , n}
without a monochromatic set of size r . Then we have combined these counterexam-
ples into a single counterexample to the Infinite Ramsey Theorem. Assuming the
infinite Ramsey Theorem we get an infinite homogeneous subset X. Taking r ele-
ments from it, we showed that one of the counterexamples could not have been a
counterexample for the Finite Ramsey Theorem. So the Infinite Ramsey Theorem
gave us more: instead of just an r element set, an infinite set. Now the point is that
finding a relatively large subset of an infinite set is as easy as finding a finite set of
a given size. Namely, let s be the least element of X, then taking s along with s − 1
other elements of X we get a relatively large set. To recap it in a single statement:
Paris-Harrington theorem holds true because every infinite set is relatively large.

How does one prove the unprovability of such sentences in Finite Set Theory?
One possible approach would be to study the growth of the functions that can be
defined in Finite Set Theory and show that a function such as PH(x, x) grows faster.
This is possible, but it is rather tedious work [151]. Instead, Paris and Harrington
used a model theoretical argument, which is best explained by using models of
Peano Arithmetic. Take a nonstandard countable model M of Peano Arithmetic.
If it does not satisfy the Paris-Harrington sentence, then we are done because this
implies the sentence is not provable in Peano Arithmetic. Otherwise, construct a
new model M ′ from M such that M ′ is still a model of Peano Arithmetic, but it no
longer satisfies the Paris-Harrington sentence. Thus one gets again that the sentence
is not provable in Peano Arithmetic.

330 4 Proofs of Impossibility

Fig. 4.5 There is a
homomorphic embedding of
T2 into T3 because we can cut
off the two top vertices from
T3 and split the edge e of T2
into two edges in order to get
isomorphic trees. There is no
homomorphic embedding of
T1 into T2 or T3

The key part of the proof is, of course, the construction of M ′. This model is
not constructed from scratch; it is a submodel of M , in fact, an initial segment of
M . As said before, initial segments of a nonstandard model of arithmetic resemble
infinite ordinals, though they are in many respects completely different. An initial
segment closed under the successor is called cut. To construct a submodel we, of
course, need that cuts be closed also under addition and multiplication.

Paris and his student Kirby defined several types of cuts. The properties by which
they were defined were originally motivated by large cardinals, but eventually they
used properties which are satisfied also by ℵ0. The most important type of cuts are
strong cuts which are defined using a condition related to Ramsey’s Theorem. Every
strong cut is a model of Peano Arithmetic and this was used to prove independence
results (see Notes).

Independence Beyond Finite Set Theory

Explicit independent combinatorial sentences have been found for stronger theories.
The most interesting one is a modification of a well-known theorem of J. Kruskal.
This is also a statement about finite rooted trees, but it is even simpler than the
Hercules and Hydra sentence. We only need to define homomorphic embeddings.
Rooted trees come with a natural ordering. A homomorphic embedding of a tree T1
into a tree T2 is a one-to-one order preserving mapping that maps the root of T1
onto the root of T2 and preserves infima. A homomorphic embedding of T1 into T2
exists, roughly speaking, if we can prune T2 and stretch T1 so that we get identical
trees (see an example in Fig. 4.5). The following is a weaker form of Kruskal’s
theorem.

Theorem 29 (Kruskal [171]) For every infinite sequence {Tn}∞n=1 of finite trees,
there are two numbers i < j such that there exists a homomorphic embedding of Ti

into Tj .

This is not a statement that speaks only about finite sets, as it contains the concept
of an infinite sequence. Thus it does not make sense to talk about provability in

4.4 Concrete Independence 331

Finite Set Theory. Harvey Friedman found an ingenious way to transform it into a
finite statement (a Π2 sentence). To explain Friedman’s finite version, consider the
following simple modification of Kruskal’s Theorem.

Theorem 30 For every function f , there exists a natural number n, such that for
every sequence {Ti}ni=1 of finite trees such that the size of each Ti is at most f (i),
there are two numbers i < j ≤ n such that there exists a homomorphic embedding
of Ti into Tj .

Clearly, the original theorem follows from this version (indeed, given a sequence
{Tn}∞n=1, take f (n) to be the size of Tn). The advantage of the new form is that if we
fix a particular function f , then the statement speaks only about finite sequences.
Surprisingly, the statement is strong already for very simple functions. To obtain
an unprovable sentence, it suffices to take the simple linear functions x + c for c a
constant. Thus one gets the following sentence.

Theorem 31 (Friedman’s miniaturization [269, 274]) For every c, there exists an n

such that for every sequence of trees {Ti}ni=1, where the size of Ti is at most i+ c for
i = 1, . . . , n, there are two numbers i < j ≤ n such that there exists a homomorphic
embedding of Ti into Tj .

This sentence is unprovable in ATR0, a theory essentially stronger than Finite
Set Theory and Peano Arithmetic.12 A version of this theorem with labeled trees is
unprovable in Π1

1 −CA0, an even stronger theory. Though stronger than Finite Set
Theory, these theories are still very weak compared to Zermelo-Fraenkel Set The-
ory. Friedman has found other combinatorial sentences which are independent of
Zermelo-Fraenkel set theory and some extensions of this theory by large cardinals.
These sentences are fairly easy to state, but it is almost impossible to grasp their
mathematical meaning.

Unprovable Sentences that Are not Associated with Fast Growing
Functions

An extreme rate of growth is only one of the possible reasons for unprovability.
There are sentences that are unprovable in a theory T and which are not connected
with any fast growing function. Such a sentence is the Gödel sentence expressing
the consistency of the theory. The sentence says that every sequence of symbols has
some property; the property is that it is not a proof of contradiction from the axioms
of T . We can distinguish such sentences from those that are connected with fast
growing functions by their logical complexity. In Chap. 2 (page 139) we have intro-
duced quantifier complexity of sentences. According to this classification universal

12See page 643 for the definition of ATR0.

332 4 Proofs of Impossibility

finite sentences, sentences that have one universal quantifier are Π1. An unprov-
able (in a theory T) sentence of this form is the Gödel sentence (for T). Sentences
that have one universal quantifier followed by one existential quantifier are classi-
fied as Π2. Note that what matters are only unbounded quantifiers; if the range of
a quantifier is restricted to a finite domain, we do not count it. Furthermore, if we
have several same quantifiers, they can be combined into one. Thus a more precise
definition of Π2 is: a block of universal quantifiers, followed by a block of exis-
tential quantifiers, followed by a formula with only bounded quantifiers. The Finite
Ramsey Theorem and the Paris-Harrington Theorem are Π2.

Every sentence of the form ‘for every x, there exists y such that φ(x, y)’ is
associated with a function because y depends on x. We can express the same by
introducing a function f that describes this dependence explicitly. So the sentence
reduces ‘for every x, φ(x,f (x))’. It may happen that a sentence that is syntactically
Π2 is equivalent to a simpler sentence which is Π1. The equivalence of sentences
is with respect to a theory T that we investigate. So there are Π2 sentences that can
be reduced to Π1 and those that cannot, which are intrinsically Π2. The latter ones
are exactly those that are associated with fast growing functions. The Finite Ramsey
Theorem is provable in Finite Set Theory, so it is equivalent to a tautology such as
0= 0; Paris-Harrington Theorem is intrinsically Π2.

Our interest in unprovable Π1 sentences has deeper reasons. Eventually we
would like to prove independence of statements that are open problems. The in-
dependent combinatorial sentences that we have so far were never open problems;
their truth was always almost obvious and they are Π2. The most interesting open
problems are typically Π1. Sometimes it is not trivial to prove that a problem is Π1
(for example, for the Riemann Hypothesis), sometimes we do not know if a problem
can be represented in this way, but often the most interesting special instances of the
problem are Π1 (for example, problems in the computational complexity theory).
I surmise that Collatz’s problem is also Π1. Lacking techniques to prove indepen-
dence of any combinatorial Π1 sentence (assuming we exclude Gödel sentences
because they talk about logic), we can hardly hope to prove the independence of
such open problems.

Notes

1. Hercules, Hydra and ordinals. The assignment of ordinals to the trees represent-
ing Hydras is defined inductively on the depth of the trees. We assign the ordinal
0 to a tree with a single vertex. Suppose we have already assigned ordinals to
α1, α2, . . . , αn the maximal proper subtrees of a tree T , then we order the ordi-
nals so that αi1 ≥ αi2 ≥ · · · ≥ αin and assign

ωαi1 +ωαi2 + · · · +ωαin

to T . Thus the ordinal assigned to the first tree in Fig. 4.4 is:

ωωω2+2+1 +ω2.

4.4 Concrete Independence 333

The ordinal assigned to the second tree (the tree of Hydra after cutting a head)
is:

ω(ωω2+1)·3+1 +ω2,

which is clearly smaller.
2. Cuts in models of Peano Arithmetic. Let M be a countable nonstandard model of

PA. A subset I of M is called a cut if it is closed downwards (formally, x ∈ I and
y < x implies y ∈ I) and it does not have the largest element (x ∈ I implies x +
1 ∈ I). The model M itself is a cut; the set of standard numbers N of M is a cut;
given a nonstandard element a, the set {x ∈M ; x ≤ a+n, for some standard n}
is a cut. The last cut is not a substructure of M because it is not closed under
addition and multiplication. Let

I = {x ∈M; x ≤ an, for some standard n
}
.

Then I is a substructure, but it is not a model of PA because aa is not defined in
it. Cuts that are also substructures will be our main object of study.

Let I be a cut and X ⊆ I . We will say that X is ∗-definable in I if there
exists a set Y definable in M such that X = Y ∩ I . The concepts of ∗-definable
relations and functions are defined in a similar fashion. Using ∗-definability one
can define interesting properties of cuts.

A cut I is regular if no ∗-definable sequence a0, a1, . . . indexed by numbers
i ≤ b, for some b ∈ I , is unbounded in I . This definition was, clearly, inspired
by regular cardinals.

A cut I is strong if it is regular and for every ∗-definable coloring of triples
(u, v,w), u, v, w ∈ I , by two colors, there exists a monochromatic ∗-definable
set X ⊆ I , unbounded in I . In plain words, in a strong cut the Ramsey Theorem
holds for ∗-definable colorings of triples with ∗-definable monochromatic sets.
One can show that in a strong cut the Ramsey Theorem holds true also for ∗-
definable colorings of k-element sets by a colors for k, a ∈ I .13

3. The unprovability of the Paris-Harrington sentence in Peano Arithmetic. Our
goal is to construct a cut I which is a model of PA, but it is not closed under the
fast growing function PH(x, x) associated with the Paris-Harrington theorem.
This will immediately imply the independence result we are after. The following
lemma formalizes our goal more precisely.

Lemma 12 Let a be a nonstandard element of M and b= PH(a, a). Then there
exists a cut M ′ which is a model of PA and a ∈M ′, but b ∈M ′.

To derive the independence, consider two cases. First, if Paris-Harrington
Theorem does not hold in M , we are done. Otherwise, take an arbitrary non-
standard element a. Since Paris-Harrington Theorem holds in M , there exists

13In set theory there is a concept of strong cardinals, but this has nothing in common with strong
cuts. Strong cuts are rather related to weakly compact cardinals.

334 4 Proofs of Impossibility

Fig. 4.6 A diagram of the model M . Elements are drawn as |, cuts as)

a b = PH(a, a) in M . Then we can construct a model of PA in which Paris-
Harrington Theorem fails by the lemma.

It remains to prove the lemma. This is based on the following two facts.

a. There exists a strong cut between any a and b such that b= PH(a, a).
b. Every strong cut is a model of Peano Arithmetic.

The situation is schematically shown in Fig. 4.6.
The construction of a strong cut between a and b is rather tedious, but the

basic idea can be demonstrated on the following simple lemma.

Lemma 13 For every k ≤ a and every definable coloring of k-element subsets
of [0, b] by two colors, there exists a monochromatic definable subset X ⊆ [0, b]
and a cut I between a and b such that X ∩ I is unbounded in I . In particular, X
is ∗-definable in I .

The assumption b = PH(a, a) and k ≤ a implies b ≥ PH(k, a). Hence there
exists a relatively large monochromatic subset X. In particular the size of X is at
least a, which is a nonstandard number. Let X = {x1, x2, . . .} in increasing order.
Take I = {y ∈M;y ≤ xn, for some standard number n}. This proves the lemma.

We now consider the second step of the proof which shows that a strong cut
is a model of PA.

First we need to show that the cut is closed under addition and multiplica-
tion. This can be ensured by taking a special coloring and using the fact that the
monochromatic set is relatively large in an essential way (not just to get a suffi-
ciently big set) to prove that the sequence x1, x2, . . . increases at least as rapidly
as a, a2, a3,

One can easily check that the basic axioms are satisfied by every cut closed
under addition and multiplication. So it remains to prove the induction axioms
in I . This follows from the next lemma.

Lemma 14 Every definable set in (the structure induced by) I is ∗-definable.

To see that this lemma suffices, recall that induction is equivalent to the least
number principle. Let φ(x) be a formula that defines a nonempty subset X of I .
We should show that X has the minimal element. According to the lemma, there
exists a Y definable in M such that X = Y ∩I . Since M satisfies the least number
principle, Y has the least number, say y. Clearly, y is also the least number of X
(because I is an initial segment).

The lemma is proved by induction on the quantifier complexity of formulas.
The base case concerns bounded formulas. These formulas are absolute, so the
definability in I , ∗-definability, and definability in M are all the same.

4.4 Concrete Independence 335

To prove the induction step, suppose φ(x) is a formula of the form ∃y ψ(x, y),
where ψ is a ∗-definable relation. Define a function f on the interval [a, b] by

f (x)=
{

min{y; y ≤ b and ψ(x, y)}, if there exists any such y,

0 otherwise.

Define a coloring of triples of elements (u, v,w), a ≤ u < v < w ≤ b, by the
following rule.

• If for some x < u− 3, v < f (x)≤w, then color (u, v,w) blue;
• if for all x < u− 3, f (x)≤ v or f (x) > w, then color (u, v,w) red.

An interesting property of this coloring is that every unbounded monochromatic
∗-definable set is red, none is blue. Suppose U = {u1, u2 . . .} is a blue unbounded
monochromatic ∗-definable set. Consider the following triples (u1, u2, u3),
(u1, u3, u4), (u1, u4, u5), Since all these are blue, we have x1, x2, x3, . . . <

u1−3 such that f (x1) ∈ (u2, u3], f (x2) ∈ (u3, u4], f (x3) ∈ (u4, u5], This is
impossible because x1, x2, x3, . . . is unbounded in I and I is regular. So, indeed,
there are only red monochromatic relatively large sets.

To prove that X = {x ∈ I ; ∃y ∈ I ψ(x, y)} is ∗-definable, let c ∈ X. Since
U is unbounded in I , there is a ut ∈ U ∩ I such that c < ut − 3. Since for
some d ∈ I , we have ψ(c, d), we also have ψ(c,f (c)) and f (c) ∈ I . Let r be
such that f (c)≤ ur and r > t + 1. Now consider the triple (ut , ut+1, ur). Since
it is colored red, we have either f (c) ≤ ut+1 or f (c) > ur , but only the first
possibility can be true. So f (c)≤ ut+1. This shows that for every c ≤ ut − 3,

∃y ∈ I ψ(c, y) if and only if ∃y ≤ ut+1ψ(c, y).

Since for every c, the bound ut+1 is definable in M , we have shown that X is
∗-definable.

4. Indicators of models of Peano Arithmetic. Define PH(m,n) to be the largest k
such that for every coloring of k-element subsets of the interval [m,n] by two
colors, there exists a relatively large monochromatic subset of [m,n] (it is a sort
of inverse function to PH(k,m)). Paris called such a function an indicator of
models of PA because of the following theorem that he proved [212].

Theorem 32 There exists a cut between a and b which is a model of PA if and
only if PH(a, b) is a nonstandard number.

5. Unprovable combinatorial statements equivalent to a reflection principle. In
their seminal paper Paris and Harrington observed that their sentence, though
expressed as a combinatorial statement related to the Ramsey Theorem, is equiv-
alent to a strengthening of the Gödel sentence, a restricted form of the reflection
principle (called Σ1-Reflection Principle) for Peano Arithmetic. It is the follow-
ing sentence:

For all Σ1 sentences ψ , if PA proves ψ , then ψ is true.

336 4 Proofs of Impossibility

Essentially, all known independent combinatorial sentences are equivalent to the
reflection principle for the corresponding theory. Should we be disappointed be-
cause the allegedly combinatorial sentences are, in fact, sentences about logic?
Not at all, one can show that many unrelated theorems are equivalent in weak
theories. (In strong theories they are provable, hence trivially equivalent.)

We will discuss reflection principles in Chap. 7.
6. Measuring the growth rate by ordinals. To measure the growth rate of functions

defined on natural numbers one defines a sequence of functions that serve as
a scale. The functions are indexed by constructive ordinals. The history of this
research goes back to the work of Kleene [155].

There are several definitions of such scales, called hierarchies of functions.
Here is one definition of such a hierarchy, the fast growing hierarchy. We start
with a simple function, which is usually the successor function. So we put

f0(n)= n+ 1.

Then we progress by transfinite recursion as follows. If β is not a limit ordinal,
thus β = α + 1, for some ordinal α, then define

fβ(n)= fα+1(n)= fα

(
. . .

(
fα

(
fα︸ ︷︷ ︸

n-times

(n)
))

. . .
)
.

If β is a limit ordinal, then we need a sequence of smaller ordinals that converges
to β . These sequences are called fundamental sequences. Let β0, β1, β2, . . . be a
fundamental sequence for β . Then we define

fβ(n)= fβn(n).

So we take a sort of diagonal of the smaller functions. Clearly, the definition
depends very much on the choice of fundamental sequences. Usually there is
one natural choice for the fundamental sequence. For example, for ω we take, of
course, the sequence 0, 1, 2, . . . , for ω2, we take 1, ω, ω2, ω3, . . . , for ε0, we take
1, ω, ωω, ωωω

,
Let us compute some functions in the hierarchy. Clearly we have f1(n)= 2n,

f2(n)= 2nn,

f3(n)≥ supexp(n)= 22··
2n

︸ ︷︷ ︸
n twos

.

f4 is larger than iterated superexponentiation and so on. fω is the diagonal of
these and it is a function that grows extremely fast. A version of this function
(in the sense of having approximately the same growth rate) is the Ackermann
function. Yet this is only the beginning of the hierarchy. It is clear that we cannot
observe the growth of such functions empirically.

Using this hierarchy one can determine the possible growth of definable func-
tions in some theories. Namely, if one can show in Finite Set Theory that a
function f is defined for all natural numbers, then for some α < ε0 and some
n0, f (n) < fα(n) for all n > n0. This result is tight, since all fα , for α < ε0

4.4 Concrete Independence 337

are definable in Finite Set Theory. For every recursively axiomatized theory,
there is a constructive ordinal associated with it in this way. These ordinals have
been determined for moderately strong theories. For strong theories, such as the
Zermelo-Fraenkel set theory, it is beyond current means to describe these ordi-
nals.

7. Measuring the “size” of finite sets by infinite ordinals. An interesting spin-off of
this theory is a way of measuring finite subsets of natural numbers by countable
ordinals. For finite ordinals, let n-large mean having at least n elements. Then we
define ω-large to mean relatively large. We continue by defining X is ω+1-large
if X is still ω-large after deleting the least element, X is ω+ 2-large if X is still
ω+ 1-large after deleting the least element, etc. In general, define

X is α+ 1-large if X \ {minX} is α-large,

and, for a limit ordinal λ

X is λ-large if X is λminX-large,

where λ0, λ1, . . . is the chosen fundamental sequence for λ.
Since the arithmetic of ordinals does not have as good properties as the arith-

metic of natural numbers, we cannot expect that this concept will have as good
properties as the cardinality of finite sets. But at least in some cases some prop-
erties are preserved. For example, if β ≤ α then a set X is ωα + ωβ -large if and
only if it can be divided into two sets X1 and X2 with all elements of X1 less
than all elements of X2 such that X1 is β-large and X2 is α-large. Using a little
bit more sophisticated definition of α-largeness, we can have a similar relation
also for products.

J. Ketonen and R. Solovay introduced this concept in order to analyze the
Paris-Harrington Theorem and to give an alternative proof of its independence
from Peano Arithmetic [151]. This approach can also be used to determine the
proof-theoretical ordinals of theories (the least constructive ordinals for which
theories prove transfinite induction) using model-theoretical means, see [10].

8. Why is Kruskal’s theorem stronger? Hydras correspond to ordinals less then ε0,
and in Kruskal’s theorem we also have rooted trees, so why is the latter stronger?
The point is that the orderings of rooted trees are different in the two problems. To
see that one gets more using the quasiordering by homomorphic embeddings, we
will show an order preserving mapping onto all ordinals below Γ0 (see page 194
for the definition of this ordinal). Given a tree, the associated ordinal will be
denoted by α(T). This mapping is defined by induction on the height of the tree.
If the height is 0, which means that the tree only consists of the root, α(T)= 0.
Otherwise we distinguish four cases according to the number of subtrees attached
to the root.

a. If there is only one such subtree T1, then put α(T)= α(T1).
b. If there are two, T1 and T2, then, assuming without loss of generality α(T1)≥

α(T2), define α(T)= α(T1)+ α(T2).
c. If there are three, T1, T2, T3, then, assuming without loss of generality

α(T1) ≥ α(T2) ≥ α(T3), define α(T) = φ(α(T2), α(T1)) (where φ is the Ve-
blen function, see page 195).

338 4 Proofs of Impossibility

d. If there are more than three, T1, T2, . . ., then, assuming without loss of gener-
ality α(T1)≥ α(T2)≥ · · · , define α(T)= φ(α(T1), α(T2)).

One can check that this mapping preserves ordering, which means that if there
exists a homomorphic embedding of T1 into T2, then α(T1)≤ α(T2). The reason
why we get all ordinals below Γ0 is the following normal form. Every ordinal
α < Γ0 can be presented as

α = φ(α1, β1)+ · · · + φ(αn,βn),

with α1, . . . , αn, β1, . . . , βn < α, n ∈ ω. Applying this fact recursively to
α1, . . . , αn, β1, . . . , βn and so on, we obtain a term based only on symbols φ,
+ and 0.

Thus one can reduce the principle of the transfinite induction up to Γ0 (more
precisely, the statement that the ordinal notation based on the Veblen function
defines a well-ordering) to Kruskal’s theorem. As this is stronger than the trans-
finite induction to ε0, also Kruskal’s theorem is stronger. Γ0 is not the largest
such ordinal. Every well-quasiordering is associated with an ordinal. The ordinal
associated with trees and the quasiordering by homomorphic embeddings has
been determined and is larger than Γ0.

The fact that Kruskal’s theorem is so strong, however, does not imply that
Friedman’s “miniaturization” of the theorem is also a strong statement. Kruskal’s
theorem has higher logical complexity, in particular, it is an inherently infi-
nite statement, while Friedman’s one is finite, a Π2 sentence; hence Friedman’s
miniaturization of Kruskal’s theorem cannot be equivalent to the original theo-
rem. So we have to scrutinize it more closely.

The above interpretation of ordinals by trees shows that Kruskal’s theorem
implies the transfinite induction over Γ0. The principle of transfinite induction
can be stated as the statement that there is no infinite decreasing sequence of
ordinals. Equivalently, in every infinite sequence of ordinals there is a pair of
consecutive elements αn,αn+1 such that αn ≤ αn+1. The relation of being less
than or equal to is interpreted as an embedding of the corresponding trees. In
Friedman’s miniaturization the modification is that we allow only special se-
quences, those in which the trees increase slowly. In terms of ordinals this means
that we only say that there are no infinite decreasing sequences of ordinals in
which the size of the expressions for the ordinals grows slowly. We know that
this weakened version of the principle of the transfinite induction cannot capture
the general principle, but one can show that it is enough to prove the consistency
of ATR0.

Here is the basic idea. To prove the consistency of ATR0 we need to assume
the condition about infinite sequences only for sequences where the growth of
the representations of ordinals αn is bounded by a primitive recursive function,
which in terms of the hierarchy fα means bounded by some fk(x)+ l for k, l ∈ ω.
This ensures that if we replace α0, α1, α2, . . . by the sequence

ωω · α0, ωω · α1, ωω · α2, . . . ,

the gaps between the consecutive ordinals of the new sequence will be so large
that we will be able to insert long decreasing sequences between each pair and

4.4 Concrete Independence 339

make the growth of the sizes of the ordinals linear. This translates to a linear
growth of the corresponding trees.

9. Combinatorial sentences provable only using large cardinals. While proof-
theoretical ordinals are known only for fairly weak fragments of set theory, com-
binatorial sentences that require very strong axioms about sets have been found.
The model-theoretical method of Paris and Harrington, which was sketched
above, can be extended to set theories. This line of research has been pursued
mainly by H. Friedman. For many years, he has been improving his results by
showing independence from stronger large-cardinal axioms and by making the
sentences more natural.

One of his sentences is related to the Finite Ramsey Theorem. To see the
connection, we will follow Friedman’s exposition in first presenting some well-
known versions of the Infinite Ramsey Theorem. Recall that in the Infinite Ram-
sey Theorem (see page 25) it is important that we color k-element subsets of
natural numbers by a finite number of colors. However there are versions of the
theorem where the number of colors can be infinite. Here is a typical result of
this type. Call a function F from k-element subsets of N to N regressive, if for
every k-element set of numbers x, F(x)= 0 if min(x)= 0 and F(x) < min(x)
otherwise.

Theorem 33 For every regressive function F from k-element subsets of N to
N, there exists an infinite subset of natural numbers X, such that for k-element
subsets x of X, the value F(x) depends only on the least element of x.

The straightforward finite version of this theorem has the same status as the
Paris-Harrington Theorem: it is true but unprovable in Finite Set Theory. It is
interesting that in the finite version we do not have to add anything like ‘relatively
large’ [149].

In the theorem above, it can happen that the set X is homogeneous for some
F , but in general it is not true. A counterexample is F defined by F(x) = 0 if
min(x) = 0 and F(x) = min(x) − 1 otherwise. Nonetheless, this is possible if
we replace N by a suitable large cardinal. Recall that cardinals are represented
by some ordinals, thus they are naturally equipped with a well-ordering. Hence
the concept of a regressive function makes sense also for them. In fact, such a
property defines particular large cardinals.

Definition 7 For k > 0, an infinite cardinal κ is called (k − 1)-almost ineffable
if for every regressive function F from k-element subsets of κ to κ , there exists
X ⊆ κ that is homogeneous for F and has cardinality κ .

It is a miniaturization of this definition which Friedman showed to be provable
only using large cardinals. Since N does not have the property of the almost
ineffable cardinals, it is clear that the miniaturization has to be nontrivial. Thus
instead of one coloring function, it is necessary to take a family of functions
satisfying certain properties. We will consider mappings that to a given set A⊆

340 4 Proofs of Impossibility

{0,1, . . . , n}k , assign a function FA : A→ A. Following Friedman, we define
that such a family of functions is #-decreasing, if for every A ⊆ {0,1, . . . , n}k
and b ∈ {0,1, . . . , n}k ,

a. either FA∪{b} extends FA, which means FA(a)= FA∪{b}(a), for every a ∈A,
b. or for some a ∈A, max(b) < min(a) and FA(a) > FA∪{b}(a).

Theorem 34 (Friedman [82]) For every k and r , there exists n such that for
every family {FA}A⊆{0,1,...,n}k of #-decreasing functions, there exists an A ⊆
{0,1, . . . , n}k and an E ⊆ {0,1, . . . , n} such that E has r elements, Ek ⊆A and
there are at most kk elements b ∈A such that for some a ∈Ek , max(b) < min(a)
and FA(a)= b.

This needs some explanation. First, instead of restricting the class of functions
FA to regressive functions, we take all, but then we count the number of the
values on arguments a on which they behave as regressive functions. Secondly,
we are now considering functions defined on k-element sequences of numbers,
instead of k-element sets. Such sequences can be easily distinguished by their
order type. For example (a1, a2), a sequence of length two, has one of the three
order types: a1 < a2, a1 > a2 and a1 = a2. Thus in general it is not possible to
reduce the number of colors below the number of order types. The number kk is
a (generous) upper bound on the number of order types.

Friedman proved:

a. Theorem 34 is provable in ZFC augmented with the axiom saying that for
every k > 0, there exists a k-subtle cardinal;

b. for every natural number k > 0, Finite Set Theory augmented with Theo-
rem 34 as an additional axiom proves the consistency of ZFC plus the axiom
that there exists a k-subtle cardinal.

These results are stated for a more familiar kind of cardinals, but they hold true
also for k-almost ineffable cardinals because the hierarchies of these two types
of cardinals are mutually interleaved.

4.5 The Independent Sentences of Set Theory

Reading your proof had a similarly pleasant effect on me as seeing a really good play.

Kurt Gödel on Cohen’s proof

Finally, I will turn to one of the most exciting topics in the foundations of
mathematics—independence results in set theory. The reason why these results are
so valuable is that they not only give very concrete independent sentences, they are
also solutions of problems that had been open for decades and that were very im-
portant for the development of set theory. When speaking about independence in set
theory, I mean Zermelo-Fraenkel Set Theory, the most important axiomatic system
for set theory. Some independence results had been obtained for weaker systems

4.5 The Independent Sentences of Set Theory 341

before the problem of the Continuum Hypothesis was solved, but the golden era of
set theory started only after Paul Cohen introduced the method of forcing.

Let us recall some basic facts. The Continuum Hypothesis is the conjecture that
the cardinality of the set of all subsets of natural numbers is the first uncountable
cardinality; in mathematical symbols 2ℵ0 = ℵ1. It can also be phrased as the state-
ment that there is no intermediate cardinality between the cardinality of the set of
natural numbers and the cardinality of the set of real numbers. This statement is in-
dependent of Zermelo-Fraenkel Set Theory, which means that it is neither refutable
in this theory nor provable. The first part, which can also be expressed as the con-
sistency of the Continuum Hypothesis with the axioms of Zermelo-Fraenkel Set
Theory, was proved by Gödel in 1938 [97]. The second part, the consistency of the
negation of the Continuum Hypothesis, was proved by Cohen in 1963 [46]. For this
result he was awarded the Fields Medal of the International Mathematical Union in
1966. (Until now, he has been the only mathematician who received this prize for
a result in logic.) Immediately after that, other researchers started generalizing and
improving his method and applying it to other problems. Several longstanding open
problems in infinite combinatorics and set-theoretical topology were solved soon
after. Forcing has become a standard tool in modern set theory.

The amount of independence results proved in set theory and the flexibility of
the forcing method is quite astounding. It shows that Zermelo-Fraenkel Set Theory,
in spite of being so strong and apparently containing all natural axioms that we can
think of, is not able to decide problems of a certain type. Unfortunately, there does
not seem to exist a natural way how to resolve these independences by adding more
axioms. New axioms studied in contemporary set theory are almost invariably large
cardinal axioms. Axioms of that type have the advantage of not being controversial
because when we decide whether to add larger cardinals or to prohibit them, we
prefer to add cardinals, since it makes the theory stronger than adding the oppo-
site axiom. However, large cardinal axioms do not help us to decide problems such
as the Continuum Hypothesis. Certainly, it is possible to add other axioms ad hoc
(for instance, we can simply postulate the Continuum Hypothesis), but set-theorists
are not able to agree on such axioms. In fact, most of them prefer to leave such
statements undecided, as it enables them to study a variety of different models of
set theory. It is like in other fields of mathematics where mathematicians prefer to
have the freedom of using different structures and they generalize concepts rather
than restrict them to a single one. For example, we do not want to postulate that
real numbers is the only field which should be studied; on the contrary, we want to
have the possibility to study other structures that satisfy the axioms of a field, the
complex numbers, quaternions, number fields, finite fields, etc.

It should be noted that all the independence results in set theory only concern
sentences about infinite sets. Forcing and other methods used in set theory fail to
prove the independence of any sentence about numbers or other finite structures.
In the previous section I described a method that works in the context of finite
problems, but it is only applicable to problems associated with very fast growing
functions. Otherwise we only have Gödel’s Theorem, which is universally applica-
ble, but from which we are not able to extract mathematically interesting sentences.

342 4 Proofs of Impossibility

Maybe the difficulty is in that natural numbers are very much determined by ba-
sic principles such as induction. Maybe there are deeper reasons why we lack such
methods. But maybe we just have to work harder to develop theory and to find a
method that would be as powerful as forcing and will work also for finite prob-
lems. Then, hopefully, we will be able to show that some persistent open problems
in number theory, or in complexity theory are independent (say, from the axioms
of Finite Set Theory). To develop such methods is one of the principal goals of the
research in proof complexity.

The Consistency of the Continuum Hypothesis

Rather than surveying independence results in set theory I am going to focus on the
methods that are used to prove the independence result. I think this is more inter-
esting and reveals more about the essence of the incompleteness phenomenon. We
will start with the method by which Gödel proved the consistency of the Continuum
Hypothesis.

As I am going to describe fairly difficult results, it is good to start slowly. There-
fore, let us first briefly recall what one has to do prove the independence of a sen-
tence φ from a theory T . We need do two things: to prove that φ is not provable in
T and to prove that the negation of φ is not provable in T . These two conditions
are equivalent to ¬φ being consistent with T and, respectively, φ being consistent
with T . By the completeness theorem for first order logic, ¬φ is consistent with T

if and only if there exists a model of T in which φ is false. Likewise, φ is consistent
with T if and only if there exists a model of T in which φ is true. Thus the task of
proving the independence reduces to constructing two models. There are methods
for proving independence not based on models, but in the case of Zermelo-Fraenkel
Set Theory it the preferred choice.

It is difficult to construct a model of a strong theory from scratch. But notice that
if we are to prove that T is consistent with some sentence φ, then in particular T

must be consistent. If we do not assume that T is consistent, we cannot do anything.
When T is consistent, then by the Completeness Theorem, we also know that there
exists a model of T . Then we can start with such a model and modify it to obtain a
model of T in which φ is true.

Thus our goal now is to construct a model of Zermelo-Fraenkel Set Theory in
which the Continuum Hypothesis is true from a general model M of Zermelo-
Fraenkel Set Theory. Gödel’s idea was to define a submodel of M which is in some
sense minimal. His hope was that if he picked as few elements of M as possible,
then M would be very “thin”, in particular, there would exist few subsets of the set
of natural numbers. With a bit of luck, there would be only ℵ1 such subsets, hence
the consistency of the Continuum Hypothesis would be established. His intuition
was correct: this approach really does what he intended to achieve.

The main problem that he had to solve was how to pick elements so that the
resulting structure would satisfy the axioms of Zermelo-Fraenkel Set Theory and, at

4.5 The Independent Sentences of Set Theory 343

the same time, would have few elements. Gödel did it by choosing the constructible
sets. I mentioned briefly this concept in Chap. 3. Let me now say just a little bit
more about it and give some details of this construction Notes.

Recall that in the Zermelo-Fraenkel universe every set is, in a way, constructed
from the empty set. We start with the empty set and then using transfinite recursion
over all ordinal numbers we add power sets. These sets are denoted by

V0 ⊆ V1 ⊆ V2 ⊆ · · · ⊆ Vα ⊆ · · · ,
and called the cumulative hierarchy (see page 168). For example, at stage ω (the
first infinite ordinal) we obtain all hereditarily finite sets (the sets whose elements
are finite and elements of elements are finite, etc.).

Gödel’s approach can be explained as taking this principle seriously and really
constructing all sets from below. In the cumulative hierarchy we simply take all
subsets of the set from the previous stage. What Gödel did instead was to take only
definable subsets. Furthermore, the definability is meant in a restricted sense. In this
way, Gödel defined the constructible hierarchy

L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ Lα ⊆ · · · .
In contrast to the cumulative hierarchy, these sets may not cover all sets. The union
of these sets is a proper class denoted by L and its elements are called constructible
sets.

Having a set x, we put into our model all sets that are definable in the structure
with the universe x and the membership relation ∈. Hence, when defining new sets
at this stage, we can only refer to sets contained in x and we are not allowed to
mention sets that have not been constructed yet. This is called a predicative def-
inition. Because of this constructive nature of the definition, Gödel used the term
‘constructible’. However, one should not think of constructible sets as something
very explicit. Since we want L to be a model of Zermelo-Fraenkel Set Theory, the
process has to be done by transfinite recursion over all ordinals. Thus we assume
that we can take ordinals for granted, or in other words, that every ordinal is con-
structive. One should not confuse this kind of constructibility with the concept based
on algorithms and Turing machines.

Given a model M of Zermelo-Fraenkel Set Theory, we will denote the submodel
formed by constructible sets by LM . It is the minimal model among submodels of M
that contain all ordinals of M . Intuitively, LM is a model of Zermelo-Fraenkel Set
Theory because essentially all axioms are instances of the Comprehension Schema
and we are adding all definable sets. The Replacement Axiom Schema also should
not be a problem because we take all cardinals from M . To prove it formally is a
nontrivial task and it is not possible to discuss it without going into rather technical
details. (Some more details are in Notes.)

Gödel used LM also to prove the consistency of the Axiom of Choice. In or-
der to define constructible sets, the Axiom of Choice is not needed. Thus one can
start with a model M which does not satisfy this axiom. Then taking LM in this
model we obtain a model in which the Axiom of Choice is true. This proves that if
Zermelo-Fraenkel Set Theory is consistent without the Axiom of Choice, then it is

344 4 Proofs of Impossibility

also consistent with it. This is a very important result because it dismisses doubts
about the consistency of the Axioms of Choice, the doubts caused by its paradoxical
consequences.

To prove that LM satisfies the Axiom of Choice, even if M does not, is not
difficult. The process of defining constructible sets can be used to define an enumer-
ation of all constructible sets by ordinals. Thus every constructible set is associated
with an ordinal. Now suppose that we should pick one element from a nonempty
set x. Then there is a canonical way how to do it: pick the element associated with
the smallest ordinal. Since we have a systematic way of choosing elements from
nonempty sets, the Axiom of Choice is true.

How to Enlarge a Model of Set Theory

Our goal now is to construct a model in which the Continuum Hypothesis is false.
We will again start with a model M of Zermelo-Fraenkel Set Theory, but we will
moreover assume that M is countable and the natural numbers in M are the actual
natural numbers. (We know that if a theory is consistent, then it has a countable
model; for the second assumption later see Notes.) If the Continuum Hypothesis
fails in M we are done. So let the Continuum Hypothesis be true in M . This gives
us some information about M , but in order to be able to manipulate with M , we
would like to know more. By the result above, we can take the submodel consisting
of constructible sets of M . So we can assume without loss of generality that already
in M all sets are constructible. This, of course, goes in the wrong direction, as we
want to have many subsets of natural numbers. We will not use this information in
an essential way, but it should help us to create a mental picture of what is going on.
Notice that so far we cannot exclude that in all models there are only constructible
sets.

We want to enlarge M so that it contains lots of subsets of natural numbers.
Since M is countable, also P(ω)M , the set that represents the set of all subsets of
integers in M , is countable. On the other hand, since in fact the number of subsets of
natural numbers is uncountable, we know positively that there are some subsets of
integers which are not in P(ω)M . Thus it seems that there are sets that we can use,
but we have no guarantee that they can be added in a consistent way. Obviously, we
cannot only add one new subset of integers. We need to obtain a model of Zermelo-
Fraenkel’s axioms, hence once we add a new set X, we must also add a lot of other
sets, in particular, all those that are definable from X. Yet it may happen that what-
ever we add to X, we will not be able to round it off to a model of Zermelo-Fraenkel
Set Theory.

Thus we will start with the simplest problem: to prove that we can add at least
one non-constructible subset. Knowing the concept of constructible sets, it is natural
to try the following. Let us construct sets as Gödel did, except that at some stage we
inject a subset of integers that is not in M . Let X be a such a subset of integers.
We may simply start with X and then follow the constructive process without any

4.5 The Independent Sentences of Set Theory 345

further changes hoping that the modification of the construction is so small that we
will still be able to verify Zermelo-Fraenkel’s axioms as we did without X. This
answers the question what should we do when adding a set X, but it does not solve
the problem which sets X can be used.

In order to motivate the next step, we will make a short digression to algebraic
structures. Given an algebraic structure A, it is very easy to enlarge it by adding
one or more elements. This is because there is a very special way of doing it. We
can add elements in the free way. This means that we will not assume any special
properties, except those implied by the axioms of the particular kind of algebras. As
an example consider the field of real numbers R. To add an element x in the free
way means to enlarge R into the field of rational functions with indeterminate x.
(Rational functions are fractions p(x)/q(x), where p(x) and q(x) are polynomials
and q(x) is not the zero polynomial.) This field is denoted by R(x). It is the minimal
enlargement that contains x and in which x does not satisfy any nontrivial equation.

What we attempted to do with models, also resulted in a uniquely determined,
and in a sense minimal structure. Let M[X] denote this minimal extension of M

obtained by adding a set X. Why is it sometimes not a model of Zermelo-Fraenkel’s
axioms, whereas R(x) is always a field? The reason why algebras behave better than
general models is that they are defined by equations and equations are all that we are
interested in. Equations are positive statements and combining positive statements
cannot lead to a contradiction because the negation sign does not occur in them.
Furthermore, if we only have equations, we can easily compare the sets of formulas
that an element satisfies; the more equations we impose on an element the more
special the element is. Thus the most general situation, the situation in which the
element is free, corresponds to the empty set of equations.14 In the case of general
structures, there is no preferred set of formulas and we have to treat positive and
negative statements in the same way, hence a contradiction can easily occur. For
example, should M[X] be larger than M , X must not be empty or the whole set of
natural numbers, as these sets are already present in M . Thus X must satisfy some
positive statements of the form n ∈X and some negative statements n ∈X as well.
If we add a subset X of natural numbers, we must also add its complement. There
is a kind of symmetry between positive and negative statements and we have to
break it.

At this point one may fear that the analogy between algebras and models is mis-
leading and it is pointless to try this approach, but that is a wrong conclusion. Let
me draw another parallel. In geometry we often talk about general positions. If, for
example, we have a finite set of points, then a line in a general position does not
hit any of the points, it is not parallel with any of the lines determined by pairs of
points, etc. In this example the idea is to avoid all positive relations, but there is
an essential difference. Whereas the free extensions by one element are all isomor-
phic, in geometry there are always infinitely many general positions; in fact, most
positions are general.

14When we talk about fields, we prefer to say ‘transcendental’, instead of ‘free’.

346 4 Proofs of Impossibility

Cohen’s surprising discovery is that it is possible to define a concept in set theory
that is similar to freeness in algebra and general position in geometry. He coined this
notion a generic set. As the name suggests, a generic set G should look like a typical
set X such that M[X] is a model of Zermelo-Fraenkel Set Theory. We cannot use
this property as the definition because so far we are no able to prove that there
exists any X that we can add consistently to M . Thus one has first to give a rather
technical definition of being generic and then show that it has this property. I will
give a precise definition in Notes; here I will only try to convey some intuition about
this concept.

It will often be convenient to think about a generic set G as determined by an
infinite sequence g = g(0), g(1), g(2), . . . of zeros and ones: g(n)= 0 says that n ∈
G and g(n)= 1 says that n ∈G. Thus we will also speak about generic sequences.

Obviously, whether or not G is generic does not depend on whether or not a con-
crete number, such as 5, is in G. Clearly, it should also not depend on the relation of
G with any fixed finite set of numbers. In terms of zero-one sequences, it means that
any finite string of zeros and ones can be an initial segment of a generic sequence.
Thus a generic sequence may start in an arbitrary way and we can determine if it is
generic only after we know all the infinitely many values. It may then seem rather
paradoxical that all properties of the extension generated by a generic sequence are
determined by its finite segments. But the point is that all generic extensions will
be “essentially the same”, so they will only differ in “inessential details” such as
whether or not G contains 5. Hence it is reasonable to assume that every “inessen-
tial detail” should be determined by a few values of the generic sequence.

To get intuition it helps to think about generic sequences as constructed in in-
finitely many steps using the following rule of thumb.

The Generic Set Rule If something can happen, then it will happen.

This informal rule enables us to derive various facts about G. We will start with
proving that both G and its complement are infinite. Indeed, suppose that we have
already constructed g(0), g(1), g(2), . . . , g(n) and we wonder if there will be some
m > n such that g(m) = 1. We know that the property of being generic does not
depend on initial segments of g, hence there is nothing that prevents us from defining
g(m)= 1 for m= n+1 or any larger number. Thus it can happen that g(m)= 1 for
some m > n, hence by the rule g(m) must be equal to 1 for some m > n. Now we
can repeat this argument again and again, whence we conclude that there must be
infinitely many numbers m such that g(m) = 1. By the same token, there must be
infinitely many numbers m such that g(m)= 0. Hence both G and its complement
are infinite.

What about prime numbers, does G contain infinitely many primes? Exactly the
same argument shows that G does contain infinitely many primes. Furthermore,
the number of primes that G does not contain is also infinite. In particular, G is
never equal to the set of prime numbers P . Notice that the only property of P that
was used in this argument was that P was an infinite subset of natural numbers in
the model M . Hence we can apply the same argument to any infinite subset of the

4.5 The Independent Sentences of Set Theory 347

natural numbers in M . Since G is infinite, this proves that G is not in the model M .
Thus a generic set for a model M is never present in the model.

Let us try some other properties. Does a generic G contain two consecutive num-
bers? It surely does. Given an initial segment g(0), g(1), g(2), . . . , g(n) we may
define g(m) = 1 and g(m + 1) = 1 for any m > n and still this sequence can be
completed to a generic one. Hence there must be an infinite number of such pairs.
By the same token, there infinitely many segments in G which are equal to the bi-
nary file of this book. This may suggest that we should imagine a generic sequence
s as a random sequence. It is true that g shares some properties with random infinite
sequences of zeros and ones (for example, there are also infinitely many copies of
this book in every random sequence), but g is not random. Consider the frequency
of ones in r(0), r(1), r(2), . . . , r(n) for a random sequence r . As n goes to infin-
ity this frequency very quickly approaches 1/2. In contrast to that the frequency of
ones in g(0), g(1), g(2), . . . , g(n) unpredictably oscillates. To see that consider the
following property of m:

g(m)= 0 and g(m+ 1)= 0 and g(m+ 2)= 0 and . . . and g(10m)= 0.

This property implies that the frequency of ones on the segment [0,10m] is less
than 1/10. Using again the same argument, one can prove that the number of such
numbers m is infinite. Thus the frequency will drop below 1/10 infinitely often and,
by symmetry, also jump over 9/10 infinitely often.

Assuming that we can prove the existence of a generic set G, we are almost
done with the problem of extending the model M to a model that contains a non-
constructible set. We know that G is not in M , but this does not automatically guar-
antee that G is not constructible in the extension M[G]. We have to prove that the
constructible sets of M[G] are the same as the constructible sets of M . Intuitively
this is clear because the ordinals are the same in both models and when defining new
constructible sets we refer only to those that we already have constructed. Hence the
set that is outside this process keeps staying outside.

I have said very little about how to do these things rigorously. I am going to give
more details below; for now, let me only explain one thing that may puzzle you after
this informal exposition: How to interpret the Generic Set Rule in a consistent way?

Let us look at a couple of possible conflicts in applying the rule. The simplest
conflict arises when we take the statement n ∈G for a fixed number n. Since both
n ∈ G and n ∈ G are possible, the rule dictates that both must be true. This is re-
solved by disallowing applying the rule to such statements. The intuition is that such
single statements have nothing to do with being generic and we can decide them in
an arbitrary way. Hence we do not need to use any rule for them.

The second example concerns the proof that a generic set G is infinite. Appar-
ently the same argument shows that G is finite. If we have already constructed g(0),
g(1), g(2), . . . , g(n) then nobody tells us that we must not continue with zeros to
infinity. Since g(m) can be equal to 0 for all m > n, then, according to the rule, it
must be. Thus we conclude that G must be finite.

The usual method to resolve conflicts of rules is to introduce a hierarchy. Then if
two rules are in conflict, the rule that is higher in the hierarchy gets the preference.

348 4 Proofs of Impossibility

We can apply this method also here. In our case the hierarchy will be given by the
complexity of the formulas—the simpler a formula is, the higher in the hierarchy
it is. Furthermore, the existential quantifiers have the priority over the universal
quantifiers. In the previous example we had a formula saying that there exists an
m > n which is in G and the formula saying that for all m > n, m is not in G; so
the first formula gets the preference. Hence the proof that G is infinite is correct,
whereas the proof of the converse is wrong.

A Model in Which the Continuum Hypothesis Fails

Now we want to construct a model in which 2ℵ0 = ℵ2. To this end we need to
enlarge M so that we get ℵM2 subsets of natural numbers. Here ℵM2 denotes ℵ2 in
the sense of the model M . The basic idea is to add a sequence of ℵM2 generic sets at
once. The sequence of ℵM2 generic sets will be denoted by {Gα}α<ℵM2 .

In fact, we do not only want every single Gα to be generic, but, instead, the whole
sequence as a single object should be generic. This can be stated more precisely by
saying that we need a generic function g(x, y) whose first argument is a natural
number, the second argument is an ordinal in M below ℵM2 and whose values are 0
and 1. The value g(n,α) tells us whether or not n ∈Gα . The reason for having the
whole sequence generic is twofold. Firstly, we have to ensure that M[{Gα}α<ℵM2]
is a model of Zermelo-Fraenkel’s axioms. Secondly, if the sequence is generic, we
can prove that the sets in the sequence are pairwise distinct, which is the heart of
the matter. It is very easy to prove the latter fact using the Generic Set Rule. Let
α < β < ℵM2 . Suppose that a finite number of values of g is fixed. Then some g(n,α)

and g(n,β) is not defined yet, and we can put one of them equal to 0 and the other
equal to 1. Since this can happen, it must happen for some n. Hence Gα =Gβ .

This may give the impression that proving independence results in set theory is
an easy job. Indeed, once the main theorems about the method of forcing are proved,
a lot of independence results can be shown without much effort. The method is very
powerful, but we always must be careful and prove things properly. For example, the
above argument is not complete. We have not proved that after enlarging M the car-
dinal ℵM2 is the second uncountable cardinal also in the new model. It could happen
that one of the sets that we added along with generic sets Gα was a one-to-one map-
ping from ℵM2 to ℵM1 . (Recall that M is a countable model, so the actual cardinalities
of ℵM2 and ℵM1 are the same.) This is not the case in this particular construction, so
M[{Gα}α<ℵM2] is indeed a model in which the Continuum Hypothesis fails.

An equivalent way of constructing this model is to simply construct a generic
subset of ℵM2 . Such a subset automatically encodes ℵM2 distinct subsets of natural
numbers. This is more elegant, but less intuitive.

Note that exactly the same argument works for many other uncountable cardinal
numbers, for example, all ℵn for n a natural number.

4.5 The Independent Sentences of Set Theory 349

Forcing

The modern approach to Cohen’s forcing method is to first define the concept of
a generic set and then define forcing using this concept. The advantage of this ap-
proach is that one gets the definition of both concepts very easily, but it is somewhat
deceiving, as eventually one has to use the clauses that define forcing syntactically
anyway. Another reason for not taking this route is that it is more interesting to get
an idea how Cohen conceived these formidable results than learning technicalities.
Therefore, I will try to follow his path to the concept of forcing.

I will explain forcing on the example with which we started. Recall that the goal
was to add one new subset of natural numbers to a model M . The idea behind forcing
is to mimic the proof of the completeness theorem for first order logic. In that proof
the aim was to construct a model of a theory T . The main idea was to go over all
sentences and for each sentence to decide to add the sentence or its negation to the
theory. (It was also necessary to add constants that would represent objects claimed
to exist, but we can ignore this aspect for the moment.) Now instead of the theory
we have a model M and we want to add a set X of natural numbers to it. We will
think of X as a formal constant and try to form a list of sentences that will be all
true sentences about it in some extension M[G], where G is an interpretation of the
constant X.

The problem is that we have only a rough idea what G should be, so we are not
able to decide, for a general sentence φ, whether or not we should add it on our
list. The only thing that we know for sure is that we may add sentences of the form
n ∈X and n ∈X, for n a natural number, at our will. The problem would be solved
if already these simple sentences decided all the rest. To be more precise, we would
like, for every sentence φ, to be decided by a finite number of such sentences. Now it
is clear that the crucial thing is what ‘decided’ means. If we interpreted it simply as
logical consequences, then it would not work. A finite set of such sentences implies
very little; for example, it never implies that X is infinite, or that it is finite. So we
need to use the fact that we are talking about a generic set. The special way in which
the finite sets of basic sentences decide other sentences is the forcing.

To define forcing we first have to define the forcing conditions. In our spe-
cial case, these are the finite sets of basic statements mentioned in the preced-
ing paragraph. The nature of the problem that we are concerned with here, al-
lows us to take sets of a special form, namely, sets that decide whether or not
n ∈ X for all n = 0,1,2, . . . ,m, for some m. We represent these sets by strings
(g(0), g(1), g(2), . . . , g(m)), where each g(n) is either 0 or 1. It is convenient to
consider also the empty sequence (). Thus forcing conditions are such strings. We
say that a forcing condition p extends a forcing condition q , and write p ⊇ q if p is
an extension of q . Furthermore, we will need constants for every set in the extension
of the model M by a set G. In forcing it is customary to call these constants names
(the reason for not using the standard term ‘constant’ is, perhaps, that one set will
typically have many names). The names can be defined a priori, before an extension
is constructed. There is a canonical way to generate the sets of an extension M[G]

350 4 Proofs of Impossibility

from the set G and sets of M , thus we can assign a name to every stage of this pro-
cess. We will use X as the name for the subset of natural numbers that we want to
add to the model. So X is a name for a generic set G.

The following is the obvious beginning of the definition of forcing.

1. a forcing condition (g(0), g(1), g(2), . . . , g(m)) forces n ∈ X if n ≤ m and
g(n)= 1;

2. a forcing condition (g(0), g(1), g(2), . . . , g(m)) forces n ∈ X if n ≤ m and
g(n)= 0.

Then definition continues in the way you expect:

3. a forcing condition p forces φ ∨ψ if p forces φ or p forces ψ ;
4. a forcing condition p forces ∃x φ(x) if, for some c, p forces φ(c).

But the definition of forcing a negated sentence is probably different from what
you would guess:

5. a forcing condition p forces ¬φ if no forcing condition q , q ⊇ p, forces φ.

This, at first glance strange clause, is the gist of the definition of forcing.

Example Take the forcing condition p = (101). This condition forces 0 ∈ X,
¬(1 ∈X), 2 ∈X. Let us check that it also forces ¬¬(0 ∈X). Indeed, every forcing
condition q that forces ¬(0 ∈X) starts with 0, but such strings are not extensions of
(1). Since no extension of p forces ¬(0 ∈X), according to 5., p forces ¬¬(0 ∈X).

The definition of forcing the negation of a sentence ensures the following two
key properties. The first one is the consistency.

Proposition 7 For every forcing conditions p and every sentences φ, it is not true
that p forces both φ and ¬φ.

This is an immediate consequence of the definition. For if p forces φ, then an
extension of p, namely p itself forces p, hence by definition, p does not force ¬φ.

The second property ensures that we can extend any condition so that any sen-
tence is decided.

Proposition 8 For every forcing conditions p and every sentences φ, there exists
an extension q ⊇ p such that either q forces φ, or q forces ¬φ.

This is also an immediate consequence of 5., since according to the definition,
either there exists an extension q ⊇ p such that q forces φ, or already p forces ¬φ.

The last proposition enables us to accomplish our partial goal of mimicking
the proof of the completeness theorem. Let φ1, φ2, . . . be an enumeration of all
sentences that speak about the extension of M . (Since M is countable, the num-
ber of names that we need is countable, hence also the number of all such sen-
tences is countable.) We will construct an infinite sequence of zeros and ones

4.5 The Independent Sentences of Set Theory 351

(g(0), g(1), g(2), . . .) as follows. First we pick (g(0), g(1), g(2), . . . , g(n1)) so
that this forcing condition either forces φ1 or forces ¬φ1, then we extend it to
(g(0), g(1), g(2), . . . , g(n1), g(n1 + 1), g(n1 + 2), . . . , g(n2)) so that this forcing
condition either forces φ2 or ¬φ2, and so on. The resulting sequence has the re-
markable property that every sentence is decided by an initial segment of g. This
property is taken as the definition of being generic. Let us state it explicitly using
the set G instead of the sequence g.

Definition 8 A set G is generic if for every sentence φ, there exists a forcing con-
dition determined by a finite part of X which either forces φ or it forces ¬φ.

Example Let us check that in our example the condition that X is infinite is forced.
Let k be an arbitrary natural number. Consider the sentences

∃n (n≥ k ∧ n ∈X) and ∀n (n≥ k→ n ∈X).

For every forcing condition p, we can extend p to q , q ⊇ p, so that q forces the
first sentence. So the first sentence can be forced. The second sentence has to be
first expressed using the existential quantifier and negation: ¬∃n (n≥ k→ n ∈X).
Hence in order to force this sentence, we need a condition p such that for all q ⊇ p

and all n≥ k, q forces n ∈X, which is impossible. Since every sentence is decided
by a generic set, it is the first sentence that is always forced.

This demonstrates how the special condition 5. breaks the symmetry between
these two sentences.

Sets satisfying this definition seem to be interesting objects of study, but it is not
clear that they will help us to achieve our main goal, which is to obtain an extension
M[G] which is a model of Zermelo-Fraenkel’s axioms. Here is a theorem that fully
justifies this definition.

Theorem 35 If G is generic, then for every sentence φ, the sentence φ holds true
in M[G] if and only if there exists a forcing condition determined by a finite part of
G which forces φ.

This theorem reduces the task of proving independence results to forcing. To
prove that the extension satisfies an axiom, we now only need to prove that this
axiom is forced by some forcing condition. In the previous sections I sketched how
one can prove such results using the informal Generic Set Rule. The formal proofs
based on forcing follow essentially the same lines. Another consequence of this
theorem is that the sentences that are true in all generic extensions are precisely
those that are forced by the empty forcing condition.

To prove that all Zermelo-Fraenkel’s axioms are forced is a rather tedious task. It
requires precisely defining the set of names that represent elements of the extension
and then writing down a rather technical definition of forcing the atomic sentences
c1 ∈ c2 and c1 = c2. (I only defined forcing of c1 ∈ c2 in the special case of c1
representing a natural number and c2 representing G.) Fortunately, Cohen proved a

352 4 Proofs of Impossibility

general theorem that Zermelo-Fraenkel’s axioms are always forced, whatever type
of forcing conditions one chooses. Once we know this, we can fully concentrate
on the sentences that we want to prove to be consistent with Zermelo-Fraenkel’s
axioms.

For the sake of simplicity, I have considered a concrete example of forcing con-
ditions. Using these conditions one can construct a model which contains a non-
constructible subset of natural numbers. If we need to prove other independence
results we have to use other forcing conditions.

Example If we want to show the unprovability of the Continuum Hypothesis by
proving that it is consistent to assume that 2ℵ0 =ℵ2, we can take forcing conditions
of the form (

(α1, n1, a1), (α2, n2, a2), . . . , (αk, nk, ak)
)
,

where k, n1, n2, . . . , nk are natural numbers, α1, α2, . . . , αk < ℵM2 , a1, a2, . . . , ak ∈
{0,1} and (αi, ni) = (αj , nj) for i = j . A condition (αi, ni, ai) determines whether
or not ni is in the generic set Gαi

.

One can prove various independence results by choosing suitable sets of forcing
conditions. Thus the forcing method is the art of designing forcing conditions.

The Independence of the Axiom of Choice

After Gödel had proved that the Axiom of Choice is consistent with the rest of
Zermelo-Fraenkel’s axioms (provided that Zermelo-Fraenkel’s axioms without the
Axiom of Choice are consistent), it remained to show that the same is true about the
negation of the Axiom of Choice. The method of forcing enabled Cohen to prove
also this. He showed how, from a given model, to construct a larger model in which
the Axiom of Choice fails. I will sketch the basic idea of this construction.

Let M be a countable model of Zermelo-Fraenkel’s axioms. Take forcing condi-
tions that enable us to obtain an infinite set of generic sets. This is done in the same
way as in the construction that was used to show that the negation of the Continuum
Hypothesis is consistent, but we only need a countable set of generic sets. Let these
generic sets be denoted by G0, G1, G2, Now we have to do something different
because the previous construction produced a model in which the Axiom of Choice
was true. The idea is to add the sets G0, G1, G2, . . . to M in such a way that they
are in a certain sense indistinguishable. In particular, it will not be possible to de-
termine the index n from the set Gn. It seems plausible that such a construction is
possible because our intuition about generic sets is that they do not have any special
properties, hence it should be hard to tell them apart.

More precisely, the goal is to enlarge M by G0, G1, G2, . . . so that M contains
the set Γ = {G0,G1,G2, . . .}, and such that for every A, a subset of Γ , either A is
finite, or it contains all elements of Γ except possibly for a finite number of them.

4.5 The Independent Sentences of Set Theory 353

Once we have such a model, we will be done because this will be in contradiction
with the Axiom of Choice, as one can easily derive from the Axiom of Choice
that every infinite set has a subset which is infinite and whose complement is also
infinite.

Let us see what the extension M[Γ] must contain and what it must not. First,
it has to contain all finite subsets of Γ and all subsets of Γ whose complement
is finite. So far it is simple, but if we go higher in the hierarchy of sets, it is not
so clear. For example, M[Γ] has to contain the set of all finite subsets of Γ , but
what about the set {∅, {G0}, {G0,G1}, {G0,G1,G2}, . . .}? We must not add this set
because from it we would be able to determine the indices of the generic sets and
having the indices we would be able to take the set of sets Gn with n even. That
would spoil the construction.

As a matter of fact, the condition that determines which sets are allowed and
which are not is quite simple. The condition is:

A set A can be added if and only if there is some number n such that all sets
Gm with m> n are indistinguishable from the point of view of A.

The indistinguishability means that for every m1, m2 > n, we can switch Gm1

with Gm2 without changing A.
Obviously, one has to check a lot of details to prove that it works, but the main

idea is quite simple. Every forcing condition is finite, thus it mentions only a finite
number of the names representing the generic sets G0, G1, G2, If, for some n, a
forcing condition p does not contain names for Gm with m> n, then those sets are
indistinguishable for p. Hence no forcing condition can force the existence of a set
that does not satisfy the condition above.

Notes

1. Models of ZFC. The best way to explain forcing is to use countable transitive
models of ZFC. A transitive set is a set x such that for all y and z, if y ∈ x and
z ∈ y then z ∈ x. In words, with every element y that x contains, x contains also
all elements of y. Notice that this implies that it also contains all elements of z,
etc. A transitive model of ZFC is a model M whose universe is a transitive set and
in which the interpretation of the membership relation is the usual membership
relation restricted to the universe (formally, M |� y ∈ x if and only if y ∈ x).

The advantage of transitive models is that many concepts are absolute in them.
We say that a relation defined by a formula φ(x1, . . . , xk) is absolute in M if for
every a1, . . . , ak ∈M , M |� φ[a1, . . . , ak] if and only if φ(a1, . . . , ak) is true.
The most important relation that is absolute (by the definition of transitive mod-
els) is the membership relation ∈. Furthermore, the properties of being a natural
number and being an ordinal are also absolute. (For this reason such models are
sometimes called standard, but this is rather misleading because if there exists a

354 4 Proofs of Impossibility

transitive model, then there are many different transitive models.) What is not ab-
solute is the concept of being a cardinal number. For example, if M is countable,
then the only absolute cardinal numbers are the finite ones and ℵ0.

According to the completeness theorem the existence of a model of ZFC is
equivalent to the consistency of ZFC. The statement that there exists a transi-
tive model is stronger and it cannot be derived from mere consistency of ZFC.
But it is not a strong axiom; in fact, it is weaker than the axioms postulating the
existence of a strongly inaccessible cardinal. If κ is a strongly inaccessible car-
dinal, then Vκ is a transitive model. However, if there exists a transitive model,
then there exists also a countable transitive model. This is proved by applying the
Löwenheim-Skolem Theorem first to get a countable submodel and then recur-
sively deleting all subsets that spoil transitivity staring from those of the lowest
rank and going upwards. (The latter procedure is called the Mostowski collapse.)

2. Interpretations and inner models. When we speak about consistency, we always
mean relative consistency with respect to some assumption. The minimal as-
sumption that one can use when studying ZFC is the consistency of ZFC because
adding more axioms can only make things worse. In fact this is also all that is
needed in this independence result. Thus the precise statement of Cohen’s inde-
pendence result is that if ZFC is consistent, then the Continuum Hypothesis is
independent. This is in contrast with results such as the consistency of the Ax-
iom of Determinacy with ZF (ZFC without the Axiom of Choice) which require
large cardinals.

The approach based on countable transitive models helps readers to get an
intuition, but it requires an assumption stronger than the consistency of ZFC. If
we want only to use the consistency of ZFC, it is best to use interpretations of
theories (in the sense defined on page 117). Interpretations enable us to prove
independence results using only syntactical concepts, which are finite structures.
Thus implications such as

Con(ZFC)→ Con
(
ZFC+ 2ℵ0 =ℵ1

)
and

Con(ZFC)→ Con
(
ZFC+ 2ℵ0 > ℵ1

)
are provable already in Finite Set Theory. In set theory interpretations of ZFC
are called inner models of ZFC.

Gödel’s proof of the consistency of the Continuum Hypothesis is a construc-
tion of an inner model in which the relation of membership is translated iden-
tically and the domain of the interpretation consists of constructible sets. Con-
structible sets are defined by a formula Λ in the language of set theory. Thus this
interpretation is the syntactical object (∈,Λ). To prove that it is an interpretation,
one has to show that all axioms of ZFC are provable if we restrict the range of
quantification to Λ. As we want to get the consistency of the Continuum Hy-
pothesis, thus we have to prove also the Continuum Hypothesis relativized to Λ.
To show that forcing constructions can be presented as inner models, I have to
change the definition of forcing. What I sketched on the preceding pages is the
original concept of forcing which has the strange feature that it does not preserve

4.5 The Independent Sentences of Set Theory 355

logical validity. For example, φ ∨ ¬φ is a tautology for every sentence φ, but
there are sentences for which such a sentence is not forced. This can easily be
rectified by redefining that a forcing condition p forces a sentence ψ in the new
sense if p forces ¬¬ψ in the old sense. Then we can define an interpretation by
taking the names of potential sets in the extension as the domain, and for two
names a and b, translating the membership relation a ∈ b by the formula ‘the
empty condition forces a ∈ b’.

We need also to define a translation of the equality relation, which I omit.
3. More about constructible sets. Let us first recall the definition of L (on page 214

we defined a more general concept L(x)). Sets Lα are defined by transfi-
nite recursion for all ordinals as follows. L0 = ∅, Lα+1 = def (Lα), and Lλ =⋃

α<λ Lα , λ a limit ordinal. Then we put L=⋃α Lα . We denote by def (x) the
set of sets definable in the structure (x,∈) by first order formulas with parame-
ters from x. The sequence {Lα} indexed by all ordinals is called the constructive
hierarchy.

To prove that L satisfies the axioms of ZFC is not a trivial task. Superficially
it may seem that the Axiom Schema of Comprehension is easy because it says
that a collection of elements of a set defined by a formula forms a set. But the
definability in the schema is the definability in the whole universe of sets, which
is in our case L, so it is not restricted to the elements of a given set. Thus one
has to prove that it is possible to replace L by a part of it which is a set. More
precisely, if x is a subset of y defined in L by formula φ(z) and y ∈ Lα , then it
is possible to find β (which may be larger than α) such that x ∈ def (Lβ). To this
end, we need to replace the class model (L,x,∈) by a set model (Lβ, x,∈). We
cannot work with class models as with set models because it is not possible to
define the truth for all formulas in a class model. But since we only need formulas
of limited complexity, namely, up to the complexity of φ, it suffices to apply the
idea of the Löwenheim-Skolem Theorem and obtain a set from a class.

The proof of the Power-Set Axiom is also not trivial. The problem is that, for a
given set x, its subsets can be defined on arbitrary large stages Lα . However, from
some ordinal α on, all these definitions define sets that have appeared before. To
see that, for every subset y ⊆ x, assign to y the least ordinal α such that y ∈ Lα .
By the Replacement Axiom Schema the range of this assignment is a set. Then
there exists an upper bound β on these ordinals because a set of ordinals has
always an upper bound (their union is such an ordinal).

To prove that in L the Continuum Hypothesis is true is the most difficult and
also the most interesting part of Gödel’s proof. One can easily show that the
set of natural numbers ω occurs at a stage indexed with a countable ordinal.
We want to prove that every subset x of ω which appears in some Lα , appears
already in some Lβ for some countable β . Let us first show that this entails
the Continuum Hypothesis. Since there are ℵ1 countable ordinals and for every
countable ordinal, we define only a countable number of subsets of ω, there are at
most ℵ1 such sets. But there is a snag: ℵL1 , the first uncountable ordinal from the
point of view of L, can be smaller than the genuine ℵ1. Fortunately, this problem
can be avoided by doing the proof not in the whole universe, but only in L. This

356 4 Proofs of Impossibility

is not a real complication because we assume that we have already proved the
axioms of ZFC in L, thus L is as good as any other universe of sets.

Thus the problem is reduced to showing that if all sets are constructible then
the Continuum Hypothesis is true. This assumption is called the Axiom of Con-
structibility and is abbreviated by V = L. Though we use classes to state this
axiom concisely, it is an axiom that can be stated in ZFC.

To prove that every subset of ω occurs in some Lβ with β < ℵL1 one uses es-
sentially the same idea as to prove that there exists a countable transitive model of
ZFC if there exists an inaccessible cardinal. Instead of transitive models we will
use transitive sets that are models of a weaker theory. We need a finite subtheory
of ZFC, say axiomatized by an axiom Θ , with the following property. For every
transitive set z, if the structure (z;∈) is a model of Θ , α is an ordinal in z and
x ∈ z, then x ∈ Lα if and only if this sentence is true in (z;∈). In other words, in
transitive sets satisfying Θ the concept of a constructible set is absolute. The next
step is to show that if x ∈ Lα , then there exists a transitive set which contains α,
and x, and satisfies Θ . One can take Lγ for a suitable γ ≥ α. The last step is to
take a countable submodel of (Lγ ,α, x) and collapse it to a countable transitive
set. This collapse moves α to a countable ordinal β and it preserves the property
that x is constructed at that stage. Since the relation of being constructed at stage
β is absolute, we obtain x ∈ Lβ .

I only used it for the Continuum Hypothesis, but the argument is quite general
and one can prove the Generalized Continuum Hypothesis, which is 2ℵα =ℵα+1
for every α.

4. More about generic sets and forcing. A generic extension of a transitive count-
able model M is determined by a set of forcing conditions P . A set of forcing
conditions P is a partially ordered set with the largest element. In the examples
above the largest element was the empty string and the ordering was given by the
reverse inclusion. We will denote the ordering on P by ≤ and the top element
by 1. We say that a subset D of P is dense if for every p ∈ P , there exists a
q ∈ D such that q ≤ p. A subset G ⊆ P is called generic if the following two
conditions are satisfied:

a. G is a filter, which means that for every p,q ∈G, there exists r ∈G such that
r ≤ p and r ≤ q , and for every s ∈G and s ≤ t , we have t ∈G;

b. for every set D which is dense and which is in M , G∩D = ∅.
It is crucial for the forcing construction that the partially ordered set is in M

and we consider only dense sets in M , whereas G does not have to be in M . In
fact, in all nontrivial cases there is no generic set in M (which is what we need in
order to enlarge M). The fact that there exists a generic set (outside of M) is easy.
Since M is countable the number of dense sets in M is also countable. Hence we
can enumerate them D1,D2, . . . , and we can inductively choose a sequence

p1 ∈D1, p2 ≤ p1, p2 ∈D2, p3 ≤ p2, p3 ∈D3, . . .

Then we take G= {p ∈ P ; ∃npn ≤ p}, the filter generated by the sequence.
In order to define forcing, we need constants representing every possible set in

the extension that we are going to construct. These constants are called names.

4.5 The Independent Sentences of Set Theory 357

This is an important part of the definition which I neglected in the exposition
in the informal description. Indeed, without knowing the structure of names it
seems to be a miracle that forcing conditions can force all axioms of ZFC. The
names, in fact, almost completely describe the extension of M by a generic set
G. They form sort of semi-finished model of ZFC, where one has only to decide
about details (such as which particular n is in G, in the case of the first exam-
ple). This is quite apparent in the Boolean valued models, which I am going to
describe shortly. An important thing that we must keep in mind is that forcing,
hence also names, should be definable in M .

Cohen’s original construction was based on an extension of the concept of
constructible sets. Soon it turned out that was unnecessarily complicated. I will
motivate the contemporary treatment of forcing names by an example. Let C

be a set of forcing names in M and suppose we have a mapping f : P → C

in M which assigns a name from C to every forcing condition p ∈ P . Since in
an extension M[G] we have the mapping f and the set G, we also have f (G),
the f image of G. Thus given f and a set of names C, we need a name for
f (G). More generally, if we have a relation R ⊆ P × C, we need a name for
R(G)= {c ∈G; ∃p (p, c) ∈R}. This is clearly a necessary condition which the
set of names must satisfy, but in fact it is also a sufficient condition.

A natural way to construct such a class of forcing names is to define by trans-
finite recursion:

a. C0 is an arbitrary class containing a name for every set in M ,
b. Cα+1 contains names for every relation R ⊆ P ×Cα , and
c. Cλ =⋃α<λ Cα for limit ordinals λ.

A closer look at the construction reveals that the first step is actually not needed,
namely, we can put C0 = ∅ (which has the advantage that Cα are sets). Let C =⋃

α Cα , where the union is over all ordinal numbers α.
Now we need to define forcing of atomic statements. Suppose c1 is a name

assigned to a relation R ⊆ P × C, let (p, c2) be in the relation R. Then we,
certainly, want to define forcing so that all q , q ≤ p force the sentence c2 ∈ c1
because if p is in G, then c2 ∈ c1 is true in M[G]. Furthermore, we have to
define forcing of atomic sentences of the form c1 = c2 because different names
may denote the same set in the extension. Thus we define

6. p forces c2 ∈ c1 if c1 is a name associated with a relation R and (p, c2) ∈R;
7. p forces c1 = c2 if it forces the sentence ∀x(x ∈ c1 ≡ x ∈ c2).

This will ensure the Axiom of Extensionality.
The way we defined forcing is close to the original definition of Cohen. We

have already noticed that this definition is not closed under logical consequences
and that this complication can be avoided by applying the above definition to
sentences to which we add double negations. However, we also have to take a
suitable modification of the definition of forcing of atomic sentences. Thus in 7.
we require p to force ¬¬∀x(x ∈ c1 ≡ x ∈ c2) and instead of 6. we take the
following clause

358 4 Proofs of Impossibility

6’. p forces c2 ∈ c1 if c1 is a name associated with a relation R, and for some
c3 such that (p, c3) ∈R, p forces the sentence ¬¬(c3 = c2).

This looks like a circular definition, as we define forcing of atomic sentences
with the membership relation using forcing of atomic sentences with the equality,
and the other way round. But notice that we always refer to names from some
previous stage, hence formally, the definition is by transfinite recursion.

5. More about the independence of the Axiom of Choice. The axioms of ZFC, which
include the Axiom of Choice, hold true in every generic extension M[G] of a
countable transitive model M . Thus to construct a model in which the Axiom
of Choice fails, it is necessary to change the construction. The change is in the
names used in the construction; the concept of forcing is the same.

Recall that we want to add infinitely many generic sets G1, G2, . . . , but we do
not want to add them as a sequence. Thus our aim is to extend M only by sets
that can distinguish only a finite number of the sets G1,G2, . . . (to distinguish in
the sense of the indistinguishability condition on page 353). Therefore, we will
use only names that satisfy this condition, hoping that it will guarantee that in
the extension all names will be represented by sets satisfying the condition. That
is true, but it must be proved.

Let us demonstrate it on a name c of the following form:{
(p1,X1), (p2,X2), . . .

}
,

where p1, p2, . . . are forcing conditions and X1, X2, . . . are names for G1, G2,
. . . . We have to prove that the set corresponding to this name, which we will
denote by A, is either finite, or it contains all sets G1, G2, . . . except for finitely
many. The assumption is that for some n, the name c does not distinguish names
Xi with i ≥ n. Suppose that A is infinite. Then for some forcing condition p

which determines the generic extension, (p,Xi) must be in c for some i ≥ n.
According to the condition, (p,Xj) is in c for all j ≥ n. Hence p forces Xj ∈ c

for all j ≥ n, which proves that A contains all Gj except for at most n− 1 of
them.

Once we know that all sets in the generic extension satisfy the condition, we
are done.

6. Collapsing cardinals. The concept of a cardinal number is not absolute in transi-
tive models and in fact for each uncountable cardinal κ in M , it is possible that κ
is not a cardinal in a generic extension M[G]. This can happen because in M[G]
a one-to-one mapping from a smaller cardinal λ onto κ may be added. We say
that κ collapses to λ.

To construct an extension in which κ collapses to ω, define forcing conditions
as follows: p is a forcing condition if for some finite subset A of ω, p is a one-
to-one mapping from A to λ. Then it is easy to check that every generic set G is
a mapping from ω onto κ .

I still owe you the proof that in Cohen’s construction of a model of ZFC with
the negation of the Continuum Hypothesis cardinals do not collapse, so let us do
it now. The proof is based on a simple criterion for extensions without collapsing
cardinals. We say that two forcing conditions p and q are incompatible if there
is no forcing condition r such that r ≤ p and r ≤ q .

4.5 The Independent Sentences of Set Theory 359

Proposition 9 If in M there exists no uncountable set of mutually incompatible
forcing conditions, then no cardinal collapses in M[G].

The assumption of the theorem is known as the countable chain condition.
The proof of this proposition is simple and instructive, hence it is worthwhile

doing it in detail. Arguing by contradiction, suppose the proposition is false. By
what we know about forcing, it means that there exists a forcing condition p and
a forcing name c such that p forces ‘c is a mapping from λ onto κ’ where κ and λ

are infinite cardinals and λ is smaller than κ . Take an element α ∈ λ and consider
all β such that some q , q ≤ p, forces c(α) = β . For every such β , choose one
such q and denote it by qβ .

We claim that for every pair β = β ′, the forcing conditions qβ and qβ ′ are
incompatible. Indeed, if r ≤ qβ , qβ ′ , then r forces c(α)= β and c(α)= β ′ which
is inconsistent with the fact that c is a mapping.

Since there are at most a countable number of mutually incompatible condi-
tions, there are at most a countable number of such elements β . Remember that
forcing is definable in M , hence the set of these β is a set in M . Thus we have
proved that for every α, there is a countable set of Bα such that in every generic
extension c(α) ∈ Bα . The assignment α �→ Bα is definable, hence also

⋃
α∈λ Bα

is a set in M . It follows that in M[G], the range of the mapping which is the
interpretation of the name c is contained in

⋃
α∈λ Bα . This set has cardinality at

most ℵ0 · λ= λ < κ , thus the range of the mapping cannot be the whole κ . This
contradiction finishes the proof of the proposition.

It remains to show that the particular set of forcing conditions used by Cohen
has the property stated in the proposition, which I leave to the reader with the
following hint: consider the smallest natural number k such that there exists an
uncountable set of mutually incompatible forcing conditions of length k.

The formidable universality of the forcing method can be illustrated by the
fact that one can use it also to prove the consistency of the Continuum Hypoth-
esis. Let M be a countable transitive model in which the Continuum Hypothesis
fails. Extend M by a generic set G which is a one-to-one mapping from ωM

1 onto
PM(ω), the set of all subsets of ω in the sense of the model M . (This is the same
as adding such a mapping from ωM

1 onto (2ω0)M .) This does not automatically
ensure the equality ℵ1 = 2ℵ0 , since these cardinals may be different in M[G]. To
keep ℵ1 intact, one uses a generalization of the above proposition. To ensure that
2ℵ0 remains the same, it suffices not to add any new subset of ω. Forcing condi-
tions that produce such an extension are all one-to-one mappings from countable
subsets of ω1 into 2ω0 .

7. Boolean valued models. This is an alternative approach to constructions of
generic extensions introduced by Scott and Solovay [262], and by Vopěnka [300].
It has the appeal of algebraic constructions and for a model theorist is more natu-
ral than Cohen’s construction. However, these two constructions are completely
equivalent, thus one cannot obtain more results by using Boolean valued models.
Furthermore, when we need to prove nontrivial properties of a generic extension,
we have to resort to forcing anyway.

360 4 Proofs of Impossibility

Boolean algebras were defined on page 21. A Boolean algebra is complete if
every set S of elements has the least upper bound, which entails that every set
has the largest lower bound. These two elements are denoted by

∨
S and

∧
S

respectively. An atom is an element different from 0 below which there is only 0.

Example 1 Let X be an arbitrary set. Let the elements of the Boolean algebra B1
be all subsets of X, with operations ∩, ∪, the complement in X and the constants
∅ and X. This is an important example of a complete Boolean algebra, but for
Boolean valued models it is not good because it has atoms (the one-element sets).

Example 2 This example requires some basic knowledge of topology. We start
with the Cantor discontinuum C. This topological space can be represented by
the set of all countably infinite strings of zeros and ones. The basis of open sets
consists of sets which contain all infinite extensions of a finite string. Elements
of B2 are all subsets of points S ⊆ C that satisfy the following equality

S = Int(Cl(S)), (4.16)

where Int denotes the interior and Cl denotes the closure. The operations are
defined by

S ∧ T = S ∩ T , S ∨ T = Int
(
Cl(S ∪ T)

)
, S′ = Int(C \ S).

It is not difficult to prove that B2 does not contain any atoms.

Remarks 1. The strange formula (4.16) has a simple explanation. Suppose we
use all open sets instead of set satisfying (4.16). Then such an algebra satisfies
weaker axioms, namely those that come from intuitionistic logic. When we need
to embed classical logic into intuitionistic logic, we use double negation and this
is exactly what happens here—we pick the elements that satisfy S = (S′)′.

2. In this way we can define a Boolean algebra for every topological space.
Such Boolean algebras should not be confused with the Stone representation the-
orem. That theorem says that every Boolean algebra is isomorphic to an algebra
of sets whose operations are the set operations of intersection, union and com-
plement.

The idea behind Boolean valued models is to replace the two truth values true
and false by values in an infinite complete Boolean algebra B . The constants 1
and 0 of B represent true and false, the other elements represent “intermediate
truth values”. One can study Boolean valued models for every first order theory.
For simplicity, suppose that the only nonlogical symbol is R, a symbol for a bi-
nary relation. Then a structure with Boolean values in B consists of a universe A

and a mapping v : A×A→ B which assigns a value in B to every pair of ele-
ments of A. For a, b ∈A, v(a, b) is the truth value of the sentence R(a, b). Then
we define the truth values of all first order sentences a natural way. For example,
we define the value of ∃x φ(x) by v(∃x φ(x))=∨a∈A v(φ(a)) (assuming that
we have already defined the values of φ(a)). This valuation preserves logical
validity in the following sense:

4.5 The Independent Sentences of Set Theory 361

a. if φ is logically true, then in every Boolean valued model v(φ)= 1;
b. if φ is a logical consequence of a set of sentences Ψ , then

∧
ψ∈Ψ v(ψ) ≤

v(φ).

Hence Boolean valued models behave very much like ordinary ones.
If we focus on models of ZFC, then we can use some specific properties.

Suppose we have a model M and a complete Boolean algebra B in M , which
is not complete in the metatheory. This can happen because in M there are only
some subsets of B and we require that meets and joins exist only for sets in
M . Then we can still construct Boolean valued models with values in B whose
valuations preserve logical validity. Namely, if we define a B-valued model fully
in M , then the only infinite meets and joins that we will need are those that are
present in M .

The second specific property of ZFC is that given a model M of ZFC and a
complete Boolean algebra B in M , there is an almost canonical way to define a
Boolean valued model that extends M . I will explain it in a simple motivating
example. Let x be a set and f : x→ B a mapping from x to B . Then we can treat
f as a “Boolean valued subset of x”. For y ∈ x, the function gives the truth value
f (y) to the statement that a y is in this subset. This is very much like a fuzzy
subset of x, which is a mapping from x to the unit interval [0,1]. Now having
Boolean valued sets, we can define Boolean valued sets of Boolean valued sets
and so on. Formally, we define by transfinite recursion MB

0 = ∅, MB
α+1 is the set

of all functions with domain in MB
α and range in B , and MB

λ =
⋃

α<λM
B
α , for λ

a limit ordinal. Let MB =⋃α MB
α . You may have noticed the similarity of this

construction and the construction of forcing names. This is not accidental: the
elements of MB indeed correspond to forcing names.

We need to equip MB with a valuation v in B . Every element of MB is a
function f from the set dom(f), the domain of f , into the Boolean algebra B .
Contrary to what one may expect the value of the sentence x ∈ f is, in general,
not f (x). The reason is that MB with such a valuation would not satisfy the
Axiom of Extensionality. In order to remedy it, we have to treat the equality
relation also as a Boolean valued relation. But once we change equality, we have
to change also the membership relation because the axioms of equality for the
membership relation would not hold true. The following is the right way to define
a Boolean valuation v on MB (using recursion on the rank of elements):

v(x ∈ f)=∨y∈dom(f) f (y)∧ v(y = x);
v(f = g)= (∧x∈dom(f) f (x)′∨v(x ∈ g)

)∧(∧x∈dom(g) g(x)
′∨v(x ∈ f)

)
.

Recall that a′ ∨ b represents the implication a⇒ b.
Now we need to identify the element of MB that plays the role of the generic

set. It is the identity function on B , which we will denote ιB . We can easily
compute what the model MB thinks about ιB because v(x ∈ ιB) is 0 if x ∈ B and
it is x if x ∈ B . (By saying ‘MB thinks φ’ we mean that the Boolean value of φ
is 1.) Thus MB thinks that ιB is a subset of B . Furthermore, it thinks that

362 4 Proofs of Impossibility

(1) 0 ∈ ιB ,

because v(0 ∈ ιB)= 0. Let x and y be in B . Then we have

v
(
(x ∈ ιB ∧ y ∈ ιB)⇒ (x ∧ y ∈ ιB)

)= (ιB(x)∧ ιB(y)
)′ ∨ ιB(x ∧ y)

= (x ∧ y)′ ∨ (x ∧ y)= 1.

In words, MB thinks that

(2) if x and y are in ιB , then also x ∧ y is in ιB .

You can furthermore check that MB thinks that

(3) if x is in ιB and x ≤ y, then y is in ιB , and
(4) if S is set in M and

∨
x∈S = 1, then for some x ∈ S, x is in ιB .

The conditions (1)–(4) define complete ultrafilters except that (4) is stated only
for sets in M . Thus from the point of view of MB , if the element ιB were in M ,
then it would be a complete ultrafilter on B . However, a complete ultrafilter is
always trivial—it is the set of all elements above an atom of the Boolean algebra.
Hence if B does not contain any atoms, then MB thinks that ιB is a set outside
of M .

If M is countable, then there exists a subset G of B (a genuine set, not a
Boolean valued one) that satisfies conditions (1)–(4). Recall that for an ultra-
filter, it suffices to have condition (4) only for finite sets S. Thus G satisfies a
stronger condition, a condition which depends on M , therefore it is called an M

generic ultrafilter. G determines a mapping, in fact a homomorphism of Boolean
algebras, from B to the two-element Boolean algebra: map an element x ∈ B to
1 if x ∈ G, and to 0 if x ∈ G. Using this homomorphism we can transform a
B-valued model into a two-valued model. A two-valued model is almost an or-
dinary model, we only have to identify elements a and b whenever the value of
a = b is 1. Thus we obtain the generic extension M[G].

It only remains to find out what is the relation of forcing conditions to com-
plete Boolean algebras. Call an ordering (P ;≤) separative if it satisfies the fol-
lowing condition: if p ≤ q then there exists an r such that r ≤ p and q and r

are incompatible. We say that a subset P of a Boolean algebra B is dense if it
does not contain 0 and for every nonzero element x ∈ B , there exists p ∈ P such
that p ≤ x. One can prove that for every separative ordering (P ;≤) there exists
a complete Boolean algebra such that P is a dense subset of B , and the ordering
of elements of P in B is the same as in (P ;≤). This Boolean algebra is unique
up to the isomorphism. On the other hand, we can find a dense separative set in
every Boolean algebra; it is simply the set of all nonzero elements.

Thus forcing conditions can be thought of as a concise way of representing a
complete Boolean algebra.

Example 2, continued The Boolean algebra B2 is determined by the dense set
of all finite strings of zeros and ones. A finite string s corresponds to the open set
of all infinite continuations of s. Thus B2 is the Boolean algebra associated with
the forcing conditions of the very first example of forcing (page 349).

4.5 The Independent Sentences of Set Theory 363

8. Random generic sets. When explaining generic sets, I stressed the fact that they
do not have properties typical for random sets. This is not quite precise and it
concerns only the original constructions of Cohen. There are generic extensions
by sets that look random. To this end we do not have to develop a new kind of
forcing; we only have to take a suitable set of forcing conditions, or, which is
equivalent, to take a suitable complete Boolean algebra.

Let us demonstrate it by the problem of adding a non-constructible subset
of natural numbers. To this end Cohen used forcing conditions that lead to the
Boolean algebra B2 defined above. In order to obtain a randomly looking generic
subset of natural numbers, we take a different Boolean algebra, which we will
denote by B3. To define B3 we start with the same set as we did with B2, the set
of countably infinite sequences of zeros and ones {0,1}ω, but instead of using
topology, we will use measure. The measure that we need is the natural measure
such that the whole space has measure 1, the set of sequences starting with 0
(respectively 1) has measure 1/2, etc., (that is, the measure of the set of infinite
sequences that extend a fixed sequence of length n has measure 1/2n). The details
of how this is precisely defined are not important, but let me stress the fact that
measure is defined only for some subsets of {0,1}ω, which are called measurable
sets. To define the elements of B3 we identify measurable sets whose difference
is a set of measure 0. For example, all countable sets have measure 0 (but not only
those), hence, in particular, two sets that differ in a countable number of points
will be identified. Formally, the elements of B3 are classes of measurable sets that
differ by sets of measure 0. The operations are defined by taking representatives
from the classes, applying the corresponding Boolean operation, and taking the
class containing the result.

Thus Boolean algebra B3 produces a generic extension M[F] in which F is
not constructible. The disadvantage of this construction is that whereas B2 has
a succinct description by a countable set of forcing conditions (finite strings of
zeros and ones), B3 does not have such a representation: B3 is not generated by
a countable set of forcing conditions.

Let us now compare M[F] with a generic extension M[G] produced by Co-
hen’s forcing conditions. We know that F is different from G (for example, the
average number of zeros in initial segments of F converges to 1/2), but this is not
enough to prove that the two models are different. We know that such extensions
contain a lot of other subsets of natural numbers that are not present in M . Thus
G could be among the sets generated from F . To prove that it is not so, we have
to find some property that distinguishes these two generic extensions. An inter-
esting property that does it is the following. In M[F] every function on natural
numbers is bounded from above by a function from M , while in M[G] there are
functions that grow faster than any function in M . Though models constructible
by such ‘random forcing’ are different from those produced by ‘Cohen forcing’,
many results, including the unprovability of the Continuum Hypothesis, can be
reproved using random forcing.

9. Martin’s Axiom. Researchers in set theory prefer to assume the negation of the
Continuum Hypothesis, since the universe of sets satisfying this axiom is richer.

364 4 Proofs of Impossibility

If one needs to use the Continuum Hypothesis to prove a theorem, one can say
that this theorem is true for constructible sets. However, there are many conse-
quences of the Continuum Hypothesis which are consistent with the negation of
the Continuum Hypothesis. For such theorems, there is a better alternative. In
1970 Martin and Solovay proposed an axiom which is consistent with the nega-
tion of the Continuum Hypothesis and which proves a number of consequences
of the (non-negated) Continuum Hypothesis [192].

This axiom is known as Martin’s Axiom. Unfortunately, it is a rather techni-
cal statement that does not look like a natural universal principle. It has several
equivalent versions; I will state the most elementary one which is based on con-
cepts from forcing. This is not a coincidence, Martin’s Axiom was discovered
when studying independence proofs. We already have definitions of all concepts
needed to state it.

Martin’s Axiom Let (P,≤) be a partially ordered set with the countable chain
condition. Let D be a set of dense subsets of (P,≤) and suppose that the car-
dinality of D is strictly less than 2ω. Then there exists a filter F that meets all
elements of D.

Main Points of the Chapter

• Many important results in mathematics have the form of a proof of impossibility.
• Very often proofs of impossibility are difficult and require the use of abstract con-

cepts, even though the problems themselves may have elementary formulations.
• The proofs of Gödel’s incompleteness theorems are based on a formula resem-

bling the liar paradox. It uses the ability of the language of logic to express self-
referential sentences. The unprovable sentence is equivalent to the consistency of
the theory.
• A similar argument is used to prove that some problems are algorithmically un-

solvable. One can also deduce unprovability of some sentences from proofs of
undecidability of related problems.
• Algorithmically unsolvable problems can be found in various branches of math-

ematics including number theory and geometry.
• One can show unprovability of some concrete mathematical problems in Finite

Set Theory. The proof method, however, requires that the problems encode very
fast growing functions.
• There is a very efficient method, the method of forcing invented by Paul Cohen,

using which one can prove many independence results in set theory, including
the independence of the Continuum Hypothesis. The method is applicable only
to sentences about infinite sets.

Chapter 5
The Complexity of Computations

Hiding in the alternating patterns of digits, deep inside the
transcendental number, was a perfect circle, its form traced out
by unities in a field of naughts.

Carl Sagan, Contact

COMPLEXITY is a notion about which we do not learn in schools, but which is
very familiar to us. Our generation has witnessed a tremendous increase of

complexity in various parts of our life. It is not only the complexity of industrial
products that we use. The world economy is a much more complex system now
than it used to be; the same is true about transportation, laws and so on. Comput-
ers help us to cope with it, but they also enhance the process of making our lives
more complex. The progress in science reveals more and more about the complex-
ity of nature. This concerns not only biology and physics, but also mathematics. In
spite of the great role that it plays in our lives, complexity has become an object of
mathematical research only recently. More precisely, the word complexity had not
been used until about the 1960s, but many parameters introduced long before can be
thought of as some sort of complexity measures. Already the words used for these
parameters suggest that they are used to classify concepts according to their com-
plexity: degree, rank, dimension, etc. The most important instantiation of the notion
of complexity is in computability theory, which is the subject of this chapter.

Originally the motivation for studying computational complexity was to under-
stand which algorithms can be used in practice. It had been known that some prob-
lems, although algorithmically solvable, require so large a number of steps that they
never can be used. It was, therefore, necessary to develop a theory for classifying
problems according to their feasibility. When theoretical studies began, it turned out
that there are fundamental problems concerning computational complexity. More-
over, some of these problems appeared to be very difficult. We now appreciate their
difficulty because only a few of them have been solved after many years.

These problems concern the relationship of the basic resources used by algo-
rithms: time, space, nondeterminism and randomness. Our inability to make any
substantial progress in solving them suggests that there may be fundamental obsta-
cles that prevent us from solving them. It is conceivable that these problems not
only need new methods, but may need new axioms. This seems to be a rather bold

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_5,
© Springer International Publishing Switzerland 2013

365

http://dx.doi.org/10.1007/978-3-319-00119-7_5

366 5 The Complexity of Computations

conjecture, but recall the history of Diophantine equations. The problem appeared to
be just a difficult number-theoretical problem and Hilbert even assumed that it was
algorithmically solvable. Now we know that this is not the case: there is no theory
that would suffice to prove the unsolvability of every unsolvable equation. History
may repeat itself in computational complexity and we may need mathematical logic
to solve the fundamental problems of computational complexity theory.

In the next chapter, we will see slightly more explicit connections of computa-
tional complexity with logic and the foundations of mathematics, mediated by proof
complexity.

5.1 What Is Complexity?

From our daily experience we know that there are easy tasks and there are difficult
ones. Everybody knows that it is more difficult to multiply two numbers than to
add them. Those who use computers more extensively also know that they are able
to solve certain problems fast, while some other problems require a long time. But
we also know that some people are faster than others, that we can solve a task
more easily if we know more about it and that some programs are slow for a given
problem, but sometimes a sophisticated program can solve the same problem very
efficiently. Thus it is not clear whether there is a particular property of problems that
prevents us (and computers) from solving some problems quickly, or if it is just the
question of knowing how to solve a particular problem fast.

Therefore the first thing to learn is that, indeed, there is a quantity associated
with every problem, which we call the complexity of the problem, that determines
how efficiently the problem can be solved. This quantity is represented by a nat-
ural number. When studying computational complexity, we always consider only
algorithmically solvable problems, problems solvable using a finite amount of com-
putational resources. Since algorithms make discrete steps, also the resources can
be measured in discrete units. The amount of computational resources needed to
solve a particular instance of a problem is this number. In fact there is not only one,
but several such quantities corresponding to the type of resources that we study.
Furthermore, each one depends on the particular model of computation that we use.

Let us start with the most important type of complexity, which is called time. If
we use the classical model of computation, Turing machines, then the time com-
plexity of a problem is the minimal number of steps that a Turing machine needs to
solve the problem. However, the time complexity of computations cannot be defined
for a single input. Recall that when we considered the concept of decidability, it was
important to have an infinite set of instances of a given problem. Typically, we asked
if a property of natural numbers was decidable. For a finite set, there always exists
an algorithm—a look up table. So the same is true about complexity; it only makes
sense, if we have an infinite, or at least very large set of inputs.

Suppose, for example, that the problem is to decide if a given number N has an
even number of prime divisors. The problem is, clearly, decidable: we can enumerate
all primes less than N and try to divide N by each of them. This is certainly not the

5.1 What Is Complexity? 367

best way to solve this problem, but it seems that the problem is difficult if we do not
know anything special about N . But suppose that we somehow determine that the
number of prime divisors of N is, say, even. Then we cannot say anymore that, for
this particular N , it is difficult to decide this property, because we know the answer.
Therefore talking about the complexity of such a problem only makes sense if we
consider a large set of numbers. To be more specific, consider a Turing machine
M that correctly decides the above property for every number. Since M has to work
with arbitrarily large numbers, the number of steps that M needs to answer will vary
with the input; in general, it will increase. If M is a formalization of an efficient
algorithm, then it will not increase very fast. If, however, the problem is hard, it will
increase fast for every Turing machine.

The idea of defining the time complexity of a problem itself, not just with respect
to a particular machine, is to take the least number of steps that a machine needs
for solving the problem. Ideally, we would like to prove that there exists a machine
which is the fastest one and define its time complexity to be the time complexity of
the problem. This is surely not possible, since we know, for example, that for every
fixed number there exists a procedure that solves the problem almost immediately.
(If we use Turing machines it will take some nontrivial time for the machine to
compare the input number written in binary with the one it has in its lookup table,
but it will be fairly short.) Therefore we content ourselves with asymptotic estimates
on the possible time complexities of Turing machines solving the problem.

For every nontrivial problem, we naturally expect that the time will increase with
the size of the input data. The time that an algorithm needs varies not only with
the size, but also if the input size is fixed, it may need a different number of steps
for different data. In order to be able to decide if we can use an algorithm for data
of a given length, we need an upper bound on the time needed for all such data.
Thus we define the time complexity of an algorithm (or of a Turing machine, etc.)
to be the function t (n) such that t (n) is the maximal time the algorithm needs on
inputs of size n. The size of an input is usually the length of a string which encodes
the data using a finite alphabet; we call it the input length. This approach is called
worst case complexity, since we classify algorithms by how they behave in the worst
case on data of a given input size. (In practice one may prefer to use average case
complexity, but I will not deal with this concept here.)

Hence the computational complexity of a problem is not measured by a simple
object such as a number, but rather by a function that depends on the input length.
In most cases it seems very difficult even to estimate these functions; in fact, the
task of determining the complexity of particular problems is so difficult that often
we are happy to get any estimates of the time bounds. Therefore we usually content
ourselves with asymptotic bounds.

The Three Types of Numbers

Rather than talking about asymptotic bounds, it seems better to start with a more
pedestrian point of view. The three types of numbers mentioned in the title are

368 5 The Complexity of Computations

small, medium and large natural numbers. Such a classification makes sense only
if we specify what we want to do with numbers. Let us assume that we want to do
elementary computations, more specifically, we want to use the basic arithmetical
operations: addition, subtraction, multiplication and division. Then we can ask, how
large numbers can be added, multiplied etc. This, of course, depends on whether we
want to do the computation with a pencil and paper, or with a computer (and what
kind of computer), and how much time we are willing to spend. If needed, we can
do such computations without a computer with numbers that have dozens of digits.
If we use a computer, we can easily handle numbers that have millions of digits, and
with some effort we can, perhaps, go as far as 1020 digits. So these should be the
medium size numbers.

On the other hand, we estimate that 10200 digits cannot be physically represented
in the visible part of the universe. Hence numbers with so many digits are large.
When a number is large, it does not mean that we cannot represent it at all and
that we cannot compute with it. For example, 1010100

is such a number and we see
immediately that it is divisible by 5, and with a little bit of math we can show that
it is not divisible by 7. But notice that we need to apply mathematics to prove these
assertions; we cannot simply do the divisions and see what the remainder is.

Small numbers are specified by means of algorithms based on the brute-force
search. These are algorithms that search for the solution in a very simplistic way:
they just check all possible values that can be a solution of the problem.1 The old-
est problem to which people have applied such algorithms is the integer factoring
problem. This is the problem, for a given natural number N , to find a proper divisor
of N , called a factor. A factor is a number which divides N , and it is not a trivial
divisor, which means, it is different from 1 and N . The simplest factoring algorithm
is to take numbers from 2 to N − 1 one by one and try to divide n by them. We can
save a lot of work if we realize that we only need to test numbers less than or equal
to
√
N . This is because if N has a nontrivial divisor, then it can be factored as ab

with a, b different from 1 and N and then either a is less than or equal to
√
N or b

is less than or equal to
√
N . Though it is an improvement, such an algorithm is still

not applicable to typical medium size numbers.
Suppose, for instance, that we want to factor a medium size composite number2

11438162575788886766923577997614661201021829672124236256256184293

5706935245733897830597123563958705058989075147599290026879543541

with 129 decimal digits. If we systematically tried all numbers starting with 2, then
we would use about 1064 divisions until we found the first factor that has 64 digits:

3490529510847650949147849619903898133417764638493387843990820577

Each division can be computed fairly easily; with enough patience, we can even do
it using only paper and pencil. But the number of divisions that we have to do is so
huge that we cannot do them all even with a powerful computer.

1In Russian a single word, perebor, which means picking over, is used for this type of algorithms.
2This number is called RSA-129.

5.1 What Is Complexity? 369

(The second factor has 65 digits:

32769132993266709549961988190834461413177642967992942539798288533

These factors are primes, hence they are the only proper divisors.)
Small, medium size and large are not mathematical concepts. They are rather

vague concepts concerning our present or future ability to perform certain type of
algorithms. Nevertheless, there are “mathematical” relations between them. Observe
that if n is a small number, then a number with n digits is medium size. In other
words, if n is small, then 10n is medium size. Also, if N is medium size, but not
small, then 10N is large. Notice that these relations are based on the exponential
function, which plays an important role in complexity.

Often we also compute with data that are not numbers. In such a case we encode
them by strings in a finite alphabet, usually strings of zeros and ones. This is not
much different from numbers, as we can always imagine numbers as written in
binary representation. To get a more general description of the three sizes, we can
speak about elementary operations with strings.

A Field Full of Open Problems

In spite of the huge amount of results produced in mathematics, what we know
seems to be still just a small fraction of what we would like to. That there are more
unsolved problems than results, can be said about every field of science. Typically,
when a big problem is solved, it raises more new questions than it gives answers to.
However, there are differences; in some fields we have a lot of fundamental results
and we just need to get deeper knowledge, in others the fundamental questions are
still open. Complexity theory is an example of the latter kind. It seems that what we
can prove now are only basic facts, while the truly interesting facts are still out of
our reach. We can make conjectures about the fundamental relations, but we do not
have means to prove them.

The problem that is the simplest to explain is:

Is multiplication more difficult than addition?

Everybody “knows” that it takes more time to multiply two large natural numbers
than to add them. Therefore children start with addition and learn multiplication
later. Circuit designers also “know” that circuits for multiplication are more complex
than circuits for addition. But then why are we not able to prove it? The point is that
most people only know the usual school algorithm for multiplication in which we
have to, among other things, multiply every digit of the first number with every digit
of the second one. This, of course, takes more time than only adding the digits on the
same places. Thus this particular algorithm for multiplication needs more time than
the usual algorithm for addition. However, the question is whether every algorithm
for multiplication needs more time than the usual algorithm for addition. The most
naive approach to this problem would be to show that the school algorithm is the

370 5 The Complexity of Computations

fastest possible. However, that is not true: we do have algorithms that run much
faster than the school algorithm when the numbers are large.

If the answer to this problem is as we expect (that the multiplication of integers is
a more complex operation than addition), then it is a typical impossibility problem.
It would mean that it is impossible to find an algorithm for multiplication that is as
fast as the algorithm for addition. This is essentially the form of all big problems in
complexity theory.

What is not quite clear is why we are not able to solve these problems. As we
already know, impossibility problems are usually hard, which is one explanation.
Another reason may be that since the field is young, the theory and the proof meth-
ods are not sufficiently developed. But there may be more fundamental reasons. We
will see in Chap. 6 that the problems in complexity theory are connected with prob-
lems in foundations of mathematics. Thus it is conceivable that we may need new
mathematical axioms to solve them.

Let us look at the most important of these problems.

The P Versus NP Problem

The P versus NP problem is the main open problem in complexity theory. It is not
by accident that it was the first of the deep problems asked in this field; it is because
it is a really fundamental question, and at the same time it is of practical interest. In
plain words it can be very roughly stated as the question:

Can we always replace the brute-force search by an essentially more efficient
algorithm?

Suppose we are looking for a solution of a problem P and we have an efficient
way how to determine what is a solution and what isn’t. Then we can find a solution,
if there is any, by searching the entire space of possible solutions. The question is
then whether we are able to find a better algorithm which does not need so much
time.

It is important to realize that here the brute-force algorithms are used only to
define a certain class of problems. It does not mean that we are interested in such
algorithms; on the contrary, we would like to avoid them. There are other ways
to define the same class. One of them is based on the concept of guessing. If, for
example we are searching a factor of a number, we may simply try to guess it. If
the number is of medium size, the probability that we succeed is usually extremely
small and we cannot use it in practice, but in theoretical research we can use this
property as the definition of a certain type of problems. Thus we can restate the P
vs. NP problem, again very roughly, as follows.

Suppose we know that we can find a solution by guessing. Can we then find a
solution by a fast algorithm?

It should be stressed that the two descriptions above are only attempts to describe
the problem succinctly and in plain words. I have also assumed that most readers

5.1 What Is Complexity? 371

have some experience with programming, that’s why I presented it in the form of
replacing one type of algorithm by another, but people with different backgrounds
may prefer different descriptions. A logician, for instance, would see the essence of
the problem rather in the classical question of replacing existence by construction in
the context of efficient computations. I will shortly give a more precise definition,
which will eliminate possible ambiguities in the interpretation.

Intuitively the answer to the problem seems to be clear: there is no reason why
such an algorithm should always be possible. This intuition is based on our everyday
experience: if I absent-mindedly put some paper in a random place, then next time
I need the paper I have to search all drawers to find it because the information of
where it is lost. However, this argument is wrong. In the P vs. NP problem the
crucial point is that we ask about mathematical properties. Hence the information
about the solution is present; there is no uncertainty about where the solution is.

Consider the problem of factoring integers, which is one of the situations to
which P vs. NP problem refers. For given numbers N and M , we can easily de-
termine if M is a factor of N , but we do not know how to find M without trying a
lot of numbers. If I forget where I put the paper, then from my point of view it can
be anywhere and I cannot use reasoning to determine its place. On the other hand,
factors of a given number N are uniquely determined by N and I can use mathemat-
ics to find one. There are several ingenious algorithms for integer factoring based
on non-trivial mathematical results which perform much better than the trivial brute
force search (but they are still not fast enough).

From the point of view of foundations, the most important search problem is the
proof search. It is the problem to find a proof for a given formula assuming that we
know that there is a medium size proof.

Here is an example of a problem coming from practice. Suppose an agent needs
to visit certain towns. There are airline connections between some pairs of towns
but not between every pair. Can he travel so that he lands in every town exactly once
and return to the town where they started? Assuming that every flight costs the same
this would optimize the cost of his task.3 Formally, it is a problem about graphs. It is
the question if a given graph has a Hamiltonian Cycle, where a Hamiltonian cycle is
a cycle that goes through every vertex of the graph and passes every vertex exactly
once.

Example The graph of the cube is Hamiltonian, as apparent in the second drawing
in Fig. 1.1 on page 6.

This problem is simply called Hamiltonian Cycle. Again the trivial algorithm for
this problem is to try all possible ways to go along the edges of the graph and return
to the same vertex. The number of these attempts to find a Hamiltonian cycle can be
extremely large even for fairly small graphs. The question is: can we do it essentially
better?

3This is a simplified version of the Traveling Salesperson Problem in which we may have different
costs associated with different connections.

372 5 The Complexity of Computations

A lot of problems of this type can be presented as a problem of finding a solu-
tion of one or a system of equations in some limited range. Integer factoring is the
problem of finding a solution to the following simple equation

x · y =N

for a given natural number N with the constraint x, y > 1. Solving polynomial equa-
tions in finite fields is another important class of such problems. Yet another very
important problem is called Integer Linear Programming. It is the problem of solv-
ing systems of linear inequalities in the domain of integers. One can find such prob-
lems in every branch of mathematics, as soon as one starts looking for algorithms.

Polynomial Time and Nondeterministic Polynomial Time

I will now state the P versus NP problem more precisely in order to show that it is
a concrete mathematical problem.

First we have to replace the vague concepts ‘small’ and ‘large’ by a precise one.
To this end we have to return to considering all infinitely many inputs and the depen-
dence of the time on the length of inputs. Then we will specify a class of problems
according to the asymptotic behavior of the functions that bound the time and say
that these problems are easy. This will be the class P, Polynomial Time.

Let us recall the concept of a decision problem. We usually think of a decision
problem as a condition that specifies certain numbers, strings, or other finite struc-
tures. But since in mathematics we use set theoretical approach that identifies the
set with the problem, a decision problem is simply a set of some finite structures. If
we assume the standard computational model, the Turing machine, the inputs will
be finite strings of symbols from a finite alphabet. So a decision problem is formally
a set of strings and when we talk about sets of numbers, or a finite structure of some
type, we are assuming that they are encoded by strings.

The class of functions that we use to define P are polynomials. Thus P is the
class of decision problems that can be computed using at most polynomially many
steps. Here is a formal definition.

Definition 9 P is the class of sets of strings such that A is in P if and only if there
exists a Turing machine M and a polynomial p such that

1. M stops on every input, and for inputs of length n, it uses at most p(n) steps
before it stops;

2. M accepts the set A (which means that it prints 0) if and only if the input belongs
to A.

Computations that use only a polynomial number of steps play a central role
in complexity theory. So we will use this concept also in the context of functions.
We say that a function f is computable in polynomial time if there exists a Turing
machine that computes the function f within such a polynomial bound.

5.1 What Is Complexity? 373

In general we can consider all polynomial functions (for example, 3x2− 2x+9)
but what really matters is their asymptotic growth. The asymptotic growth of a poly-
nomial is fully determined by the leading term (which is 3x2 in the example). Hence
we could use a simpler class of function instead of polynomials, say, the class of
functions of the form axb , where a and b are positive constants.

We call sets such as P complexity classes because they define sets of decision
problems of certain complexity. P is a mathematical approximation of decision
problems that can be practically solved, the “easy” problems. In computability the-
ory we say that a problem is decidable, or recursive, if there is a Turing machine
that decides the problem in a finite number of steps. In complexity theory we have
a better approximation: a problem is in P if it is decidable in a polynomial number
of steps.

How good is this approximation? One can immediately give examples showing
that it has little to do with practical solvability. The first example is when the con-
stant at the leading term is large. Say, we have the polynomial function 101000x.
An algorithm requiring so much time is practically useless. If the exponent is large,
say we have the polynomial function x1000, it does not work either. We can solve
some small instances with such an algorithm, but the large growth of this function
prevents us from using it for just a little larger data.

Yet, in general, P works pretty well. For one thing, if we show that a decision
problem is in P by finding a polynomial algorithm, then the constants in the poly-
nomials are, as a rule, very small. For another, this definition has a very desirable
property: if we combine several polynomial time algorithms, we obtain again a poly-
nomial algorithm. Naturally, when combining a few simple things, we expect the
result to be simple too. In fact, the class of functions bounded by polynomials is the
smallest natural class that ensures this property.

Next we need to define the complexity class NP. In plain words, a set A is in
NP if the membership in A can be characterized as follows. An element x is in A

if there exists a witness of bounded size y that testifies that x is in A. To make this
more precise, we require that

1. the size of y is at most polynomially larger than x, and
2. given an x and y, one can decide in polynomial time whether or not y is a witness.

Here is a formal definition.

Definition 10 NP is the class of sets A that can be defined as follows. For some
binary relation R ∈ P and a polynomial p,

x ∈A if and only if there exists a y such that |y| ≤ p
(|x|) and (x, y) ∈R.

(5.1)

Here |x|, |y| denote the lengths of the strings x and y. A binary relation R on
strings is in P if its natural encoding R′ by a set of strings is in P. One natural
encoding is obtained by taking an extra separating symbol # and defining R′ =
{x#y; (x, y)∈R}.

Let A be in NP and let p be a polynomial that limits the size of witnesses. Given
an input string x of length n, we can decide whether x is in A by trying all y such

374 5 The Complexity of Computations

that |y| ≤ p(|x|). We can test each y in polynomial time—this is the condition that
the relation R is in P. However, the number of potential witnesses that we need to
test is huge: 2p(n). In concrete examples, for every input string x, there is a natural
set of potential witnesses Bx . Although the lengths of the strings in a typical Bx are
slightly smaller than the length of x, the size of Bx is still too large and we cannot
apply brute force search. If one wants to prove that a problem in NP is actually in
P, then trying to reduce the search space is not a good strategy.

Let us consider some examples.

Examples 1. The first example is the problem to determine if a natural number is
prime. This problem is mathematically represented by the set Primes, the set of all
prime numbers. More precisely, Primes is the set of 0–1 strings that represent prime
numbers in binary notation. It is easy to show that the complement of this set, the
set Composites, is in NP. Given a number N , a witness of N being composite is
a number M such that 1 < M < N and M divides N . Since the division can be
computed in polynomial time, the latter condition defines a binary relation in P.
The bounding polynomial p(x) is simply x.

Note that the input length is n ≈ log2 N . Hence the number of potential wit-
nesses, the numbers between 1 and N , is exponentially large. Nevertheless, there is
an ingenious algorithm that decides primality and runs in polynomial time. This is a
result of M. Agrawal, N. Kayal, N. Saksena [2]. So this is an example of a problem
that is in NP by definition, but in fact it is even in P.

2. The problem Hamiltonian Cycle is represented by the set of all graphs that
have Hamiltonian cycles, the Hamiltonian graphs. In this example, for a graph G,
a natural set of potential witnesses is the set of all cycles C on the set of vertices of
G. The relation R is: C is a Hamiltonian cycle in G. For given G and C, it is very
easy to check whether C is a Hamiltonian cycle in G; in particular, one can do it in
polynomial time.

The P vs. NP is the problem whether or not these two classes are the same, which
can be written as the simple equation:

P=NP?

P is clearly a subclass of NP (use a dummy witness to prove it). Thus the open
problem is whether NP is larger than P.

As stated, the P vs. NP problem is to determine, for every set in NP, whether it
is in P. But this pair of complexity classes has a remarkable property that reduces
this question to a single NP set. There is a set A in NP such that P = NP if and
only if A is in P. In fact, hundreds of such sets have been found; one of them is
Hamiltonian Cycle. Such results are proved using polynomial reductions between
sets. A polynomial reduction of a set X to a set Y is a polynomial time algorithm
that reduces the decision problem for X to the decision problem for Y . A set X is
called NP-complete, if it is in NP and every set in NP can be reduced to it. NP-
complete sets have the property mentioned above.

Proving NP-completeness is also important from a practical point of view. If
we know that a set A is NP-complete, then it still may have a polynomial time

5.1 What Is Complexity? 375

algorithm, but since we know that the problem P vs. NP is open, we know that
nobody knows a polynomial algorithm for the set A. This has become a standard
way of showing that a problem is hard, though formally it is hard only if P = NP.
Thus in practice we use P =NP as an axiom.

When talking about algorithms all the time, one may get the impression that
such things are not relevant for classical parts of mathematics, which is not true.
Imagine, for example, that you are a mathematician working in finite combinatorics
and your favorite topic is Hamiltonian graphs. Then most likely the theorem that
you would like to prove is a characterization of the graphs that are Hamiltonian.
The theorem should say that a graph is Hamiltonian if and only if some condition
(simpler than the one by which they are defined) is satisfied by the graph. To give
an example of such a condition, consider Euler graphs. These are like Hamiltonian
graphs, but instead of having a cycle that goes exactly once through every vertex,
they contain a cycle that goes exactly once through every edge (and it may visit
vertices repeatedly). You surely recall puzzles in which you should draw a given
picture without lifting your pen and ending on the same point on which you started.
The well-known characterization of these graphs is that in such a graph every vertex
is incident with an even number of edges. (This condition is, clearly, necessary;
the nontrivial part, though not very difficult, is to prove the converse.) There is no
such theorem for Hamiltonian graphs. If P were not equal to NP, we would have an
explanation for the absence of such a theorem. If, moreover, we specified precisely
what type of characterization we wanted, we might be able to prove that there is
no such characterization. Our experience confirms that there is a relation between
computational complexity and characterizations: NP-complete problems typically
do not have nice characterizations.

The problem P vs. NP was first explicitly stated by Stephen A. Cook in a paper
published in 1971 [48]. The title of the paper is The Complexity of Theorem-proving
Procedures, which hints that the paper concerns logic. The main result of the paper
was the theorem that the problem of satisfiability of propositional formulas is an NP-
complete set. Independently and approximately at the same time the same result was
proved by Leonid Levin [182]. Though nobody stated the problem explicitly earlier,
some researchers considered related questions before Cook and Levin. Often quoted
is Gödel’s letter to von Neumann sent in 1956 in which he asked how difficult it is
to decide, for a given first order formula φ and a number n, whether there exists a
proof of φ of length at most n [100]. Specifically, he asked if the time complexity of
this problem can be bounded by the function cx or cx2 for a constant c. This is the
proof-search problem mentioned above and we know that this is an NP-complete
set. Another problem that he mentioned in his letter was the complexity of Primes.

The reason for Cook’s choosing P is obvious: it stands for polynomial. The NP
comes from nondeterministic polynomial. A nondeterministic Turing machine is a
modification of Turing machines in which the machine in some states can do one of
several actions. Hence, for a given input string, the way how the machine computes
is not uniquely determined, which means that several computations are possible. We
say that a nondeterministic Turing machine accepts an input string if at least one of
the possible computations ends in the accepting state. Using nondeterministic Tur-
ing machines we define NP as the class of sets that are accepted by nondeterministic

376 5 The Complexity of Computations

Turing machines in polynomial time. Notice that the P vs. NP problem is a question
about the possibility of eliminating an existential quantifier whose range is bounded.
The concept of nondeterministic machines is just another way of expressing such an
existential quantification.

The P vs. NP problem immediately drew attention of researchers in computer
science. Many attempted to solve it, but soon it became clear that there were no
mathematical means that one could use. A number of results related to this problem
have been proved, but the general feeling is that we have not progressed very much
during those more than 40 years. Gradually the P vs. NP problem became well-
known in the whole mathematical community. Bets about when it will be solved
and prizes for the solution have been proposed. In 2000 the scientific board of the
Clay Mathematics Institute included this problem on the list of seven most important
problems in mathematics. The institute offers the prize of one million US dollars for
the solution of each of these problems. (In Chap. 1 I mentioned another problem that
is on the list, the Riemann Hypothesis.)

Complements of NP Sets

The existential quantifier plays a crucial role in the definition of the class NP. What
happens if we replace it by the universal quantifier? We know that negation inverts
the quantifiers; specifically, if we negate an existentially quantified formula, it be-
comes equivalent to the universally quantified negated formula. In symbols it is:

¬∃x φ ≡ ∀x ¬φ.
If we translate this relation into the set-theoretical language, we will see that re-
placing the existential quantifier by the universal quantifier in the definition of NP
results in replacing the sets in the class by their complements. So we define coNP,
co-Nondeterministic Polynomial Time, as the class of complements of sets X ∈NP.

This duality can be extended to other concepts. For example, we can define
coNP-complete sets. The basic NP-complete set is SAT , the set of satisfiable
boolean formulas. By the duality, we obtain that TAUT , the set of propositional
tautologies, is coNP-complete.

Since P is closed under complements, P = coNP if and only if P = NP. The
question whether NP= coNP is different. One can easily see that P= NP implies
P = coNP, but we do not know if the opposite implication holds true. So we can-
not exclude that NP= coNP but P = NP. The problem NP versus coNP plays the
central role in proof complexity.

Time Versus Space

When we define Polynomial Time, the complexity class P, it does not matter which
computational model we use. Time measured by all reasonable models differs at

5.1 What Is Complexity? 377

most by a polynomial. When we want to have more precise estimates on time we
must specify the model. In complexity theory we use Turing machines, which may
seem not quite adequate. Indeed, the original Turing machines which have a single
tape are not very fast. For instance, if such a machine has to determine if two strings
on the tape are the same, it has to go back and forth between the two strings many
times. Therefore we rather use multitape Turing machines, Turing machines with
several tapes. In such machines every tape is equipped with one read-write head.
The task in the above example is easy for a two tape machine: the machines first
copies the first string from the input tape to the second tape by moving its heads
simultaneously; then it puts the input head on the first letter of the second string and
the head on the second tape on first letter of the string on the second tape. Then it
can compare the two strings by moving both heads simultaneously.

Computers do not work like a multitape machine. A theoretical model that de-
scribes computers better is the random access machine. By the random access we
mean the possibility to access any place in the memory directly. This means that
when a machine reads (or writes to) a memory unit i and next it needs to read (or
write to) the memory unit j , it does not have to pass through the intermediate posi-
tions between i and j and can jump directly to j . It is also much easier to program a
random access machine than a multitape Turing machine, but surprisingly, they are
not essentially faster. Thus in theoretical research we prefer the simpler concept, the
multitape Turing machine.

Once we have specified the computation model we can measure the time com-
plexity very precisely. One of the early results in complexity theory (from 1960s)
was the Time Hierarchy Theorem proved by J. Hartmanis and R.E. Stearns [114].
It states that for every reasonable function bounding the time of Turing machines,
there exists a set whose complexity is very close to this function. Thus we have a
whole range of possible time complexities.

In order to state this result more precisely, one should describe the set of functions
that we can use as time bounds in this theorem, the time constructible functions.
Since this is a rather technical point I will postpone it to the Notes. Let me only
mention that the class includes all polynomials and other functions defined by the
commonly used functions, such as the exponential function.

Theorem 36 (Time Hierarchy) Let f (x) and g(x) be time constructible functions.
Assume that f (x) grows faster than g(x) in the following sense:

lim
x→∞

g(x) logg(x)

f (x)
= 0.

Then there exists a set that can be computed in time f (x), but cannot be computed
in time g(x).

The proof of this theorem is, essentially, an adaptation of the undecidability of
the halting problem (see page 301). As it is an important application of the diago-
nalization method, it is worthwhile to describe the proof in more detail. Let Time(g)
denote the class of sets that are computable in time g(x). Our goal is to construct a
set A such that

378 5 The Complexity of Computations

1. A is outside Time(g), and
2. A is computable in slightly larger time (the better upper bound we get on the

time complexity of A, the finer hierarchy we obtain).

To construct a set A that is not in Time(g) by diagonalization is easy. We pick an
input string wB for every set B in Time(g). We put wB in A if and only if wB is not
in B . This guarantees that A is not in Time(g). Since we need A to be computable
in limited time, we have to be more careful; we cannot simply enumerate all sets in
Time(g). We also cannot enumerate all Turing machines that run in time g(x), since
this property is (for most g) undecidable. So what we do is to enumerate all Turing
machines. For every M , we pick an input string wM , say the code of M . Then we
decide whether or not to put wM as follows. We simulate the computation of M on
wM for g(n) steps, where n is the length of wM . If the machine does not stop within
this time bound, we do not care, since it does not define a set in Time(g). If it stops,
we put wM to A if and only if M does not accept this string.

Thus A is not in Time(g) and it remains to determine the time complexity of the
set A. It turns out that we need just a little more than g(n) logg(n) to simulate g(n)

steps of a given machine. The reason is that we have to do it on a machine with k

tapes, where k is a fixed constant, whereas machines that we need to simulate have
arbitrarily large (finite) number of tapes. Machines with more tapes are faster.

Let us consider a couple of applications of the Time Hierarchy Theorem. Accord-
ing to this theorem there are sets computable in quadratic time (with time bound cx2,
c constant), but not in linear time (with time bound cx). Let EXPTIME be the class
of sets computable in time exp(xc) for c constant. Clearly, P⊆ EXP. It is a simple
corollary of the theorem that EXP contains more sets than P; thus P = EXP.

The space complexity is informally defined as the amount of memory that is
needed for computation. Again, we measure it as a function of the length of the
input data. Formally, we say that a Turing machine uses space s on a given input, if
its heads visit s squares on the tapes during the computation. In analogy with time
one defines Polynomial Space, denoted by PSPACE, as the class of sets that can be
computed with space bounded by a polynomial.

For space complexity, we have a similar hierarchy theorem. The Space Hierar-
chy Theorem can be proved in a form which is stronger than we have for time. It
suffices to assume limx→∞ g(x)/f (x) = 0 in order to prove that there exists a set
computable in space f (x) and not in space g(x).

The hierarchy theorems give us almost optimal information about time classes
and space classes when time and space is considered separately. Problems start
when we want to compare time classes with space classes. All we can do is to
prove a couple of simple relations. The first one is that if a set is computable in time
f (x), then it is also computable in space cf (x) + c, for some constant c. This is
easy: if a Turing machine with c tapes makes only f (n) moves, then it can visit at
most cf (n) + c squares. Thus, in particular, we have P ⊆ PSPACE. It is also not
difficult to show that NP⊆ PSPACE. Indeed, brute-force search needs only polyno-
mial space. Thus P = PSPACE would follow from P =NP, but we also conjecture
that NP = PSPACE. The class PSPACE also possesses complete problems; typical

5.1 What Is Complexity? 379

PSPACE-complete problems are to decide who has a winning strategy in a combi-
natorial two-player game of bounded length. This is an explanation of why we do
not have winning strategies for games such as chess and go. However, it is only a
supporting evidence about the hardness of these concrete problems; we are not able
to prove any nontrivial lower bounds on the complexity of these games.

Examples 1. We may never find out whether or not white has a winning strategy in
chess. Because of the 50-move rule, one could, in principle, analyze the complete
tree of plays using 50 chessboards and determine who has a winning strategy or
whether there is a forced draw, but the number of plays is enormous. So the problem
is not space, but time.

2. The game of Hex is simpler and thus more amenable to be analyzed. A simple
argument shows that the first player has a winning strategy, but winning strategies
are known only for boards smaller than the standard one. The general problem to
determine, for a position on an n×n board, who has a winning strategy is PSPACE-
complete, which means that the existence of an efficient algorithm for this problem
is very unlikely [244].

To bound space by time we need to know how many steps a machine can make if
it uses space f (x). One can easily estimate this number by exp(c · f (x)), for some
constant c. This is the number of all possible configurations of the machine and the
tapes that can appear if space is restricted to f (x). This is also an upper bound on
how many steps the machine can make, since if the machine ran longer, it would
go into an infinite loop, but we assume that it always stops and produces the correct
answer. This, in particular, yields PSPACE⊆ EXP.

There is a small improvement of the simulation of time by space, but except for
that nothing else is known.4 It is possible that these simulations are the best possible,
but we are not able to prove it. The best way to state these open problems is in terms
of complexity classes. We have

P⊆ PSPACE⊆ EXP.

Thus PSPACE is somewhere between P and EXP, and this is essentially all we
know about it! We believe that both inclusions are strict, but we are neither able
to prove that P = PSPACE, nor to prove that PSPACE = EXP. It is interesting,
however, that we know that at least one of them is strict. This follows from what we
have observed above that P = EXP.

For researchers working in computational complexity theory, it is important to
know that at least one of the above inclusions is not equality. People from outside
of this field sometimes say: “What if somebody finds a polynomial algorithm for
an NP-complete problem and we thus get P = NP? Then all the talk about deep
problems will turn out to be only humbug!” It is true that finding such an algorithm
would probably be the simplest way to solve the P vs. NP problem and it may not
require developing a deep theory. This can happen essentially with any of the open

4Assuming f is time constructible, sets computable in time f (n) are computable in space
f (n)/ logf (n), see [132].

380 5 The Complexity of Computations

Fig. 5.1 A diagram of some basic complexity classes. The upward lines show strict inclusions.
Since each of these columns corresponds to one type of resource, inequalities in the columns can
be proved by diagonalization. The right-upward lines show inclusions that correspond to stronger
resources; all these inclusions may be equalities. Equalities propagate upwards; for example, if
P = NP, then EXP = NEXP. The left-upward lines are exponential simulations; for them, it is
also open whether they are strict inclusions or equalities. EXPEXPTIME is doubly exponential
time, EXPSPACE is exponential space, and NEXP is nondeterministic exponential time

problems about complexity classes, but we do have reasons to believe that it cannot
happen for all. In the pair of problems P= PSPACE? and PSPACE= EXP? at least
one has the negative solution. We may be able to prove, for example, P = PSPACE
by proving PSPACE= EXP, but there are more complexity classes between P and
EXP and it is not likely that each collapses to P or to EXP. So, very likely, some
inequalities between complexity classes cannot be proved by proving equalities.

Some basic complexity classes and relations between them are shown in Fig. 5.1.

Circuits

In computational complexity we use another important model of computation—
circuits. In circuits functions are decomposed into a combination of elementary

5.1 What Is Complexity? 381

Fig. 5.2 A Boolean circuit
for computing the sum of two
two-bit numbers x2x1 and
y2y1 yielding a three-bit
number z3z2z1. The symbols
∧ and ⊕ denote the
operations AND and XOR
(multiplication and addition
modulo 2). The computation
proceeds from the bottom to
the top. The 0’s and 1’s at the
gates show the computation
of 11+ 1= 100

functions. Circuits are mainly used to compute Boolean functions f : {0,1}n →
{0,1}m. This means that the task is for an input string of zeros and ones of length n

to compute the string of length m assigned to it by the function. In Boolean circuits
the elementary functions are some simple Boolean functions, usually unary and bi-
nary Boolean functions. Such elementary Boolean functions are also called logical
connectives; therefore some authors use the term logical circuits. We are now in-
terested in complexity, so we do not care about the interpretation of the Boolean
functions in logic; the main thing is that they define simple operations. Also the fact
that we use two values is not important, it is just because this is the smallest value
that we can use. In electronic circuits two values is also the standard, but the reason
for that is the suitability for production, reliability etc. In theory we also use circuits
computing with various other sets of values, in particular, algebraic circuits which
compute with numbers.

Formally, a Boolean circuit is an acyclic graph in which some nodes are labeled
by the input variables and the other nodes are labeled by elementary Boolean func-
tions. Furthermore, some nodes are also labeled by the output variables. This is very
much like in real circuits, thus we also often call the edges of the graphs wires and
the nodes logic gates. Given an input string the computation proceeds as follows.
First we assign the values to the input nodes and then we gradually compute the val-
ues on the nodes labeled by elementary Boolean functions. Eventually we read the
output bits on the nodes labeled by the output variables. An example of a Boolean
circuit is in Fig. 5.2.

The complexity of the circuit is the number of nodes. The circuit complexity of a
Boolean function is the minimal complexity of a circuit that computes the Boolean
function. Having a single number as the complexity of a Boolean function corre-
sponds better to our intuition about what complexity is. However, soon I will talk

382 5 The Complexity of Computations

about infinite sequences of Boolean functions and the asymptotic growth of the com-
plexity, which is not much different from the time and space complexities defined
by means of Turing machines.

The set of elementary functions is assumed to be finite and complete in the sense
that it must be possible to express any Boolean function using the elementary ones.
We call such a set a complete set of connectives, or simply basis. Circuit complexity
depends on bases, but for different bases the value is the same up to a multiplicative
factor. Hence, if we are interested in the asymptotic growth, the basis does not mat-
ter. The same is true if we replace the two values by some finite set of values; again
the difference is only a constant factor.

In order to justify this complexity measure, we must show that there are func-
tions of various complexities, small and large. Again, it is natural to call a function
whose circuit complexity is polynomial ‘small’ and those whose circuit complex-
ity is exponential ‘large’. To give examples of functions with small complexity is
not a problem. The circuit complexity theory was founded by Claude Shannon in
the 1940s [264]. One of the first things he observed was that there exist functions
of complexity almost 2n, in fact, the majority of all functions of n variables are so
complex. The proof is based on a simple idea. Count the number of Boolean func-
tion of n variables (this is 22n

) and count the number of circuits of size at most s.
If the number of circuits is smaller, then there must be a function which cannot be
computed by such circuits. One can compute that the number of circuits smaller
than 2n/cn, for some constant c, is less than 22n

, hence there are functions whose
complexity is larger than 2n/cn.

Note that this is a nonconstructive proof, a proof which does not provide any
explicit example of such a function. Seventy years later we are still unable to give a
constructive proof. In fact, we are unable to prove a nonlinear lower bound for an
explicitly defined function!

Such a statement may give the impression that nobody has worked on circuit
complexity since Shannon. This is not true; there are numerous results in cir-
cuit complexity. Very efficient circuits have been found for many functions, lower
bounds have been proved for some restricted classes of circuits and circuits play an
important role in other parts of complexity theory. Lower bounds for general circuits
is the only part where no progress has been achieved.

One may suggest that Turing machine complexity is related to the complexity of
software and circuit complexity is related to the complexity of computer hardware.
The truth is rather that these two concepts are just two facets of the same thing.
Let me first give a brief intuitive explanation, based on real computers, why Turing
machine and circuit complexities are closely related. Suppose we want to have a
device for efficiently computing a function F . We can either construct a processor
for F , or program a computer to compute F . Given an electronic circuit, we can
program a computer to simulate the circuit; thus the algorithmic complexity is not
larger than the hardware complexity. Vice versa, given a program for computing F ,
we can design a circuit by assigning a gate to each elementary operation needed to
execute the program; thus we obtain a circuit computing the function F whose size
is bounded by the time complexity of the program. So these two complexities are
the same up to some factor.

5.1 What Is Complexity? 383

I will now explain it in more detail using the matrix model of computation in-
troduced in Chap. 2, page 137. On page 144 I described a transformation of a com-
putation of a Turing machine T into a matrix M for inputs of a given length n.
Recall that the rows of the matrix M correspond to the steps of the computation of
the machine T and the columns of M correspond to the squares on the tape of T .
(For the sake of simplicity, I will assume that T has only one tape.) The entry in
the matrix should furthermore encode a bit of information about whether the head
of T is present on this square or not, and about the state of the machine. Thus the
entries in the matrix M are from some finite alphabet A which is big enough to
encode a symbol on the tape, a bit marking the position of the head and a state
of T . The symbols in the first row are determined by the input string. For i > 1,
the symbol in the row i and column j is uniquely determined by the symbols on
positions (i − 1, j − 1), (i − 1, j), (i − 1, j + 1), the three adjacent symbols in the
row above. More precisely, if j is the first or the last column, then we consider only
(i − 1, j), (i − 1, j + 1), or (i − 1, j − 1), (i − 1, j), the two adjacent symbols in
the row above. In other words, the entry on (i, j) is a function of the previous two
or three entries.

In this way the matrix can be viewed as a circuit C. The circuit computes with
values in the set A and uses binary and ternary functions defined on A as the ele-
mentary functions. It has a rectangular form, in which one dimension corresponds
to the time of the machine T and the other to space. We only take as many rows as
is the maximal number of steps that T makes on inputs of length n and the number
of columns is the maximal number of squares that T visits in some computation on
inputs of length n.

Now suppose that T operates only on bits. Then for the fixed input size n, T
computes a Boolean function. So, instead of the circuit C operating with symbols in
the finite alphabet A, we may want to have a Boolean circuit which uses only binary
Boolean function as the basis. To obtain such a circuit we encode the elements of
A by binary strings. Thus the binary and ternary functions defined on A become
some Boolean functions. For each such function g, we choose a Boolean circuit
and replace every occurrence of the function g in C by this Boolean circuit. By this
transformation, we increase the size of the circuit only by a constant factor. This
shows that if the time complexity of T is t (x) and the space complexity is s(x), we
get a circuit of size at most ct (n)s(n), for some constant c. If we are only interested
in time, we can upper-bound the size of the circuit by ct (n)2, since we know that
always s(x)≤ t (x). In particular, if the time of T is bounded by a polynomial, then
the size of the Boolean circuit is also bounded by a polynomial.

It is clear that the above transformation produces only circuits of a special form.
In order to understand the relation of Turing machines to circuits, we should exam-
ine what is the difference between a general circuit and a circuit obtained from a
Turing machine. To simplify this problem, let us only consider the circuits that were
obtained in the first part of the transformation. In the notation used, it is the circuit C
which uses values from the set A. Let us simplify it further and compare C only with
circuits that have the same rectangular form with the same connections between the

384 5 The Complexity of Computations

Fig. 5.3 A uniform circuit

gates5 and which use the same set of values A. Let D be such a general rectangular
circuit. As the two circuits have the same underlying graph, the difference between
them is only in what functions at which nodes of the graph are used. One can show
that in C there are only three different functions: one binary function assigned to all
nodes that correspond to the first row, one ternary function assigned to all nodes that
are neither in the first column nor in the last one, and one binary function assigned
to all nodes corresponding to the last column. In D, however, various functions can
be assigned to the nodes in an arbitrary manner.

Furthermore, for the Turing machine T , the three functions are not only assigned
to a given input size n, but the same functions are also used in the circuits for all
input sizes. Hence the circuits obtained from Turing machines have a very regu-
lar form; we say that they are uniform, in contrast with general circuits that are
nonuniform (see Fig. 5.3). This naturally leads to the concept of nonuniform com-
plexity classes and to the question what properties do they share with their uniform
counterparts. I will define only the nonuniformP, the nonuniform version of P.6

This is the class of all sets of 0–1 strings with the following property. A set A is in
nonuniform-P if and only if for some polynomial p(x), for every input length n,
there exists a circuit Cn of size at most p(n) which accepts exactly those strings of
length n that are in A. In other words, we have a sequence of circuits of polynomial
size that compute the sections of the set of A.

The transformation of a Turing machine computation into a circuit shows that P
is contained in nonuniform-P. To determine how much nonuniform-P is different
from P is another fundamental problem of complexity theory. We know for sure that
the two classes are different. This follows from the fact that nonuniform-P contains
sets that are not computable. The reason is that since we are free to choose a circuit
for each n in an arbitrary way, we can take some trivial circuits that accept all inputs
of length n for some numbers n, and take some circuits that reject all inputs of length
n for the other numbers. In this manner we can encode an arbitrary subset of natural
numbers into a set in nonuniform-P.

5One can prove that this is an inessential restriction.
6I deviate from the standard notation which is P/poly.

5.1 What Is Complexity? 385

We seemingly deviate from our original goal to restrict the class of computable
sets to a subclass which is closer to what is practically computable, but our intuition
tells us that it is all right. In practice we consider only some small range of the input
sizes, the ‘medium size’ inputs, and we do not care what happens for inputs whose
size is ‘large’. Thus we may expend a lot of effort to design a special purpose circuit
for a given task and then use it for efficient computation. From the theoretical point
of view, there is no distinction between circuits and Turing machines if we have a
fixed input size. We can equivalently say that we may need a lot of effort to pro-
duce a fairly complex program, but once we have it, it runs fast. For instance, such
a program may use precomputed tables of numbers, tables that need a lot of time to
be produced. To express it shortly, P is a class of problems efficiently computable
by small programs, whereas nonuniform-P is a class of problems efficiently com-
putable using programs that may be very hard to produce.

The main problem concerning nonuniform complexity classes is how big uniform
classes are contained in nonuniform-P. We believe that none of the reasonable
uniform extensions of P is contained in it. In particular we conjecture that NP is not
a subset of nonuniform-P. That said, we are even unable to prove that EXP is not
contained in nonuniform-P. We will see later that this is an important problem.

Another important application, actually the first one, of the transformation of
Turing machine computations to circuits is in the NP-completeness theory. I will
say more about it in Notes.

How to Prove that P �= NP?

The first idea that comes to mind is to use the same method as is used in proving
that some problems are algorithmically unsolvable. This is the method that we call
diagonalization, whose origin goes back to Cantor’s proof that the set of real num-
bers (or equivalently, the set of all subsets of natural numbers) has larger cardinality
than the set of natural numbers. This method works well, as we have seen, when
one needs to separate two classes defined by restricting the same computational re-
source. Thus one can separate pairs of time complexity classes and pairs of space
complexity classes. But when we need to separate two classes of different a type,
it does not work. We even have an argument that shows that diagonalization cannot
solve problems such as P vs. NP, which I am going to sketch now. (But one can
never exclude that some very unusual application of the method will work anyway.)

If you look at a typical proof based on diagonalization, such as the proof of the
Time Hierarchy Theorem, you will notice that it uses very little information about
how Turing machines compute. In particular the proof does not use the fact that
the steps of the computation are very simple operations (reading the input symbol,
rewriting it and moving the head to an adjacent square). If instead of these simple
operations, more precisely, if, on top of these, we also allow some complex ones,
the proof goes through without a problem. So let us consider an alternative world
in which Turing machines can use a certain complex operation. You can imagine it

386 5 The Complexity of Computations

as if some company would succeed in producing a special purpose processor that
computed some hard function. Then on computers equipped with this processor one
could compute many things that otherwise would be too hard. Everything would be
the same, except that when programming one would be allowed to use this special
function like the usual functions present in all programming languages.

Let us now consider the classes P and NP in such a world. We call classes mod-
ified in this way relativized. We are not able to solve the P vs. NP for the original,
unrelativized classes, but it is possible to decide the corresponding question for some
relativized ones. T. Baker, J. Gill and R. Solovay found (already in 1975) relativiza-
tions for which P=NP and others for which P =NP, [17]. This proves that:

It is not possible to solve the P vs. NP problem without using the fact that the
basic operations are the simple ones.

In particular it demonstrates that:

No direct application of diagonalization can prove P =NP.

So what else can we use? When looking for a method that essentially uses the
fact that a single step of computation may only use an elementary function, we
are naturally led to circuits. We know that in order to prove P = NP, it suffices to
find a set in NP whose sections cannot be computed by polynomial size circuits.
Thus the computation-theoretical problem is reduced to a combinatorial problem.
Given an explicit Boolean function, such as the function that computes whether the
input string of length n is an encoding of a Hamiltonian graph, we need to prove
that every circuit that computes the function must have a size bigger than f (n) for
some function f which grows faster than any polynomial. Hamiltonian graphs are
typical combinatorial concepts and the nature of circuits is also combinatorial. So
the first reaction is that all this is just finite combinators, maybe a bit more difficult,
but nothing more. Yet many problems, including very difficult ones, can be stated
as problems in finite combinatorics; one should not judge the problem only by its
appearance.

Our negative experience suggests that proving superpolynomial lower bounds
on explicitly presented Boolean functions is such a difficult problem. We also have
some mathematical results that support this presumption. The form of these results is
that a certain method of proving such lower bounds on the circuit size, a method that
we consider to be a natural way of solving such a task, in fact cannot work. These
results are mainly due to A.A. Razborov. In the 1980s Razborov proved several
important lower bounds on the size of circuits of a special type [238, 239]. This
created a great excitement; we hoped that the new methods that he introduced could
be used to prove P = NP. However, nobody was able to apply these methods to
general circuits. Later Razborov proved that his methods, unfortunately, cannot be
applied to general circuits [240]. (Again it does not exclude the possibility that some
particular generalizations of the method can still work.)

Let us fix some terminology, before explaining the first type of negative result.
In a circuit an elementary Boolean function, a gate, is assigned to every node of the
underlying graph. We will assume that these functions are arbitrary binary Boolean

5.1 What Is Complexity? 387

functions (put otherwise, the basis is fixed to be the set of all binary Boolean func-
tions). Furthermore, we associate every node of the circuit with a Boolean function
computed at this node. This is the function that expresses the dependence of the
output bit of the node on the input variables of the circuit. If the node is the output
node, then the associated function is the function that the circuit computes. In the
sequel we will assume that we want to prove a lower bound on the size of circuits
computing some Boolean function f .

The first result concerns lower-bound methods based on the idea of a progress
in computing f . This is a very natural idea: if f has large complexity and every
step of computation makes only small progress (which means that it can increase
the complexity of the computed functions only a little bit), then there must be many
steps in every computation of f . The computations that we have in mind are circuits.
As each node of a circuit computes some function, this schema makes sense. Indeed,
at each step the circuit complexity of the computed functions can increase only very
little.

In this form the method is just a reformulation of the task of proving a lower
bound; we have to replace the circuit complexity by something more specific. The
most natural specification of this method, which is also what Razborov used in his
lower bounds on monotone circuits, is to consider the distance from f as the mea-
sure of progress. Whereas the circuit complexity of a function is a concept that we
are not able to handle, the distance is a very simple property. It is just the number of
inputs on which a given function differs from f .

However natural this approach seems, the method with this specification does not
work (in the case of general circuits). The essence of the argument showing that it
does not work is in the following equation.

f = g⊕ (f ⊕ g).

Here ⊕ denotes the Boolean function exclusive or, also called XOR, which can be
interpreted as the addition modulo two. To evaluate such an expression it is better
to use the latter interpretation. As we count modulo two, we have g ⊕ g = 2g = 0,
which proves the equation. (The order of summands and parentheses are irrelevant
for the computation, but they are important for the argument that I am going to
describe.)

Suppose we have a circuit C that has two parts, one computing some function
g and the other computing some function f ⊕ g, and the output node computes
the exclusive or of these two circuits. Hence C computes f according to the above
equality. Thus if our lower bound method worked, one of the functions g or f ⊕ g

must be close to f . But g can be an arbitrary function, hence should the method
work for f , we must have, for every g: either g is close to f , or f ⊕ g is close to f .
Since the pairs {g,f ⊕ g} are disjoint for distinct functions g, it follows that half of
all Boolean functions must be close to f , which is impossible.

I have sketched only one basic idea of Razborov’s results. It shows that it is
difficult to base a lower-bound method on studying what functions are computed
locally at single nodes. One can use the progress in computing a function f for
lower bounds, but it is necessary to treat it as a global property. Every single node,
except for the output node, can compute a function that is completely unrelated to f .

388 5 The Complexity of Computations

The next result is, in a sense, more general, but it is based on an unproved as-
sumption from complexity theory. As it may seem rather strange to use such an
assumption to prove unprovability of another assumption, I will first explain why it
is reasonable to use such an assumption. Let us assume the hypothetical situation
that we can prove that a certain method M cannot be applied to prove P =NP. Fur-
thermore assume that for this very proof, we need to use the assumption P =NP. In
other words, we can prove the following statement:

If P =NP, then it is not possible to prove P =NP using method M.

But if P= NP, then no method can give a proof of the opposite. Thus in such a
case we can eliminate the assumption P =NP and we can conclude:

It is not possible to prove P =NP using method M.

Now suppose that instead of P = NP, we use a stronger assumption A. Then
we cannot remove it, but such a result is still interesting; for example, we can con-
clude that A itself is not provable using method M, without using any unproved
statement.

We will now consider a method of proving lower bounds based on the follow-
ing idea. First characterize the Boolean functions that have large circuit complexity
using a property P and then prove that a particular Boolean function, if possible
a function from NP, satisfies P . This kind of proof is often used in mathematics;
many important theorems are either explicitly stated as a characterization of some
concept, or can be interpreted in such a way. What we consider to be a nice char-
acterization depends on the particular field of mathematics, and on personal taste;
there is no precise definition of it. Having an efficient algorithm to decide property
P is not exactly what we mean by a nice characterization, but it is often a conse-
quence of it, and conversely, if there is no such algorithm, it strongly suggests that
a nice characterization is impossible.

Thus for this method, the crucial question is: can we decide in polynomial time
if a given Boolean function f has complexity larger than S? When one speaks
about computing properties of Boolean functions, one should make clear, how the
functions are given. Here we assume that a Boolean function is given by its truth
table, represented by a string of zeros and ones of length 2n, where n is the number
of variables of the function. The above question is more precisely:

Problem 2 Is it possible to decide in polynomial time which strings of length 2n

encode Boolean functions of complexity larger than S?7

Now I can state a simplified version of a result concerning the above method. It
uses an unproved conjecture about the existence of pseudorandom generators, which
I will abbreviate as the PRG-Conjecture. I will discuss pseudorandom generators in
the next section, for now it is not very important what exactly the conjecture says
(for the exact statement see page 435). It suffices to say that although it is essentially
stronger than P =NP, it is considered very plausible.

7Note that the input size is 2n, hence polynomial time means 2cn for some constant c.

5.1 What Is Complexity? 389

Theorem 37 The PRG-Conjecture implies that the answer to the above question is
no, i.e., it cannot be decided in polynomial time whether a string encodes a Boolean
function of complexity larger than S.

Thus assuming the PRG-Conjecture, it is unlikely that a suitable characterization
of hard Boolean functions can be found. Therefore it is unlikely that we could first
characterize hard Boolean function by a polynomial time property and then prove
that a given function has the property. Such a method of proving that a Boolean
function has large complexity is unlikely to work.

This is a weaker form of a result of A. Razborov and S. Rudich [243]. I will
now describe their result in more detail. Observe that for proving a lower bound we
do not need a precise characterization of functions whose complexity is larger than
a given bound S. What we only need is to characterize a subset of hard Boolean
functions and to show that our function belongs to this subset. The essence of the
result can be briefly stated as follows.

Assuming the PRG-Conjecture, only small subsets of binary strings encoding
hard Boolean functions can be computed by polynomial time algorithms.

Hence we cannot prove circuit lower bounds by first characterizing a large subset
of hard functions and then showing that our function belongs to this set. This still
leaves open the possibility of characterizing a small subset of hard functions. Why
cannot we first characterize a small subset of hard functions and then prove that our
function is in this set? Theoretically this is, of course, possible; theoretically our
function may be the unique function with such a property, but then we can hardly
speak about a method. The idea here is that a method must be based on a general
combinatorial property, general meaning that many functions have it.

Razborov and Rudich proved more than just the above result. They analyzed all
important lower bounds in circuit complexity (there is a number of such results for
restricted classes of circuits) and they showed that all these proofs are based on char-
acterizing a subset of functions that are hard for the class of circuits involved and the
subset is both computable in polynomial time and large. (For restricted classes of
circuits this does not contradict the PRG-Conjecture.) Thus the assumptions about
the form of lower-bound proofs, including the largeness, are natural; we do not have
other proofs. Therefore Razborov and Rudich proposed to call lower-bound proofs
of this form natural proofs.

There is another argument that justifies the largeness condition. As we saw be-
fore, if we try to use the idea of the progress in computing a function f , then half of
the functions are “close” to f . Hence this type of method also leads to a characteri-
zation of large sets of hard functions.

To recapitulate it, Razborov and Rudich defined a precise notion of a natural
proof for a given class of circuits, and they proved:

1. Essentially all known lower bound proofs are natural.
2. Assuming a plausible conjecture, there is no natural proof of an exponential

lower bound for general Boolean circuits.

390 5 The Complexity of Computations

We therefore have to look for a proof that is essentially different from the proofs
that have been found so far.

The last remark about natural proofs concerns the possibility of removing the
unproved assumption in the way I mentioned before. At least in one case this is
indeed possible. A. Wigderson showed that one can prove without any unproven
assumption that there is no natural proof of the hardness of the discrete logarithm.
This function is conjectured to be hard; in particular, it should not have polynomial
size Boolean circuits.

The Problem of Proving Lower Bounds

To show that P =NP we need to prove that for some set A in NP, the question “is a
given x in A?” cannot be decided using a polynomial time algorithm. In other words,
we need to prove that any algorithm for this problem must run in time t (n) that
cannot be bounded by a polynomial in n. Thus we need to prove a lower bound on
t (n). Essentially all problems about separating complexity can be stated as problems
of proving certain lower bounds.

Proving lower bounds on the complexity of computations is also important if one
needs to precisely determine the complexity of particular problems. When we have
an algorithm A for some problem P , it is usually not very difficult to estimate its
running time t (n) (or the space s(n)) it requires. Thus an algorithm gives us an upper
bound on the complexity of P . Then we wonder whether the problem can be solved
by a better algorithm. To show that there is no better algorithm requires proving a
lower bound. The ideal situation would be when, for every problem used in practice,
complexity theory were able to exactly determine the computational complexity of
the problem. Presently this is only wish as one can prove precise bounds only in a
few very special cases.

As usual, when a problem cannot be solved at once, people try to prove at least
partial results. Let us focus on the problem of proving lower bounds on the size of
Boolean circuits. There are two ways how one can make this problem simpler. First,
one can try to prove just some nontrivial lower bounds. Second, one can restrict the
class of circuits.

The first approach is the most frustrating area in computational complexity. One
can say that almost nothing has been achieved here. At the time of writing these
lines, the largest lower bound on circuits with n variables computing an explicitly
defined Boolean function is only 3n − o(n),8 see [27]. Furthermore, these proofs
use only elementary arguments, so they do not provide any insight into what the
essence of computational complexity is.

In contrast to this, the area of lower bounds on circuits from restricted classes
is one of the most interesting parts of theoretical computer science. I will describe

8This is for circuits in the basis of all binary connectives; o(n) denotes a term of a lower order
than n.

5.1 What Is Complexity? 391

one basic result of this kind. Consider the Boolean function PARITY(x1, x2, . . . , xn)

which computes the parity of the number of ones in the input. So it outputs 0 if the
number of ones among x1, . . . , xn is even, otherwise it will output 1. Now suppose
we want to compute it as a disjunction of conjunctions of variables and negated
variables. Formally, we want to express it as

PARITY(x1, x2, . . . , xn)=
∨
i

∧
j

zij

where each zij is a variable or negated variable (xk or ¬xk for some k = 1, . . . , n).
If some conjunction

∧
j zij contained less than n variables, then the right hand side

would accept inputs of both parities, so this is not possible. If a conjunction contains
all variables, then it accepts exactly one input (assuming every variable occurs in it
only once). Hence the number of conjunctions must be 2n−1, the number of odd
inputs. This is a very easy lower bound. Now consider circuits of depth 3, which
means expressing PARITY as

PARITY(x1, x2, . . . , xn)=
∨
i

∧
j

∨
k

zijk

where each zijk is a variable or negated variable. Then one can still prove an expo-
nential lower bound 2

√
n, but the proof is not trivial. More generally, one can prove

exponential lower bounds for any fixed depth. The proof is based on the random
restriction method, which is briefly described in Notes.

It would take us to far afield to discuss the importance of this result and its re-
lation to others. Let me only draw your attention to the striking simplicity of the
function used in this lower bound. Naively, one would expect that it should be eas-
ier to prove such lower bounds for functions that are hard, rather than such a simple
one. The point is that the lower bound proof uses the simple property that PARITY
changes its value if we flip any of the input bits. This function and its negation are
the unique functions that have this property.

This is one of the first nontrivial lower bounds. In more recent results a bit more
complex properties are used, but they are still fairly simple. Our inability to use
complex properties of hard functions shows that the field is still not mature enough.
The state of affairs is comparable with number theory at the time when only the
irrationality of

√
2 was known.

Existence and Construction

When we prove that there exists a mathematical entity (a number, a mathematical
structure, etc.) with some property, we usually give an explicit description of it.
Sometimes, however, one can only prove that it exists without being able to exhibit
a specific example of such a thing. The first type of proof is called constructive, the
second type nonconstructive or purely existential. Purely existential proofs appeared
in mathematics not so long ago. At first they were looked upon with great suspicion

392 5 The Complexity of Computations

and some mathematicians even rejected them. Some mathematicians thought that
they were the source of paradoxes and therefore in intuitionistic mathematics such
proofs are not allowed. In 1889, Hilbert proved a fundamental result that the number
of invariants of an n-form is finite [123], which generalized a former proof of Paul
Gordan for binary forms. Hilbert used an indirect argument, and since it was one of
the first purely existential proofs, Gordan’s reaction was: “this is not mathematics,
it is theology”. Another well known nonconstructive result is Roth’s Theorem about
approximations of irrational numbers by integers. It states that for a certain type of
precision, there are only finitely many rational numbers that approximate a given
rational number with that precision. (Weaker versions of this theorem were proved
by Liouville, Thue and Siegel.)

Gradually mathematicians got used to it and in some fields there are many purely
existential proofs. The reason is not that we like them, on the contrary, we always
prefer a constructive proof, but sometimes this is the only way to prove a theorem.
Quite often, an existential proof is easy and a constructive proof of the theorem
is difficult and therefore found much later. But even nowadays we usually do not
consider a purely existential proof to be a complete solution of a problem. Typically,
when looking for a solution of equations, proving the existence of a solution and
solving the equations are always treated as two separate things; solving means to
describe a solution explicitly.

In the chapter about set theory we noticed that the Axiom of Choice has a very
nonconstructive nature. Among its consequences, there are results stating the ex-
istence of very counterintuitive objects, such as nonmeasurable sets of reals, the
paradoxical transformation of a ball into two balls, etc. But existential proofs are
also used in finite mathematics where we do not need the Axiom of Choice. They
were introduced to finite graph theory by Erdős in the 1940s. Probably the first pa-
per in which his probabilistic method was used concerned estimates of the Ramsey
numbers [67].

Let us briefly recall the Finite Ramsey theorem and the Ramsey numbers (defined
on page 16, see also page 328). The theorem states that for every natural number n,
there exists a number R such that, for every graph on R vertices, there exists a set
of n vertices such that either every pair of them is connected by an edge, or no pair
is. We call such sets of vertices monochromatic. The minimal R such that this holds
is the Ramsey number R(n). We do not have a precise formula for the numerical
function R(n), but already back then Erdős established that it grows exponentially.

To prove such a result one has to show an exponential upper bound and an ex-
ponential lower bound. The upper bound R(n)≤U means that every graph with U

vertices contains a monochromatic set of size n. It was proved constructively (for
U = (2n−2

n−1

)
), in the sense that, for every graph of size U , a monochromatic sub-

set of size n was constructed by an efficient algorithm. To prove the lower bound
L < R(n) one has to prove that there exists a graph on L vertices which does not
contain a monochromatic set of size n. This is where Erdős used a purely existential
proof (for L= 2(n−1)/2n/e).

His argument can be explained in two equivalent ways. (1) He counted the num-
ber of all graphs on L vertices that contain a monochromatic subset of size n and

5.1 What Is Complexity? 393

showed that it is smaller than the number of all graphs on L vertices. (2) He counted
the probability that a random graph on L vertices contains a monochromatic subset
of size L and showed that the probability is less then 1. Since the probability that a
random graph has a property P is the number of graphs having property P divided
by the number of all graphs, (1) and (2) are the same, except that they use differ-
ent language. In both cases we immediately conclude that there exists a graph on L

vertices that does not contain a monochromatic subset of size n, without being able
to exhibit a single example of such a graph. More than sixty years after Erdős asked
this question, we are still unable to construct explicitly a Ramsey graph, a graph that
would show an exponential lower bound on R(n).9

Problems of this type are clearly related to the P vs. NP problem. Since the
number of graphs on L vertices is finite and the condition that we are interested
in is algorithmically decidable, we can search all such graphs and find one. The
problem is that for medium size L the number of such graphs is too large, hence
this algorithm is too slow. If P were equal to NP we could construct such a graph in
time bounded by a polynomial in L. What is more important is that the brute-force
algorithm above does not yield any additional knowledge about such graphs. Why
is an explicit construction better? Consider the problem of finding more precise
estimates on R(n). Erdős’s lower bound is asymptotically 2n/2 and his upper bound
is 22n. These bounds have been improved only in lower order terms, so the situation
now is essentially the same as sixty years ago. A likely explanation of our failure
to close the gap is the following: the actual value of R(n) is close to the upper
bound 22n, whereas the value for random graphs is close to 2n/2 and the probabilistic
method is only able to determine the value for random graphs. Apparently we need
to find explicit constructions in order to be able to determine the Ramsey numbers.
This is not a sheer speculation; in Notes I will mention two combinatorial problems
that were solved by means of explicit constructions.

Probabilistic proofs show the existence of graphs with typical values of parame-
ters which is bad for problems such as the problem of computing the Ramsey num-
bers. On the other hand, this approach opened a completely new area of research, the
study of properties of “random graphs”, or more generally any “random structures”.
Using the word ‘random’ is only a façon de parler about properties that are shared
by most structures of a given type. Saying that ‘a random graph has property P ’ is
just a convenient abbreviation of the longer ‘if we randomly choose a graph with N

vertices, then the probability that it has property P goes to 1 as N goes to infinity’.
That said, I should stress that a random graph is not abstract nonsense that we can
never observe in reality. On the contrary, we can very easily produce such a graph:
for each pair of vertices decide whether to draw or not to draw an edge between
them by tossing a coin. Such a graph will be for all practical purposes random. At
the end of this chapter I will mention a possibility how to define formally a random
graph as a specific graph.

9To give an explicit construction of a Ramsey graph is one of the many famous Erdős problems for
which he offered money prizes.

394 5 The Complexity of Computations

Shannon’s proof that there exist Boolean functions whose circuit complexity is
exponential appeared only two years after Erdős’s paper. I do not know if Shannon
was aware of Erdős’s result, but his proof is based on the same idea—comparing
the number of all n variable Boolean functions with the number of circuits of some
size S, which bounds the number of Boolean function of circuit complexity S. Thus
we know that “random Boolean functions” have complexity of the order 2n/n, but
we are even not able to construct functions that have nonlinear complexity. The
words ‘construct’ and ‘explicitly define’ are not precisely defined. In complexity
theory we, of course, would interpret them as giving an algorithm of certain low
complexity. If we succeed in constructing a function with, say, nonlinear circuit
complexity, then depending on how strong constructibility condition we ensure we
get a correspondingly strong separation result. One of the best would be to find a
sequence of functions that compute sections of an NP problem A and which have
superpolynomial circuit complexity. Superpolynomial circuit complexity means that
A is not in nonuniform-P. So this would give us NP ⊆ nonuniform-P, from which
P = NP follows. Another natural interpretation of being explicit is to require that
explicit Boolean functions should be constructed in polynomial time in 2n (which is
the size of the truth tables). This is much weaker but it would still give the interesting
consequences, for example, the separation EXP ⊆ nonuniform-P.

Another example of a structure whose existence can be proved easily, but it is
nontrivial to construct it explicitly are expander graphs (see page 431). These are
graphs that, roughly speaking, have few edges, but where every set of vertices has
many neighbors (unless the set is too large). Explicitly defined expander graphs are
very useful components of many constructions and derandomization techniques.

Let us pause and compare the problem of constructive proofs in finite combina-
torics and computational complexity with similar problems in other fields of mathe-
matics. There are numerous examples of problems for which we have only existen-
tial proofs. Typically one has a criterion for solvability of equations of some type,
but the result says nothing about how to find an explicit solution.

I have already mentioned that integer factoring is a problem of this type. A par-
ticular instance is the famous problem to determine which Mersenne numbers are
primes. A Mersenne number is a number of the form 2p−1, where p is a prime. The
well-known Lucas-Lehmer test can be used to prove primality and non-primality
of very large Mersenne numbers. If such a number is not a prime, it means that
xy = 2p − 1 has a solution with x, y > 1, but finding the factors is much harder.

Likewise, theorems about the existence of solutions of differential equations can
be applied to many types of equations, but only in some special cases it is possible
to describe a solution explicitly. In such problems a solution is an infinite object,
thus we do not have a precise definition of being explicit. If the solution is unique,
we can often compute it with arbitrary precision, but this is not enough.

It is also interesting to compare the methods used to prove such results. Cantor
proved that the cardinality of the set of all real numbers is bigger than the cardinal-
ity of the set of all algebraic numbers. As we have observed in Chap. 4, a simple
corollary of this result is that there exist non-algebraic, i.e., transcendental numbers.
It had been proved before that particular numbers are transcendental, but Cantor’s

5.1 What Is Complexity? 395

proof is much simpler. In circuit complexity we use finite cardinalities to prove the
existence of Boolean functions with large complexity, but unfortunately, we still do
not have methods to give specific examples of such functions. The method used in
these two cases is the same, both proofs are fairly easy and both do not provide
specific examples.10

The lack of progress in solving fundamental problems of the complexity theory
suggests that we must first learn how to use deeper mathematical methods. Recent
development shows that explicit constructions of finite structures with certain useful
properties are often the key to making progress where we had been stuck for a long
time. Finding explicit constructions where there are only existential proofs is a very
interesting topic. However, we should not expect that every existential proof can be
replaced by explicit constructions. For example, it is not excluded that there are no
polynomial time constructions of Ramsey graphs.

The Complexity of Algebraic Computations

Computing with digital devices requires encoding numbers by strings of symbols,
say zeros and ones. What if we ignore this problem and assume arithmetic opera-
tions to be elementary? Given an algebraic function, which is a function defined by
a polynomial, it is natural to ask how many basic algebraic operations we need to
compute the function. This is algebraic complexity.

It should be stressed that if we determine the algebraic complexity of an alge-
braic function, we still do not know how difficult it is to compute it using a general
computational model such as the Turing machine, or Boolean circuits. In the al-
gebraic setting the cost of computing the product of two numbers is one because it
requires only one step, but when the numbers are encoded in binary, it is a nontrivial
task (and we do not know the precise cost). What is more important is the opposite:
for some algebraic functions an algebraic program may require much more time
than a Turing machine. The point is that a Turing machine can compute basic arith-
metic operations fairly fast, but on top of that it can also compute a lot of operations
that are not algebraic. For example, it can flip the binary string that represents the
number. However, algebraic programs have the big advantage of being more ver-
satile. We can often use the same algorithm for various fields, sometimes even for
rings.

10In fact one can extract a specific transcendental number from this proof. We can compute solu-
tions of algebraic equations with rational coefficients to arbitrary precision and we can enumer-
ate them (possibly with repetitions). Thus applying the diagonal trick we can define digits of a
transcendental number by an algorithm. Similarly, we can enumerate all Boolean functions of n

variables and taking the first one whose complexity exceeds a given bound. We do not consider
such definitions explicit, as the defined entity is chosen by a process that has little to do with the
property that we need to ensure.

396 5 The Complexity of Computations

One of the central problems in algebraic complexity is the complexity of matrix
multiplication. Let A= (aij) and B = (bij) be two n× n matrices. Their product is
defined by

AB =
(∑

k

aikbkj

)
.

If we use this formula to compute the product we need n3 multiplications and
n2(n− 1) additions. It is tempting to conjecture that this is the best possible, but
it isn’t.

The fact that it suffices to use essentially fewer operations was discovered by
Volker Strassen. Sometimes around 1969 he decided to determine the complexity
of matrix multiplication in the simplest possible case. It was the case of two by
two matrices in the two element field. The two by two is the smallest nontrivial
dimension of matrices and the two element field F2 is the simplest field since it
consists only of 0 and 1. Thus in this field the number of possible terms is very
limited. Strassen found a very remarkable way of computing such a product [286].

The product of two such matrices is(
a11 a12
a21 a22

)(
b11 b12
b21 b22

)
=
(
c11 c12
c21 c22

)

where the numbers cij are, according to the definition,

c11 = a11b11 + a12b21

c12 = a11b12 + a12b22

c21 = a21b11 + a22b21

c22 = a21b12 + a22b22.

Thus the task is to compute these four bilinear forms in aij , bk,l . Using this definition
we can compute them with 8 multiplications and 4 additions. Strassen found the
following algorithm.

d1 = (a11 + a22)(b11 + b22)

d2 = (a21 + a22)b11

d3 = a11(b12 − b22)

d4 = a22(−b11 + b21)

d5 = (a11 + a12)b22

d6 = (−a11 + a21)(b11 + b12)

d7 = (a12 − a22)(b21 + b22)

c11 = d1 + d4 − d5 + d7

c21 = d2 + d4

c12 = d3 + d5

c22 = d1 + d3 − d2 + d6.

(5.2)

5.1 What Is Complexity? 397

This enables one to compute the product with 7 multiplications and 18 additions.
As it is often the case, it turned out that what he learned in the special case could be
widely generalized. Namely:

1. Although Strassen’s algorithm uses 25 operations whereas the definition gives
only 12, the important thing is that the number of multiplications has been re-
duced. This is crucial in the recursive application of this formula, which enabled
him to show a better asymptotic upper bound on the number of operations when
the dimension of matrices goes to infinity.

2. The algorithm works not only in the two element field; it works generally in every
field (in fact, it also works in rings, which is needed for recursive applications to
higher-dimensional matrices).

It is not difficult to explain the generalization to matrices of any dimension. An
important ring is the ring of n × n matrices. One can apply the above formula to
this ring as follows. Take two 2n× 2n matrices A and B and divide them into n× n

blocks Aij , Bij , i, j = 1,2. It is not difficult to see that the product AB can be
computed using the decomposition into blocks, as if we had two 2 × 2 matrices
with entries Aij , Bij , i, j = 1,2. In this computation the operations of additions
and multiplication are the addition and multiplication in the ring of n× n matrices.
Hence using formulas (5.2) we can reduce the computation of the product AB to
7 products and 18 additions of matrices of twice smaller dimensions. Thus if we can
multiply n×n matrices using μ(n) multiplications and α(n) additions, we can mul-
tiply 2n× 2n matrices using 7μ(n) multiplications and 7α(n)+ 18(2n)2 additions.

If n is a power of 2, n= 2k , then the recursive application of this reduction yields
an algorithm with at most c · 7k multiplications and additions, for some constant c.
This is asymptotically nlog2 7 = n2.8073..., which is better than the asymptotic com-
plexity of the defining formula, which is n3. The current best algorithm gives n2.3727.

The lesson from these results is that our initial intuition about complexity may be
very poor. The defining formulas of the matrix multiplication are esthetically much
more pleasing than algorithms such as Strassen’s, so we tend to conjecture that they
should be the optimal ones. But the “natural” way of computing a certain problem
may be far from the optimal one.

The experts on matrix multiplication conjecture that it should be possible to re-
duce the exponent in the upper bound arbitrarily close to 2. Still it seems unlikely
that the number of operations needed for matrix multiplication is linear in n2, more
likely it is cn2 logn or higher, but we are not able to prove it (notice that here n2

is the input size). As in Boolean circuit complexity, also in algebraic circuit com-
plexity we are not able to prove nonlinear lower bounds on any explicitly defined
algebraic function.

Notes

1. Time constructible functions. Time constructible functions are a special concept
that is needed for the Time Hierarchy Theorem. A function f defined on natural

398 5 The Complexity of Computations

numbers is time constructible if there exists a Turing machine M which for
every n, stops after exactly f (n) steps on every input word of length n.

Here is why we need such functions. When we diagonalize the sets com-
putable in time f (x), we have to consider all Turing machines, since it is unde-
cidable if a machine stops within such a limit. Therefore we have to truncate the
simulated computation after f (n) steps. If f (x) were not time constructible, we
could not do it.

All the functions that naturally appear as time bounds are time constructible.
However, for some artificially defined functions the Time Hierarchy Theorem
fails.

Everything can be very easily adapted to space, so I will not discuss space
constructible functions.

2. The complexity of multiplication. In order to add two n-bit numbers, we need,
for every position i, to add the ith bit and a carry, which requires a constant
number of bit operations. Hence the asymptotic time complexity of addition is
linear: cn for some constant c.

The school algorithm for multiplication of two n-bit numbers is based on
computing the table of the products of the ith bit of the first number and j th bit
of the second one, for all i, j = 1, . . . , n, then one adds diagonals of the table.
Thus we get a quadratic bound, dn2 for some constant d . In 1971 A. Schönhage
and V. Strassen found an algorithm that needs time only d ′n logn log logn, for
some constant d ′, [257]. This algorithm is not used in computer hardware, as
d ′ is fairly large and d ′n logn log logn beats dn2 only for fairly large numbers,
but it is useful in experimental mathematics and cryptography.

3. Factoring numbers and testing primality. Deciding if a given number is prime
and finding its nontrivial factors are closely related problems, but it seems that
they have different complexities. We know that it is possible to decide in poly-
nomial time if a number is prime, which is formally expressed by Primes ∈ P,
but most researchers believe that finding factors is much harder.

For testing primality, several probabilistic polynomial time algorithms were
found in the 1970s. More recently, in 2001, M. Agrawal, N. Kayal and N. Sax-
ena found a deterministic polynomial time algorithm [2].

The fastest factoring algorithms are probabilistic. The number field sieve
algorithm seems to run in time bounded by

ecn
1/3(logn)2/3

,

where n is the number of digits of the number to be factored and c is a constant.
Thus it runs approximately in time exponential in the third root of the length
of the number, which is much more than polynomial. This bound has not been
proved formally; it is only based on a heuristic argument. The best bound proved
formally is only exponential in the second root

e(1+o(1))(n logn)1/2
,

where o(1) denotes a function such that o(1)→ 0 as n→∞. See [156] for a
presentation of these algorithms.

5.1 What Is Complexity? 399

4. Search problems. We started the informal description of the P vs. NP problem
with search problems, whereas the definition speaks only about decision prob-
lems. It is not difficult to prove that if P = NP, then these problems also have
polynomial time algorithms. I will show it with the example of the integer fac-
toring problem. Consider the following decision problem derived from integer
factoring: for a given number N and a string of zeros and ones w, decide if
there exists a proper divisor M of N whose binary representation starts with
the string w. This is clearly a decision problem and it is in NP, since we can
guess such a divisor and easily verify the correctness. If it were P=NP then we
would have a polynomial time algorithm A for this problem and we could apply
it to factor a composite number N as follows. First use A to determine the first
bit of a proper divisor of N . When we already know that there exists a proper
divisor that starts with w, we can determine if there exists a proper divisor start-
ing with 0w or 1w by a single application of A. Hence we can find a divisor by
repeating this k times, where k denotes the number of binary digits of N .

Say that a binary relation B(x, y) defines an NP search problem, if B ∈NP
and for some b, for every x and y, if B(x, y), then |y| ≤ |x|b . It is easy to
generalize the example above and prove that P= NP if and only if NP search
problems possess polynomial time algorithms.

5. Sets, languages and Boolean functions. We often speak about the complexity
of sets, but to be quite precise we should consider only sets of strings in a
finite alphabet. Recall that in computer science we call such sets languages. So
for example, when I spoke about the complexity of the set of all Hamiltonian
graphs, I implicitly assumed that we take a natural encoding of all graphs by
strings in a finite alphabet. It is difficult to define what are natural encodings.
Intuitively an encoding should be compact, i.e., should not use excessively more
bits than needed and should not contain information about the encoded entity
that is not easily computable. For example, an encoding of graphs in which the
first bits determines whether the graph is Hamiltonian is not natural. Apparently
the only way to do it formally is to define one particular encoding and say that
a natural encoding is an encoding that is equivalent to a fixed one in the sense
that one can be computed from the other in polynomial time. In particular, we
encode numbers by their binary representation and graphs by their incidence
matrices.

If we want to study the relation between languages and Boolean function,
it is best to focus on languages in the two element alphabet {0,1}. For a lan-
guage L, we consider its sections L ∩ {0,1}n for n = 0,1,2, Each such
section is associated with the Boolean function fn : {0,1}n→{0,1} defined by

fn(x)= 1 if and only if x ∈ L,

for x ∈ {0,1}n. Thus L defines uniquely the sequence of Boolean functions
{fn}, and vice versa any sequence of Boolean functions {fn} such that fn :
{0,1}n→{0,1} defines uniquely a language L in the alphabet {0,1}.

In the subsection about circuits I mentioned that Turing machine computa-
tions can be simulated by circuits whose size is not much larger than the time

400 5 The Complexity of Computations

complexity of the machine. A consequence of that can be stated formally as
follows.

Theorem 38 [48, 182] If L ∈ P, then for the corresponding sequence of
Boolean functions {fn} there exists a sequence of circuits {Cn} such that Cn

computes fn and the sizes of Cn are bounded by a polynomial in n.

One can prove a quantitatively more precise theorem saying that if the time
complexity of L is bounded by a function t (x), then the size of the circuits can
be bounded by c · t (n) log t (n) for some constant c depending on L.

6. NP-completeness. A set A is polynomially reducible to set B if there exists a
function f computable in polynomial time such that for every x,

x ∈A if and only if f (x) ∈ B.

A set B is NP-hard (intuitively, at least as hard as every set in NP) if every
set A ∈NP is polynomially reducible to B .

A set B is NP-complete, if it is in NP and it is NP-hard.
Call a circuit C satisfiable, if there exists an assignment to the input variables

a such that C(a)= 1.

Theorem 39 The set of all satisfiable circuits is an NP-complete set.

Proof-sketch The fact that the set is in NP is easy: we can guess the satisfying
assignment and check it in polynomial time by simulating the computation of C.

Now let A be an NP set. Suppose A is defined by the formula (5.1) on
page 373. Consider an inputs x of length n. The witnesses are bounded by
p(n) for some polynomial p. Without loss of generality, we can assume that
all have the same length m≤ P(n). Let M be a Turing machine computing the
relation R in polynomial time. By transforming M into a sequence of circuits
we get a circuit C(x, y) with x representing n input bits and y representing
y input bits, with the following property. If u has length n, then u ∈ A if and
only if there exists w such that C(u,w)= 1. Given u, let Cu(y) be the circuit
C with the inputs x fixed to u. Then we have u ∈ A if and only if there exists
w such that Cu(w) = 1, which is by definition if and only if Cu is satisfiable.
Thus the mapping u �→ Cu reduces the question if u ∈ A to the question if Cu

is satisfiable. One can check that construction of Cu can be done in polynomial
time, hence the function is a polynomial reduction. This finishes the proof. �

This is the basic NP-complete set from which the NP-completeness of all
other known sets has been derived. When we have one NP-complete set, we
can prove NP hardness by defining polynomial time reductions from this set.
This is conceptually much simpler, since we only need to find an algorithm.
Nevertheless, many polynomial reductions are quite difficult to define and to
prove their correctness.

In the same way one can define completeness for other classes. We know,
for example, that there are PSPACE-complete problems and EXP-complete
problems.

5.1 What Is Complexity? 401

7. The Polynomial Hierarchy. We have already met the Arithmetical Hierarchy
(see page 141). Let us recall that it is a hierarchy of arithmetically defined sub-
sets of natural numbers defined as follows. The level Σn are the sets definable
by formulas with n alternations between existential and universal quantifiers,
where the formula starts with an existential quantifier. The level Πn is defined
in the same way, except that we require the defining formulas to start with a
universal quantifier.

The Polynomial Hierarchy is a feasible version of the arithmetical hierarchy
where we only allow quantifications limited to finite domains. The finite do-
mains consist of numbers, or of strings of polynomial length. The levels of the
Polynomial Hierarchy are denoted by Σ

p
n and Π

p
n (the superscript p standing

for ‘polynomial’).
Let us consider a couple of examples.
1. The class Σ

p

1 is the familiar class NP. We know that a set A ∈NP can be
defined by a formula of the following form.

x ∈A if and only if ∃y(|y| ≤ p(|x|)∧B(x, y)).

In this formula, | · · · | denotes the length and p denotes some polynomial, so the
first part says that the length of y is polynomially bounded by the length of x.
The binary relation B(x, y) is assumed to be computable in polynomial time.

2. The class Πb
1 is defined by formulas of the form

x ∈A if and only if ∀y(|y| ≤ p(|x|)→ B(x, y)).

This class is dual to the class NP, in the sense that it is the class of complements
of sets in NP. Therefore, it is also denoted by coNP.

3. The class Σ
p

2 is the class of all sets A that can be defined as follows.

x ∈A if and only if (∃y1, |y1| ≤ p1(|x|))(∀y2, |y2| ≤ |p2(x)|)C(x, y1, y2),

where p1 and p2 are polynomials, and C is a ternary relation computable in
polynomial time. Here I am using a shorter notation for bounded quantifiers.

An example of a class in Σ
p

2 is the set of all pairs (G, k) such that the clique
number of G equals to k. To define such pairs we must say that there exists
a clique of size k and for every subset X of vertices of size k + 1, X is not a
clique in G. (Since we can switch the quantifiers in this example, the set is also
in Π

p

2 .)
If we view NP as an extension of P by adding one existential quantifier, the

Polynomial Hierarchy is the hierarchy obtained by further extensions of these
classes by adding more quantifiers. It has been conjectured that all the classes
P,Σp

n and Π
p
n , for n= 1,2, , . . . , are distinct, that is, the Polynomial Hierarchy

is a proper hierarchy. One can show that if Σp
n =Π

p
n , then all the classes with

higher indices collapse to Σ
p
n .

One reason for believing that the Polynomial Hierarchy does not collapse
is that the analogous relations do in fact hold for the class of recursive sets
Rec and the levels Σn and Πn of the Arithmetical Hierarchy. This is a rather
weak argument, because some analogies apparently fail. While Rec=Σ1∩Π1,

402 5 The Complexity of Computations

we conjecture that P is a proper subclass of NP ∩ coNP. If P = NP ∩ coNP
were true, one would be able to invert any polynomial time computable length
preserving bijection.

Several conjectures can be reduced to the conjecture that the Polyno-
mial Hierarchy does not collapse. In particular, if NP ⊆ nonuniform-P, then
Σ

p

2 = Π
p

2 . Hence, if Polynomial Hierarchy does not collapse, then NP ⊆
nonuniform-P.

8. Nondeterministic space. Using nondeterministic Turing machines we can de-
fine nondeterministic space classes. The relations between deterministic and
nondeterministic space classes are different from the corresponding relations
between time classes. One can prove that if a set is computable by a nondeter-
ministic Turing machine in space s(x), then it is computable by a deterministic
Turing machine in space s(x)2. Thus if we denote the class of sets computable
in nondeterministic polynomial space by NPSPACE, then we have

PSPACE=NPSPACE.

But this does not mean that we know all about the relation of nondeterministic
and deterministic space classes. In fact the general feeling is that the above
equation is not the one that corresponds to P vs. NP. The essential question,
which is open like all essential questions in complexity theory, is whether more
than linear increase of space is needed to eliminate nondeterminism.

9. Proving disjunctions of conjectures. It is an interesting phenomenon that in
complexity theory we are able to prove several disjunctions of statements that
we conjecture to be true. I have already shown examples based on sequences of
inclusion where we know that the extreme terms are distinct. But that is not the
only way to prove such disjunctions. Here is one based on a different argument.

P =NP or EXP ⊆ nonuniform-P.

We believe that both are true, but we are not able to prove either of the two
(though the second one seems much easier than the first one).

Here is the idea of the proof. We know that there are Boolean functions
whose circuit complexity is exponential. Suppose we could, for every n, con-
struct a truth table of such a function fn of n variables in time 2cn for some
constant c. (As 2cn = (2n)c , it is in polynomial time in the size of the truth ta-
ble.) Then we could define a language in EXP which is not in nonuniform-P
as follows. For an input word w of length n, first compute fn and then accept
w if and only if fn(w)= 1.

So we only need to show that one can get such functions if P = NP. Let
S(n)= 2n/2. This function grows faster than all polynomials and one can show
that there are Boolean functions whose circuit complexity is larger. Given a
truth table of a function f , to decide if f has circuit complexity less than S(n)

is a problem in NP. Indeed, the input length is 2n, a circuit of size≤ S(n) can be
encoded by a string of length ≤ 2n and to check that such a circuit computes f

we only need to evaluate it on 2n inputs and compare it with the truth table. Now
consider the problem of finding such a function. This is an NP search problem.

5.1 What Is Complexity? 403

Thus if P= NP we can find f polynomial time, which is 2cn. This proves the
disjunction. (In fact, the proof shows more than promised: either P = NP or
there is a language computable in time 2cn whose circuit complexity is as large
as 2n/2.)

10. Some lower bounds methods for restricted classes of circuits. In the quest for
proving P =NP and showing other separations of complexity classes many in-
teresting circuit lower bounds have been proved. But all the methods introduced
to date have only a restricted range of applications. They are incapable of prov-
ing nonlinear lower bounds on general Boolean circuits. So is it worth taking
time to survey them? In set theory all the major problems had been widely open
until the forcing method was discovered. Then everything dramatically changed
and since then proving independence became a matter of routine. This may well
happen in complexity theory too and then the current weak results will be for-
gotten as they were in set theory. Yet there are some basic ideas that may play an
important role in future lower bound techniques and, after all, the main purpose
of this paragraph is to show you what a lower bound proof can look like.

(i) The method of random restrictions was introduced independently by
M. Ajtai [1] and by M. Furst, J. Saxe and M. Sipser [83] in the early 1980s.
It is based on the following idea. Suppose a Boolean function f is computed by
a small circuit C. Pick randomly a small subset of the input variables and assign
randomly zeros and ones to the rest. What we want to achieve is that after this
substitution we can reduce C to a substantially simpler circuit C′. At the same
time we want the restricted function f ′ to be still hard. If C′ is very simple, we
can see that it cannot compute f ′, thus we get a contradiction with our assump-
tion that f can be computed by a small circuit. One possible realization of this
idea is to show that C′ computes a constant function (0 or 1) whereas f ′ is not
constant.

The reason why some circuits tend to shrink when we apply random restric-
tion is that if we have a conjunction, then it suffices to have one of the inputs
to be fixed to 0 and it becomes 0. The same is true about disjunction and the
value 1. The hope is that fixing some inputs creates a chain reaction resulting in
trivializing a lot of gates in the circuit.

This indeed works very well if the circuit uses conjunctions, disjunctions
and negations and the number of alternations between different operations is
small. But if the basis contains also the parity, this method completely fails. It
is because fixing one input in x ⊕ y, say x, does not fix the gate to a constant;
the bit y remains intact or is flipped. This method also does not work if the
depth of the circuits is not bounded.

(ii) The most useful is the approximation method introduced by Razborov
in the mid-1980s. Let Fn denote the set of all n variable Boolean functions.
Let S be a proper subset of Fn; I will call S simple functions. The idea of the
approximation method is to choose S so that

a. it contains the initial Boolean functions;
b. the Boolean operations used by circuits can be “well approximated” by some

operations on the set S ;

404 5 The Complexity of Computations

c. the function f for which we are proving a lower bound has only “poor ap-
proximations” in S .

Then one can prove a lower bound as follows. Let C be a circuit for f . We
can use the same circuit to compute in the domain S using the approximate
operations. The initial functions are the same and at each step of computation
the error of the approximation changes very little. Then there must be many
steps in the computation because the output functions of the computation in S
approximates f poorly.

To describe the method in more detail, we need some more notation. The
initial functions are the functions computed at initial nodes of circuits. If an
initial node is labeled by a variable xi , it is the function that outputs the ith bit
of the input string. We can use other simple functions as the initial ones; one
often uses ¬xi . For every operation o from the basis of operations K that the
circuit uses, we have an operation ō defined on S . For the sake of simplicity we
will assume that K contains only binary operations. A subtle point is how to
measure how good an approximation is. For f ∈ Fn and g ∈ S , we define the
error

δ(f, g)= {x;f (x) = g(x)
}
.

So the error is the set of input assignments for which the two functions disagree.
For every pair of functions g1, g2 ∈ S and every operation o ∈K , we define

δo(g1, g2)= δ(g1og2, g1ōg2),

the error produced when we use ō instead of the operation o. Let

Δ= {δo(g1, g2);o ∈K,g1, g2 ∈ S
}
,

the set of all errors that can occur on the operations o ∈K and elements of S .
Finally define

ρ(f)=min

{
t; δ(f, g)⊆

t⋃
i=1

δi for some δ1, . . . , δt ∈Δ

}
,

the distance of f from S . The following simple proposition is a formalization
of the argument sketched above:

Proposition 10 The circuit complexity of f is at least ρ(f).

The general framework is simple, but applications of this method require in-
genious choices of the components. Also I did not present it in the most general
form. Some applications require to generalize it further, but it is not difficult to
imagine such extensions.

The method was first applied to circuits with the basis consisting of ∧,∨.
Such circuits compute only some Boolean functions, namely, they compute all
monotone Boolean functions. A function is monotone if x1 ≤ y1, . . . , xn ≤ yn
implies f (x1, . . . , xn) ≤ f (y1, . . . , yn). Razborov first proved a superpolyno-
mial lower bound on an NP-complete function. It was very exciting, but soon

5.1 What Is Complexity? 405

he published another paper in which he proved such a bound also for a function
in P. This proved that monotone circuits (circuits with only ∧,∨) are weaker
than general circuits. So it is necessary to use a different proof.

The status of this method is that although theoretically it is a universal
method by which it is possible to prove exponential lower bounds on the size
of general circuits, such proofs must be rather unnatural. The natural way to
apply the method is the following. Let e be the minimum of the cardinalities of
δ(f, g) over all g ∈ S , let d be the maximum over all cardinalities of δ over all
δ ∈ Δ. Then e/d is clearly a lower bound on ρ(f), hence also a lower bound
on the circuit complexity. But Razborov showed that, unlike in the monotone
case, d is always large if we have a complete basis. Thus applying the method
in this way we even cannot get a nonlinear lower bound.

(iii) If we only want to prove more than linear lower bounds, the variety of
methods is even larger. One of the methods that was used to prove nonlinear
lower bounds for a class of circuits uses the following idea. Since we know that
there are hard functions, we can find one such function with a small number of
variables by brute force. Then we will define our hard function by taking several
independent copies of the small hard function. In typical implementation of
this idea the first n/2 input bits are interpreted as a truth table of a Boolean
function of log(n/2) variables. The remaining n/2 bits are split into blocks of
size log(n/2) and we compute the function defined by the first n/2 on every
block. Among the assignments to the first n/2 there are surely those that are the
truth tables of the hardest log(n/2) variable functions.

The reason why this does not work for general circuits is rather counterin-
tuitive (I mentioned this “paradox” on page 42). For this method to work, we
need to show that when computing independent copies of the same function the
complexity adds up, but one can show that this is not always true. There are
Boolean functions f (x) such that computing simultaneously f (x) and f (y)

for two independent inputs x and y needs only a little bit more than computing
f (x) for a single input (see [295]).

(iv) The communication complexity method uses the following idea. Given a
circuit C for a Boolean function f , cut the circuit into two parts each containing
one half of the input bits and see how much information must be exchanged
between these two parts. If we can prove that a lot of communication must be
done in order to compute the function, we get a lower bound on the number of
edges of the circuit that we cut into halves.

Formally the communication complexity of a function for a given division
of the input bits is defined by means of a two player game. In this game the two
players cooperate in order to compute the function. Each player knows only his
half of the input bits. The communication complexity is the number of bits that
they exchange in the worst case when they use the best possible strategy. Notice
that we completely ignore the complexity of computing the exchanged bits; we
are only interested in the amount of information exchanged.

The advantage of communication complexity is that it eliminates circuits
and reduces lower bounds to a combinatorial property. Unfortunately the com-

406 5 The Complexity of Computations

binatorial problems that one needs to solve in order to prove interesting separa-
tions of complexity classes are still too difficult. Before we solve the problem
of explicit construction of Ramsey graphs we have little chance to solve these
problems, which have the same nature, but are more difficult.

Furthermore, also in communication complexity counterintuitive things hap-
pen, as exemplified on page 42.

11. Probabilistic proofs in finite combinatorics and explicit constructions. We will
start with Erdős’s lower bound on the Ramsey numbers [67], which is a proto-
type of all probabilistic proofs in finite combinatorics.

Consider graphs on R vertices. The number of all graphs is 2(
R
2) because

there are
(
R
2

)
pairs of vertices and for every pair, we have two possibilities. Let

X be a subset of vertices of size n. Then the number of graphs in which X

is monochromatic is 2(
R
2)−(n2)+1 because on X we have only two possibilities,

either to take all edges, or none. Since the number of subsets of size n is
(
R
n

)
, we

can estimate from above the number of graphs that contain a monochromatic
subset of size n by (

R

n

)
2(

R
2)−(n2)+1.

Hence if

2(
R
2) >

(
R

n

)
2(

R
2)−(n2)+1,

then there exists a graph on R vertices with no monochromatic subset of size n.
Using the Stirling formula, one can show that the last inequality is implied by

R > 2(n−1)/2n/e.

Hence if this inequality is satisfied, such a graph exists.
I will now describe two results in which explicit constructions improved the

previous bounds obtained by nonconstructive means. The first one is closely
related to the Ramsey number problem. The problem is: given numbers n, s
and t , how many edges can a graph on n vertices have without containing two
disjoint sets S and T of sizes s and t with all the edges between S and T . This is
a typical problem from the extremal graph theory. In this branch of graph theory
we often ask how many vertices or edges can a graph have without containing
certain prohibited configurations. In the Ramsey number problem the prohibited
configurations are complete and empty graphs of a given size.

It was proved that for constants s ≤ t such graphs cannot have more than
cn2−1/s edges, for some constant c depending on s and t . Using a probabilistic
argument, it was also shown that there exist such graphs with c′n2−2/s edges, for
some constant c′ > 0. This is the best one can get by the probabilistic method,
since for random graphs the true value is around n2−2/s . Much later Kollár,
Rónyai and Szabó found an explicit construction for t = s! + 1 which have
asymptotically n2−1/s vertices [159]. So they were not only able to give an ex-
plicit construction for these values of s and t , but their construction also matches

5.1 What Is Complexity? 407

the upper bound up to a multiplicative constant. Their proof is highly nontrivial
and uses results from algebraic geometry. (The extremal problem for t = s is
still open.)

The second example is from a different field, the theory of error correcting
codes. A code C is, by definition, a subset of strings of length n with elements
in a finite set A; n is the length of the code and A is the alphabet. The elements
of C are called codewords. If M is the number of codewords of C, then we
can use C to code at most M different messages. The purpose of encoding is to
introduce some redundancy which can be used to recover corrupted messages.
It would take us too far afield to explain how this works, so I will introduce only
the concepts necessary to describe the mathematical result.

The main two parameters of a code are the rate and the minimal distance.
The rate is ρ(C)= logq M , where q denotes the size of the alphabet. The dis-
tance of two codewords is the number of positions in the strings in which they
differ. The relative minimal distance δ(C) is the minimal distance d of pairs
of distinct codewords divided by n. The basic observation is that if an arbi-
trary word w has distance less than nδ(C)/2 from some codeword u, then u

is the unique codeword with this property. This enables us to uniquely decode
messages in which less than nδ(C)/2 letters are wrong.

It is desirable to have both the rate and the relative minimal distance as large
as possible because a large rate enables one to send more messages and a large
relative minimal distance is good for correcting large errors. But there is a trade-
off between the two parameters: if one is large the other cannot be. A central
problems of this field is to determine this dependence precisely. More specifi-
cally, we are interested in the maximal rate that can be achieved for large code
lengths as the function of the relative minimal distance.

To prove a lower bound on this function means to prove the existence of
codes with such parameters. A classical result, the Gilbert-Varshamov lower
bound, is proved nonconstructively and, again, it is a fairly easy counting argu-
ment. We can interpret it also as giving an estimate on random codes. Several
upper bounds have been proved, but they do not match the lower bounds in
any part of the range of parameters (except for the extreme points 0 and 1) for
any alphabet size. In 1981 V.D. Goppa introduced algebraic geometry codes
and a little later M.A. Tsfasman, S.G. Vlăduţ and T. Zink constructed certain
algebraic geometric codes that beat the Gilbert-Varshamov bound for certain
alphabet sizes [292]. They used an advanced part of algebraic geometry, the
theory of modular curves. Different constructions were found later, but they
also use a fair amount of theory.

So this is another example of proving the existence of structures with param-
eters better than the parameters of random ones. In both cases this was achieved
by explicit constructions. In both case, however the problems are not completely
solved. The most tantalizing question about codes is if it is possible to break the
Gilbert-Varshamov bound for the alphabet size two (the smallest size for which
this is known is 49).

408 5 The Complexity of Computations

12. Algebraic complexity classes. Algorithms such as Strassen’s matrix multiplica-
tion can be presented as algebraic circuits. They are a natural model of nonuni-
form algebraic complexity. It is interesting that there is also a natural model
of uniform algebraic complexity. This approach was pioneered by L. Blum,
M. Shub and S. Smale [25]. In fact, they define a computation model not only
for algebraic structures (such as fields and rings), but for any (first order) struc-
ture. Let A = (A;F1, . . . ,Fn,R1, . . . ,Rn) be a structure, where A is the uni-
verse, F1, . . . ,Fn are some functions and R1, . . . ,Rm are some relations defined
on the set A. We can associate a class of machines with A as follows. The ma-
chines are like Turing machines that work with elements of A instead of a finite
set of symbols. A machine has a finite number of registers that can store ele-
ments of A and a tape for writing and reading elements of A. The program that
controls the machine makes decisions using the relations of A and computes
new elements using the functions of A. When the universe of the structure A is
infinite, some nontrivial algorithms can be performed even without the tape.

For example, the machines that one obtains from the structure (R;+, ·,<)

can be used to formalize several basic algorithms working with real numbers.
The difference between this model and Turing machines is that a Turing ma-
chine uses only a finite number of symbols, hence we can only approximate
real numbers. In the Blum-Shub-Smale model, one can add, multiply and com-
pare real numbers with infinite precision. The input and output data for such a
machine are finite lists of real numbers. Thus the machine computes a function
from a finite Cartesian product of real numbers into another finite Cartesian
product of real numbers (provided that the machine always halts).

The Blum-Shub-Smale model is also a proper generalization of the original
Turing machine. We get the original Turing machine if we take a sufficiently
complex finite structure, e.g., the two-element field.

Furthermore, for every structure A, one can define the complexity classes
PA and NPA that correspond to the classical P and NP. The question whether
PA = NPA has been resolved only for some simple structures. For the most
interesting structures, R and C, it is still open. It is interesting that these ver-
sions of the P vs. NP problem seem to be very much related to some classical
problems in number theory. Blum, Cucker, Shub and Smale stated the following
conjecture [26].

Conjecture 1 Let f (x) be a nonzero polynomial in one variable x with integral
coefficients and suppose that it can be computed by an algebraic circuit of size t .
Then the number of integral zeros of f (x) is at most (t + 1)c, where c is a
universal constant.

In other words, the conjecture says that the number of integral zeros is poly-
nomially bounded by the circuit complexity of the polynomial function. They
proved that the conjecture implies PC =NPC.

Mentioning circuits in the conjecture gives the impression that it is more
related to computational complexity than classical problems in number theory.

5.1 What Is Complexity? 409

But there are indications that the relation to number theory is much tighter than
it may seem at first glance. One of such results is due to Qi Cheng [40]. Cheng
considered a related conjecture and proved that it implies a classical deep result,
the Strong Torsion Theorem for elliptic curves qi-cheng. Presently we only have
circumstantial evidence that such versions of the P vs. NP problem must be
difficult. We have implications, but we do not have a proof of an equivalence
with a difficult number-theoretical problem. Thus it may still happen that the
problem will turn out to be easy. Most researchers believe, however, that both
the original P vs. NP problem and the algebraic versions are difficult.

13. Geometric complexity theory. In the late 1970s, L. Valiant proposed another
algebraic version of the P vs. NP problem. He showed that his version of the
problem can be reduced to a conjecture that can be stated in purely algebraic
terms [297]. If the conjecture is true, then Valiant’s versions of P and NP are
different.

Let Detn and Pern denote the determinant, respectively, the permanent, of
n× n matrices, where we view Detn and Pern as homogeneous polynomials in
n2 variables.

Conjecture 2 (Valiant) There exists no polynomial p such that for all m,

Pern(yij)=Detp(m)

(
σ(xij)

)
,

where σ is a projection.

A projection is a substitution of variables and constants. This problem is still
open; the best lower bound on p(m) is only quadratic.

More recently, K. Mulmuley proposed an approach to Valiant’s conjecture
which in principle could also lead to the proof of P =NP in the original formu-
lation [203]. He calls his approach geometric complexity theory. The basic idea
is to replace projections by invertible linear mappings. These mappings form an
important group, the general linear group GLn. Thus substitutions are replaced
by actions of the elements of this group on the polynomial Detn and one can
use group representation theory.

In order to transform the problem in this way, one has to make two modi-
fications. First we need polynomials of the same dimension. To this end, it is
sufficient to replace Perm by zn−mPerm, where n= p(m). The second obstacle
is that, although projections are linear, they are not invertible in general. This
is solved, roughly speaking, by computing the permanent only approximately.
In terms of representation theory it means that we ask whether zn−mPerm is
in the closure of the orbit (with respect to GLn) of Detn. Thus the following
conjecture implies Valiant’s conjecture.

Conjecture 3 (Mulmuley) There exists no polynomial p such that for all m

and n= p(m), zn−mPerm is in the closure of the GLn orbit of Detn.

This conjecture has attracted a number of mathematicians working in group
representation theory and related fields. Mulmuley and other mathematicians

410 5 The Complexity of Computations

working on this project have proved theorems that apparently go in the right
direction. Unfortunately, none of the results proved so far can be interpreted as
a theorem about algebraic complexity classes.

14. The “simplest” problem in algebraic complexity theory. One can easily prove
the following simple fact.

Proposition 11 For every n≥ 1, there exists a real n×n matrix A such that for
every factorization A=XY into a product of two n×n real matrices X and Y ,
the total number of nonzero elements in X and Y is at least n2.

The argument used in the proof (based on elementary facts from algebraic
geometry) is that one cannot parameterize the variety of n× n matrices by less
than n2 numbers.

The open problem is to define such matrices explicitly. The problem is simple
to state, but it seems very difficult to solve. To see how little we are able to
prove, let me mention that the best lower bound that one can prove for explicitly
defined matrices is only of the form c · n(logn/ log logn)2, for some constant
c > 0, [87].

15. A message encoded in π . What if a picture of a circle is indeed encoded by the
digits of π (as in Carl Sagan’s novel Contact)? What if some other message (of
a super-civilization that can alter laws of mathematics) is encoded there? Can
we find it?

The answer to this hypothetical question depends on where the message is
supposed to be. If it is right at the beginning, encoded by segment of ‘small’
digits, we will certainly notice it. We can also compute all digits of any short
segment in the medium range, since the digits of π can be computed very effi-
ciently, but we must know where the segment with the message is; we cannot
search the whole medium range, or we must be extremely lucky. Thus such an
experimental approach will almost certainly fail. Since the digits of π are not
random numbers, it is not excluded that we can determine such a segment in-
directly, using mathematical reasoning. This may be very hard, especially if we
did not know the content of the message. If the message is encoded by digits that
are on large number positions, we can only do it using theory; no experimental
search can help.

5.2 Randomness, Interaction and Cryptography

When writing about time and space of computations I presented it as limitations: the
computation is constrained by the fact that it has to finish in certain time and must
use only given space. But one can present it also positively as using computational
resources. When talking about randomness, it is quite natural to think about it as a
resource. A randomized computation uses random numbers, or random bits, which
we can visualize as coin-flips. While in the case of space, we can reuse the same

5.2 Randomness, Interaction and Cryptography 411

memory locations several times because we can erase the information that we do
not need anymore, random bits cannot be used repeatedly. Once a random bit is
used, it is no more random because the data that we process may depend on this bit.

Randomness is one computational resource that I am going to deal with in this
section; another is interaction. It is much more difficult to classify and quantify
interaction, as it has many forms. Interaction is present whenever a person performs
computations on a powerful computer. The person gives the data to the computer
and, after the computer processes it, receives the output. This is a completely trivial
example, nevertheless, already in this simple case we can ask: How does the person
know that they received the right answer? Can he verify the answer, and if so, why
did he have to use the computer to get the answer? etc.

This example also shows the typical assumption that one of the interacting enti-
ties has small computational power and the other has a big one. We think of these
two entities as players who cooperatively perform computation in order to determine
whether a given input belongs to a given set, or to determine the value of a function
on a given input. The one with little computation power is usually called Verifier;
the one with strong computation power, sometimes even unlimited, is called Prover.
The computation is done according to some rules called the protocol. The best way
to understand it is to imagine it as a game in which the goal of Prover is to per-
suade Verifier about a correct answer. We assume that Prover may cheat and the
protocol must be designed so that Verifier can detect the lie. (Therefore Prover must
cooperate.)

The complexity class NP can be presented as an extension of P by a basic form of
interaction. The idea is to interpret what I called ‘guessing’ by an action of Prover.
Recall that a set A is in NP, if there is an associated binary relation R such that x is
in A if and only if there is a y such that R(x, y). Thus we can compute A using the
following simple protocol:

1. Verifier and Prover get the input string x;
2. Prover produces a string y;
3. Verifier checks if R(x, y);
4. if so Verifier declares x to belong to A.

To get NP, one has also to specify that the string y can be only polynomially longer
than x and that Verifier is, in fact, a polynomial time algorithm. On the other hand,
we do not limit Prover in any way.

This is, of course, a trivial reformulation of the definition of NP, but viewing it
from this perspective, generalizations of this concept come immediately to mind.
For instance, what happens if we allow more rounds of interaction? Well, if we just
allow more rounds in the protocol above, nothing happens; we get NP again. The
reason is simple: since Verifier is a deterministic algorithm, Prover can compute all
communication before it starts. Thus instead of communicating in rounds it can send
all its answers at once. If, however, Verifier can toss coins, Prover cannot predict the
communication anymore and then things become much more interesting.

This is just one case that shows that randomness is important in interactive com-
putations. Another area of communication protocols where randomness is essential

412 5 The Complexity of Computations

is cryptography—secure transmission of data. One of the basic tasks in cryptogra-
phy is to choose keys that cannot be predicted. Without randomness it is impossible.

Cryptography is the field of applied science that is most tightly connected with
complexity theory. Users of an ordinary program are happy with the information
that the program is based on the fastest known algorithm for the given task. They
do not care whether or not it has been proved that no better algorithm exists. In
contrast to this, the information that so far nobody has broken the protocol is not
satisfactory for users of a cryptographic protocol. They would very much like to
have a mathematical proof that the protocol is secure. This amounts to proving that
the task of breaking the protocol is computationally infeasible, which means that it
requires so much time that nobody can solve it. Unfortunately, this is what theory is
still not able to provide them with. Still, theory is very useful for cryptography: we
cannot prove security, but we can determine reasonable assumptions which imply
it. The most common of these assumptions is the conjecture that integer factoring is
a computationally hard problem.

Theoretical cryptography is an extremely interesting field, but this is not the main
reason for including it in this book. It turns out that the concepts and results of
cryptography are also very important for complexity theory itself. In particular they
are relevant for the question whether randomness in computations is helpful.

How Can Randomness Be Helpful?

We view computers as instruments that are able to achieve formidable results due to
their high speed and extreme precision. Computers are indeed very precise; if pro-
grammed correctly, they almost never err. Randomness seems to be in conflict with
precision. We associate randomness with disorganized behavior which is apparently
not good for solving hard problems. So, how can one make any good use of it?

One explanation is that randomness enables us to easily construct complex struc-
tures. Consider for example a finite random graph. It is the result of a random pro-
cess, where for each pair of vertices, we decide randomly (we flip a coin) whether
or not they are connected by an edge. The resulting graph has no regular structure;
it is complex. Such a structure may have properties that we are not able to ensure
using a deterministic algorithm. The structure may be a solution to our problem, or
it may be a tool that we can use to solve the problem.

If we want to obtain a structure with a particular property by a random process,
such structures must be abundant, otherwise the probability of finding one would be
small and we can find it only by many trials. Fortunately, quite often the structure
that we need to find occurs with high probability.

An example of this are quadratic nonresidues. Let p > 2 be a prime. An integer r ,
0 < r < p, is called a quadratic residue modulo p if it is the remainder of a square
(a number of the form x2) divided by p. Formally, it means that the equation

x2 ≡ r mod p

5.2 Randomness, Interaction and Cryptography 413

has a solution. An integer n, 0 < n< p, that does not satisfy this condition is called
a quadratic nonresidue modulo p. It is an easy exercise to prove that half of the
numbers between 0 and p are quadratic residues and half are quadratic nonresidues.
It is very easy to find residues: clearly, 12 ≡ 1 mod p is a residue, and we can
generate others by taking an arbitrary number x and computing the remainder of x2

divided by p. To find a quadratic nonresidue is more difficult. There is an algorithm
that given a number y, 0 < y < p decides in polynomial time whether or not y is a
quadratic residue. The algorithm is based on computing the Legendre-Jacobi symbol(

y

p

)
,

which, for p prime, is equal to 1 if y is a quadratic residue and−1 if it is a quadratic
nonresidue. Thus we have a simple probabilistic algorithm for finding a quadratic
nonresidue.

1. choose randomly y, 1 < y < p;
2. compute (

y
p
);

3. if (
y
p
)=−1 output y, otherwise go to 1.

This algorithm finds a quadratic nonresidue in the first round with probability 1/2;
in general, the probability that it will need more than m rounds is 1/2m. So the
algorithm finds a quadratic nonresidue after a few rounds with very high probability.

What about finding a quadratic nonresidue by a deterministic algorithm? (I am
now using the word ‘deterministic’ to stress that the algorithm does not use random-
ness.) A straightforward adaptation of the above algorithm is to replace the random
choice of y by the systematic search y = 2,3,4, In this way we certainly find
a quadratic nonresidue; the question is only when. If p is of medium size, we can-
not search all numbers between 1 and p; there are too many of them. If we use
the concept of polynomial time, instead of small, medium and large numbers, then
an algorithm that searches all numbers up to p is not a polynomial time algorithm.
As the length of the input is logp, a polynomial time algorithm must run in time
polynomial in logp. So for this algorithm to be polynomial time, we would need
to prove that there is always a quadratic nonresidue below f (logp), where f (x) is
some polynomial. It is quite likely that this is true, but there is no proof of it. We
only know that a certain conjecture, the Extended Riemann Hypothesis, implies the
stronger statement that there exists a constant c such that for every prime p, there ex-
ists a quadratic nonresidue below c logp. Thus if the Extended Riemann Hypothesis
is true, we can find a quadratic nonresidue in polynomial time, but the hypothesis
may be false. (The Extended Riemann Hypothesis is, as the name suggests, a certain
generalization of the Riemann Hypothesis.)

So in spite of the fact that half of the numbers are quadratic nonresidues, to find
them by a deterministic polynomial time algorithm is an open problem.

In the next example of a problem solvable by a probabilistic algorithm in poly-
nomial time we even do not have a conjecture how to solve it deterministically. Let
s(x1, . . . , xn) and t (x1, . . . , xn) be two algebraic formulas and suppose that we want
to decide whether

s(x1, . . . , xn)= t (x1, . . . , xn) (5.3)

414 5 The Complexity of Computations

is a true identity in integers. The standard algorithm that mathematicians use is to
rewrite the expressions into a sum of monomials. Then it is an identity if and only if
we get the same expressions on both sides. However, this procedure may result in an
exponential blow up, so it is not a polynomial time algorithm. We can also test the
identity by choosing some numbers a1, . . . , an, evaluating both sides and checking
if they give the same value. If we do not get the same value, the identity is refuted,
but to prove that it is an identity we would need to use, in general, exponentially
many samples. If, however, we are satisfied with showing that it is an identity with
high probability, we can use an efficient randomized algorithm.

The idea of the randomized algorithm for the identity testing is based on the
observation that if the equation (5.3) is not an identity, then it has a bounded number
of solutions [259, 320]. The bound is exponential, but it is good enough for our
purpose. It is possible to take M that is not much larger than the size of the formulas
such that if we choose a1, . . . , an randomly from the interval [0,M], the probability
that the two formulas evaluate to the same number will be less than 1/2. If we repeat
the test several times and it will always pass, we will know with high probability that
it is an identity.

Holographic Proofs

Holographic proofs are a nice example of how randomness can help in other situ-
ations, not just for computing. It concerns the problem of verifying the correctness
of documents. Signing a contract without reading it through is very dangerous—a
single sentence that you miss may have disastrous consequences for you. The same
concerns mathematical proofs. A referee of a mathematical paper is supposed to
check the proofs. If only one step in the proof is wrong the proof is invalid. Veri-
fying documents and proofs is time consuming and often boring, so we wish there
were a way to do it more efficiently without compromising too much precision.

There exists, indeed, a method that at least in theory can achieve this goal. The
essence is to use encoding of the documents in a certain way which spreads any
possible error in the document over a large part of it. Then it is possible to test the
correctness by looking at a constant number of randomly chosen bits of the docu-
ment. The correctness is verified, of course, with some error, but the error decreases
exponentially with the number of bits tested; hence one can get very high certainty
with a relatively small number of bits.

Obviously, more details are needed to explain this vague idea. First, it should be
stressed that the task is not only to check that the format of the document is correct,
but we also need to check that it is a correct document for a given purpose. It is best
to think of it as a proof P of a theorem φ. Then the theorem φ is given and we need
to check that P is a proof of φ (by reading a constant number of bits of P), not only
that P is some proof. Another important thing one should realize is that there may
be many proofs of φ and the constant number of bits that we get does not tell us
which of them we have checked. Thus it is more correct to say that we are testing
the existence of a proof of φ.

5.2 Randomness, Interaction and Cryptography 415

Fig. 5.4 Which graphs are isomorphic? (See page 436)

Holography is a method of making images of 3-dimensional objects. It uses usual
light-sensitive films, but it needs coherent monochromatic light, the best source of
which are lasers. The image is encoded in the two dimensions available on the film
and needs a similar arrangement of coherent light in order to create a 3-dimensional
image of the object visible to the human eye. The relation with proofs has nothing
to do with dimensions. In calling the proofs holographic people refer to the fact that
in a holographic photograph the details of the objects are not encoded in localized
regions. So one can take a part of the photo and it will still produce the same 3-
dimensional image of the whole object, only the quality will decrease. It should be
pointed out that the concept of a holographic proof is more complex; it is not just a
robust way of encoding. If we only needed to be able to reconstruct the information
from each sufficiently large part, we could use a much simpler means, the error
correcting codes.

The existence of holographic proofs is one of the most remarkable results in
complexity theory. It has important applications in proving that some NP-complete
problems not only cannot be solved in polynomial time, but it is impossible even
to solve them approximately (provided that P = NP). The precise statement of the
result is rather technical, so I defer it to the section Notes.

Interactive Proofs

Interactive protocols are used to define new complexity classes and give an alterna-
tive definition of some standard classes. In the two examples below we will see how
one can compute more by combining polynomial time computations with interac-
tion than one can do without it.

The first example concerns the Graph Isomorphism Problem. It is the problem to
decide whether two given graphs are isomorphic. As isomorphic graphs must have
the same number of vertices, we can assume that the two given graphs have the same
set of vertices. The problem then is whether there is a permutation of vertices that
transforms one graph onto the other (see Fig. 5.4). This is, clearly, a problem in NP
for we can guess the permutation and check if it works. Note that we can ask the

416 5 The Complexity of Computations

same problem about isomorphism for other kinds of structures. We take graphs as
the canonical example because they are simple and other structures can be coded by
them.

Our aim is to study not the proofs that two graphs are isomorphic, but proofs that
they are not isomorphic. Proving nonexistence is usually harder, as we know, and
here we want, moreover, to find a method that works for all nonisomorphic pairs. It is
possible that there exists a small number of invariants that completely determine the
isomorphism type of a finite graph and that can be computed, or at least guessed and
checked in polynomial time. Then such sets of invariants can be considered proofs
of non-isomorphism. Such sets, however are known only for restricted classes of
graphs, so we have to use something else, which is interaction.

The two players that appear in the interactive protocol introduced by L. Babai [11]
are called Arthur and Merlin (the king and his wizard). Arthur is a man without any
supernatural abilities, thus he represents an entity that can only compute in polyno-
mial time, but he does have an advantage: he can toss coins. Merlin, in contrast, is
omnipotent, which means that his computational power is unlimited. In particular,
he can easily recognize whether or not two graphs are isomorphic. Unfortunately,
he cannot always be trusted (after all, he is a son of a devil) and that is the problem.
Thus Arthur can ask Merlin any question, but he can learn something only if he can
somehow verify Merlin’s answer.

Once Merlin comes to the king with two graphs G and H and wants to persuade
him that they are not isomorphic. As Arthur does not trust him, they need a schema
how to do it. Here is how it works. After receiving the two graphs, Arthur sends
Merlin away. He tosses a coin to choose one of them and then tosses the coin again
several times to randomly permute the vertices of the chosen graph. Let the resulting
graph be called F . Then Arthur calls Merlin back, presents F , and asks Merlin to
tell which of the two graphs, G or H , he used to construct F . His reasoning is: if
G is not isomorphic to H and as Merlin can recognize isomorphic graphs, he can
easily answer this question correctly; on the other hand, if Merlin is trying to cheat
him and the graphs are isomorphic, then F is a permutation of both graphs G and H ,
hence the probability that he answers correctly will be 1/2. The last probability can
be reduced to (1/2)k if Arthur presents k such graphs. Thus Arthur can easily and
with very high probability verify that the graphs are not isomorphic.

The Graph Isomorphism Problem is a rare example of a set in NP which is neither
known to be in P nor to be NP-complete. Although a general theorem says that if
P = NP, then there are many such sets [176], it seems hard to find such a set that
would be defined in a natural way. The protocol for non-isomorphism presented
above is evidence that the Graph Isomorphism Problem is not NP-complete. Now
we only need evidence that it is not in P.

Proofs that Convey no Information

A proof conveys the fact that the theorem is true. Can this be the only knowledge
that it reveals? Consider a very familiar situation: you went to a meeting to dis-

5.2 Randomness, Interaction and Cryptography 417

cuss a problem, you talked with people, you spent an hour or more, but after the
meeting you had the feeling it was completely useless—you did not learn anything
that you hadn’t known before. From your point of view it was “zero-knowledge”
communication. But was it really useless? Maybe you do not realize it, but your
opinions about the subjects discussed at the meeting have changed and maybe this
was exactly the purpose of the meeting.

What we are actually interested in is a more concrete situation. Suppose you
succeed in finding a solution to an important practical problem and you want to sell
your solution. To this end you must persuade a potential buyer that you really have
such a solution. But if you show the solution to somebody, you risk that they steal
the idea without paying anything. Therefore, you need to be able to present some
evidence that you have a solution, but the evidence should not reveal any details
about the solution. Are such zero-knowledge proofs possible?

Let us start with a more basic question: what does ‘zero knowledge’ exactly
mean? Surprisingly, this can be defined quite easily. Suppose A and B communicate
by sending some strings of bits. When they finish, we say that it was zero-knowledge
communication for A if all the strings that A obtained A could have computed
without the help of B . This is fine, but why should A bother at all to talk with B

in such a case? The point is that in spite of being able to compute all that A gets
from B , A does learn something: A learns that B is able to compute these strings. So
it is better to interpret such communication as A testing B . Think of B as a student
taking an oral exam with professor A. Then A, of course, knows the answers to his
questions; what A does not know is if B knows the answers.

The protocol for proving non-isomorphism of graphs described above is an ex-
ample of a zero-knowledge protocol. In that protocol Arthur is only testing Merlin
whether he indeed knows that the graphs are not isomorphic. This gives such a pro-
tocol for the complement of one set in NP. There is a general theorem saying that the
complement of every set in NP has such a protocol. This theorem is proved by pre-
senting a zero-knowledge protocol for the NP-complete problem of coloring graphs
by 3 colors and then referring to the fact that other problems in NP are polynomially
reducible to it. I will sketch the protocol.

Recall that a graph G is 3-colorable if one can assign one of three colors to every
vertex so that no two vertices connected by an edge have the same color. The idea
of the zero-knowledge protocol is that Merlin encodes the colors of a 3-coloring so
that they can be determined only using secret keys; every vertex has a different key.
After receiving this code, Arthur selects randomly two vertices that are connected
by an edge and asks Merlin for the keys. Thus Arthur can verify that the two vertices
have different colors. They repeat this protocol many times, but each time Merlin
permutes randomly the colors and uses new keys. Thus the colors that Arthur learns
in different rounds have nothing in common. Hence the only information he obtains
is what he expects: that Merlin knows a proper 3-coloring.

In order to prove this theorem, one needs to have the means to produce secure
encoding. The existence of such encodings has not been proved formally, but we
believe that they do exist. It is the basic assumption used in cryptography.

418 5 The Complexity of Computations

Cryptography

Cryptography is the science of secure information transmission. It studies means
to efficiently transmit information to authorized subjects while preventing an unau-
thorized subject from learning even small parts of the transmitted messages. This
field of science studies many practical problems as well as theoretical ones. The
theory of cryptography is closely related with computational complexity and can be
considered part of it.

Preventing an unauthorized person from reading a message can be done by ar-
ranging physically that the message can only reach the authorized people. The
essence of cryptography is, however, to arrange it so that even if an unauthorized
person gets hold of the message, they should not be able to get the information that
the message contains. There are basically two ways how to do it. One is to prevent
an eavesdropper from decoding the message by hiding the information needed to
decode it. This means that without some specific knowledge, a key, it is impossible
to decode the message, or it is possible to do it only with extremely small probabil-
ity. Such protocols are studied using information theory. The second way is to make
it impossible to decode the message using the available computers and limited time.
Thus the barrier is the computational complexity of the task that an eavesdropper
has to solve. In practice one has to combine both approaches.

Thus cryptography bears a special relation to computational complexity. In all
other applications, large computational complexity of a problem is viewed nega-
tively, whereas cryptography without computationally hard problems is impossible.
Furthermore, for cryptography it is very desirable to actually prove the hardness of
particular functions. Ideally, a cryptographic protocol should always be accompa-
nied with a proof of security, a proof that the task of breaking the code is com-
putationally infeasible. We know that proving computationally hardness of specific
Boolean functions is still beyond the reach of our mathematical means; so we are
very far from this ideal. The special nature of functions needed for secure encoding
makes the task even harder. We are not able to reduce these problems to the standard
conjectures of computational complexity such as P =NP. The security of all known
protocols is based on (apparently) much stronger assumptions.

As it happens so often in science, the concepts introduced in cryptography for
practical reasons turned out also to be important for theory. They play an important
role in the study of fundamental problems in complexity theory, for example, in the
study of randomized computations. These concepts turned out to be very useful also
in the more remote area of proof complexity, which is the subject of the next chapter.
Let us have a look at the most important ones.

One-Way Functions

We know very well that there are things that are very easy to do but very difficult,
or impossible to undo. In physics there is a law that explains this phenomenon. It
is the Second Law of Thermodynamics that asserts that the entropy in an isolated

5.2 Randomness, Interaction and Cryptography 419

system can only increase with time. In plain words, if we need to restore order in
some system, we must pay for it by taking away order from another system.

In mathematics a one-way function is, roughly speaking, a function f which
can be efficiently computed, but its inverse cannot. The connection with thermo-
dynamics is not superficial. Should the computed function be one-way, we must
erase information during the computation of the function and that is only possible
by dissipating heat. If we erase some information, then it looks very likely that it
should be difficult to reverse the computation, but in fact it may be very difficult
to prove it formally. Let us try a bit more precise definition using polynomial time
computability.

A possible definition is that f is one-way-function if x �→ f (x) is computable in
polynomial time, but there is no polynomial time algorithm which from a given y

computes some x such that f (x)= y, provided such an x exists. In order to avoid
trivialities, we will assume that the lengths of x and y are polynomially related—
one can bound the length of x (respectively of y) by a polynomial depending on the
length of y (respectively of x).

The existence of such functions follows easily from the (unproved) assumption
P =NP. Indeed, if P =NP, then there is a search problem R(x, y) such that finding
y for a given x is not possible in polynomial time. (I am tacitly assuming the same
conditions that were used to define the class NP: R is computable in polynomial
time and the length of y is bounded by a polynomial in the length of x). Define
f (x, y) = x if R(x, y) and f (x, y) = 0 otherwise. Clearly, if we were able to re-
cover x, y from the value of the function f (x, y) in polynomial time, then we also
would be able to solve the search problem in polynomial time.

The definition above is not very useful. Therefore the term ‘one-way function’
has been reserved to a more useful, but also more difficult concept. To understand
the motivation behind this concept, we have to look at the applications of one-
way functions in cryptography. In the basic model one has an encoding function
F which, given a encoding key e and a message x called a plaintext, produces the
encoded message y = F(e, x) called the ciphertext. There is also a decoding func-
tion G which from the ciphertext y and the decoding key d associated to e produces
the original plaintext x =G(d,y). The secret-key systems are systems where both
keys have to be secret. In such systems often the decoding and the encoding keys are
the same. In public-key systems, the encoding key is public because it is assumed
that the decoding key cannot be computed from it.

If one could use keys of the same length as the messages and each time use
a new pair of keys, everything would be simple. In such a case there are simple
coding and decoding functions that are provably secure. Their security is based only
on information-theoretical arguments, which is good because we do not have to use
any unproven assumptions, but such systems are highly impractical. Therefore the
main problem in cryptography is to design encoding and decoding functions with
short keys that can be reused many times.

When researching the security of a code, one has to take into account various
possible scenarios. For us, it suffices to consider the most basic type of attack.
This is an attempt to break the code using pairs of several plaintexts and the corre-
sponding ciphertexts, say, (x1, y1), (x2, y2), . . . , (xn, yn). One can show that if these

420 5 The Complexity of Computations

pairs are randomly chosen, then already for a small n both keys of the system are
uniquely determined.11 In practice no messages are random; they are messages in
some natural language about things currently happening. Nevertheless, what is not
random for us may still look random from the point of view of the coding system.
In any case, we cannot exclude that the keys are determined from a small sequence
of samples. Now, since the information about the keys is present in the sequence
(x1, y1), (x2, y2), . . . , (xn, yn), the only way that the system can be resistant against
this attack is if it is computationally infeasible to extract this information.

The task of computing the keys from samples of plaintext and ciphertext is a
typical search problem. Thus one may naively propose to justify the security of
a system by the commonly accepted conjecture P = NP. Why is it naive? Firstly,
we cannot use any asymptotic statements, such as P = NP, to make claims about
algorithms that only work with inputs up to some concrete finite size. Secondly,
and this is the gist of this subsection, P = NP is a conjecture about the worst-case
complexity, which does not suffice for cryptographic security. P = NP means that
some X in NP is not in P. But if X ∈ P, we only know that for every polynomial
algorithm A, A is wrong on at least one input. Indeed, for many NP-complete sets,
which are the hardest sets in NP, the decision problem is simple for random inputs.
Thus such sets are easy on average, while they still may be hard in the worst case.
What is needed for good cryptographic functions is that they are hard almost always;
this means that for every algorithm A running in short time, the probability that it
solves the search problem for a random input is negligible.

Another important thing to realize is that enemies may try to use arbitrary means
to break the code. Here we are only interested in the computational aspects, so
the question is what kind of computations they can use. Presently we only know
about one additional means that may possibly extend the class of computations in
limited time—randomness. It is possible that some problems may be solvable using
randomized computations, whereas every deterministic algorithm for them would
run for too long. Therefore we have to assume that the attacks on the code will be
done using randomized algorithms.

After this digression to cryptography the definition of one-way functions makes
much more sense. It is a theoretical concept, so one uses asymptotic bounds: poly-
nomial upper bounds on the time of the machines and bounds on the probability
of the form one over a polynomial. It is worth stating the definition quite formally,
since the concept is rather subtle.

Let p1,p2, . . . be an infinite sequence of positive reals. We will say that they are
negligible, if there exists a function γ (n) that grows faster than any polynomial such
that 0≤ pn ≤ 1/γ (n) for every n.

Definition 11 Let f be a function mapping binary strings into binary strings such
that the lengths of x and f (x) are polynomially related (as explained above). Then
we say that f is a one-way function, if

11In general, they are only determined up to the functional equivalence; I will ignore this subtlety.

5.2 Randomness, Interaction and Cryptography 421

1. f is computable in polynomial time (without using randomness);
2. for every randomized Turing machine M running in polynomial time, the prob-

ability, for a random x of length n, of the following event is negligible: given
y = f (x) as the input, M finds a pre-image of y (an x′ such that f (x′)= y).

The complicated condition 2. formally expresses that any polynomial time random-
ized algorithm inverts function f with negligible probability.

It should be noted that although the motivation presented above was from cryp-
tography, the concept is important also in other parts of complexity theory.

A Complexity Class Defined Using Randomness

When studying the relation of randomized computations to non-randomized ones
(deterministic computations) it is good to have a benchmark to which one could
refer. As usual in complexity theory, it should be a complexity class. Probabilistic
complexity classes are almost exclusively defined using the worst-case complexity,
like the non-probabilistic ones, which means that we require that a probabilistic
Turing machine must use limited time or space on each input. Further, for each
input we specify with which probability it should be accepted.

A probabilistic Turing machine is simply a nondeterministic Turing machine (as
defined on page 375); what is different is only the way we interpret it. Whereas
when defining that a nondeterministic Turing machine accepts an input we only ask
if there is an accepting computation, in the case of probabilistic machines we count
the probability that they accept a given input.

The best is to give an example. It is the most important probabilistic class, the
Bounded error Probabilistic Polynomial time, BPP.

Definition 12 A set X is in BPP if there exists a probabilistic Turing machine M

that stops on every input after polynomially many steps and such that for every
input a,

1. if a ∈X, then M accepts a with probability at least 2/3;
2. if a ∈X then M accepts a with probability at most 1/3.

If we have a set X and a machine M satisfying the definition, then M can make
errors on both kinds of inputs, those that are in X and those that are not in X.
The machine accepts elements of X with higher probability than non-elements. It is
important that there is a gap between the two probabilities. This gap enables us to
show that BPP is very close to P.

The argument is very simple. Given an input a, run M on a several times, say
m-times. Then accept a using “the majority vote”, meaning that we accept a if
at least in m/2 cases M accepted a. Then the claim is that we will accept every
a ∈ X with probability at least 1 − ε and reject every a ∈ X with probability at
least 1− ε where ε > 0 is exponentially small (with the exponential function only

422 5 The Complexity of Computations

depending on m). Indeed, suppose first a ∈ X. Let pa be the probability that M

accepts a. By definition, pa ≥ 2/3. The expected number of times that M accepts
a is pam. By the law of large numbers, the distribution of this random variable is
sharply concentrated around the expected value (most likely it will be pam±√m

and the probability drops exponentially when we go outside this region). Thus, in
particular, the probability that M will accept less than m/2-times is exponentially
small. Whence the majority vote will be correct with probability exponentially close
to 1. The proof for a ∈X is completely symmetric.

The bottom line is that for all practical purposes BPP is as good as P because by
using only a few repetitions we can make ε so small that an error will never occur in
practice. Hence the class of feasibly computable sets is not P, but BPP! That said,
most likely the following is true:

Conjecture BPP= P.

However, if the conjecture is true, it does not mean that randomness is com-
pletely useless. The conjecture only says that we can eliminate randomness by at
most polynomially increasing the time. It is likely that some problems need, say,
quadratic time if computed deterministically, but only linear time when computed
probabilistically. In large scale computations done in practice this can make a big
difference.

To understand the reasons why most researchers believe in this conjecture, we
must learn about the ways how to eliminate randomness from computations.

Pseudorandomness—Imitation of Randomness

Consider a problem for which we only have a probabilistic polynomial time algo-
rithm. For such a problem, there is a good chance that one can find a determinis-
tic polynomial time algorithm because it has happened so in many cases. But the
deterministic algorithms are as a rule based on different ideas than original proba-
bilistic algorithms. For example, the recently discovered polynomial time algorithm
for testing primality uses an idea different from all previously found probabilistic
algorithms. So our experience does not suggest any general method of eliminating
randomness. There is, however, a simple idea that potentially may work in general.
It is based on the assumption that it is possible to replace random bits by bits gener-
ated deterministically in a suitable way, by pseudorandom bits.12

In fact, if you program your computer to run a probabilistic algorithm, it will do
almost exactly that: it will use the current time as a random seed, but then it will
compute the required random numbers deterministically. For most applications, it

12A related concept had been studied in the research area algorithmic randomness before the math-
ematical definition of pseudorandom generators was introduced. In that area the aim was to define
and study countably infinite sequences that share properties with typical random sequences.

5.2 Randomness, Interaction and Cryptography 423

works well, but it cannot be used if security is at stake. The random number genera-
tors used in most implementations are very simple; they pass simple statistical tests,
but a bit more sophisticated test can easily discover that the sequence of numbers is
not random.

The basic question is whether pseudorandomness is a mathematical concept, i.e.,
whether there is a precise mathematical definition of this concept, or it is only a
vague intuitive concept. If we consider sequences of n zeros and ones, then prob-
ability theory does not distinguish between them—the sequence of n zeros is as
random as any other. When we talk about one random sequence in probability the-
ory, we in fact refer to all sequences. Thus the first important thing to learn is that
using complexity theory one can define pseudorandomness.

Before stating the definition, I will present some arguments that more or less
uniquely lead to the definition. Let us focus on sequences of n bits. First we observe
that we need at least a little bit of true randomness. If we produced a sequence of bits
without any random seed, it would always be the same sequence, thus one would
easily recognize that it is not a random sequence. Therefore we do not talk about
pseudorandom sequences of bits, but rather pseudorandom generators. A pseudo-
random generator produces a sequence of n bits from a sequence of m bits for some
n > m. We say that a generator stretches m random bits to n pseudorandom bits.
I will explain later how much a generator should stretch a given sequence of ran-
dom bits.

The main idea of the definition of pseudorandom generators is to replace simple
statistical tests by all tests that can be computed in polynomial time. Thus a test is
any polynomial time algorithm that outputs zero or one. When a test is simple, we
know what we should obtain when testing a pseudorandom generator. For exam-
ple, if we just test how often a given subsequence of k bits occurs in the sequence
produced by the generator, we know that the frequency should be 1/2k . But what
should we do with a test that is based on an algorithm that we do not know? The
solution is simple: we do not need to be able to compute the probability that the
test accepts a random sequence of length n, we just test pseudorandom sequences
and random sequences, and then we compare the frequencies that we have obtained.
If we have a good pseudorandom generator, the frequencies should be very close.
It is quite natural to use polynomial time algorithms as tests, but for certain tech-
nical reasons it is better to define pseudorandom generators using polynomial size
Boolean circuits.

Having defined tests we can now define that P is a pseudorandom generator, if
it is computable in polynomial time and it passes all tests. To pass a test defined
by a circuit C means that there is a negligible difference between the probabilities
with which C accepts the outputs of P and with which it accepts random sequences.
Here is a slightly more formal definition.

Definition 13 A pseudorandom generator is a function P computable by a deter-
ministic polynomial time Turing machine such that for every m,

1. P maps the set of zero-one strings of length m into the set of zero-one strings of
length n, for some m< n;

424 5 The Complexity of Computations

2. for every polynomial size circuit C, the difference between the probability that
C(P (x))= 1 for a random string x of length m and the probability that C(y)= 1
for random string y of length n is negligible.

(The meaning of ‘negligible’ is the same as in Definition 11.)

Let us play with “our new toy”. Let X ∈ BPP and let M be a probabilistic Turing
machine that accepts X as required by the definition of BPP. In general, M gets
random bits (‘tosses a coin’) during the computations, but it is not difficult to see
that equivalently, M can get all random bits at the beginning, store them on the tape
and then use them, one by one, as needed during the computation. Thus M is in fact
a Turing machine that gets two inputs, a and the random bits. Suppose a ∈ X and
M needs n random bits for the computation on a. By definition, the probability that
M accepts a is p ≥ 2/3.

Now suppose that we have a pseudorandom generator P that stretches m bits
to n bits. Then we can try to run M using the pseudorandom bits produced by P .
If we think of a being fixed, then we can think of M as a test, a test that checks
pseudorandomness of the bits. If p′ is the probability that M accepts a with pseu-
dorandom bits from P , then p′ must be very close to p, when n goes to infinity.
Thus p′ ≥ 2/3− ε, where ε→ 0 when n→∞. The argument is completely sym-
metric for an input b ∈ X. So, if we denote by q ′ the probability that M accepts
b using pseudorandom bits, then q ′ ≤ 1/3+ ε, where ε→ 0 when n→∞. For n

sufficiently large, we get q ′ ≤ 1/3+ ε < 2/3− ε ≤ p′; so we have a constant size
gap between q ′ and p′. Hence pseudorandom bits are as good as random ones!

But is it of any practical interest? According to the definition, we only know
m < n, so it can be just m= n+ 1. In such a case we have saved only one random
bit—not a big deal! If we want to get rid of random bits, the crucial question is how
much can pseudorandom generators stretch the input bits. Fortunately, there is a
very simple way to get larger stretching: to compose the generators. If we compose
k pseudorandom generators, each stretching only by one bit, we get a generator that
stretches the input by k bits. This works as long as k is bounded by a polynomial
in m. In this way we can save a substantial part of random bits.

If we want to show that randomness can be eliminated, we have to get rid of all
random bits. This means that eventually we have to get rid also of the random seed of
the generators. Here the idea is also simple: run the algorithm for all random seeds.
To see how it works, consider again the same situation as above, where a ∈ X and
we used a pseudorandom generator P stretching m bits to the number of random bits
that the machine M needed. We concluded that M accepts a with probability p′ ≥
2/3− ε. This means that of all the 2m strings produced by P , at least (2/3− ε)2m

will let M accept. Similarly, if b ∈ X, the number of strings that will let M accept
b will be at most (1/3 + ε)2m. Hence the simple majority vote rule will decide
whether we should accept the input.

In order to obtain a polynomial time algorithm, we would need to have 2m to
be bounded by a polynomial in the input length. Let n denote the input length,
then it means that m should be bounded by c logn, for a constant c. A probabilistic
polynomial time algorithm on such inputs may need polynomially many random

5.2 Randomness, Interaction and Cryptography 425

bits. Thus we need a generator that stretches the input exponentially, from c logn

to p(n), for some polynomial p. Such generators do not satisfy our definition of
pseudorandom generators. The problem is that we measure the time as the function
of the input length. Then no function that stretches the length exponentially can be
polynomial time computable. Nevertheless, this approach still makes sense; only the
definition is too restrictive. For the purpose of derandomization, it suffices to bound
the time by a polynomial in the output length. After we change the definition in this
way, we have to make another change—we must bound the size of circuits used as
a test by a specific polynomial.

The technical details of the more general definition of pseudorandomness are
not important. It suffices that we know that it can be done and that such generators
can derandomize BPP. Thus, in particular, the problem of proving P= BPP can be
reduced to a construction of pseudorandom generators of a certain type.

Derandomization and Proving Lower Bounds

We do not know if pseudorandom generators exist. A necessary condition for their
existence is that P =NP, but we also do not know if the existence of pseudorandom
generators can be proved from this conjecture. It seems that the conjecture that they
exist is stronger than the conjecture that P =NP. But we do know some interesting
facts about them.

The first remarkable fact is that the existence of pseudorandom generators is
equivalent to the existence of one-way functions (in the sense of Definitions 11
and 13). One of the implications is very simple: every pseudorandom generator
that stretches m bits to 2m bits is a one-way function. Here is a sketch of a proof.
Suppose the contrary, that a pseudorandom generator P is not a one-way function.
It means that we can invert it with non-negligible probability. Stated formally, one
can compute in polynomial time a function g such that

P
(
g
(
P(x)

))= P(x)

is true with non-negligible probability. But if we take y a random string of 2m bits,
then the probability that it is in the range of P is at most 2−m, whence the probability
that

P
(
g(y)

)= y (5.4)

is also at most 2−m. Thus (5.4) defines a test that can distinguish between random
strings y and P(x); so P is not a pseudorandom generator.

To construct a pseudorandom generator P from a one-way function f is much
more difficult, so I will consider only a special case, where the one-way function sat-
isfies a couple of additional conditions. The first condition is that f is a one-to-one
mapping from the set of n bit strings into itself. In other words, f is a permutation
of the set {0,1}n. The second condition is that for x ∈ {0,1}n, the first bit of x, de-
noted by x1, is not predictable from f (x). (This can be defined precisely, but I will

426 5 The Complexity of Computations

omit this definition in the informal presentation here.) If these two conditions are
satisfied, we can define a pseudorandom generator by

x1x2 . . . xn �→ x1y1y2 . . . yn,

where y1y2 . . . yn = f (x1x2 . . . xn). So it is a pseudorandom generator that stretches
n bits to n+ 1 bits. The assumption about unpredictability of the first bit is quite
natural. A cryptographically good one-way function should hide as much as possible
about the input, in particular, all input bits should be unpredictable from the output.

The fact that the existence of pseudorandom generators is equivalent to the exis-
tence of one-way functions shows that these concepts are good and that it is natural
to conjecture that they exist. Yet, we would prefer to find a relation to a conjecture
about basic complexity classes. A lot of progress in this direction has been achieved
in the last two decades. I will describe what I think is the most interesting one of
these results. This result gives a statement that seems very plausible and which im-
plies that BPP= P. Pseudorandom generators are not explicitly mentioned, but they
play the crucial role in the proof.

Recall that we view circuit complexity as the nonuniform version of Turing ma-
chine time complexity. We know that sets in P can be computed by polynomial size
circuits. We have also observed that in general, if A can be computed in time t (n),
then it can be computed using circuits of size c · t (n)2, where c is a constant. It
seems that this relation cannot be substantially improved. The result says that if this
is indeed the case, then BPP= P. The precise statement is in the following theorem
of R. Impagliazzo and A. Wigderson [136].

Theorem 40 If there exists a set A of 0–1 strings such that

1. A is computable in time 2cn, where c is a constant, and,
2. for every n, the circuit complexity of the set A ∩ {0,1}n is at least 2δn, where

δ > 0 is a constant,

then BPP= P.

We can view this theorem also from the perspective of proving lower bounds.
Most research on lower bounds focuses on circuit complexity of Boolean functions.
Since we know that there are Boolean functions that have exponential circuit com-
plexity, the problem is to prove it for explicitly defined Boolean functions. Explicitly
defined is an intuitive concept that we can interpret in various ways, but it always
means some restriction on the complexity. If, for instance, we interpret it as NP,
then proving superpolynomial lower bounds would imply P = NP. If we interpret
‘explicitly defined’ as ‘computable in time 2cn’, then proving exponential lower
bounds on an explicitly defined function would give BPP= P.

Thus this result shows what most researchers agree on: proving lower bounds
on the circuit complexity of Boolean functions is the central problem in complexity
theory. Some recent results confirm it even more. Although the converse to the im-
plication in the theorem above is not known, there are some partial results that show
that BPP= P implies certain lower bounds on circuit complexity [145]. Thus it is
impossible to derandomize BPP without proving some nontrivial lower bounds.

5.2 Randomness, Interaction and Cryptography 427

Two Important Functions

The methods developed for derandomization enable us to construct one-way func-
tions and pseudorandom generators from any sufficiently hard functions. Although
we cannot prove their hardness formally, to find suitable candidates is not a prob-
lem. For example, a natural candidate for a set A that satisfies the conditions of
Theorem 40 is the well-known NP-complete set SAT, the set of satisfiable Boolean
formulas. That said, this is completely useless for practical applications, especially
for cryptography. When a construction is based on a series of complicated reduc-
tions, its desirable properties will manifest only for very large input lengths, which
occur rarely in practice. What is needed are functions that exhibit these properties
for inputs of fairly small lengths. There are two functions that are prominent among
all proposed candidates of one-way functions. They are multiplication of integers
and exponentiation modulo a prime.

The inverse problem to multiplication is factoring, which I have already men-
tioned several times. For multiplication to be a one-way function, we need not only
to know that the factoring problem is hard, but also that it is hard for almost all in-
puts. This is clearly not true: every other number is even, hence the product of two
random numbers of a given length n is even with probability 3/4; to find a factor
of an even number is trivial. Therefore, it has been proposed to restrict the domain
to pairs of prime numbers. Let an input length n be given, then one considers the
function:

input: p, q primes of length n

output: pq

In all known algorithms the most difficult numbers to factor are those that are
products of a small number of large primes whose differences are also large. In
particular, the most difficult seems to be to factor the product of two large primes
p and q , with |p − q| large. It is possible that multiplication restricted to pairs of
primes is indeed a one-way function.

The second function also comes from number theory. If p be a prime number,
then there exists a number g such that every number 1≤ y ≤ p− 1 can be uniquely
expressed as the remainder of gx when divided by p for some 0 ≤ x ≤ p − 2;
we write y = gx mod p. Such a g is called a generator of the multiplicative
group modulo p. Since this is a one-to-one mapping from {0,1, . . . , p − 2} onto
{1,2, . . . , p− 1}, the inverse function is defined, and since it is the inverse to expo-
nentiation, it is called the discrete logarithm; we write x = logg y.

It is not quite obvious that exponentiation modulo a prime is computable in poly-
nomial time. One cannot do it by first computing gx and then computing the re-
mainder. It is necessary to use modular arithmetic, namely, to take the remainder
after each step of computation because otherwise one would have to use exponen-
tially long numbers. Also we cannot perform x multiplications; one has to use the
trick of ‘repeated squaring’ (see page 431). Finding a generator g is another interest-
ing problem that one has to solve in practical applications; unfortunately, it would
take us too far afield to discuss it.

428 5 The Complexity of Computations

What is more important is the complexity of the inverse problem, the discrete
logarithm. Again, some algorithms are known, but all need exponential time. Since
in number theory it is a well-known problem, studied for a long time, and we still
do not have efficient algorithms, it is reasonable to conjecture that there is no poly-
nomial time algorithm.

The most interesting property of the discrete logarithm function is that when it is
hard in the worst case, then it is hard also on average. This is an extremely desirable
property and in all other proposed candidates it is difficult to find a good justification
for the hardness on average. In the case of the discrete logarithm we can actually
prove it, provided we have hardness in the worst case, moreover the proof is very
easy. Here is a sketch of the proof.

Suppose M is an algorithm that solves the discrete logarithm for random inputs.
Thus for a randomly chosen y, 1≤ y ≤ p−1, it computes logg y with probability at
least n−c, where n is the input length (the number of bits of p) and c is a constant.
We define M ′ which solves with the same probability the problem for every given y′,
1 ≤ y ≤ p − 1. M ′ first takes a random r , 0 ≤ r ≤ p − 1 and computes y = y′gr .
Then applies M to y; let x the number computed by M . Then M ′ outputs x − r .

To show that M ′ computes logg y
′ with probability at least n−c, suppose that

in the subroutine M succeeds to find x = logg y. Then x = logg y
′gr = logg y

′ +
logg g

r = logg y
′ + r . Thus, indeed, M ′ finds logg y

′. To get a probability arbitrarily
close to 1, we only need to repeat the subroutine M polynomially many times.

Our only reason to believe that factoring and the discrete logarithm are hard
functions is the lack of efficient algorithms in spite of the deep insight of number
theorists into these problems. Unlike in the case of NP-complete problems, where
we know that they are the most difficult ones in the class NP, we do not have any
result of this kind for these two functions. Some classes, in particular complexity
classes of randomized computations, do not seem to have complete problems; the
same is probably true for one-way functions and pseudorandom generators.

Notes

1. Probabilistic primality tests. As the polynomial bound in the Agrawal-Kayal-
Saxena test is still quite large, in practice it is better to use faster probabilistic
tests discovered before. One of these tests is due to Solovay and Strassen [282].
Given an N which is to be tested, we randomly choose an a, 1≤ a <N and test

a. (a,N)= 1 (are a and N coprime)?
b. a(N−1)/2 ≡ (a

N
) mod N?

If N passes both tests then it is a prime with probability at least 1/2. The precise
meaning of this statement is: if N is not a prime, then at most 1/2 of all num-
bers 1≤ a <N satisfy both equations, and if N is a prime, then all a satisfy the
two conditions. In this test the only random part is the choice of a, the expres-
sions in the equations can be computed in polynomial time. (For computing the
Legendre-Jacobi symbol it suffices to recursively use the well-known relations,
one of which is the Quadratic Reciprocity Law.)

5.2 Randomness, Interaction and Cryptography 429

If we repeat the test twice we get:

a. if N is a prime then it is accepted with probability 1;
b. if N is not a prime, then it is accepted with probability at most 1/4.

This formally proves that the set of primes is in the class BPP (we know that
it is, in fact, in P which is contained in BPP. Notice that the first condition is
much stronger than it is required in the definition of BPP because in the first
case there is zero error. Many concrete problems that are in BPP satisfy this
stronger condition.

Similarly, as in the case of finding quadratic nonresidua, one can turn some
probabilistic primality tests into deterministic polynomial time algorithms if
certain number-theoretical conjectures are true. Such a test based on the Ex-
tended Riemann’s Hypothesis was proposed by G.L. Miller [198]. The proof of
the Extended Riemann’s Hypothesis, if ever found, will surely be much more
difficult than the proof of the correctness of the Agrawal-Kayal-Saxena algo-
rithm.

2. Probabilistic Turing machines and hardness on average. An alternative way of
defining probabilistic Turing machines is to equip deterministic machines with
an additional tape for random bits. Then we count the probability of acceptance
of a given input when the tape contains random bits.

Sometimes people confuse this model with a different problem. Suppose a
set A and a deterministic machine M is given. Determine, for a random input,
the probability that the machine correctly decides if the input is in A. The same
problem is more often studied for Boolean circuits and Boolean functions. We
say that a function f : {0,1}n→{0,1} is hard on average, if for every circuit C
of subexponential complexity, the probability that C accepts or rejects a random
input correctly is less than 1/2+ ε, where ε→ 0 as n→∞.

3. Randomized circuits. It is also possible to study randomized circuits. Such cir-
cuit C has input variables of two types. One serves as the ordinary input vari-
ables x1, x2, . . . , xn, the others are for random bits r1, r2, . . . , rm. For a given
assignment to values to x1, x2, . . . , xn, we count what is the probability that C
accepts (= computes 1) for a random string of r1, r2, . . . , rm. If C computes a
Boolean function f with bounded error (as in the definition of BPP: if f (x)= 1
then C(x, r)= 1 with probability ≥2/3 and if f (x)= 0 then C(x, r)= 1 with
probability ≤1/3), then we can amplify the probability exponentially by taking
several circuits and computing the majority vote. In this way one can construct
a circuit whose probability of error is less than 2−n. When the error is so small,
there exists one string r1, r2, . . . , rm with which C computes correctly for all 2n

inputs. Thus we can eliminate randomness by only polynomially increasing the
size of the circuit.

Therefore, randomness is not interesting in the context of non-uniform com-
plexity.

4. More on holographic proofs. Here is the definition of a holographic or polyno-
mially checkable proofs. I continue with the example of proofs and formulas.
A system of holographic proofs consists of a suitable definition of proofs and an
algorithm A. The algorithm is probabilistic and has two parameters: a constant

430 5 The Complexity of Computations

0 < α < 1 and an integer c ≥ 1. Given a formula φ and a text P , A computes c

bit positions in P and reads these bits, say b1, b2, . . . , bc. Using only these bits
and formula φ, it either accepts or rejects. Furthermore,

(a) if P is a correct proof, then A always accepts P ;
(b) if there exist no proof of φ, then A rejects P with probability at least α.

Such proofs can be constructed not only for the particular case of formulas
and their proofs, but for any problem in NP. Recall that a set A is in NP if it is
defined using a search problem, namely, x ∈A if the associated search problem
has a solution. Testing the existence of a certain object is the heart of the matter.
So one first proves that an NP-complete problem has polynomially checkable
proofs and then uses reductions to prove that all NP problems have such proofs.
The fact that every set in NP has polynomially checkable proofs is the famous
PCP Theorem [7, 9].

5. Public key cryptography. The most interesting concept in cryptography is a pub-
lic key system. These systems are not only very interesting from the point of
view of theory, but they are also the most useful applications of cryptography.

Let us recall the standard setting. We have an encoding function F(e, x) and
a decoding function G(d,y), where x is the plaintext, y is the ciphertext, e

an encoding key and d is the decoding key corresponding to e. It is assumed
that the functions are publicly known. In the case of a public key system, Alice
knows both e and d and publicly announces the encoding key e. Then every-
body can send messages to Alice, but only she can decode them. Thus for a
fixed e, the function x �→ F(e, x) is not one-way because it has an easy inverse
G(d,y), but it is hard to find the inverse, unless one knows d . Such functions
are called trapdoor functions.

The most common public key system is the RSA, invented by R.I. Rivest, A.
Shamir and L. Adleman [246]. In RSA Alice needs a sufficiently large compos-
ite number N and its factorization. The best seems to take two large primes
p and q whose difference is also large and let N = pq . The number N is
public, but p and q must be kept secret. An encoding key is a randomly cho-
sen e, 1 < e < φ(N), where φ(N)= (p− 1)(q − 1) (the Euler function of N).
Knowing φ(N), Alice can compute the decoding key 1 < d < φ(N) such that
ed ≡ 1 modφ(N), (this is done using the well-known Euclid algorithm).13 The
encoding function is

F(e, x)= xe mod N;
the decoding function is, in fact, the same

G(d,y)= yd mod N.

In this way we can encrypt any number from 1 to N−1 except for p and q . If N
is sufficiently large and messages are more or less random, the probability that
a message will be p or q is negligible. Using the well-known Euler’s Theorem

13Strictly speaking, the encoding and decoding keys are not only the numbers e and d , but the pairs
(e,N) and (d,N).

5.2 Randomness, Interaction and Cryptography 431

which says that zφ(N) ≡ 1 mod n, we see immediately that d is the decoding
key for e:

(
xe
)d = xed = x1+cφ(N) = x · (xφ(N)

)c ≡ x · 1c = x mod N.

If one can factor N , then one would be able to compute the decoding key and
thus break the system. It seems that this is the only way how one can success-
fully attack it, but there is no proof of it. There is, however, a public key system,
for which one can prove that it is secure if and only if it is hard to factor a ran-
domly chosen product of two primes. Such a system was designed by M.O. Ra-
bin [234]. The encoding function in his system is simply x �→ x2 modN , where
N is as in RSA.

However, RSA has some additional good properties which make it more
attractive than other systems. In particular, the keys commute: if we need to
apply two keys then it does not matter in which order we apply them. This has
a number of useful applications.

6. Modular exponentiation is needed in many cryptographic protocols. Suppose
we want to compute AB modulo N . The input size is the sum of the lengths of
the numbers A, B , N . Since B can be exponential in the input size, we cannot
simply multiply AB-times. Therefore, we use the trick of repeated squaring. It
is best seen in an example. Let B = 1011001 in binary. First express B as fol-
lows

1011001= 1+ 2
(
0+ 2

(
0+ 2

(
1+ 2

(
1+ 2(0+ 2 · 1))))).

(Notice that 0’s and 1’s occur in the reverse order on the right-hand side.) Of
course, we can delete all 0’s and the last 1,

1011001= 1+ 2 · 2 · 2(1+ 2(1+ 2 · 2)).
Now we can compute AB efficiently:

A1011001 = (((((A2)2 ·A)2 ·A)2)2)2 ·A.

Furthermore, we must not do the operations in Z because the sizes of numbers
would be exponentially large. Instead, we compute in ZN ; technically, it means
that after each operation we replace the result by its remainder modulo N .

7. Expander graphs. Explicitly constructed expander graphs are probably the most
useful structures in complexity theory. Expander graphs are graphs satisfying a
certain property which is typical for random graphs. Since we have an explicit
construction, which means that we can construct them efficiently without using
randomness, we can use them to simulate randomness in some specific situa-
tions.

The graphs that are of interest for us are graphs with bounded degree. This
means that the degree of every vertex (the number of edges incident with the
vertex) is bounded by a constant d . Often we can assume the stronger condition
that the degree of every vertex is equal to the constant d . Such graphs are called
d-regular.

432 5 The Complexity of Computations

The property by which expander graphs are defined is, roughly speaking,
that every subset of vertices X is connected with many vertices outside of X.
Obviously, if X is the set of all vertices or it contains almost all vertices, then
there are not many vertices left. Therefore one has to state the condition so that
this case is avoided. Here is the definition.

Definition 14 A finite d-regular graph G on a set of vertices V is called an
ε-expander, for ε > 0, if for every subset of vertices X that contains at most one
half of all vertices, the number of vertices outside of X connected with vertices
in X is at least ε times the size of X.

The name expander is used here because the set of all vertices that are in
X or connected to a vertex in X has size at least (1+ ε) times the size of X.
Thus every X which is not too large “expands” at least by factor 1 + ε. In
applications we need infinite families of graphs that are d-regular ε-expanders
for some constants d and constant ε > 0. To prove that such graphs exist by
non-constructive means is easy—a random d-regular graph is an ε-expander for
some ε > 0 with high probability. To construct a family of explicit expanders
is, however, a non-trivial task. The graphs may be quite simple to describe, but
to prove that they are expanders is difficult. Although the condition by which
expanders are defined is purely combinatorial, the best way to prove nontrivial
bounds on the expansion rate is to apply algebra (to show a gap between the
largest and the second largest absolute values of eigenvalues of the adjacency
matrix of the graph).

Example The first explicit construction of a family of expanders was given by
Margulis [191]. For every n > 0, he defined a graph on the set of vertices Zn ×
Zn in which every vertex (x, y) is connected by an edge with (x + y, y), (x −
y, y), (x, x+y), (x, x−y), (x+y+1, y), (x−y+1, y), (x, x+y+1), (x, x−
y + 1) where addition is modulo 2. Some edges my actually be loops. This is
in order to formally satisfy the condition that the graph is 8-regular.

Let us now consider a simple application of expanders. Let G be a d-regular
expander on a set of vertices V of size N . A random walk on G means that
starting in a random vertex v0, we randomly choose v1 to be one of the d neigh-
bors of v0 and go to v1; then we choose v2 to be a random neighbor of v1 and
so on. One can show that the sequence of vertices chosen in this way behaves
like a genuinely random sequence of vertices. Namely, suppose that we need to
find a vertex in some subset U of vertices whose size is 1/2 of the size of V .
For example, let V be numbers 1,2, . . . , p− 1 for some prime p, and our task
is to find a quadratic nonresidue. Then the probability that we hit a nonresidue
will increase exponentially with the length of the walk.

What is the advantage of using a random walk instead of random vertices?
If we pick a random vertex, we have N possibilities, so we need log2 N random
bits. In a random walk on a d-regular graph we need only log2 d , i.e., a constant
number of random bits, to get the next vertex. Thus random walks on expanders

5.2 Randomness, Interaction and Cryptography 433

enable us to save many random bits when we need to amplify the probability in
problems such as finding a quadratic nonresiduum.

There are numerous other applications of expander graphs. To mention at
least one, expanders can be used to construct error correcting codes with very
good parameters.

8. Derandomization by means of hard functions. I will sketch two main ideas of
the proof of Theorem 40. The first one is the Nisan-Wigderson generator of
N. Nisan and A. Wigderson [209]. This is a construction that is used in many
proofs in this field of research.

Let 0 < α,β,γ, δ < 1 be such that β + γ < δ < α. Let n (an input size) be
given. In order not to overload notation with additional symbols I will assume
that αn and γ n are integers. To construct a Nisan-Wigderson generator we need
furthermore a suitable set system S and a hard function f .

The set system S contains 2γ n subsets of the set of variables {x1, x2, . . . , xn};
each subset is of size αn and the intersection of every pair of different elements
of S has size at most βn.

The Boolean function f maps {0,1}αn→{0,1} and we will assume that the
circuit complexity of f is at least 2δn.

The set system S and the function f determine a Nisan-Wigderson
generator—the function G(x1, x2, . . . , xn) defined by

G(x1, x2, . . . , xn)=def
{
f (Y)

}
Y∈S .

On the right hand side, f (Y) denotes f computed on a subset of variables
Y ⊆ {x1, x2, . . . , xn}. Thus G maps bit strings of length n on bit strings of length
m= 2γ n, which gives exponential stretching, as needed for derandomization.

In order to get intuition about how it works, assume that the bound βn on
the sizes of the intersections of subsets is much smaller than their size αn. Then
we can say that they are “almost disjoint”. If the sets in the set system S were
indeed disjoint, the output bits would be independent and we would get truly
random bits, but no stretching. We hope that if they are “almost disjoint”, then
the output bits will be “almost independent”. Furthermore, there are families of
almost disjoint sets that have exponentially many members.

Recall that we need to show that the generator produces bits that look ran-
dom to circuits of small size. From the statistical point of view the output bits
are very dependent, so any formal proof has to focus on the complexity of com-
puting some properties of the output bits. One can show that everything boils
down to proving that any of the output bits cannot be computed from the re-
maining ones by a small circuit. More precisely, we need to show that the bit
cannot be predicted by a small circuit with non-negligible probability.

Let Y0 be an arbitrary element of the set system S . Let us simplify the task
and only prove that f (Y0) cannot be computed by a small circuit from the values
f (Y), where Y ∈ S and Y = Y0. So we will assume that C is a circuit that
computes f (Y0) from these values and prove a lower bound on its size. We can
express our assumption by the following equality:

f (Y0)= C
({
f (Y)

}
Y∈S,Y =Y0

)
.

434 5 The Complexity of Computations

Let a be an arbitrary assignment to the variables outside of Y0. For Y ∈ S , we
will denote by Y |a the string in which the variables of Y \ Y0 are set according
to a, and the variables in Y ∩ Y0 remain unchanged. Since the equation above
holds generally, it must also hold true after this substitution. We thus get

f (Y0)= C
({
f (Y |a)

}
Y∈S,Y =Y0

)
.

Since Y ∩ Y0 has size at most βn, the restricted function f (Y |a) depends on
at most βn variables. Therefore it can be computed by a circuit of size at most
2βn. Combining all these circuits with C we get a circuit of size at most

2βn2γ n + |C|,
(where |C| denotes the size of C) and C computes f (Y0). Since the circuit
complexity of f (Y0) is ≥2δn and the term 2βn2γ n = 2(β+γ)n is asymptotically
smaller, the size of C satisfies the inequality

|C| ≥ (1− ε)2δn = (1− ε)mδ/γ ,

where ε→ 0 as n→∞.
We do not get a superpolynomial lower bound on the size of C, but one can

show that it is possible to choose parameters and construct the set system so
that the exponent δ/γ is an arbitrary large constant. In other words, we can beat
any polynomial bound.

On the other hand, we can also compute the Nisan-Wigderson generator G

in time that is polynomial in m. To this end we need the assumption that f is
computable in exponential time; more precisely, f is a restriction to {0,1}αn
of a function computable in time 2cαn. In terms of m the bound is mcα/γ , i.e.,
polynomial in m.

The above analysis demonstrates the basic idea of Nisan-Wigderson gener-
ators, but the property that we have shown does not suffice for derandomiza-
tion of BPP. To get the stronger property of the generator (that the bits cannot
be predicted with non-negligible probability from the remaining ones) we also
need a stronger property of the function f used there. Instead of only assuming
the worst-case complexity of f to be large, we need the average-case complex-
ity to be large. We need that for some ε > 0, every circuit of size at most 2δn

disagrees with f on the fraction ε of all inputs. Since there is a way to construct
a function hard in the average from a function that is only hard in the worst
case, Theorem 40 only assumes the existence of functions that are hard in the
worst case. So the second idea, which I am going to explain now, is how to get
average-case complexity from worst-case complexity.

I described error correcting codes a few pages back (page 407). Let Γ be a
binary code with the minimal distance d . Recall that if u is a codeword and we
change less than d/2 bits then we still can uniquely decode the resulting word.
This suggests the following idea.

Think of a Boolean function f of n variables as a binary string w of length
N = 2n where the bits of the string are the values of f for all possible inputs.
Using a suitable error-correcting code Γ , encode w by a longer string u ∈ Γ of

5.2 Randomness, Interaction and Cryptography 435

length M = 2m. Now we can interpret u as a Boolean function g of m variables.
Let εM be the minimal distance of Γ , for some ε > 0. Let D be a Boolean
circuit with m variables which approximately computes g. If D outputs a wrong
value on less than ε

2M inputs, then it defines a string that is in distance less than
ε
2M from u. Thus in such a case we can completely recover g and f , in spite of
the many possible errors that D makes. Put differently, given such a circuit D
we can compute f (x) for every input x, in particular also for the “hard inputs”.

It is natural to expect g to be hard on average, but in general this is not the
case. It can happen that whereas f is hard, g can be very simple. To make the
idea work, we must use coding that preserves complexity. More specifically, we
need a code that has the following properties:

a. It is possible to decode locally and efficiently. This means that to compute
a value of f (x), we only need a few values g(y1), g(y2), . . . , g(yk) and we
need a small circuit for computing f (x) from these values; moreover this
circuit should give the correct value of f (x) also if part of the values are
wrong.

b. It should be possible to choose the inputs y1, y2, . . . , yk randomly so that if
we use D(y1),D(y2), . . . ,D(yk) instead of g(y1), g(y2), . . . , g(yk), most of
the values are correct.

Having such a circuit C for decoding Γ , we can combine it with circuit D

and we get a circuit computing f precisely. If C were small, then the resulting
circuit would also be small. But we assume that such a circuit does not exist.
Hence it is not possible to compute g by a small circuit even on average.

Constructions of locally decodable codes are very interesting, but it would
take us too far afield. Let me only say that they are based on interpolation of
low degree polynomials.

9. Pseudorandom generators and natural proofs. The PRG-Conjecture mentioned
on page 388 says that there exist pseudorandom generators that satisfy a
stronger requirement than the one stated in Definition 13.

The PRG-Conjecture There exist an ε > 0 and a polynomial time computable
function P such that for every n,

a. P maps the set of bit strings of length n into the set of bit strings of length 2n;
b. for every circuit C of size at most 2nε

,∣∣Prob
(
C
(
P(x)

)= 1
)− Prob

(
C(y)= 1

)∣∣< 2−nε

,

where Prob is probability with respect to the uniform distribution on bit
strings of length n.

This means that P is a very strong pseudorandom generator—it cannot be
distinguished from a truly random source by exponentially large circuits even
with exponentially small probability.

Such a pseudorandom generator P is then used to construct a pseudorandom
generator Q that stretches n bits to 2m bits, where m = nδ for some positive
constant δ. This is similar to what one needs for derandomization of BPP, but

436 5 The Complexity of Computations

now we need a stronger condition on the computability of Q, namely, we need
that for a given M , 1 ≤M ≤ 2m, it is possible to compute the M th bit of the
output of Q(x1, x2, . . . , xn) in time polynomial in n. The generator Q is con-
structed by suitably composing P with itself.

Let us denote the function that computes the M th bit of the generator Q

by F(x1, x2, . . . , xn, y1, y2, . . . , ym), where x1, x2, . . . , xn are the seed of the
generator Q and y1, y2, . . . , ym are the bits encoding the number M . So this
function is computable in polynomial time. Such a function is called a pseudo-
random function generator F because it can be used to imitate random func-
tions. If we randomly choose an assignment of zeros and ones a1, a2, . . . , an to
the variables x1, x2, . . . , xn, then F(a1, a2, . . . , an, y1, y2, . . . , ym) is computa-
tionally indistinguishable from a truly random function of m variables.

Recall that the nonexistence of natural proofs is essentially the statement
that one cannot define a large set of hard Boolean functions by a polynomial
time computable condition. (For explaining the argument it is not necessary to
specify what hard and large mean; you can think of it as superpolynomial cir-
cuit complexity and a positive fraction of all functions, respectively.) Assuming
we have a pseudorandom generator described above, it is easy to prove it. Let
A be a polynomial time algorithm that defines a large subset of hard Boolean
functions of m variables. Think of this algorithm as a test of the pseudorandom
generator Q. As Q is pseudorandom, A should also accept a large subset of
all possible outputs of Q (what we actually need is that it accepts at least one).
Since F(a1, a2, . . . , an, y1, y2, . . . , ym) is computable in polynomial time, ev-
ery string produced by Q codes a Boolean function that has a polynomial size
circuit. This proves that A also accepts a string computable by a polynomial
size circuit, which is a contradiction. In this way the Razborov-Rudich result is
proved.

10. The game morra. If you think that generating random numbers is easy, try
morra. Morra is an ancient game that is still played in Italy and Spain. Two
players use their voices and each one hand. They simultaneously show num-
bers, 1–5, on their hands and shout a number that is a guess of the sum the
shown numbers. If one player guesses correctly the sum shown on the hands,
he scores a point; if both guess wrong numbers or both guess correctly, none
gets a point.

The game seems trivial from the point of view of classical game theory—the
best strategy is to show a random number n uniformly distributed between 1 and
5 and shout a random number m uniformly distributed between n+1 and n+5.
But when the game is actually played, due to high rhythm, players have very
little time to think up a number that the opponent cannot predict. It requires skill
and practice to be good at morra. One has to be able to produce unpredictable
numbers and recognize regularities in the opponents play. Furthermore one has
to do all that in a short interval between the rounds, including the addition of
his number with the predicted number of the opponent.

11. Which graphs are isomorphic in Fig. 5.4? B is isomorphic to C; they are draw-
ings of the Petersen graph.

5.3 Parallel Computations 437

5.3 Parallel Computations

When computing difficult problems we can often speed up the computation by using
several processors which compute certain parts of the computational task simulta-
neously. We call it parallel computations in contrast to sequential computations in
which we perform only one action at a time. There are problems whose computation
can be sped up by using parallelism and there are others for which parallelism does
not help. This phenomenon is well known in manufacturing. If a product consists
of many components, one can produce the components independently of each other
and then quickly assemble them to the final product. But if we are to build, say, a
house, we must first build the foundations, then the first floor, and so on, the roof
coming last.

A prime example of a mathematical problem that is amenable to parallelization
is the problem of factoring a natural number N . The most trivial algorithm, based
on trying to divide N by all numbers up to

√
N , can easily be split into independent

tasks. For example, we can divide the interval [1,√N] into as many segments as we
have processors, and let each processor try the numbers in its segment. Other, more
sophisticated and faster algorithms have this property too. One of the first spectac-
ular applications of the Internet for solving a large scale problem was the project
of factoring the RSA-129 number. This 129 decimal digit composite number was
proposed in 1977 by Rivest, Shamir and Adleman, the authors of the most popu-
lar cryptographic protocol. They challenged everyone to factor this number. Their
aim was to test the security of their system for keys of this length. In summer 1988
Arjen Lenstra launched a project to factor this number using computers connected
to the Internet. The following April they announced the solution. In course of com-
putation more than 600 people took part in solving some of the tasks to which the
problem was split on their computers. (The RSA-129 number and its factors are on
page 368.)

Since then not only have computers became much faster, but also new algorithms
have been discovered and the old ones have been improved. In 2005 a 200 decimal
digit number RSA 200 was factorized using many computers working in parallel.
The computation ran for one and a half years. The authors estimated that it would
take about 55 years if it were done on a single machine. More recently, in 2009, a
number with 232 decimal digits was factored. (Check the Internet for the present
integer factorization record.)

The Ideal Parallel Computer

In many situations already reducing the time by a factor of two may be important.
For example, in weather forecasting the computations are so time consuming that
sometimes they would be finished only after the time for which we needed the pre-
diction. In theoretical investigation we rather study the distinction between polyno-
mial and exponential. To this end we need a mathematical model of an idealized par-
allel computer. Such a computer looks formally very much like an ordinary personal

438 5 The Complexity of Computations

computer running modern operating systems such as Linux. It can run several pro-
cesses in parallel and every process can start another new process. In a personal com-
puter, however, all this is done by a single processor which alternates between all the
processes.14 Thus it only seems that the processes run in parallel, but in fact at each
moment the computation progresses only in one of the started process. Truly parallel
machines have been built, but the number of processors in them is always limited. In
the ideal parallel machine we imagine having an unlimited number of independent
processors that can work simultaneously on the processes assigned to them.

Having an infinite number of processors does not give us infinite computational
power. Recall that a Turing machine also has an infinite tape, but still it can only
compute some functions (the computable functions) because at each step of com-
putation it only uses a finite part of the tape. Similarly, a parallel machine can only
use a finite number of processes at each step. The advantage of the parallel machine
is that the number of processors can increase exponentially. For instance, if at each
step every process starts another new process and no processes terminate, we will
have 2t running processes at time t .

With exponentially many processors at our disposal, we should be able to com-
pute more in polynomial time than we can on sequential machines. Let us see what
we can compute on a parallel machine in polynomial time. One can easily check
that we can compute all NP problems: every NP problem is associated with a search
problem and to solve the search problem on a parallel machine in polynomial time,
we can activate an exponential number of processors, each processor working on
a single item of the search space. But it is possible to do more than NP. One can
prove that the sets accepted by parallel machines in polynomial time are exactly the
sets computable by Turing machines in polynomial space. We can express it as an
equality between complexity classes by

parallelP= PSPACE.

But, alas, whether or not P = PSPACE is one of the big open problems in com-
plexity theory! Hence it is also an open problem whether parallel machines are
essentially more powerful than sequential machines. Since P = NP implies that
P = PSPACE, it seems very likely that they really are, but we are not able to prove it.

It should be stressed that parallel machines could compute more problems in
polynomial time than sequential machines only because we allow them to use more
than a polynomial number of processors. A parallel machine with a polynomial
number of processors can be simulated sequentially with only a polynomial increase
in time. From the practical point of view it is not realistic to assume more than a
polynomial number of processors. Even if we could build a parallel machine with
infinitely many processors, we would still be able to use only polynomially many of
them in polynomial time because the universe has three dimensions. The number of
processors that such a machine could use in time n would be of the order of n3 and
thus we could simulate such a machine in polynomial time. Thus parallelP is not a
realistic model of what is efficiently computable.

14Recently chips that integrate several cores have been introduced. Computers equipped with such
processors can run some processes in parallel.

5.3 Parallel Computations 439

This is the theoretical point of view; in practice parallel machines are useful
because even a relatively small speed-up may play a significant role.

Interlude 1—Parallel Computations in the Brain

I have made a lot of digressions from the main topic, so there is no need for giv-
ing an apology for the next one. Indeed, the main reason for including the next two
subsections is to show some applications of the concept of parallel computing in
life sciences. On the other hand, when talking about the foundations of mathematics
we have to take into account human abilities. I strongly believe that mathematics
describes some fundamental principles of nature that are independent of human be-
ings. But as we are limited beings, only some of these principles are within our reach
and we have to represent them in a way comprehensible to us. The limitations are
of various natures; for instance, we have a built in framework for using languages
which may limit the way we use logical deduction. The most important restriction is,
however, the limited computational power and limited memory. Complexity theory
is the theory that enables us to quantify and compare this type of limitations.

In this subsection I want to make two claims. The first is:

In order to perform complex tasks, our brains have to work like parallel ma-
chines.15

This is a generally accepted fact, nevertheless, it is worthwhile to consider argu-
ments that support this claim.

It seems to us that at each instant we are thinking only about a single idea, but in
fact a lot things are going on at the same time in our brains. When we are speaking,
we are pronouncing a sentence, but we are already thinking about the next one. Not
only are we thinking about the next one, we are also contemplating how to go on
afterwards, we are looking for suitable arguments to make our point and so on. At
the same time we watch our audience to see their reactions, or drive a car; some
people are even able to talk about one thing and type an unrelated message on the
computer.

That people can do several things at the same time is a well-known fact. What is
a more intricate question is whether our brain uses parallelism when solving prob-
lems. There are several observations that suggest that the brain is working sequen-
tially when solving problems. One of these is the fact that we present the solution
as a sequence of words, either spoken or written. In particular mathematical proofs
and computer programs are given as text. But often one can present solutions of
problems in the form of diagrams more efficiently, so this is not a very strong argu-
ment. Another argument is based on watching eye movements. When we let people
solve a problem that involves a picture or a geometric configuration, such as a chess

15I will only be concerned with the parts of the brain that are responsible for cognitive processes
or motor actions.

440 5 The Complexity of Computations

problem, we can get some information about the way they solve the problem by
observing their eyes. The rapid movement of eyes from one place on the picture to
another suggests that there is a long sequence of deductions made one after another.
If the problem is simple enough, one can explain the problem solving process by a
series of steps. But if it is difficult, it seems that there is not enough time to do it in
this way. For example, in a typical situation chess players have to consider such a
large number of possible moves that it is not possible for them to do it in the short
time that is available by contemplating one alternative after another.

With open eyes our brain processes a huge amount of information at every mo-
ment. So let us close our eyes and observe what is going on in our mind. What we
would like to find out is what happens in a single moment, namely, whether we are
thinking about one idea, or there are more. I cannot speak for others, but it is natural
to expect that what I observe is the same as others do. When I try to recall my state
of mind, I find out that there is one leading idea, but there are also several ideas
around that are less stressed and less clear. I feel that those ideas around are some-
how connected with more ideas, but I cannot tell if the latter are really present. Thus
I surmise that our consciousness has a hierarchical structure: there is one leading
idea and a hierarchy of ideas which we realize less and less. Probably, we do not
realize at all the ideas in the lowest part of the hierarchy, or at least we are not able
to report about them later. Of course, more elaborate experiments are needed to find
out what is really going on. Also there is an obvious problem involved that the brain
puts only certain things to memory; thus we are never sure that we report everything
that we experienced. But at least one thing we can confirm: when thinking about a
certain subject, we are able to recall related things faster, than if we were asked to
recall them without preparation. Our brain, sort of, has always the related data at
hand.

When comparing brains with computers the most striking fact is how slow the
components of brains are compared to the electronic components of computers. A
neuron can fire at most about one thousand times per second, which is 1 kHz in terms
of frequency. Present computers run on frequencies of several GHz, thus they are
more than several million times faster. Yet people, animals and birds can outperform
computers in many tasks. Imagine the computations done by the brains of a table
tennis player or a swallow catching insects in flight. In order for the computations to
be done on time, the information has to go through a very small number of layers of
neurons. The study of how visual information is processed shows that some abstract
concepts already appear after a few layers of neurons. The slowness of neurons
implies that when working on tasks that require complex and fast reactions the brain
must use massive parallelism; most likely it uses a lot of parallelism all the time.

My second claim is that parallel processing is also sufficient for an explanation
of the astounding abilities of human brains. More specifically:

It is consistent with our present knowledge that the information processing in
human brains can be approximated by the parallel computational model of
threshold circuits.

A threshold circuit is a network of elements that compute threshold functions.
Threshold functions are Boolean functions of several input variables and one output

5.3 Parallel Computations 441

variable. A threshold function t of n variables is determined by n real numbers
a1, a2, . . . , an, called the weights, and one real number b, called the threshold. The
function is defined as follows. Given input bits x1, x2, . . . , xn,

t (x1, x2, . . . , xn)= 1 if and only if
n∑

i=1

aixi ≥ b.

In the simplest case all the weights are the same and equal to 1 and the threshold
is a natural number b. Then t outputs 1 if and only if at least b input bits are ones.
In particular the ANDn, the and-function of n variables, is the threshold function
with unit weights and the threshold n, and similarly, the ORn, the or-function, is
the threshold function with unit weights and the threshold 1. Another important
threshold function is MAJn, the majority function, defined by unit weights and b =
n/2. In general threshold functions use arbitrary real weights and the weights can
also be negative.

A threshold function is a (very simplified) model of the electric activity of a neu-
ron. We distinguish two states of a neuron: the inactive state, represented by 0, and
firing of the neuron, represented by 1. A neuron receives signals from other neurons
(via dendrites) and according to the weighted sum of these signals it decides to fire
or not to fire. When it fires, this signal is sent to other neurons (via the axon). Neg-
ative weights are possible because some connections between neurons (synapses)
use inhibitory neurotransmitters.

Formally, a threshold circuit is a Boolean circuit in which each gate computes
some threshold function. Such circuits are rather different from those that we con-
sidered before. The circuits that I dealt with before used only a few very simple
gates. Now I am allowing more complicated gates and they may have a large num-
ber of inputs. In threshold circuits we usually do not bound the number of inputs of
a gate (a real neuron may be connected to several tens of thousands other neurons
by synaptic connections). Instead we usually impose another restriction: we bound
the depth of the circuits. The depth is the length of the longest path from inputs to
the outputs of the circuit. We speak about bounded depth circuits when the depth is
bounded by a constant. This, of course, makes sense only when considering infinite
families of circuits. When we have a single circuit, such as the brain, we should
think of the depth bound to be a very small number. Imagine a circuit consisting of
a few layers of threshold gates between the inputs and outputs.

The bounded depth restriction corresponds to what we know about the anatomy
of the brain. We also have an indirect evidence that the signal processing takes place
only on a small number of layers of neurons: it is the fact that people are able to
react very fast in spite of the relative slowness of neurons. It is also interesting to
compare the volume occupied by somas, the central parts of neurons on the one side
and by axons, the threads that transmit electric signals, on the other side. Somas are
in the thin layer of the gray matter on the surface of the brain, whereas most volume
is occupied by the inner part, the white matter, through which neurons are connected
by axons. This shows that the large number of connections between neurons must
play a very important role. These connections make it possible to spread information
to a large number of neurons in a small number of steps.

442 5 The Complexity of Computations

Bounded depth threshold circuits have been studied extensively, so we have some
idea how strong they are, which may help us to assess whether or not this model of
the brain is oversimplified. Bounded depth and polynomial size threshold circuits
have been constructed for several nontrivial functions. We have such circuits in par-
ticular for arithmetic operations and various analytical functions. There are some
functions computable in polynomial time for which we do not have such circuits,
but in general bounded depth polynomial time threshold circuits seem fairly strong.
One indirect evidence of the strength of bounded depth circuits is that we are not
able to prove for any explicitly defined function that it cannot be computed by such
circuits. In other words, our lower bound methods fail for such circuits even though
they seem much more restricted than general Boolean circuits. We cannot exclude
that threshold circuits of depth 3 and polynomial size can compute the same class
as general polynomial size Boolean circuits (the class nonuniform-P).

What consequences for the brain can we draw from what we know about thresh-
old circuits? Let us look at how much faster threshold circuits can be than the ordi-
nary circuits that use gates with only two inputs. One can show that a single thresh-
old function can be computed by a polynomial size16 logarithmic depth Boolean
circuit. It is also obvious that for a nontrivial threshold function the depth of such
a circuit must be at least log2 n, where n is the number of input variables. Hence,
if a threshold gate needed a unit time for its computation, then we could compute
some functions in constant time on threshold circuits, while Boolean circuits would
require at least logarithmic time. It is, of course, unrealistic to assume that a de-
vice with a large number of inputs would work as fast as a simple device with only
two inputs. However, for adding many electric potentials we do not need more time
than for adding two. Thus the delays would be caused rather by the larger distances
from which we need to get the electric charges. It seems likely that a living cell
cannot produce signals with very high frequency and there must be some intrinsic
limitation. When it was not possible to produce components of higher speed, nature
decided to use components that have more inputs. Having a component with more
inputs certainly helps to compute some functions faster, but the speed-up factor is
not very big; in the case of the brain it could be in the order of tens, which is far from
several millions, the factor by which current transistors are faster than neurons. Thus
the likely reason why our brains still surpass computers in some tasks is rather in
the ability of the brain to get large numbers of neurons involved into computations,
in other words, to use massive parallelism.

Another indication that this kind of circuit is quite powerful is that it is as power-
ful as its probabilistic version. From the previous section we know that randomness
often helps to get faster and simpler algorithms. Given a randomized bounded depth
threshold circuit, one can construct a deterministic circuit that computes the same
function with no error, has size only polynomially larger and depth only larger by
one.

Apart from being a fairly strong computational device, bounded depth threshold
circuits have an important practical advantage: it is possible to design fairly reliable

16In fact, cn logn size, for c a constant.

5.3 Parallel Computations 443

circuits from somewhat unreliable elements. This may be another reason why the
brain uses elements similar to threshold functions.

Some researchers suggested that the great power of the human brain cannot be
explained by such simple models as threshold circuits. They say that the extraordi-
nary abilities of the brain can only be explained if we assume that single neurons
are able to perform complex operations. I agree that a cell is a very complex sys-
tem and more research should be done concerning the complexity of the tasks that
single neurons can do. But I think that so far we do not have a reason to doubt that
threshold circuits of the size and the speed of a brain can actually compute what the
brain does.

Finally, one should not forget that the brain evolved during hundreds of millions
of years. Thus the complexity of the brain is not determined only by the components
and their number, but also by its design, “the computer architecture”. When neuro-
science progresses to the stage that we will be able to decode some algorithms used
by the brain, we may be quite surprised by their intricacy. From the point of view of
complexity theory, we should view the brain as a nonuniform device with the extra
power that non-uniformity gives.

So let us now look at the ways how evolution could have produced such complex
structures.

Interlude 2—Computation and Life

It is not a coincidence that computers and brains use electric charges to encode bits
of information. If we need components that are fast and simple to produce, it is prob-
ably the best solution to use components that process and send electric charges. But
we should not conclude that computations are possible only in systems composed
of small devices sending electric impulses. When high speed is not needed, it is
possible to use other means. A human body uses a lot of chemical signals to control
organs. It is much slower than using nerves, but in many cases it suffices and it is an
efficient way to send the signal to all parts of the body.17 Biochemical processes in
a living organism are so complex and interwoven that we can also consider them as
kind of computation.

This kind of complexity is present already on the level of a single cell. A cell con-
trols its chemical processes by producing proteins that are either directly involved in
the processes or function as enzymes. Proteins are produced by transforming the in-
formation about a protein encoded on DNA into an actual protein. The pieces of the
DNA string that code a protein are called genes. Usually, only some genes are ac-
tive, those that the cell actually needs. The control of a gene may be simple—a lack

17Also signals between neurons are transmitted chemically. There is a tiny gap between a synapse
and another neuron, the synaptic cleft. An electric signal arriving to a synapse causes release of
neurotransmitters into the gap, which in turn triggers, or inhibits, an electric signal in the adjacent
neuron. As the gaps are very small, this does not cause much time delay.

444 5 The Complexity of Computations

of a certain molecule triggers production of an enzyme that enables the production
of this molecule. In some cases, however, the mechanism is very complex. In partic-
ular, when a cell of a developing multicellular organism differentiates, some genes
must be switched off and some must be turned on, and this has to be done without
much external influence. Such a complex control is achieved by means of regula-
tory genes. The role of a regulatory gene is not to produce an enzyme that will be
used directly, but to enhance or inhibit the activity of another gene. One gene can
be controlled by several other genes. In such a case the activation of the gene is a
Boolean function of the activation of the controlling genes.

Several different Boolean functions were found in such regulatory systems. This
includes negation (one gene suppresses the activation of another), conjunction (a
gene is activated if two other genes are active) and disjunction. Conjunction and
negation (or disjunction and negation) is a basis of all Boolean functions. Thus we
have components to build, in principle, an arbitrary Boolean circuit. A number of
such genetic regulatory circuits have been described (e.g., the circuit of the bacte-
riophage lambda). These circuits are not exactly Boolean circuits as I have defined
them. The difference is that regulatory circuit may have a large number of feedbacks.
This makes the description of the computation more complicated and they may be
unstable and may oscillate. However, from the point of view of complexity of com-
putations, they have the same computational power as circuits without feedback.

Computations can also occur on a much higher level. Consider the process of
adaptation of organisms of some species to a changing environment. We can view
such a group of organisms as a system that receives information from the environ-
ment in which the organisms live and reacts to it by adapting the organisms to the
particular state of the environment. Such a system, viewed as a computational de-
vice, works as follows. It stores information in the strings of DNA which are present
in each individual organisms. The information from the environment enters the sys-
tem by means of removing certain strings from the population (expressed more po-
etically, Nature tells the system which genomes she likes). The system processes
information by editing the strings of DNA.

Let us recall that there are two basic ways of editing genetic information.

1. Mutations produce some small random changes of the strings of DNA. They
occur with low frequency.

2. In crossing over, or recombination, pairs of DNA strings exchange some seg-
ments.18 This is the essence of sexual reproduction.

A possible explanation of the role of mutations is that they are useful for pro-
ducing new genes which are not present in the DNA strings and which are more
beneficial for the survival than those that they replace. The role of crossing over
is assumed to be in spreading the genes in the population. When crossing-over is

18I prefer to use ‘crossing-over’ since it is less ambiguous than ‘recombination’. Recombination
often refers to all possible editing operations that ever occur. For example, sometimes a segment
of the string is inverted, but this is rather an error, like a mutation, and as such it may be useful, but
most often it is detrimental.

5.3 Parallel Computations 445

present, a beneficial gene spreads quickly and before long almost every organism
has this gene. If several new beneficial genes appear in the population, an organism
that has them all will appear fairly soon. If there were no crossing-over, it would
take a much longer time to select organism with many good genes.

The adaptation is viewed as the process that reduces the number of occurrences of
genes that are bad and increases the number of beneficial ones. But now suppose that
the expression of a gene is controlled by a complex circuit of control genes. Then
the selection mechanism acts on all genes from the circuit. The resulting process is
thus more complicated. It is quite possible that this gives much more computational
power to the system, but I am not aware of any research done in this direction. In any
case this gives at least one advantage: the possibility of switching off the expression
of a gene in the population without removing the gene from the DNA strings. This
is important because crossing over does not produce new genes and it would take a
long time to re-create the gene by mutations once it is lost.

What has been researched is the power of the editing operation of crossing
over [226]. Assuming crossing over is not a completely random process, such a sys-
tem can have very strong computational power. This can be shown in the following
computing system motivated by genetics.

The system consists of many strings of the same length, where a particular type
of strings may occur several times. It operates in discrete steps; in every step we
randomly form pairs of strings and perform the crossing-over operation described
below. I will assume that the number of (copies of) strings is even, so that it is
possible to match all strings.

In every crossing over the two strings involved are cut in only one spot, the same
in both strings. Then two corresponding pieces are switched and reconnected. (Thus
the first segment of the first string is connected with the second segment of the
second string and the first segment of the second string is connected with the second
segment of the first string.) The key assumption is that the spot where the strings
are cut is determined by a short context around it. This means that we have a set of
rules that determine where the crossing occurs. Such a rule can be, for example:

If the first string contains a segment AAAGGG and the second contains
TTTCCC, then cut the first string between AAA and GGG and the second
between TTT and CCC. (Then connect AAA to CCC, and TTT to GGG.)

Thus the system is completely determined by the length of strings, the number of
strings and a set of crossing-over rules. In order to perform a computation, one sets
all strings to a particular form (or forms) which encode the input data. Then we let
the system evolve and observe what happens. If the rules are properly chosen and
sufficiently many steps are done, the majority of all strings may encode the output
value of the function that we wanted to compute.

One can show that in this way the system can simulate Turing machines. But
not only that, one can also show that if the number of strings is exponential, then
the system can simulate a parallel machine. It is, of course, not realistic to assume
populations of exponential size, so the relevant conclusion is rather that the system
has the potential to work as a parallel machine. This means that if the population is
large then it may solve some problems faster than a sequential machine can.

446 5 The Complexity of Computations

Apparently not much is known about which are the spots where crossing over
happens and how random this process is. It has been observed however that cross-
ing over is not completely random. Some short sequences of nucleic bases have
been determined that make the possibility of crossing over more likely than cross-
ing over elsewhere. What is much more understood are the transcription processes
from DNA to messenger RNA and from messenger RNA to proteins. Since these are
complex processes controlled by what is written on the strings of DNA and RNA, it
is conceivable that the crossing over process could be a highly complex mechanism
as well.

In conclusion I should mention, at least briefly, attempts to use biological ele-
ments such as DNA molecules, for computing. Though interesting, I do not find
this subject relevant enough to be discussed here at length. The reason why this ap-
proach may help compute faster is only because the components used in the devices
are smaller than in the current electronic computers. Thus it is only a different way
of miniaturization, not a conceptually new type of computer. It is likely that further
miniaturization of electronic components will produce components comparable in
size to such macromolecules.

Notes

1. Parallel machines. There is a host of models of parallel computers in the litera-
ture. Most of them are (most likely) weaker than what I considered on previous
pages, but some are even stronger. The one that I briefly described is essentially
the machine proposed by W.J. Savitch and M.J. Stimson [255]. There is agree-
ment among researchers in parallel computations that the true parallelism should
enable machines to compute in polynomial time what is computed in polyno-
mial space by sequential machines (Turing machines). This is called the Parallel
Computation Thesis.

Such strong models of parallel computers are, however, interesting only from
the theoretical point of view. For designing efficient algorithms, we rather need
machines that can solve nontrivial problems in sublinear time. For Turing ma-
chines, sublinear time is uninteresting—the machine cannot even read the whole
input. Thus we need different models. The focus is not on enlarging the class of
efficiently computable sets and function, but in finding faster algorithms for what
we already know to be computable in polynomial time.

The standard model used for this purpose is PRAM, the Parallel Random
Access Machine. I will not introduce this concept, since one can estimate the
power of PRAMs by Boolean circuits. If we ignore uniformity (PRAM is a uni-
form model of computation, circuits are nonuniform), then the time of PRAMs
roughly corresponds to the depth of circuits, and the number of processors to the
size of circuits (more precisely, size divided by depth). The depth of a circuit is
the length of the longest path from an input node to an output node. Thus the
problems for which one can gain a substantial reduction of time by using paral-
lel computers are those which can be computed by polynomial size circuits with

5.3 Parallel Computations 447

sublinear depth. The smallest nontrivial depth restriction is logarithmic (c · logn,
for c a constant, n the length of the input). We conjecture that there are functions
computable by polynomial size circuits, but not computable by polynomial size
circuits of logarithmic depth. Again, this a widely open problem.

2. Threshold circuits. For a lot of functions it has been shown that they can be com-
puted by threshold circuits of constant depth and polynomial size. These func-
tions include the common numerical functions, such as addition, multiplication,
division, sine, exponentiation, square roots and others. When the output should
be a real number, it is computed with exponential precision. Furthermore, such
circuits also compute some functions that are conjectured to be pseudorandom.
Thus an exponential lower bound on the size of threshold circuits computing
an explicitly defined function seems a very difficult problem, as it would either
refute some conjecture about pseudorandomness, or it would be a non-natural
proof in the sense of Razborov-Rudich. There are also some fairly simple func-
tions that we do not know how to compute by bounded depth and polynomial
size threshold circuits; in particular, it is the connectivity of graphs.

If we want to explain the function of the brain using threshold circuits we
have to take into account the problem of precision. We cannot expect any actual
device to be able to compute with precise real numbers. Let us see what precision
is needed in threshold circuits.

The first observation is that given a definition of a threshold function, we
can replace real weights and a real threshold by rational weights and a rational
threshold. To see it, imagine the 2n input strings of the threshold function as the
vertices of the n-dimensional cube in R

n. If the function is defined by

n∑
i=1

aixi ≥ b, (5.5)

then think of the function as separating the accepted inputs from the rejected
inputs by the hyperplane

∑n
i=1 aixi = b. Thus we only need to move the hyper-

plane slightly so that it still separates the same vertices and has rational coeffi-
cients. Once we have rational coefficients, we can multiply the inequality (5.5)
by a suitable natural number and we get all coefficients integral. Having integral
coefficients, we can measure the precision required by the gate by the size of the
coefficients (their absolute values).

In general the coefficients have to be exponentially large. It is unrealistic to
assume that neurons can compute with such a precision. However, one can show
that such high precision threshold gates can be avoided. One can show that a
given circuit with general threshold gates can be transformed into a circuit with
threshold gates that use only coefficients of polynomial size and this transfor-
mation increases the size of the circuit only polynomially and the depth only by
one. If we allow a slightly larger increase of depth, by a constant factor, then it
suffices to use very special gates. These gates are the majority functions of pos-
sibly negated inputs. In terms of coefficients it means that we take ai =±1, for
i = 1, . . . , n, and b= n/2.

448 5 The Complexity of Computations

Let me now address the question of reliability, which is another thing that
could negatively influence the power of actual threshold circuits. I will show that
with threshold circuits we can also cope with this problem very well.

It impossible to construct circuits that could tolerate arbitrary errors; one has
to make some assumptions about the nature of errors. One reasonable assump-
tion is that a threshold gate makes an error with probability at most 1/4 and if
the inputs are such that they sum to value far from the threshold, it makes an
error with very small probability. This means that if gate g is defined by the in-
equality (5.5), then it operates reliably on inputs (x1, . . . , xn) for which either∑

i aixi * b or
∑

i aixi , b.
In such a case we can replace every threshold gate by a small circuit that

operates always with high reliability. The circuit is simply

MAJm(g1, . . . , gm),

where MAJm is the majority gate and g1, . . . , gm are copies of the simulated
gate g. Suppose g makes an error with probability ε, 0 < ε < 1/2. Then if we
have an input (x1, . . . , xn) for which g should be 0, then in the average εm of
the gates g1, . . . , gm will output 0 and the rest will output 1. If we have an input
(x1, . . . , xn) for which g should be 1, then it will be the other way around. More
importantly, the law of large numbers ensures that in the first case the probability
that m/2 or more gates g1, . . . , gm will output 1 will be exponentially small, and
symmetrically in the second case the probability that less than m/2 gates will
output 1 will be exponentially small. (Exponentially means exponentially in m.)
Thus if m is sufficiently large, we can replace gate g by this circuit, and it will
make errors only with slightly larger probability than the gate MAJm itself. The
error will add up with more gates to simulate, but starting with a very small
probability of error we will still get a reasonably reliable circuit.

3. Neural networks. Threshold circuits can be viewed as a very special kind of neu-
ral networks. In neural networks the gates are, as a rule, smooth approximations
of threshold functions. The research into neural networks focuses on learning
algorithms, which are algorithms that adapt the weights of the gates using exam-
ples of input and output values of an unknown function f in order to train the
network to compute f . From the point of view of complexity theory, they are not
more powerful than threshold circuits, unless one uses very special functions as
the gates.

5.4 Quantum Computations

Let us recall that the Church-Turing thesis is the conjecture that every computable
function is computable on a Turing machine (or an equivalent device). The concept
of computability used in the thesis is not a precise mathematical notion; it refers to
the intuitive concept of computability, which we usually associate with a process
that can be physically realized at least in principle. So let us now consider the thesis

5.4 Quantum Computations 449

from the point of view of physics. If we imagine that computations are done by me-
chanical devices, the thesis seems to be very likely true. But physics has much more
to offer than mechanics. The traditional concept of an algorithm is based on the idea
that an algorithm performs a finite number of elementary operations. This is a very
‘mechanistic’ approach. Let us abandon such presumptions and simply ask which
functions can arise in physical processes. Then a computation can be viewed as a
physical experiment in which we set the initial conditions according to the input data
and get the output as the result of the experiment. At the early stages of computer
science such devices were proposed. They were called analog computers in contrast
to digital computers. For example, we can compute addition of two real numbers
by combining the corresponding voltages. These devices suffered from very poor
precision and therefore they were soon abandoned (a mechanical device of such a
kind that survived the longest was the slide rule). As modern computers developed,
more computations were done also in physics. Then the problem reappeared again,
but from the opposite side. The question was whether there are physical processes
that we cannot simulate using computers. In 1982 the American physicist Richard
Feynman brought up this problem in connection with quantum physics. There are
several reasons why quantum physics should be studied from this point of view.
First, in quantum physics one can perform experiments with extremely high preci-
sion. The second general reason is that the quantum world is so much different from
our experience. The main reason, however, why quantum computing is so popular
nowadays is that it seems that it can really help us to compute things that we are not
able to compute with classical means.

In spite of sometimes looking very bizarre, quantum physics does not contain
phenomena that are not computable by ordinary Turing machines. Thus from the
point of view of pure computability quantum physics does not give us new concepts.
However, if we take into account the complexity of computations it seems that we
can really gain something. In his seminal paper Feynman gave arguments why com-
puter simulations of quantum phenomena may need exponential time and thus may
be infeasible [73]. He also suggested that we may be able to construct quantum
computers which would be able to perform such simulations, hence they would be
more powerful than classical computers. (The word ‘classical’ is used to distinguish
concepts not based on quantum physics from those that use quantum physics.)

The basic principles needed for quantum computations can be explained without
much mathematics. In quantum physics it is possible to form combinations of states.
Formally, if S1, . . . , Sk are possible states of a given system S and a1, . . . , ak are
nonzero complex numbers satisfying a certain restriction, the system can also be in
the compound state a1|S1〉+· · ·+ak|Sk〉. This is called a linear superposition of the
states S1, . . . , Sk and the numbers a1, . . . , ak are called amplitudes. The meaning of
the linear superposition is, roughly speaking, that the system S is, in a way, in all
the states S1, . . . , Sk at the same time. To distinguish the states Si from nontrivial
superpositions, I will call them basis states (it should be noted that this is not an
absolute concept, it depends on the way we describe the system). What makes the
simulation of quantum phenomena difficult is that k, the number of possible states,
can be very large. For example, suppose the system consists of n memory registers,

450 5 The Complexity of Computations

each registers holding one bit. Then the number of all possible states is 2n. Thus to
simulate a quantum computation with n quantum bits we would need to keep track
of 2n complex amplitudes.

The possibility of having a linear superposition of an exponential number of
states suggests that quantum computers could compute like truly parallel machines.
Instead of having exponentially many processors, one for every process, we could
use one processor to work on exponentially many tasks at the same time. But it is
not so simple. Suppose that we want to solve a search problem, for instance, to find
a factor of a composite number N . A naive approach would be to put the memory
of a computer into the superposition that includes all numbers M , 1 < M < N and
let the computer try to divide N by M . Thus we obtain a superposition of the states
of the computer such that at least one of the states contains the solution. This can be
done, at least theoretically, but the problem is how to get the solution from the su-
perposition? As I will explain below, the amplitudes determine the probability that
we can get a particular state from the superposition. In such a superposition they
are exponentially small. In fact, in this way we would not get more than if we just
picked M at random and tested if it divides N .

In order to obtain more than one can get by using only randomized algorithms,
one has to use the fact that the amplitudes do not have to be positive real numbers.
The crucial property is that the amplitudes can sometimes cancel out, which results
in increasing the others. A quantum algorithm that is able to achieve more than
a probabilistic one, has to be tricky: it has to reduce the amplitudes of unwanted
results while increasing the wanted ones. This has been accomplished only in a few
cases so far. Thus quantum computations are able to use parallelism to some extent,
but it seems that only in some limited way. In particular, we are not able to show
that all NP problems are solvable in polynomial time on quantum computers, and
we rather conjecture that this is not the case.

The two most important problems that are solvable on quantum computers in
polynomial time but no polynomial time classical algorithm is known for them are
factoring of composite numbers and computing discrete logarithms. Both algorithms
were found by Peter Shor in 1996 [268]. These problems play a key role in cryp-
tography, where one uses their apparent hardness. Hence constructing a quantum
computer would have rather destructive consequences—we would have to abandon
the RSA protocol and others. (But keep in mind that we are not able to prove the
hardness of these functions anyway; thus it is not excluded that we can break these
protocols even using classical computers.)

Another quantum algorithm, found by L.K. Grover in 1998, is not polynomial
time but is very general [109]. This is an algorithm for solving search problems. It
has the remarkable property that to find a solution in a search space of size N , the
algorithm needs only c

√
N steps, for some constant c. For problems that we are

able to solve only by the brute force search, this is a significant speed up. Since the
search space is typically exponential in the size of inputs, this means that a quantum
computer of the same speed as a classical computer would be able to handle almost
twice as large input data.

In the following decade a number of generalizations of these algorithms and some
new ones have been found. I will not discuss them here because they are rather tech-

5.4 Quantum Computations 451

Fig. 5.5 The Mach-Zehnder
interferometer

nical results and none of them has presented a breakthrough comparable to Shor’s
algorithm. A lot of work has been done in related areas of quantum information and
quantum cryptography, which also will not be treated in this book (except for a brief
remark in Notes).

A Brief Visit in the Quantum World

Several important features of quantum physics can be explained on a simple exper-
imental set-up called the Mach-Zehnder interferometer. It consists of a source of
coherent light, such as a laser, which sends a beam to a beam splitter, say a half-
silvered mirror. After the beam splits into two, the two beams are reflected to the
same point at another beam splitter. There are two detectors behind the second beam
splitter placed in the direction of the two beams, see Fig. 5.5. Each beam should split
into two on the second beam splitter, thus one may expect that both detectors should
detect light. However, if all the components are accurately placed, only detector D1
records light. If the splitters and mirrors did not absorb any light, then the intensity
of the beam reaching detector D1 would be the same as at the source.

This can easily be explained using the fact that light is a special type of electro-
magnetic wave. Each of the beams M0→ BS2 and M1→ BS2 splits on the beam
splitter BS2 into a pair of beams BS2→D0 and BS2→D1. The resulting two beams
BS2→D1 have the same phase, so they add up, whereas the two beams BS2→D0
have opposite phases, so they cancel out. This is called respectively positive inter-
ference and negative interference.

Now assume that we gradually decrease the intensity of the light emitted from the
source, say, using filters that absorb light. If light was just waves, we should detect
smaller and smaller intensity at D1. What happens in reality is, however, different.
If the detector is sensitive enough, at some point it will not register decreasing inten-
sity of light, but instead it will record pulses whose frequency will decrease with the
decreasing intensity of the emitted light. This is not caused by the interferometer; it
would be the same if we aimed the source directly to the detector. The explanation
is that light consists of quanta, which we call photons. For each wavelength, this
quantum is uniquely determined, in other words, the energy of the photon is deter-

452 5 The Complexity of Computations

Fig. 5.6 The Mach-Zehnder
interferometer with one
mirror removed

mined by the wavelength (it is inversely proportional to it). For a given frequency,
it is not possible to send a smaller amount of energy than the energy of the photon
of that wavelength.

This is the wave-particle duality. We can explain light by waves, as well as the
kinematics of particles, but if a phenomenon has features of both, we need a new
theory. Indeed, if the source sends a single particle to the interferometer, then, ac-
cording to classical notions, the particle has to choose which way it passes the inter-
ferometer. We can confirm it by temporarily putting two detectors in place of the two
mirrors (or at any place on the two paths). Then we register a photon always at only
one detector, which suggests that the particle did not split into two. But how can we
have interference on the second beam splitter if only one particle arrives there?

Suppose we block one of the paths between the two beam splitters, say, we re-
move mirror M1. Then, in terms of waves, there is no interference on the second
beam splitter, hence both detectors detect light, each detecting one quarter of the
original intensity (see Fig. 5.6). But now suppose that the source emits a single
photon. With probability 1/2, it will choose the path that is not blocked and after
reaching the second beam splitter it will go to one of the detectors with equal prob-
ability. Compare this with the original situation in which the photon always goes to
detector D1. In particular also the photons that go via the lower path. Thus if we
think of a photon as a particle that always has a definite position, we get a contra-
diction. It looks like the photon senses if mirror M1 is present in spite of going a
different route; if the mirror is present it always goes to D1, otherwise it sometimes
goes to D0.19

It has been proposed that in this way we are able to send a signal somewhere
without sending any physical object there. In the setting of the Mach-Zehnder inter-
ferometer we can send such a “signal” from the position of mirror M1 to detector
D0. To send a signal we simply remove the mirror. Then we argue as follows. If
the mirror is present, no signal reaches D0, so there is no communication present.

19One may suggest that a photon is not just a point, but rather a wave packet, and a part of this
packet may touch mirror M1 while the center of the packet will be at M0. But this explanation
also does not work, since there is no restriction on the distances in the interferometer. Even if the
distances were cosmic, it would behave exactly the same way.

5.4 Quantum Computations 453

If the mirror is removed, only photons that use the lower path reach D0 and these
are photons that did not reach the position of mirror M1, so we can say that we have
nothing to do with them. If, moreover, detector D0 controls some action that we are
not supposed to do, we can claim that we have not caused it.

This is just playing with the interpretation of what is going on in the Mach-
Zehnder interferometer. The next example, the Elitzur-Vaidman bomb test, however
shows something that we can actually do using quantum physics, but not without
it [66]. For this example, we need something that is sensitive to light and is destroyed
by it. In the original setting it is a bomb connected with a light detector so that the
bomb explodes whenever light is detected. If you want to do it experimentally I
suggest using a piece of film instead; it will be safe and will serve the purpose
equally well.

In the test we assume that at the place of mirror M1 there is either the original
mirror, or the thing that is sensitive to light, say, the film. Our goal is to determine
the presence of the film without destroying it. We will do it using detector D0. We
already know what will happen:

1. if the film is not present, we have the standard setting of the Mach-Zehnder in-
terferometer, so D0 never records a photon;

2. if the film is present, then after the beam splitter BS1,

a. with probability 1/2, the photon will go up, the film will be destroyed, and no
detector detects the photon;

b. with probability 1/2, it will go down avoiding the film, and after reflecting
from M0 and reaching BS2 it will,

i. with probability 1/4, go up and reach detector D1, and
ii. with probability 1/4, go down and reach detector D0.

The point is that we only detect the photon at D0 when the film is present, and
when this happens the film is not destroyed (case 2.(b) ii). Thus, with probability
1/4, we can determine the presence of the film using light and without destroying it.
Using more complicated settings one can detect the film without destroying it with
probability arbitrarily close to 1.

Good scientists should not be satisfied with data they cannot fully explain; they
should be curious what is really going on. So, is there a way to watch what the pho-
ton actually does? Similar experiments can be done with particles that have nonzero
mass and travel at speeds lower than the speed of light, thus it is possible to detect
the presence of a particle without deviating it too much off its course. What happens
then is that whenever we set up the experiment so that we know which way the par-
ticle goes, the interference disappears. It is like observing a magician: if we do not
know the trick, it is magic, but as soon as we learn the trick, the magic disappears.

The Quantum Bit

In order to understand quantum computations, we do not need any physics. It suf-
fices to learn a few basic rules of the game called quantum computing and then we

454 5 The Complexity of Computations

can play. Moreover, once we understand quantum computing, we can model inter-
esting quantum phenomena on quantum circuits. Such models are so far restricted
to thought experiments, since we do not have a physical realization of quantum
computers yet.

The best way to view quantum computations is as a generalization of the matrix
model introduced in Chap. 1 (see page 137). In that model a column is interpreted as
a memory location and rows correspond to discrete time moments. Thus a row holds
information about the current content of the memory. A particular matrix model
corresponds to an algorithm or a circuit. It is determined by rules that posit how to
rewrite a row to the next one. The crucial condition is that the rules must be simple;
therefore we allow only rules that change a small number of the entries.

The quantum version of the matrix model is based on replacing the usual bits by
quantum bits.20 What is a quantum bit? A quantum bit (more fashionably called a
qubit) is simply a linear superposition of the two classical bits, 0 and 1. Formally, it
is the expression

a|0〉 + b|1〉,
where a and b are complex numbers such that

|a|2 + |b|2 = 1. (5.6)

I put 0 and 1 in these strange brackets as it is customary in quantum physics to denote
the states in this way. It is a useful notation introduced by Paul Dirac; an expression
|x〉 is called a ket vector, where ‘ket’ is the second half of the word ‘bracket’.21 To
give some meaning to this expression it is good to state the first rule.

Rule 1 If we observe a superposition of states a1|S1〉 + · · · + ak|Sk〉, then we see
state Si with probability |ai |2.

This rule implicitly says that we cannot see superpositions; we can only see basis
states.22 The process of looking at a quantum system is usually referred to as mea-
surement because in general the result can be a real number. Here we will consider
measurements that can give one of a finite set of values. The standard interpretation
of what is going on in measurements is that the system suddenly collapses from a
superposition to a basis state.

Thus, in particular, if we observe the quantum bit a|0〉 + b|1〉, we get 0 with
probability |a|2 and 1 with probability |b|2 (where |z| denotes the absolute value,
the modulus of a complex number z). This explains the condition |a|2 + |b|2 = 1;
the total probability must be 1. So far it is not clear why we need complex numbers.

20We could use alphabets larger than two, but it would be just an unnecessary complication.
21We will not need bra vectors.
22We cannot see the superposition because the measuring apparatus can produce only one of k

possible values. But we can set the apparatus differently and then what was previously a superpo-
sition may become a basis state. In particular, we can detect in the new setting what was originally
a superposition.

5.4 Quantum Computations 455

This will become clearer after I state the second rule, but before doing so let us
talk more about the quantum bit. Whereas the classical bit is determined by two
discrete values, the quantum bit is determined by two complex numbers a, b. Thus
we interpret it as a vector in the two dimensional complex linear space C

2. The
condition on the sum of the squares of the absolute values is simply the condition
that the length of this vector is equal to 1.

The next thing that we need to know is how a system changes in time. We en-
visage that quantum computers will work in discrete steps, like the classical ones,
thus we will focus on discrete time. Let us see how a single quantum bit can change.
Formally, we ask what transformations of C2 are those that correspond to physical
processes. The answer is linear transformations; linearity is the crucial property of
quantum physics. There is only one additional restriction: the transformations must
preserve the length of vectors. (In fact, we need it only for vectors of length 1, but
linearity automatically implies that the lengths of all vectors are preserved.) Linear
transformations satisfying this condition are called unitary.

Rule 2 A transition from one superposition to another is a unitary transformation.

Let us consider a couple of examples. Consider the following unitary transfor-
mation H :

|0〉 �→ 1√
2
|0〉 + 1√

2
|1〉

|1〉 �→ 1√
2
|0〉 − 1√

2
|1〉.

Suppose that the initial state is |0〉. After applying H we obtain

1√
2
|0〉 + 1√

2
|1〉.

If we observe (perform a measurement on) this state, we obtain 0 or 1 with equal
probability. If instead of observing, we apply H again, we obtain the following state

1√
2

(
1√
2
|0〉 + 1√

2
|1〉
)
+ 1√

2

(
1√
2
|0〉 − 1√

2
|1〉
)
= |0〉.

This is essentially what the Mach-Zehnder interferometer does. The first application
of H is the first beam splitter. After a photon passes trough it, it is in the superposi-
tion of two states, one taking the upper route the other taking the lower one. After
the second beam splitter we get the original basis state. If we observed the state af-
ter the first application of H , it would collapse to |0〉 or to |1〉, and then the second
application of H would put it into a superposition. (A more precise description of
the events in Mach-Zehnder interferometer is given in Notes.)

A more concise representation of unitary transformations is by matrices. The
above transformation H is represented by the matrix⎛

⎝
1√
2

1√
2

1√
2
− 1√

2

⎞
⎠ . (5.7)

456 5 The Complexity of Computations

An application of the transformation to a vector is simply matrix-vector multipli-
cation. In our example two applications of H give the original state, which can be
expressed using matrix multiplication as HH = I , with I denoting the unit matrix.

An important property of unitary transformations is that they are invertible.
Hence every quantum process can be done in a reverse order. This seemingly makes
it impossible to do classical computations on quantum computers, as classical com-
puters use irreversible gates, but in fact it is not a problem; there is an efficient way
to transform classical computations into reversible ones. I will get to this later.

As the next example, consider the negation as the only nontrivial reversible op-
eration on one bit. It is defined by the matrix(

0 1
1 0

)
.

What is more interesting is that in quantum world we also have a square root of the
negation: ⎛

⎝
1√
2

1√
2

− 1√
2

1√
2

⎞
⎠ .

You can check that this matrix multiplied with itself gives the matrix of the negation.
The next is an example of a unitary transformation that preserves the bits.(

1 0
0 i

)
.

If we apply it to a quantum bit and observe, we do not see any difference; the prob-
abilities of observing zero and one remain the same. Yet such transformations are
important in combinations with others.

A quantum bit is not a mere idealization. There are many experiments that give
precisely two possible results. In every such case we can interpret the measured
physical quantity as a quantum bit. One that is easiest to visualize is the spin of the
electron. Spin in quantum physics is a property of particles which is the quantum
version of classical rotation. Let us fix an axis, that is, an oriented line through the
electron. Then it can spin around it in two possible ways, the speed being always the
same. By convention we say that in one case the spin is up, in the other it is down. For
the given axis, the electron can be in a basis state up, or down, or in any superposition
of these two. In the latter case measurements will sometimes give the value of spin
up, sometimes down. What is interesting is that given such a superposition we can
find an axis for which this is a basis state. Hence we can imagine the spin as an
arrow attached to the electron. If we measure in the direction of the arrow we get
always value up, if we measure in the opposite direction we get always value down,
for other directions, we get values up and down with probabilities depending on the
angle between them and the arrow.

A direction in three-dimensional space is determined by two real numbers. This
does not seem to fit well with a quantum bit which is determined by two complex
numbers. Two complex numbers are given by four real numbers and we have one

5.4 Quantum Computations 457

equation (5.6) that they should satisfy, which gives three degrees of freedom. The
explanation is that for a quantum bit a|0〉 + b|1〉 only the ratio a : b has an inter-
pretation in the real world. If we have a description of a quantum system, we can
multiply everything by a complex unit (a complex number c whose absolute value
is 1) and everything will work the same. Thus the mathematical description has an
extra parameter that has no physical interpretation.

Quantum Circuits

We need to study a system consisting of more than one quantum bit in order to un-
derstand quantum circuits. The generalization from one quantum bit is not difficult,
but some caution is necessary. For example, one may be tempted to say that n quan-
tum bits is an element of the direct product of n copies of C2, thus it is an element
of C2n. This is not true, we need a space of much higher dimension.

To get the right concept of n quantum bits, we must realize what the basis states
are. If we observe n quantum bits we should see n classical bits. Thus a basis state
is a sequence of n classical bits, and a general state is a linear superposition of them.
Formally, n quantum bits are the following expression∑

e1,...,en∈{0,1}
ae1,...,en |e1, . . . , en〉,

where ae1,...,en are complex numbers satisfying∑
e1,...,en∈{0,1}

|ae1,...,en |2 = 1,

and |e1, . . . , en〉 denotes the basis state where the bits are e1, . . . , en. Notice that such
a state is determined by 2n complex numbers, hence we are in the 2n-dimensional
complex linear space C2n

. This is what makes the simulation of quantum circuits by
classical computers difficult; if the dimension was only 2n it would be easy.

Incidentally, a sequence of n quantum bits is an element of a certain kind of
product of n copies of C

2, but it is not the usual direct product, it is the tensor
product (see Notes).

The transition from one state of n quantum bits to another is again by unitary
transformations. Thus every computation step is such a transformation and the func-
tion that the quantum circuit computes is the composition of these unitary transfor-
mations. If we want to write down such a unitary transformation explicitly, we need
a huge matrix, a matrix of dimensions 2n by 2n. As in classical computations, we
want to decompose a given unitary transformation into a product of some simple el-
ementary ones. The minimal number of elementary unitary transformations needed
to express a given unitary transformation U as a product is the complexity of U .

Thus what remains is to say what the elementary unitary operations are. As in
classical circuits so also in quantum circuits the elementary operations are defined

458 5 The Complexity of Computations

to be those that operate on a small number of quantum bits. In other words, the op-
erations that change only a constant number of bits. This is a reasonable proposal
and it is generally accepted as the right one. However, it is harder to justify it than in
classical computations. In quantum systems very distant particles can be entangled
(the Einstein-Podolski-Rosen pairs) and there are systems that are more localized,
but consist of large numbers of entangles particles (the Bose-Einstein condensates);
both phenomena have been demonstrated experimentally. Nevertheless, it is reason-
able to assume that the elementary operations act only on a small number of bits.
How a unitary transformation is applied only to some bits is best seen in examples.

Suppose that the initial state is, say,

|00000〉.
Apply the unitary transformation defined by the matrix H , (see (5.7) above), to the
first quantum bit. Then we obtain

1√
2
|00000〉 + 1√

2
|10000〉. (5.8)

Let us now apply the same transformation to the second quantum bit. We get

1
2 |00000〉 + 1

2 |01000〉 + 1
2 |10000〉 + 1

2 |11000〉.
Clearly, after applying this to all bits we obtain a superposition of all possible basis
states with the same amplitudes.

As an example of a unitary transformation on two bits consider the quantum ver-
sion of the classical Boolean functions that maps a pair of bits (x, y) to the pair
(x, x ⊕ y). This gate is called controlled not since the second bit is negated if and
only if the first bit is 1. I will denote it by CNOT. The matrix of this unitary trans-
formation is ⎛

⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠ . (5.9)

It is a permutation matrix, as are all matrices of classical reversible transformations.
Suppose we apply it to the first two bits of the state (5.8). We thus get

1√
2
|00000〉 + 1√

2
|11000〉.

We can draw schemas of quantum circuits in very much the same way as ordinary
circuits. The special property of quantum circuits is that the number of wires going
into a gate always equals the number of wires going out because the number of bits
that it processes has to be preserved throughout the entire computation. But whereas
electronic circuits are very much like these diagrams, the physical realizations of
quantum circuits are quite different. We cannot send quantum bits by wires, which
is only a minor problem compared to others hurdles that researchers in this field
have to cope with.

Let us consider a very simple quantum circuit in Fig. 5.7. This circuit works
with two quantum bits. We can think of the quantum bits as stored in two memory

5.4 Quantum Computations 459

Fig. 5.7 A quantum circuit

registers and certain operations are applied to them. In this circuit we first apply a
unary quantum operation to the first register, then a binary quantum operation to the
first and the second registers, and finally we apply again a unary quantum operation
to the first register. The unary gates are both H , defined by the matrix (5.7), and the
binary gate is the CNOT, defined by the matrix (5.9). Let the input to the circuit be
00. Then the computation proceeds as follows:

|00〉
↓

1√
2
|00〉 + 1√

2
|10〉

↓
1√
2
|00〉 + 1√

2
|11〉

↓
1
2 |00〉 + 1

2 |10〉 + 1
2 |01〉 − 1

2 |11〉.
After the computation is done, we look at the output bits. According to the Rule 1,
we observe one of the four possibilities 00,10,01,11, each with probability 1/4.

This circuit demonstrates an important phenomenon: the role of entanglement of
quantum bits. Notice that the first output bit is 0 or 1, each with probability 1/2. We
have already observed that applying H twice gives the identity mapping. Further,
CNOT does not change the first bit. Thus we could expect that starting with 0 in the
first register, we always get 0 in the first register. The reason why we do not, is that
between the two applications H , the first bit gets entangled with the second bit (in
the specific situation considered here with the second bit originally being 0, the first
bit is simply copied to the second register). You can observe it also on the compu-
tation. The terms that would cancel each other if there weren’t CNOT interposed do
not cancel out here because they are distinguished by the second quantum bit.

This example also bears on the fundamental question of what happens when a
measurement is done. There are a variety of different explanations; the most com-
monly accepted one is the following. We assume that quantum laws are universally
applicable, hence they apply also to measurements. A measurement is then a pro-
cess in which the observed entities get entangled with the measurement devices.

460 5 The Complexity of Computations

If an observation is done by a human, then eventually the state of their brain gets
entangled with the observed entities.

In our tiny example we can view the first register as an experimental object and
the second as a measuring device. (We can also assume that it is not just a device but
a live observer.) First we transform |0〉 in the first register into a superposition of |0〉
and |1〉. Then the application of CNOT is a measurement. After the measurement
we have the following superposition.

1√
2
|00〉 + 1√

2
|11〉.

Let us look at it from the point of view of the measuring device. The device can
be in two states, but in each of the states of the device, the value of the bit in the
first register is unique. So from its point of view the superposition has collapsed to
a basis state.

This brings us back to the Mach-Zehnder interferometer. The interposed gate
CNOT corresponds to a detector that determines which way the photon went. If it is
present, we do not obtain interference.

Some people are sceptical about the possibility of constructing quantum com-
puters that would work with a sufficiently large number of quantum bits so that
they would be able to solve problems that classical computers cannot. However,
no persuasive general argument against quantum computers has been presented so
far. One of the objections that has been raised concerns the small amplitudes with
which quantum computers will have to work. Indeed, suppose that the computer
used a superposition of all 21000 combinations of 1000 bits. If all the amplitudes
had the same absolute value, then this absolute value would be 2−500. Then the ar-
gument says that no physical instrument can have such a precision. What is wrong
with this argument? Firstly, we can easily design experiments in which we have such
superpositions—just send a packet of 1000 photons through the Mach-Zehnder in-
terferometer. Secondly, the argument completely misses the point. If we had such
a precise instrument we would not need quantum circuit and intricate quantum al-
gorithms. The trick of quantum computing is that it is possible to obtain something
measurable, that is, a state with a relatively large amplitude, by combining many
states with extremely small amplitudes. Adding amplitudes is similar to adding prob-
abilities. In efficient probabilistic algorithms exponentially small probabilities add
up to large probabilities, such as 1/2.

The Quantum Computing Thesis

Is there any quantum analog of the Church-Turing Thesis? One can re-state the
Church-Turing Thesis using quantum Turing machines, but as I said (already in
Chap. 2), as far as computability is concerned we do not get more than we do with
classical Turing machines. This is because the advantage of quantum Turing ma-
chines is only in their ability to perform some parallel computations. If time and
space of computations are not limited, we can simulate parallel computations by

5.4 Quantum Computations 461

sequential ones. So the advantage is apparent only if we consider the complexity
of computations. But then we can ask a version of the thesis with limited computa-
tional resources: Are quantum circuits the best possible computational device? The
precise meaning of this question is:

Can every physical instrument be simulated by at most a polynomially larger
quantum circuit?

Since we are not aware of any phenomena that would require more complex com-
putations, we conjecture that the answer is positive. This is the Quantum Computing
Thesis.

It is unlikely that one can answer such a question before we have a unified theory
of all physical phenomena. But maybe one can at least show that we cannot get more
computational power from quantum theory than we have in quantum circuits. If this
is true, then quantum circuits (if they are ever constructed) will not only be a useful
computational device, but they will also be useful experimental devices for testing
quantum theory.

However, even before quantum circuits with a sufficiently large number quantum
bits are constructed, we can at least use the concept of a quantum circuit for thought
experiments, as quantum circuits can easily be used to model complex situations.
When thinking about them we can focus on information theoretical aspects and we
are not distracted by physical phenomena that are specific to physical experiments.
Above I have shown a small example of circuits for the problem of measurement,
but one can study much larger circuits.

Reversible Computations

Quantum circuits are not generalizations of classical circuits. Recall that quantum
circuits are reversible, which property is, in general, not satisfied by classical cir-
cuits. Although one can efficiently simulate classical circuits by quantum circuits,
it is not a trivial task. Fortunately, reversibility is the only property that we need—a
reversible classical circuit can be directly interpreted as a quantum circuit.

What does it precisely mean for a computation to be reversible? I will talk about
computations in general, as the essence is the same for circuits and Turing machines.
A computation is a sequence of states. A transitions from a given state to the next
one is done by an elementary operation. In particular, the next state is uniquely
determined by the previous one. But in general, the previous state does not have to
be determined uniquely from the current state; some information may be lost. (A
side effect of the loss of information is the heat that processors have to dissipate.)
In a reversible computation the previous state must be uniquely determined by the
current state. But this is not enough; we want to be able to actually reverse the
entire computation—to start with the output and compute backwards to the input.
Therefore, we require that, given a state, the previous state should be computable by
an elementary operation.

462 5 The Complexity of Computations

It is not difficult to show that every computation can be turned into a reversible
one without substantially increasing the running time, or the circuit size. The basic
trick is very simple: record all the history of the computation. It works like the editor
I am now using. If I erase something by mistake, it is not a disaster; I can simply
invoke the command undo because what I erased on the screen remains stored
somewhere in the memory of the computer.

If we wanted only to show that quantum computers can simulate classical com-
puters, this would suffice. However, what we also need is to know whether we can
use well-known classical algorithms as subroutines in quantum algorithms. A re-
versible algorithm can always be performed by a quantum circuit, but if used inside
of a quantum algorithm the additional bits that the algorithm produces may cause
problems. In particular, the simulation based on recording the full history has a seri-
ous problem: it creates a lot of garbage. In classical computers we can erase all the
data that we do not need for the rest of the computation, or we can simply ignore
it. In quantum computations we neither can erase, nor ignore it. The garbage data
contains information that may result in entanglements at places where we do not
want it. Recall that truly quantum phenomena can occur only when some informa-
tion is not present. (For example, the Mach-Zehnder interferometer does not work
if the information about the path of the particle is recorded.) Thus, if possible, the
redundant bits should be eliminated from reversible computations.

Therefore, we need a better simulation. Again, another simple trick suffices to
show that we can erase all the history except for the input data. More formally, if
we have an algorithm for computing

x �→ f (x),

then there is a reversible algorithm for computing

x �→ (
x,f (x)

)
whose running time is not essentially longer. The whole point is to erase the history
of the computation gradually and in the reverse order. The crucial observation is
that if we erase the last item of the history, we can restore it very easily because
it is determined by the previous item. Hence the action of erasing the last item is
reversible! Thus we can continue until only the input data x remains on the history
record.

What about the input bits x, can we get rid of them too? A necessary condition
is, clearly, that f is one-to-one, otherwise we would loose information. The answer
to this question is, again, not difficult. I will state it in terms of polynomial time
algorithms. This theorem is due to C.H. Bennett [19].

Theorem 41 Given a one-to-one function f , one can compute x �→ f (x) reversibly
in polynomial time, if and only if one can compute both f and its inverse function
f−1 in polynomial time.

The forward direction is trivial. The proof of the opposite direction is based on
the fact mentioned before the theorem and a simple idea. For the sake of symmetry,

5.4 Quantum Computations 463

let us denote f (x) by y and express our assumption as follows: we can compute
in polynomial time x→ y and y→ x. This implies that we can also compute re-
versibly in polynomial time x→ (x, y) and y→ (y, x). Clearly, we can switch x

and y in (x, y). Since the computation y→ (x, y) is reversible, we can compute
(x, y)→ y reversibly in polynomial time. Combining the computations x→ (x, y)

and (x, y)→ y, we get a reversible polynomial time computation of x→ y.
The theorem, in particular, implies that in order for f to be computable by a poly-

nomial size quantum circuit (without having to store anything but the output value
f (x)), it suffices that f and its inverse function f−1 are computable in polynomial
time (on a classical Turing machine). On the other hand, any one-way function is an
example of a function for which this is not possible.

Quantum Algorithms

If a quantum computer is ever built, it will most likely be a physical realization of
the quantum circuits, as described in previous sections. Hence the best way to define
an algorithm is by means of quantum circuits. But an algorithm is not a circuit; it
is an idea how to compute a function. Thus when presenting a quantum algorithm,
one should first explain the essence by a less formal description and only then give
the circuits for the procedures used in the algorithm.

We do not know any exact quantum algorithms that are faster than classical. The
exactness means that when computing a Boolean function f for a given input x, we
obtain the output f (x) with amplitude 1, which means that the measurement of the
output gives always the string of bits f (x). Thus it is possible that quantum circuits
that compute Boolean functions exactly are not more powerful than reversible clas-
sical circuits. The quantum algorithms that apparently are superior to any classical
algorithms are not exact; they produce the required output only with a sufficiently
large probability. So they behave like probabilistic algorithms, but their essence is
different. The output is a linear superposition of strings of bits, one of which is the
output value f (x). The amplitude of the string that we need should have a large
amplitude, so that we get it with large probability. As in probabilistic algorithms,
‘large’ means at least 1/2.

Quantum algorithms are usually presented as a combination of classical and
quantum computation. Typically, there is a preprocessing classical phase, then a
quantum computation, and finally, a classical postprocessing phase. The main rea-
son for presenting quantum algorithms in this way is that it is easier to prove for
a classical algorithm that it is correct (in most cases only well-known algorithms
are used in the classical parts of the quantum algorithms, thus one does not have to
prove their correctness at all). Also it is good to know which particular part of the al-
gorithm uses quantum effects in an essential way. Another reason is that researchers
would like to demonstrate that nontrivial quantum computations are possible. How-
ever, the number of quantum bits that the current experimental methods are able
to realize is very small. Therefore, it is an advantage to strip a quantum algorithm

464 5 The Complexity of Computations

of everything that does not have to be quantum. That said, it is always possible to
perform the entire algorithm on a quantum circuit.

However, not everything that looks classical can be taken out of quantum com-
putations. The typical structure of the quantum phase of quantum algorithms is that
we first apply quantum operation to form a linear superposition of many basis states,
then we apply a classical reversible algorithm to each of these states, and then we
apply again a quantum operation. One may get the impression that the middle part
should be easier to realize, since it is classical. But one should always bear in mind
that the algorithm is working with a linear superposition of states also in this part
of the computation and we need to preserve the quantum nature of the superposi-
tion. Thus one cannot use classical electronic components; we need to compute with
quantum bits also there.

To get a feel for quantum algorithms, I will briefly sketch the most interesting
and the most important quantum algorithm, which is Shor’s algorithm for factor-
ing natural numbers. Shor’s algorithm allows us to factor numbers in time that is
polynomial in the length of the number. Recall that we do not know any polynomial
time probabilistic algorithm for factoring and the commonly accepted conjecture is
that there exists no such an algorithm. Furthermore, if successfully implemented, it
would break many of the currently used cryptographic protocols.

Suppose we want to factor a composite number N . Think of N as a medium size
number, which means that number of digits is small enough so that we can compute
with it, but N itself is so large that we cannot examine any substantial part of the set
of numbers less than N . Several algorithms, running in exponential time, are based
on the following simple observation attributed to Fermat. If we find two numbers a

and b such that

a2 ≡ b2 mod N and a ≡ ±b mod N,

then

(a + b)(a − b)≡ 0 mod N and a + b, a − b ≡ 0 mod N.

Hence both a + b and a − b contain nontrivial factors of N . Thus having such a
pair a, b we can find a factor of N by computing the greatest common divisor of
a+ b and N (or of a− b and N). The greatest common divisor can be computed in
polynomial time using the ancient Euclid algorithm. The problem is, however, how
to find such a pair a, b efficiently.

One possibility is to find, for some c, its multiplicative period r in the ring of
integers modulo N . The period r is the smallest positive integer such that cr ≡
1 mod N . If r is even and if cr/2 ≡ −1 mod N , then we can take a = cr/2 and
b= 1. Since r is minimal such that cr ≡ 1 modN , the condition cr/2 = 1 modN , is
also guaranteed and we get a factor of N using the above argument. One can show,
using elementary number theory, that if we choose 1 < c <N at random, then with
probability at least 1/2 either the two conditions above are satisfied, or already c has
a common factor with N . Hence, the only essential problem is to find the period.

We do not know how to compute multiplicative periods in polynomial time on
classical machines, but it is possible to do it on quantum machines—which is the
key component of Shor’s algorithm.

5.4 Quantum Computations 465

Let us forget about the factoring problem for a moment and focus on the prob-
lem of computing the period r of a function f defined on integers. The idea of the
quantum algorithm for this problem comes from the branch of mathematics called
harmonic analysis. It is well known that a tone can be decomposed into pure tones,
tones whose form is sinusoid. Mathematically this is a decomposition of a peri-
odic function f (x), whose period divides 2π into an infinite sum of the functions
1, sinx, cosx, sin 2x, cos 2x, . . . multiplied by suitable constants. The constant at a
particular function of this set depends on to what degree the function agrees or dis-
agrees with f . In the physical world such a good agreement can be observed as
various forms of resonance and interference. If we want to determine the pitch of
a tone, we can play it near a string instrument and watch which string resonates. In
particular, if

f (x)= a1 sinx + b1 cosx + a2 sin 2x + b2 cos 2x . . .

and the only nonzero coefficients are at sin�x and cos�x for which p divides �, then
we know that the period of the function is 2π/p.

To explain the main idea of the algorithm, we will consider the following sim-
plified problem. Suppose we have to determine an unknown natural number p > 2
which is represented by a regular p-gon with the center at the point (0,0) and ver-
tices at the unit circle; otherwise its position is completely random. The information
that we can get is a randomly chosen vertex of the polygon. Using classical means,
we cannot infer anything about p because we do not know how the polygon is ro-
tated, hence what we get is a random point on the unit circle. Now suppose we can
get more samples of the vertices, but each time we ask for another vertex, the poly-
gon is rotated by a random angle. Again, the information that we get are simply
random points on the unit circle.

However, the quantum version of this problem is solvable. In the quantum set-
ting the vertices of the polygon are not given to us randomly; instead we get a
quantum superposition of all vertices of the p-gon, each vertex with the same am-
plitude 1/

√
p. If we do a measurement on this quantum state, we get a random

vertex. But we can first transform it to another quantum state and measure the new
state. (Instead of applying the transformation we can also view it as doing a different
measurement on the same state.) Then we can learn relevant information about p.

Mathematically, this means that if the lines through the vertices form angles
k 2π

p
+ h with the x-axis, for k = 0,1, . . . , p − 1 and some real number h, then

we get the state

p−1∑
k=0

1√
p

∣∣k 2π
p
+ h

〉
, (5.10)

which represents the linear superposition of the vertices of the p-gon. Next we apply
a suitable unitary transformation to obtain a state of the form∑

� divisible by p

α�|�〉, (5.11)

466 5 The Complexity of Computations

where we assume some upper bound M on � in order to get a finite sum (and the
sum of the squares of the absolute values of α� is 1). If all these nonzero amplitudes
α� have the same absolute value, then, by measuring the state, we get a random
multiple of p that is less than M . If we get enough samples, we obtain multiples
of p from which we will be able to determine p with high probability. The key
technical problem is how to compute (5.11) from (5.10). I will come back to it
shortly.

The general problem of finding a period of a periodic function f can be re-
duced to the above special case as follows. Suppose f is defined on integers and
has period r . We take a number M that is sufficiently larger than r and consider the
function f on the interval [0,1, . . . ,M−1]. Furthermore, I will assume that f takes
on r distinct values and M is divisible by r . The latter assumption is not justified;
I will explain later how to eliminate it. Now rather than being defined on integers,
we can think of f as being defined on M points of the unit circle which form the
regular M-gon with one point on the axis x. Let w be one of the r values of f .
The points on which the value of f is w form a regular p-gon with p =M/r . Thus
getting a random sample of an argument and a value of f , (a, f (a)), is the same as
getting a random vertex from one of these p-gons: the argument a tells us the point
on the unit circle and the value f (a) tells us the ‘name’ of the polygon. Since M

is exponentially large, the probability that we obtain vertices from the same poly-
gon is negligible. (This explains why in the simplified problem above we rotate the
polygon by a random angle each time we should get a new sample.) Thus using the
solution for the problem about polygons, we get p, and then we compute the period
of the function r =M/p.

This was a high level description of the quantum algorithm for finding periods
with a lot of details omitted. Some of these are less important, some are essential.
One of the inessential technicalities concerns the divisibility of M by r . Finding a
random multiple of r is equivalent to finding r itself, thus we cannot assume that r
divides M . But taking M not divisible by r causes only minor problems; we just do
not get precise numbers and have to do some rounding to get integers.23

What is more important is how the main transformations can be realized by quan-
tum circuits. The computation of the period of the function f starts with computing
the linear superposition of all natural numbers a less than M . Since we have the
freedom to take any M in a large range (we need M > 2r2 and M must have length
bounded by a polynomial in the input N), we take M to be a power of 2. Then such
a superposition is the superposition of all binary strings of the length log2 M . This
is fairly easy, as I showed on page 458.

The next step is to compute the linear superposition of all pairs (a, f (a)). To
this end we only need to compute reversibly (a, f (a)) from a. As shown in the
previous section, this can be done by a polynomial size reversible circuit if f is

23Here is an intuitive explanation. If r does not divide M , the p-gons are not quite regular—one
edge is shorter, thus we only know that M

p
< r < M

p−1 . But if M > 2r2, this interval is shorter
than 1, hence r is determined uniquely.

5.4 Quantum Computations 467

computable in polynomial time. The particular function that we use in factoring is
f (x)= cx mod N , which is known to be computable in polynomial time.

The last transformation is called the discrete quantum Fourier transform. It is a
transformation based on the complex function eix defined, for all real numbers x, by

eix = cosx + i sinx.

Viewed geometrically in the plane of complex numbers, as x goes from 0 to 2π , the
values of eix follow the unit circle (in the counter-clockwise direction). Thus one can
easily see that if we sum the values f (x) for x = k 2π

p
+ h and k = 0,1, . . . , p− 1,

we get 0, the center of gravity of the p-gon.
Now consider the function ei�x for some natural number � > 1. If � is not

divisible by p, and we sum the values of this function for x = k 2π
p
+ h and

k = 0,1, . . . ,M − 1, where M is a common multiple of p and �, then, again, one
can easily show by computation that the sum is 0. But if � is divisible by p, then we
sum the terms of the form

ei(�k 2π
p
+h) = ei�k 2π

p
+ih = ei�k 2π

p eih = (ei2π �
p
)keih = eih

because �
p

is an integer and eix = 1 if x is a multiple of 2π . Hence the terms add up

to the nonzero value Meih. Thus we get a nonzero value if and only if � is divisible
by p, which is the resonance principle mentioned above.

Let us now consider Fourier transform applied to a p-gon on the unit circle. The
classical Fourier transform consists of the sums of the above form for � in a certain
range. Shor’s quantum Fourier transform is a unitary transformation that replaces the
vertices of the p-gon by the numbers � and their amplitudes are the sums considered
above, suitably normalized. Thus we get the quantum state (5.11) which enables us
to determine p. Let us just recall that in the factoring algorithm, instead of zeros
and non-zeros, we only have small amplitudes and large amplitudes respectively
because we cannot assume the divisibility of M by p.

Having a nice formula for a unitary transformation does not guarantee that it can
be computed by a polynomial size circuit. Indeed, designing a quantum circuit for
discrete quantum Fourier transform is a nontrivial task. I will describe it in Notes.

This amazing algorithm and other applications of the quantum Fourier transform
are, unfortunately, good only for very special problems. Ideally, we would like to
show that all problems form a complexity class, such as NP, can be computed by
quantum machines in polynomial time. According to our experience that we have
so far, that is very unlikely. It seems that the problems that are solvable by quantum
machines in polynomial time must have a very special nature, or they are already
efficiently solvable by classical machines (see The hidden subgroup problem on
page 475).

If we do not insist on having a polynomial time algorithm and are satisfied with
any improvement in the running time, then it is different. Grover’s algorithm helps
us to solve search problems for which we do not have any nontrivial algorithm, only
the thorough search of all instances. Such is, for example, the problem of finding a
satisfying assignment for a Boolean formula. For this problem, all known algorithms
run in time 2n, (unless the formula is of a special form). Grover showed that using

468 5 The Complexity of Computations

quantum machines we can speed up the search quadratically. Thus in the case of
Boolean formulas with n variables, instead of searching all 2n assignments, we can
find a satisfying assignment in time c

√
2n, for some constant c, which is c2n/2. If

quantum computers are built and had the same speed as classical ones, this would
enable us to solve twice larger instances of this problem.

Another example of a potential application of Grover’s algorithm is searching a
secret key. Quadratic reduction of the time for this problem, could be a substantial
help, but there is a simple remedy: take twice longer keys.

This algorithm is also an example of how we can prove in a particular setting that
quantum computations help. The setting is that we use a black box model in which
the box acts as an “oracle” that tells us whether the given string of bits is right or not.
If we use classical computations, we can only check systematically, or randomly, all
inputs, since we do not know how the box computes and we are not allowed to open
it. If we search systematically, we need to search all strings in the worst case; if we
do it probabilistically, we will check half of them on average. But if we do in the
quantum way, the number of steps needed is approximately only the square root of
the size of the search space.

Notes

1. A more precise explanation of the Mach-Zehnder interferometer. I will denote
by |↗〉 and |↘〉 a photon flying in the corresponding directions. When the
photon is reflected from the beam splitter (half-silvered mirror) or from a mirror,
then not only |↗〉 changes to |↘〉 and vice versa, but also the amplitude rotates
by i. Thus the sequence of states is as follows:

|↗〉 �→
1√
2
|↗〉 1√

2
i |↘〉

+ �→ +
1√
2

i |↘〉 − 1√
2
|↗〉

�→ − |↗〉

The three unitary transformations are defined by the following matrices:⎛
⎝

1√
2

1√
2

i

1√
2
i 1√

2

⎞
⎠

(
0 i
i 0

) ⎛
⎝

1√
2

1√
2

i

1√
2

i 1√
2

⎞
⎠ .

The state of the photon is not identical after passing through the interferometer;
its amplitude is rotated by −1, but the detector cannot distinguish such states.

2. The mathematics of quantum circuits. The tensor product is a natural concept
defined in every category of structures. Here I will use an explicit definition
for vector spaces, which should be more comprehensible for those who have
never heard about it. For two complex vector spaces V and W of dimensions c

and d , the tensor product is a space Z of dimension cd together with a certain
bilinear mapping from the set-theoretical product V ×W into Z. Z is denoted
by V ⊗W ; the mapping is also denoted by ⊗. If we choose bases v1, . . . , vc of

5.4 Quantum Computations 469

V and w1, . . . ,wd , then the vectors vi ⊗wj for i = 1, . . . , c, and j = 1, . . . , d
form a basis of V ⊗W . Furthermore, we will assume that the mapping ⊗ is
chosen so that it preserves unit lengths, that is, the tensor product of two vectors
of length 1 has length 1. The tensor product of more than two vector spaces is
defined in the same way.

Let us apply this concept to quantum bits. We define a string of n quantum
bits to be a vector of length 1 of the tensor product of n copies of the two-
dimensional complex space C

2, which is denoted by (C2)⊗n. In C
2 we take

one orthonormal basis and denote its elements by |0〉, |1〉. This determines the
following basis of the tensor product of n such spaces: the set of the vectors
|i1〉 ⊗ · · · ⊗ |in〉, where i1, . . . , in ∈ {0,1}. In order to simplify notation, we
abbreviate |i1〉 ⊗ · · · ⊗ |in〉 by |i1, . . . , in〉.

Given two linear mappings L : V → V ′ and K : W → W ′, their tensor
product L ⊗ K : V ⊗W → V ′ ⊗ W ′ is defined in a natural way: we define
L ⊗ K(u ⊗ v) = L(u) ⊗ K(v) and extend it to the whole space V ⊗ W by
linearity.

Let U : C2 ⊗C
2→ C

2 ⊗C
2 be a unitary transformation; we think of U as

representing a binary quantum gate (a quantum gate that works with two quan-
tum bits). Let n > 2 and suppose we apply U to the first two quantum bits of the
string of n quantum bits. Then, as a unitary transformation of the whole space
(C2)⊗n, it corresponds to U ⊗ In−2, where In−2 denotes the identity mapping
on (C2)⊗n−2 (which is the tensor product of n− 2 copies of the identity map-
ping on C

2). If this unitary transformation is applied to two non-consecutive
quantum bits, then we would have to extend our notation to express it in such a
way, but it is clear that such a mapping is the same up to a permutation of the
terms of the tensor product (C2)⊗n. Similarly, if we have a unitary transforma-
tion U ′ : C2→ C2, i.e., a transformation of one quantum bit, the corresponding
transformation of the whole space is U ′ ⊗ In−1 (up to permuting the terms in
the tensor product).

We will restrict ourselves to the circuits that use at most binary gates; these
transformations will be our elementary operation. So given an arbitrary unitary
transformation T : (C2)⊗n→ (C2)⊗n, we want to know the minimal number k
of elementary transformations into which it can be decomposed. This k is the
quantum circuit complexity of T .

This is a very clean and natural mathematical concept, but what we actually
need is a little different. There are two modifications that we have to add.

1. As in classical computations, we should expect that in order to compute
efficiently, we will often need more memory bits than just those that store the
input bits. Thus when computing some T : (C2)⊗n→ (C2)⊗n we should be
allowed to use more than n quantum bits. As usual we will assume that the
registers that do not contain input bits are initially set to 0.

2. We should keep in mind that the unitary transformation computed by a
quantum circuit only serves to compute a Boolean function. The input data that
we want to use are basis states, actual strings of zeros and ones, and what we
can read from the output is again one of the basis states. It would be natural to

470 5 The Complexity of Computations

require that the unitary transformation T computed by a quantum circuit must
map a basis state to a basis state (thus T would be the quantum extension of a
permutation of the set {0,1}n). Unfortunately, this seems also to be a too sever
restriction. Presently, we do not have any example of a quantum circuit of this
type that would be significantly smaller than known classical circuits computing
the same function. Thus we allow the circuit to output a superposition from
which we get the required output value with a reasonable probability. Like in
the case of probabilistic circuits, it suffices if the probability is at least 1/nc ,
where n is the input size and c is a constant because it enables us to boost the
probability to become close to 1 by repeating the computation a polynomial
number of times.

3. Quantum complexity classes. It seems natural to define Quantum Polynomial
Time, QP as the class of sets computable by quantum Turing machines in poly-
nomial time. (I have not defined quantum Turing machines, but it is not difficult
to imagine what they should be.) In the definition of QP we require that the
input-output behavior of a quantum Turing machine be deterministic. Formally,
it means that the machine computes a function F :Σ∗ → {0,1} in such a way
that for a given input x ∈Σ∗, it outputs F(x) with an amplitude whose absolute
value is 1.

This class is not as natural as one would expect. The problem is that when we
require quantum Turing machines to compute precisely, we do not get universal
machines. Consider just a unary quantum gate. There are infinitely many such
gates and it is impossible to simulate them using a finite number of finitely
dimensional unitary transformations with absolute precision. The main reason,
however, why researchers do not like this class is that it does not seem to help us
to compute faster than using classical deterministic Turing machines. Whether
or not QP= P is an open problem, but it is even hard to conjecture what is true.

The most important class is the Bounded Error Quantum Polynomial Time,
BQP. This is an analog of the probabilistic class BPP, where instead of prob-
abilistic Turing machines we use quantum Turing machines. The condition for
accepting an input is the same: if we observe the output of the machine, we see
an accepting state with probability at least 2/3 if the input is in the computed
set, and with probability at most 1/3 if it is not. This can easily be restated in
terms of the amplitudes of the accepting and rejecting states.

BQP contains BPP because instead of using r random bits we can take the
quantum superposition of all strings of zeros and ones of length r with equal
amplitudes. This can be done using r unary gates H (see page 455) and the
rest of the computation is done by a reversible circuit. The commonly accepted
conjecture is that BQP contains more sets than BPP. This is supported by the
fact that we have polynomial time bounded error quantum algorithms for fac-
toring and the discrete logarithm, whereas no such algorithms are known if we
only use probabilistic algorithms. The two problems concern computations of
functions, but they can easily be reduced to sets. For example, the problem to
determine, for given numbers N and i, if the ith bit of the smallest nontrivial
factor of N is 0 is equivalent to factoring integers. This problem is in NP as we

5.4 Quantum Computations 471

can guess the complete factorization of N . However, we do not believe that the
whole NP is contained in BQP and we rather conjecture that no NP-complete
problem is contained in BQP.

Concerning the upper bounds, the best upper bound on BQP that one can
state using the complexity classes defined in this book is BQP ⊆ PSPACE.
Thus we cannot exclude that BQP contains sets that are outside NP; for all we
know, it might even contain PSPACE-complete problems.

In quantum computing it is often more convenient to work with circuits
rather than Turing machines. Both classes QP and BQP can be defined using
uniform families of quantum circuits.

4. A quantum algorithm for linear equations. Let A be an N × N matrix and b

a vector of length N . Suppose we want to solve the system of linear equations
given by A and b, which means that we want to find a vector x such that Ax = b.
A classical algorithm needs time at least N2 because it has to read the input data.

Now suppose that the matrix is huge, but we have an efficient algorithm to
compute the entries of A and b. Moreover, suppose that we only need to know
some properties of the solution. Then, in principle, we may be able to compute
these properties in time essentially less than N . A.W. Harrow, A. Hassidim and
S. Lloyd [113] found a quantum algorithm that for certain matrices and certain
properties of solutions, can solve the task more efficiently than any known clas-
sical algorithm. Moreover, they proved that their algorithm is faster than any
classical algorithm if P = BQP.

The essence of their algorithm is to compute the quantum state

1∑ |xi |2
N∑
i=1

xi |i〉,

where x1, . . . , xn is a solution. Note that we need only 'log2 N(bits to represent
the indices i. For some matrices, the state can also be computed by quantum cir-
cuits of size polynomial in logN . Although the complete information about the
solution (except for the normalizing factor) is present in the state, we can get
very little from this state. A simple measurement gives an index i with prob-
ability |xi |2. So we only learn that xi = 0 (or that with high certainty, |xi | is
not very small). More sophisticated measurements, which may require further
quantum computations, can produce information that is hard to obtain by clas-
sical means.

5. How much information is in one quantum bit? A quantum bit is, by definition,
a system from which we can get only two possible values (more precisely it is a
system and a particular measurement). Thus the basic tenet is that one quantum
bit carries the same amount of information as the classical bit. This is in spite
of the infinitely many states in which the quantum bit can be. Yet, a schema has
been devised by C.H. Bennett and S.J. Wiesner in which this rule is seemingly
violated [20].

Suppose Alice wants to send two bits to Bob. The natural way is simply to
send two bits to Bob. Bennett and Wiesner showed that instead Bob can send
one quantum bit to Alice and then Alice will need to send only one quantum bit

472 5 The Complexity of Computations

to Bob. Thus it looks as if the quantum bit sent by Alice carries information of
two classical bits. But notice that if we interpret the law about quantum bits cor-
responding to classical bits more liberally, namely, that they have to exchange
two quantum bits in order to exchange two bits of information, then the law is
not violated.

Let us try to deduce what Alice has to do. Suppose Alice succeeds in sending
two bits using a single quantum bit. Then the above law could be violated in a
different way. Remember that Alice received one bit from Bob, so the total
exchange of bits could be three bits. Should Alice not break the law, she must
dispose of the bit that she received. The only way she can do it is to send it back
to Bob. Alas, now her task seems even harder—she has to send three bits using
one quantum bit!

The clue is actually in sending Bob’s quantum bit back. The trick is to mod-
ify Bob’s bit without looking at it and send it back. There are four possible ways
to modify it because Alice can flip the bit and switch the sign of the amplitude.
Since Bob keeps his own copy of the quantum bit, he can determine in which
way the bit was modified. Four possibilities means two bits.

In quantum physics we are never sure that the idea is correct, unless we check
it by a mathematical argument. The schema works as follows. Bob prepares the
superposition of two bits

1√
2
|00〉 + 1√

2
|11〉.

This means that the two bits are completely entangled. Then he sends the first
bit to Alice and keeps the second. Alice applies one of the following four unitary
mappings to the received quantum bit(

1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 −1
1 0

)
.

Then she sends the bit back to Bob. Thus Bob has one of the following four
linear superpositions

1√
2
|00〉+ 1√

2
|11〉, 1√

2
|00〉− 1√

2
|11〉, 1√

2
|10〉+ 1√

2
|01〉, 1√

2
|10〉− 1√

2
|01〉.

As these vectors are orthogonal, Bob can determine them by a measurement.
Equivalently, there exists a unitary transformation that maps these vectors to
basis states of two bits |00〉, |01〉, |10〉, |11〉.

It is always instructive to represent such schemas by quantum circuits, see
the circuit in Fig. 5.8. The ternary gate applies one of the four unitary trans-
formations to the third quantum bit of its input bits. The choice of the unitary
transformation is controlled by the first two input bits, in a similar way as in the
control not gate. This gate can be replaced by two binary gates. I leave to the
reader to figure out the unitary transformations computed by the gates. Once
you know what they should do, it is easy.

6. More details about computing the period of a function. Let f be a periodic
function defined on integers whose period is less than some number N . The
length of N (which is ≈ log2 N) will be our input size. We assume that f is

5.4 Quantum Computations 473

Fig. 5.8 Alice sends two bits
using one qubit

efficiently computable, namely, it is computable by a classical deterministic
algorithm that runs in polynomial time.

Let M be a number which is a power of 2, is sufficiently larger than N , and
its length is polynomial in the length of N .

The first step is to compute the linear superposition of all numbers
0,1, . . . ,M − 1, all with the same amplitudes:

1√
M

M−1∑
a=0

|a,0〉.

The 0 in |a,0〉 indicates that we use more registers for quantum bits than just
those for a, and they are initially set to 0. (I have already explained how to
produce such a superposition, see page 458.)

Next we compute f (a) and put it into the free memory registers. So the next
state is given by the following expression:

1√
M

M−1∑
a=0

∣∣a,f (a)
〉
. (5.12)

Again, we already know how to do it using a reversible, hence also quantum
circuit (see page 461).

The last step is the quantum Fourier transform. This is the unitary transfor-
mation defined by

|x〉 �→ 1√
M

M−1∑
�=0

e
2π i
M

�x |�〉.

Thus applying it to the first number of the state in which we left our quantum
computer (5.12), we get

1

M

M−1∑
a=0

M−1∑
�=0

e
2π i
M

�a
∣∣�,f (a)

〉
. (5.13)

474 5 The Complexity of Computations

Here it is important that no information about the computation of f (a) was
present before applying the Fourier transform, except for a and f (a).

When observing this state (in terms of quantum physics, measuring this
state) we see a pair (�, d), where d = f (a) for some a, with probability equal
to the square of absolute value of the amplitude of this state. In order to com-
pute the amplitude at |�, d〉, we have to add all terms with |�,f (a)〉 in which
f (a)= d . Thus we get

1

M

∑
a, f (a)=d

e
2π i
M

�a |�, d〉.

Let r be the period of f ; then f (a)= d is equivalent to a = kr + s for some s,
0 ≤ s < r , determined by d . Further, let p =M/r and h = 2πs/M . Then the
amplitude at |�, d〉 is

1

M

∑
k

e
2π i
M

�(kr+s) = 1

M

∑
k

ei(2π �
p
k+h)

.

If r divides M , then p is an integer, and the analysis of this expression is
easy (we have already done it). In such a case we see those � that are random
multiples of p. Having sufficiently many such numbers we can determine p by
taking the greatest common divisor of them, whence we also get r .

If r does not divide M , which is typically true, the analysis is slightly more
complicated. We take p to be the smallest integer larger than M/r . Since
p =M/r , we get with non-negligible probability also some � which is not a
multiple of p; so taking the greatest common divisor does not work. Therefore,
we need an argument that would determine r with a sufficiently large proba-
bility from a single �. Suppose we obtain an � which is a multiple of p, say
� = dp. Then �/M = dp/M is very close to d/r . Also we have a good prob-
ability that d and r are mutually prime. In such a case, applying the theory
of rational approximations to �/M will produce the fraction d/r , in particular
it will give us r . This is the way to analyze the algorithm; to do it formally,
however, requires some computations and the use of some results from number
theory. I omit these details.

It is, however, important to realize that I skipped an essential part which is
to show that the quantum Fourier transform can be computed by a polynomial
size circuit. I will confine myself to defining the quantum gates that are used in
the circuit in general, and drawing the circuit for M = 24, see Fig. 5.9.

One gate that we need is the unary gate defined by the matrix H , see (5.7),
page 455. The others are binary gates defined by the matrices

Sk =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0

0 0 0 eiπ/2k

⎞
⎟⎟⎠ ,

for 0 < k < m. The transformation Sk does nothing if at least one bit is 0; if
both bits are 1, it rotates the phase by the angle π/2k . The key for understand-

5.4 Quantum Computations 475

Fig. 5.9 The circuit for the quantum Fourier transform with M = 24

ing the circuit is the following formula of the quantum Fourier transform. Let
x1, . . . , xm denote the bits of the number x, with xm being the most significant
bit. Then the transform can be defined by

|x1, . . . , xm〉 �→ 1√
M

m⊕
j=1

(|0〉 + eπ i
∑j−1

t=0 xm−t /2t |1〉).
I leave the verification to the reader.

7. The hidden subgroup problem. Having a set of quantum algorithms only for
some particular problems is unsatisfactory from the point of view of theory.
We would rather like to know what is the essential property of problems that
makes them solvable by quantum computers in polynomial time. The so far best
candidate for such a characterization is the hidden subgroup problem. This is
the class of problems defined as follows. Given a finitely presented group G and
an unknown subgroup H , one should find a set of generators of H . The group
G is given quite explicitly, which means that we can decide in polynomial time
if a string of bits is an element of the group, and we can compute the products
and inverse elements in polynomial time. The hidden subgroup is determined
by a function f which is constant on the cosets of H and takes on different
values on different cosets.

The most important polynomial time quantum algorithms fall into this class.
Let us consider the period finding problem as an example. The group G is the
additive group of integers Z. The function f is the function whose period we
want to compute. Suppose r is the period and f takes on r different values.
Then the hidden subgroup is rZ, the set of multiples of r . This subgroup is
generated by r (or by −r), thus finding a set that generates it is equivalent to
finding r .

In the polynomial time quantum algorithms that we have, the group G is,
moreover, commutative. Furthermore, one can solve the hidden subgroup prob-
lem in quantum polynomial time for every commutative group. This is very in-
teresting, but not surprising, considering the fact that all commutative groups
are products of cyclic groups, and the hidden subgroup problem for cyclic
groups is essentially the period finding problem. The quantum Fourier trans-
form can be defined for every finite group and for some noncommutative groups
polynomial size quantum circuits have been found. Yet we do not have any non-
trivial polynomial time quantum algorithm for the hidden subgroup problem for

476 5 The Complexity of Computations

a class of noncommutative groups. More recently G. Kuperberg [174] found a
subexponential (more precisely, running in time 2c

√
n) quantum algorithm for

dihedral groups, which confirms the belief that noncommutative groups may
also be tractable.

One of the few natural combinatorial problems that are in NP, but appar-
ently are neither in P, nor NP-complete, is the graph isomorphism problem. It
is the problem, for two given graphs, to determine if they are isomorphic. This
problem can be presented as a hidden subgroup problem for a noncommuta-
tive group, hence we would get a polynomial time quantum algorithm for this
problem if we showed that the general hidden subgroup problem is solvable in
polynomial time on quantum machines.

8. Quantum cryptography. When quantum computers are built, we will need to de-
velop new crypto-systems. It is possible that these systems will use coding and
decoding functions that are efficiently computable only by quantum computers.

Current quantum cryptography focuses on a different approach. Suppose we
want to send a message x consisting of n bits. Let r be a random sequence
of zeros and ones. Then we can encode x by the pair of strings (r, s), where
s = x⊕ r , the bitwise sum of x and r modulo 2. If we send only one of the two
strings, then a potential eavesdropper cannot learn any information because it is
a random string. Now, it is possible to send quantum bits in such a way that the
receiving party always detects any attempt to tamper with the message. This can
be used to design protocols for secure communication. The basic idea of such a
protocol is as follows. Suppose Alice wants to send x to Bob. Alice first sends
r . If Bob determines that the message has not been tampered with, he confirms
it to Alice. If Alice determines that Bob’s confirmation is authentic, then she
sends the second part s. The details are more complicated and would take us
too far afield.

The advantage of this approach is that one can prove that it is secure. Thus
unlike the classical cryptographic protocols, the security of quantum cryptogra-
phy is not based on any unproved assumptions. Such communication has been
experimentally demonstrated.

9. The many-worlds interpretation of quantum physics. The classical (also called
Copenhagen, or Bohr) interpretation of quantum physics is based on distin-
guishing between two phenomena: (1) a freely evolving system and (2) a mea-
surement. A freely evolving system is governed by the Schrödinger equation.
The essence of this equation is that the infinitesimal changes of the system
are linear. The discrete approximation that we have considered here when dis-
cussing quantum computations is based on applying unitary transformations.
Such a system is, in general, in a linear superposition of several states. A mea-
surement is a process in which the system abruptly and randomly collapses to
one of the states from the superposition. The probability of collapsing to a par-
ticular state is given by the square of the absolute value of the phase. I was
using this interpretation when explaining the basics of quantum physics needed
for quantum computations.

5.4 Quantum Computations 477

While nobody has any problem with the first part, the other part, the mea-
surement, raises a lot of questions: what is a measurement? what is a measuring
apparatus? is human presence necessary? and others. Among these the main one
is: why can we not apply the same rules as we use for freely evolving systems
also to measuring instruments and observers?

A solution in which measurement and observers obey the same laws as freely
evolving systems was proposed by Hugh Everett III in his PhD thesis in 1956.
The main idea is that a measurement is the process in which a measuring appa-
ratus becomes entangled with the measured state.

Example Suppose an apparatus A has three states A?,A0 and A1. The state A?
the initial state, the two states A0 and A1 are the states in which A shows 0,
respectively, 1. Suppose that we want to measure the quantum bit 2−1/2|0〉 +
2−1/2|1〉. The initial state of the system consisting of the apparatus and the
quantum bit is

|A?〉 ⊗
(
2−1/2|0〉 + 2−1/2|1〉)= 2−1/2|A?〉|0〉 + 2−1/2|A?〉|1〉. (5.14)

After the measurement we get

2−1/2|A0〉|0〉 + 2−1/2|A1〉|1〉. (5.15)

Observers, however, do not see the apparatus in a superposition; they only
see one of the possible states. The reason is that observers also get entangled
with the states of apparatuses. This presupposes that we allow superpositions of
people in different states, an unacceptable idea for some philosophers. The typ-
ical argument against this interpretation is: why don’t we see the superposition
of people in different states? The answer is again: because of the entanglement.
By watching a person we get immediately entangled with his or her state.

The complete picture of a measurement is more complex. First, the appara-
tus gets entangled with the system and then very quickly the world around gets
entangled with it too because the macroscopic apparatus interacts very strongly
with the matter around it. In particular, human observers also get entangled,
most likely, already before they read the data. The entanglement then spreads
through the universe. This is the explanation of the “collapse of the wave func-
tion”. This, however, requires postulating the existence of alternative universes
because now we have to talk about superpositions of whole chunks of the world,
which is an even more controversial idea.

If we interpret A in the example above as the rest of the world when the
quantum bit is taken away, we can use the same formulas (5.14) and (5.15).
This is popularly explained as the world A? splitting into two worlds A0 and
A1. This is not quite precise because what actually splits is only the part without
the quantum bit. (Furthermore, whether some part of the universe splits or joins
depends on the basis that we use to describe it.)

Most of the arguments against this interpretation point out that we do not
observe superpositions of macroscopic objects and, therefore, it is unlikely that

478 5 The Complexity of Computations

observers, not to say the whole universe, can be a superposition of several dif-
ferent states. The absence of such phenomena can, however, be easily explained
by the concept of environmental decoherence. Decoherence means that a sys-
tem that starts in a superposition of states gets spontaneously entangled with
the environment and thus loses its quantum nature. This is because it is im-
possible to completely isolate a system in a superposition of states from the
environment. Even individual elementary particles kept separately in vacuum
interact with the matter outside. The bigger the object is, the stronger the inter-
action is and the stronger the interaction is, the shorter the time is before the
superposition collapses to one of the states. The decoherence time is extremely
short already for systems with a small number of atoms. Therefore, we do not
observe quantum phenomena when large objects are involved.

In this interpretation it is also possible to explain the probabilities of collaps-
ing to a particular state in the measurement process. The alternative universes
in the superposition have amplitudes and the square of the absolute value of the
amplitude of a universe U determines the probability that we are in U . Since
we always are only in one of the alternative worlds, we cannot test these prob-
abilities. What we can only do is to assume that we are in a world that is not
“very unlikely”. This sounds rather suspicious, but as a matter of fact, this is the
standard assumption in all probabilistic reasonings. I will show in an example
how one can use it to justify the probabilities of measurements.

Example Suppose we study the quantum bit 2−1/2|0〉+2−1/2|1〉. The probabil-
ity 1/2 that we get 0 (or 1) manifests itself only if we perform many measure-
ments. So suppose that we measure n non-entangled copies of this quantum bit.
When measuring these quantum bits we obtain very likely n/2±√n ones, ac-
cording to the law of large numbers. The many-worlds explanation of this fact
is that the total amplitude of the worlds in which the string has n/2±√n ones
is in absolute value close to 1. So it is likely that we will end up in one of these
worlds.

10. Quantum proofs. ‘Quantum proofs’ usually refers to interactive quantum pro-
tocols. There are a number of results showing that very likely one can define
larger complexity classes by allowing quantum states and measurements instead
of mere randomness. Here I will briefly describe a concept of non-interactive
quantum proofs introduced in [228]. This concept was defined for propositional
logic, but it can be generalized to first order logic. The basic idea is to allow the
linear superposition of strings of formulas in the proof.

Our aim is to define a kind of proof systems that corresponds to the usual
proof systems in propositional logic that are based on axiom schemas and de-
duction rules. Such systems are called Frege systems and we will learn more
about them in the next chapter.

A quantum deduction rule is a unitary transformation U on a (small) fi-
nite set of strings of propositions S with the following property. If Γ,Δ ∈ S

and Δ occurs in UΔ with nonzero amplitude, then the propositions of Δ log-
ically follow from those in Γ . One can show that a quantum deduction rule

5.5 Descriptional Complexity 479

is invertible—not only as a linear operator, but also logically. This means that
U−1 is also a deduction rule.

In order to define a quantum proof, we have to view proofs as a rewriting
process. The initial state is always the same, say, a string of �s, where � is
a constant for truth. In each step we rewrite the string by a deduction rule. A
proposition is proved if it appears in the string obtained in this way.

In the quantum setting we apply quantum deduction rules and thus at each
step we have a linear superposition of strings of propositions. To prove a propo-
sition φ we only need to have φ occurring with a sufficiently large amplitude.
To formalize the rewriting process we use quantum circuits. So, formally, a
quantum proof is a quantum circuit with certain properties.

It is not difficult to show that such a proof encodes classical proofs of essen-
tially the same size as the circuit (of the same propositions). However, there are
arguments that support the conjecture that in general it is impossible to extract a
classical proof from a quantum proof in polynomial time. It is conceivable that
this is impossible even using quantum circuits. So it is theoretically possible
that we will be able to prove a proposition with a quantum circuit, but we will
not be able to produce a classical proof, although we will know that there is one
that is not too long.

11. Communication with extraterrestrials—continued from page 80. Suppose we
already could construct quantum computers. Then a reasonable message to send
out would be to say “We have quantum computers”. It will tell the recipients that
our science is quite advanced, at least in physics and mathematics. One of the
messages sent out, the Arecibo Message, contained a similar thing: a message
that we know what life is based on—a picture of a double helix.

Whether or not it is a reasonable thing to do aside, it is an interesting prob-
lem how to formulate such a message. We would like to send a message that
would show the solution of a problem that can only be solved using a quantum
computer. Such a problem, as we believe, is factoring a large random number.
But if we sent a large number with its factors, how would they know that we
did not make it up? We can generate randomly two large primes and compute
their product without a quantum computer. If we communicated bilaterally, it
would be simple, we would ask them to send us a number to be factored, but
the assumption is that they are too far away.

My proposal is to send the complete factorizations of all composite numbers
in an interval [n,n+a]. The number n must be large enough, a should be small,
so that we can do all these factorizations, but not too small. It seems that it is
not possible to make up such an interval with all factorizations without being
able to factor efficiently.

5.5 Descriptional Complexity

There is a type of complexity that is essentially different from what we have con-
sidered so far. Consider finite strings of symbols, finite graphs, finite algebras or in

480 5 The Complexity of Computations

general any finite mathematical structures. Can one define the complexity of such
entities? When defining the complexity of computations, we study a dynamical pro-
cess, which quite naturally needs time and space to be performed. We clearly need
something different when we consider static objects. For such objects, the most nat-
ural thing is to define the complexity to be the length of the shortest description.
One can show in many examples that this is a good concept. For instance, we tend
to think of symmetric objects as simpler than nonsymmetric and, indeed, one can
use symmetries to give a more concise description. To determine an equilateral tri-
angle we need only one number, whereas for a general triangle we need three. We
often associate beauty with symmetry, and thus also with the possibility of short
description. It is not only flowers whose symmetry we admire, but also theories.
A theory whose equations are short and manifest symmetries seems to reflect the
reality much better than a long list of apparently unrelated and complicated axioms.

The concept of descriptional complexity seems intuitively clear, but one has to
be a bit careful and define it precisely. As we know, speaking vaguely about de-
scriptions leads to Berry’s paradox (the paradox of the least number that cannot be
described by a sentence with at most 100 letters, see page 38). Therefore it is nec-
essary to say clearly what the descriptions are. In general, we may use any formal
language which is sufficiently universal to describe all entities that we are interested
in. Each of these choices may define a different concept and there are almost no
principles that would guide us which we should choose. In such a situation the nat-
ural thing is to take the simplest formal system which is universal. A sufficiently
universal system should, among other things, be able to describe computations. So
why not just focus on computations? Let the formal system used for descriptions be
Turing machines (or anything that is equivalent to them).

Thus we are naturally led to the concept of algorithmic complexity. The algorith-
mic complexity of an object x is the size of the simplest algorithm that produces the
object. This concept possesses several properties that make it interesting for further
investigations. But one should bear in mind that many of the results proved about
algorithmic complexity hold true for other versions of the descriptional complexity
based on different formal systems.

The concept of algorithmic complexity was conceived in the 1960s indepen-
dently by three mathematicians: G.J. Chaitin [39], A.N. Kolmogorov [160] and
R.J. Solomonoff [277]. Most researchers refer to algorithmic complexity as the Kol-
mogorov complexity and I will follow this tradition.

The Algorithmic Complexity of Strings

As I said it is necessary to give a precise definition of the Kolmogorov complexity in
order to avoid paradoxes, but not only because of that. If we want to state theorems,
we need precise mathematical concepts. But as in other parts of this book, I will
only try to convey the most important ideas and avoid inessential technicalities.

5.5 Descriptional Complexity 481

Our first convention will be restricting the class of studied structures to finite bi-
nary strings (sequences of zeros and ones). Finite binary strings are universal struc-
tures in the sense that they can encode any finite structures. Unlike in some other
situations, for Kolmogorov complexity the particular way we code other structures
is irrelevant; the only requirement is that the coding must be computable. Thus we
only need to develop the theory for binary strings, keeping in mind that we can
always apply it to arbitrary structures.

The next thing to choose is a computational model. We can take any model that
defines all computable functions. I will use Turing machines, which is the most
common approach, but this is not essential.

A key result used in algorithmic complexity is the existence of universal Turing
machines. Recall that a universal Turing machine is a machine that can simulate all
Turing machines (see page 130). This is a key concept in Kolmogorov complexity
and therefore we have to state precisely what it means.

Definition 15 U is a universal Turing machine, if for every Turing machine M ,
there exists a binary string p such that for every input string x, U will halt on the
input px if and only if M will halt, and if they halt then both output the same string.

This needs some explanation. We use here the convention that Turing machines
compute only with binary strings, thus the ‘code’ of M must also be a binary string.
The expression px is the concatenation of strings p and x, the string obtained by
writing x after p. We cannot use additional symbols to separate p and q , but we
can assume that the coding of Turing machines M �→ p is chosen so that one can
always determine where p ends and x starts.

Notice that we consider all Turing machines, not only those that halt on every in-
put. This is an annoying complication, but it cannot be avoided—the class of Turing
machines that always halt does not contain a universal one.

Let me also recall that a real computer is a good approximation of this theoretical
concept. An input to a computer also can be split into two parts: a program p and
data x to be processed by the program. The difference is that a real computer, of
course, cannot work with arbitrarily large data.

Now we are ready to define the Kolmogorov complexity with respect to a univer-
sal Turing machine U .

Definition 16 The Kolmogorov complexity of a binary string y is the length of the
shortest string x such that U eventually halts on the input x and outputs the string y.

Thus Kolmogorov complexity is a function that associates natural numbers to
binary strings; it will be denoted by CU(y).

The first simple observation is that CU(y) is defined for all finite strings y and it
is at most the length of y plus a constant. This is because the string y can always be a
part of the program which simply prints the string. In the programming language C,
for example, we can use:

printf(‘‘11010001010111’’)

482 5 The Complexity of Computations

if we need to print the string 11010001010111. In a computer this program is repre-
sented by a string of bits.

In this way we have defined infinitely many different measures of complexity
one for each universal Turing machine U . Can we show that one of them is the right
one? That would require one universal Turing machine to be distinguished from
others by a special property. One possibility would be to posit that it is the smallest
universal Turing machine. But how should we measure the size? The size depends
on the particular formalization of Turing machines and then we have a problem
again: what is the right formalization. What is even worse is that to find the smallest
universal Turing machine seems to be a hopeless task.

Fortunately, the problem of having infinitely many different measures is not as
bad as it looks at first glance. Although we have infinitely many different measures
of Kolmogorov complexity, they do not differ much. It is not difficult to prove that
every two universal Turing machines U1 and U2 give rise to measures that differ at
most by an additive constant. Thus for long strings the difference is negligible. This
is called the Invariance Theorem and it is one of the main results that justify the
naturalness of the concept of the Kolmogorov complexity.

The proof of this basic result is very easy. Given U1 and U2, let p be the string by
which we can simulate U2 on U1. Thus if U2(x) is defined (U2 halts on the input x)
and equals y, then also U1(px)= y. Hence, the Kolmogorov complexity of y with
respect to U1 cannot be larger than the Kolmogorov complexity of y with respect to
U2 plus the length of p. This is expressed by the inequality

CU1(y)≤ CU2(y)+ c,

where c is the length of p.

Incompressibility and Randomness

Let us assume that one reference universal Turing machine U is fixed and let us only
use this machine from now on. Thus we can also suppress the subscript at C(x).

The next basic result concerns the existence of strings with large Kolmogorov
complexity. It asserts that, for every given length n, there is a string x of length n

whose Kolmogorov complexity is at least n. Such strings are, quite naturally, called
incompressible. If x is incompressible, it means that there is no way to encode it by
a shorter string. We know that we can always program U to print x, which gives
an upper bound n + c. Thus incompressible strings achieve this bound up to the
constant c.

Again the proof of this theorem is very easy. It uses a counting argument that is
not dissimilar to the proof of the existence of Boolean functions with exponential
circuit complexity. We count the number of strings that have Kolmogorov complex-
ity less than n and show that this number is less than the number of all strings of
length n. The calculation is trivial. The number of all binary strings of length less
than n is

1+ 2+ 4+ · · · + 2n−1 = 2n − 1 < 2n.

5.5 Descriptional Complexity 483

Since every string with Kolmogorov complexity less than n is coded by a string
whose length is less than n, we conclude that there must be at least one string of
length n whose Kolmogorov complexity is at least n.24

Incompressible strings are very interesting objects. In order for a string x to be
incompressible, there must be no regularity, no discernible pattern in the string. A
simple example of a compressible string is a string of the form yy, a string whose
first and the second halfs are the same. This can be defined by a program that in-
structs the machine to print y twice. Hence the Kolmogorov complexity of this string
is at most half of its length plus a constant; the constant is the length of the part of
the program that says ‘print the following string twice’. Recall that we used this idea
for constructing a self-referential sentence, see page 273.

A remarkable property of incompressible strings is that they pass statistical tests
of randomness. I will explain the idea on the simplest possible test. Consider binary
strings of length n. The most basic property of random binary sequences is that they
have approximately the same number of ones and zeros. (The difference between
these two quantities is typically within ±√n.) Suppose x is a string that has only
n/4 ones. We may produce such a sequence by a random process, thus x may also
look completely patternless, yet it can be compressed. The reason for that is that x
belongs to a relatively small set that can be efficiently enumerated. The number of
strings of length n with n/4 ones is approximately 20.8113n. We can order them, say,
lexicographically and enumerate them. Then, to specify one of them, we only need
to give its number, which has at most 0.8113n binary digits. Hence the Kolmogorov
complexity of every such string is at most 0.8113n+ c, for some constant c.

Thus the concept of incompressible strings enables us to specify particular strings
that look completely random. This is not possible using only concepts from classi-
cal probability theory, where all strings of a given length have the same status. In
probability theory we have to talk about properties of random strings (or other ran-
dom structures) indirectly. For instance, when we need to express formally that ‘a
random string has approximately the same number of ones and zeros’, we say that
‘the probability that a randomly chosen string has approximately the same number
of ones and zeros tends to 1 as n→∞’. So in probability theory we can talk about
properties of random strings, but not about a concrete random string.

This reminds one of the possibility to talk about infinitely small/large numbers
in nonstandard analysis. Whereas the concepts of infinitely small/large numbers can
be treated only indirectly in classical analysis, in nonstandard analysis we can define
such numbers. But Kolmogorov complexity gives us more than just the possibility
to speak about random strings. It enables us to develop a new type of probability
theory, algorithmic probability. In this theory it is possible, for example, to solve a
problem which cannot be treated using classical probability theory—the problem of

24An attentive reader may have noticed that incompressibility is not invariant with respect to differ-
ent choices of the universal Turing machine. An incompressible string of length n for one machine
may have Kolmogorov complexity n− c for a different machine, where c is a nonnegative constant
(depending only on the pair of machines). But if n is very large with respect to c, the difference
between having Kolmogorov complexity n or n− c is not essential.

484 5 The Complexity of Computations

prediction from given data. The setting is very much like the questions in IQ tests:
we are given a finite sequence of symbols that are assumed to be an initial part of an
infinite sequence and we should predict the next symbol.

For example, given a string

010

the natural answer is that the next symbol is 1 because we conjecture that the infinite
string is the string of alternating zeros and ones. According to classical probability
theory, all strings are equally probable, thus we can only say that the next symbol
is 0 or 1, each with probability 1/2. The algorithmic approach is not to assume that
all strings have equal probability, but to look for regularities that can be described
by an algorithm. But again there are many algorithms that are consistent with given
data, so we need a principle by which we choose one. The principle is to choose the
algorithm with the shortest program. In terms of universal Turing machines, we look
for the shortest binary string p such that, given p as the input, the universal machine
U will print an infinite sequence starting with the given finite string. In the example
above it seems clear that every program, say in the programming language C, that
will extend the sequence by printing 0 must be longer than the simple program that
prints a sequence of alternating zeros and ones.

Although it only looks like a rule of thumb, it is possible to justify this principle
formally. It would take us too far afield to explain the necessary parts of the theory,
therefore I will consider only a very special situation and sketch a simplified argu-
ment. Suppose X is an infinite sequence of zeros and ones defined by a program q .
Suppose that we get the elements of the sequence X successively one after another
and our task is to find a program that prints X (it does not have to be q itself). In
order to make this example simpler, let us also assume that we have a computable
upper bound t (n) on the time that q needs to compute the nth digit of the infinite
sequence.

To solve this problem we take an enumeration p1,p2,p3, . . . of all programs.
Then we try p1 on longer and longer initial segments of X. We keep p1 as long as
it runs in the time limit t (n) and prints the same bits as there are in X. When we
discover that it runs longer, or prints a different bit, we discard it and test p2 in the
same way. In this way we may try many programs, but after a finite number of steps
we will arrive at q or at a program that behaves like q . From that point on we will
keep this program, although we will never be sure about it.

In other words, we make conjectures that X is defined by p1, then by p2 etc.
We disprove some conjectures, but eventually we arrive at the correct conjecture
that will be confirmed by all finite segments of X. Replace the word program by
theory and X by experimental data and you get a description of how should science
develop. In reality it is, of course, a much more complex process.

In this solution of the problem the lengths of programs are not mentioned at
all. The only thing we need is that the enumeration is complete—it contains all
programs so that we do not miss q . Notice, however, that the most natural way to
enumerate programs is to order them by their lengths (and those of equal lengths ar-
bitrarily). So the strategy to try the shortest program that has not been disproved as

5.5 Descriptional Complexity 485

the current conjecture is just one of the possible strategies that ensure the complete-
ness of the enumeration. This is the essence of why the rule of the shortest program
works.

Noncomputability of the Kolmogorov Complexity

After good news there is also bad news: The Kolmogorov complexity of finite binary
strings, the function x �→ C(x), is not algorithmically computable. Thus it is a useful
theoretical instrument, but in practice we cannot use it. One may still hope to at least
approximate the function, but the matter is even much worse. Not only we cannot
compute C(x), but in fact there is only a finite number of strings whose Kolmogorov
complexity we can determine!25

Let me first give an intuitive explanation of why the Kolmogorov complexity
is not computable. Essentially, it is a consequence of the noncomputability of the
halting problem. Recall that the halting problem is to decide if for a given Turing
machine T and a finite string x, the machine T will eventually stop when started
on x. A consequence of the undecidability of the halting problem is that if we take
one universal Turing machine U , then the halting problem is still undecidable. Sup-
pose we want to compute C(x) for a string of length n. We know that C(x)≤ n+ c,
for some constant c (that we can compute), thus we only need to run the univer-
sal Turing machine U on all strings of length ≤ n+ c, which is a finite number of
strings. If n is small, we may be lucky and find p such that U(p) = x and on all
shorter strings U halts and prints strings different from x. Then we know that C(x)

is the length of p. But there are strings on which U does not stop. Suppose q is such
a string and suppose that C(x) is larger than the length of q . If we are sufficiently
patient, we will find the shortest p such that U(p)= x, but in order to know that p is
the shortest one, we must be sure that U does not halt on q and that is undecidable.

In mathematics many quantities cannot be computed by an algorithm, but of-
ten we can determine them using mathematics; we can prove that they are equal
to particular numbers. However even that is a problem if we are to determine the
Kolmogorov complexity of a string.

Theorem 42 Let T be a sound theory axiomatized by a finite list of axioms. Then
there exists a natural number kT such that for no concrete string x, T is able to
prove that x has Kolmogorov complexity larger than kT .

The theorem is also true for recursively axiomatized theories (theories axioma-
tized by an infinite list of axioms for which it is algorithmically decidable whether
a given sentence belongs to the list), but for the sake of avoiding distracting techni-
calities, I have only stated the weaker version.

The first reaction to this theorem is that there must be something wrong. Just a
moment ago I proved that for every n, there exists at least one incompressible string.

25Using a fixed set of axioms.

486 5 The Complexity of Computations

The proof was very easy and certainly there is a true theory T in which it can be
done. So if we take n > kT , we get a contradiction. Or do we really get it? The gist
is that the theorem talks about concrete strings. Indeed, a fairly weak theory T is
able to formally prove that there exist incompressible strings. Then, if we take a
specific number n, we can list all 2n strings of length n and T proves that one of
them is incompressible. We can reduce the list by proving in T that some strings are
compressible. But for a sufficiently large n (n > kT), we cannot reduce the list to a
single item—this is what the theorem says.

The proof of this theorem is very simple. Let UnprT be the unpredictable pro-
gram for theory T defined on page 287. Recall that for every concrete string x, it is
consistent with T that UnprT prints x as the output. Let pT be a binary encoding of
UnprT for the universal Turing machine U . We take some natural encoding so that
the above property of UnprT is preserved for U(pT). Thus, in particular, for every
concrete string x, it is consistent with T that its Kolmogorov complexity C(x) is at
most the length of pT . So we can take kT equal to the length of pT and the theorem
is proved.

I will sketch a second proof, which is a simple application of Berry’s paradox.
Let �T be the length of a natural binary encoding of the axioms of T . We need to
take kT a little larger than �T ; it will be clear from the proof that kT = �T + c for a
sufficiently large constant c (independent of T) will do. Suppose that there is at least
one string x for which T proves that C(x) > kT . Then we can write a program p that
finds such a string. The program will systematically generate all proofs of T and,
for each proof, it will check if it is a proof that a specific string x has C(x) > kT .
As soon as it finds such a string, p prints it and halts. It is clear that the essential
part of the program will be the description of the axioms of T . The rest will be the
same for all theories, hence it can be bounded by a constant. Since T proves only
true sentences, the string that p finds has Kolmogorov complexity larger than kT ,
but the string is also defined by a program that has the length at most kT . This is a
contradiction (the same as in Berry’s paradox).

A striking property of the second proof, which is the reason why I gave the sec-
ond proof, is that it does not use self-reference. (In the first proof self-reference was
used to define the unpredictable program.) This is in contradiction with the com-
monly accepted presumption that every proof of the Incompleteness Theorem has
to use self-reference. In this proof the only part that could be regarded as being
related to self-reference is the fact that the program p should look for proofs that
some string has the Kolmogorov complexity larger than p. Thus the program in a
way refers to its length. Should this be called self-reference?

Let us rather look for similarities between Gödel’s proof and this proof. Re-
call that the main trick in writing self-referential sentences was doubling the text—
writing essentially the same text twice. As we already observed, this is a simple way
to generate compressible strings, strings whose Kolmogorov complexities are less
than their lengths. And this is, indeed, the essence of the trick: since the sentence
should refer to itself, it should be possible to describe the sentence by a text that is
shorter than the whole sentence. Thus if the two proofs of the incompleteness the-
orem do not share self-reference, they at least share something from Kolmogorov
complexity.

5.5 Descriptional Complexity 487

Notice that Theorem 42 also implies that Kolmogorov complexity is not com-
putable. Indeed, suppose that there were a Turing machine M that would compute
C(x), given x as the input. Let T be the theory axiomatized by some basic axioms
of set theory plus the axiom:

M computes C.

Then to prove that a specific string x has the Kolmogorov complexity k we would
only need to formalize the computation of M on the input x. Thus T would prove
C(x) to be equal to the numeral expressing its value for every given string. This
would be in contradiction with Theorem 42 and the fact that there are strings of
arbitrarily high Kolmogorov complexity.

For a true finitely axiomatized theory T let kT denote the least number that sat-
isfies the condition in Theorem 42. Chaitin proposed to use this number to measure
the strength of theories. It is certainly an interesting parameter. Contrary to what the
proofs of Theorem 42 may suggest, kT is not the Kolmogorov complexity of the set
of axioms of T . For example, if the set of axioms of T contains some axioms that do
not influence what T proves about the Kolmogorov complexity, we can omit them
and the new theory will have the same parameter. If S is stronger than T , we clearly
have kT ≤ kS . It may also happen that there is a stronger theory with much more
concise presentation than T .

It would be very useful to scale the theories that we are working with (Peano
Arithmetic, Zermelo-Fraenkel set theory and its extensions by large cardinal ax-
ioms etc.) using a numerical parameter such as kT . Unfortunately, there is no al-
gorithm for computing kT for specific theories; we can only prove some bounds.
Classical proof theory gives a scale based on constructive ordinals (see page 510).
These ordinals can be determined for Peano Arithmetic and some extension of it,
but unsurmountable complications arise when we want to do it for set theories.

Theorem 42 has an interesting corollary. Let us first observe there is no infi-
nite algorithmic process that would enable us to extend a given sufficiently strong
consistent theory S indefinitely. By ‘extending indefinitely’ I mean that the theory
resulting after adding all infinitely many axioms is not contained in a recursively
axiomatized consistent theory T . This observation that such a process does not exist
is easy—the process itself produces a recursively enumerable axiomatization and
every such axiomatization can easily be transformed into a recursive one. (If we
do not insist that the theory T should use the same language as S, we can even
find a finitely axiomatized theory T with this property.) However, this is not true
if we allow the process to be random and allow an error with small probability.
Here is the precise statement, where again I state it only for finitely axiomatized
theories.

Theorem 43 For every sufficiently strong, sound and finitely axiomatized theory S

and every ε > 0, there exists an algorithm (formally, a Turing machine M) with the
following property. Given access to a source of random bits, M produces an infinite
set of axioms such that with probability at least 1− ε, the resulting extension T of

488 5 The Complexity of Computations

S is a sound theory, but it is not contained in any consistent recursively axiomatized
theory.26

The idea of the proof is simple. Given S, although it is not possible to compute
kS precisely, it is possible to compute an upper bound k ≥ kS . If we now take n suf-
ficiently larger than k and take a random sequence r of this length, we can make the
probability that the sequence has Kolmogorov complexity larger than k arbitrarily
small. Whence the axiom C(r) > k will be true with high probability. Since k ≥ kS ,
it will be a new axiom. (For more details of the proof see Notes.)

What conclusion should we draw for the foundations of mathematics? The ax-
ioms C(r) > k do not seem to be useful. Further, the way mathematicians discover
new axioms is not completely random—they always have some reasons for adding
a particular axiom. Yet randomness is involved in almost every discovery. The theo-
rem above should be viewed as a theoretical possibility that the presence of random-
ness in the process of discovering new axioms may enable us to extend set theory
beyond any limits.

Kolmogorov complexity can also be used to classify empirical theories. Suppose
we have experimental data D and some theories Ti that explain the data. Which the-
ory should we choose as the best? Now we cannot focus only on the Kolmogorov
complexity of theories because the “agnostic” theory saying that “all data are just
random numbers” is consistent with any data and is likely to have the smallest
complexity. We have to take into account also the Kolmogorov complexity of data.
Therefore J. Rissanen [245] proposed the following principle:

The Minimum Description Length Principle The best theory T is the one that
minimizes the sum of the length of the description of T plus the length of the de-
scription of data D using theory T .

The idea behind it is that typical data have both some randomness and some reg-
ularity. We would like to separate these two by having a theory that would describe
the regularities and a string of random bits that would encode the entropy contained
in data. The principle forces us to optimize the choice of the theory: if we pick a too
simple theory, then the description of data will be complicated; if we try to make the
description of data too simple, the entropy contained in them will have to be moved
to the theory.

Needless to say, the success of applying this concept in practice depends very
much on how one interprets the notion of description.

Notes

1. Proof of Theorem 43, more details. If we do not insist that each time we add
an axiom it be not provable from the theory constructed so far, we can define a

26Here I exceptionally deviate from the convention that theories in this book are always recursively
axiomatizable.

5.5 Descriptional Complexity 489

sequence of axioms independently of the theory S. For a given ε > 0, pick a c

sufficiently large and for every natural number n ≥ 1, generate randomly a bit
string rn of length 2n+ c. We can choose c so that the probability that C(rn)≤ n

is at most 2−n. Hence the probability that C(rn) > n for all n≥ 1 is at least 1−ε.
Theorem 42 was stated for sound theories, but in fact one only needs consis-

tent theories. Such a stronger version of this theorem implies that the set of all
sentences C(rn) > n is not contained in any consistent recursively axiomatized
theory.

A related question is whether it is possible to obtain by such a process a com-
plete extension of a given theory. It has been proved that this is impossible for
Peano Arithmetic [142], hence also for set theories in which Peano Arithmetic is
interpretable. Let me stress that here I am talking about all consistent extensions,
not only about the one that consists of all true arithmetical sentences.

2. The prefix-free Kolmogorov complexity. The concept of Kolmogorov complexity
that we defined above seems very natural, but it still has some undesirable prop-
erties. Let us see what their source is. When we define computations of Turing
machine on finite strings, we assume that they are delimited in some way, so that
the machine knows where the word starts and where it ends. The usual conven-
tion is that there is an additional symbol, viewed as a blank, and the squares of
the tape outside of the string contain this symbol (this is just an awkward way of
saying that they are blank). Thus the machine can recognize the ends of the input
string by reading the blank symbols. This apparently innocent technical detail
has quite an important effect on the Kolmogorov complexity. The point is that if
we mark the ends of the input string, then we give the machine additional infor-
mation. One way to see this is to imagine that on the Turing machine tape we can
only use the two symbols 0 and 1, no blank symbols, and we still need to delimit
the input string. Then we must use some coding that necessarily increases the
length.

Thus the usual way of presenting input to a Turing machine gives more in-
formation than it should. The amount of additional information bits is small, but
if we want to compute precisely, this is an essential error. Can we filter out the
additional information about the length of the input? It seems that a quite satis-
factory answer to this question has been found. The basic idea is that we should
restrict the class of Turing machines to those that only read symbols of the input
string and never look outside. As a Turing machine needs typically much more
space than is the input length, we must use several tapes. We obviously need an
input tape and a separate work tape, but it is also natural to have an output tape.
Then we can assume that the head on the input tape moves only in one direction;
say, starting on the first symbol it moves right. Thus we ensure that the machine
never goes left from the input word.

It is trickier to ensure that the machine does not go right from the input word.
In fact, this is possible only because we can ignore inputs on which the machine
does not print anything because it never stops. If the machine does not print any
output on a given string, we can ignore it; it does not make any difference how
much information it got. Thus, given a Turing machine T , we change it to a

490 5 The Complexity of Computations

machine T ′ that is the same as T , except that if T ′ leaves the input string (which
means it reads a blank symbol), then it goes into an infinite loop and hence does
not print any output. Further, we stipulate that if T stops before reading the entire
input, we will treat it as if it did not produce any output.

Let T ′ be such a Turing machine, let L be the set of inputs on which it stops
and produces an output. Observe that if x, y ∈ L, then x is never a proper initial
segment of y; we say x is not a prefix of y. Such sets are called prefix codes. Their
advantage is that we can transmit the words from the code without any separating
messages. Such Turing machines are, therefore, called prefix Turing machines.
Kolmogorov complexity based on prefix Turing machines renders much better
the intuitive notion of descriptive complexity. One can show that the basic results
remain true in the new context. In particular, there exist universal prefix Turing
machines and thus we also have the Invariance Theorem.

3. Inductive reasoning. Inductive reasoning was a problem that puzzled philoso-
phers for a long time. On the one hand, it is clear that humans use it, on the
other hand, there seemed to be no way to show the possibility of such reasoning
formally. For deductive reasoning, there was logic, but there was no “inductive
logic”. What was missing was the concept of computability. If we allow observ-
able phenomena to be governed by completely arbitrary rules, then we surely
have no chance to discover them. If, however, we restrict the rules to computable
ones, we may eventually discover every such rule using a sufficient number of
examples.

I have already considered a simple example in which the data is given by a
computable process. In that example the process of producing zeros and ones was
completely deterministic. This is called learning because once we learn a concept
(definable by an algorithm), prediction becomes easy. In general, we would like
to make predictions also in the case of processes involving randomness.

An extreme case is the uniform probability distribution. (This means that ze-
ros and ones are equally likely and their appearance on different positions in the
sequence are independent.) In this case we would also like to be able to discover
what is going on, namely, that the sequence is completely random. An example
that combines randomness with a strong dependence are sequences generated by
repeating the following action: toss a coin, if you get heads write zero, if you get
tails write two ones. The problem of predicting the next element in the sequence
has the following solution:

a. if the current finite sequence ends with an odd number of ones, the next ele-
ment is 1;

b. otherwise the next element is zero or one, both with probability 1/2.

In the 1960s, Solomonoff pioneered an approach to the problem of prediction
based on algorithmic probability [277]. His results and subsequent work of other
researchers clearly demonstrate that prediction is possible. I will only state a
simple version of his main result.

First we need to formalize the concept of an infinite process that produces a
binary infinite sequence. Let us denote the set of infinite binary sequences by

5.5 Descriptional Complexity 491

{0,1}ω. A probability measure on {0,1}ω is a mapping μ defined on certain
subsets of {0,1}ω and taking on values in the real interval [0,1]. Let us leave
aside the question for which subsets of {0,1}ω the measure μ is defined, as it
plays little role in what we are going to discuss. The conditions that μ has to
satisfy in order to be called a probability measure is that the measure of the
entire space is 1 and that it is σ -additive, which means that the measure of the
union of a countable family of disjoint sets is the sum of their measures.

We have already used the uniform measure on {0,1}ω, which is a formaliza-
tion of the process of randomly tossing a coin infinitely many times, when we
discussed forcing (page 363). This measure is determined by the condition that,
for every n and every finite sequence x of length n, the measure of the set of infi-
nite sequences extending x is 1/2n. Let u denote the uniform probability measure
and Γx the set of infinite sequences extending x. Then the defining condition for
u is

u(Γx)= 2−n,
for x of length n.

In general, every measure on {0,1}ω is determined in such a way. Thus we
only need to know the values μ(Γx) for all finite sequences x. The conditions
defining measures reduce to

μ(ΓΛ)= 1,

where Λ denotes the empty sequence, and

μ(Γx)= μ(Γx0)+μ(Γx1).

Hence we can identify measures with functions defined on finite binary se-
quences satisfying the two conditions above. Let us simplify notation by writing
μ(x) for μ(Γx). In terms of probability, μ(x) is the probability that the random
infinite sequence starts with x, where randomness is with respect to the proba-
bility measure μ.

The prediction problem that we are interested in is: for a given finite se-
quence x, to determine (or at least to approximate) the probabilities that the
sequence will continue with 0, respectively with 1. Formally, this means that we
want to determine the conditional probabilities μ(x0|x) and μ(x1|x) defined by

μ(x0|x)= μ(x0)

μ(x)
and μ(x1|x)= μ(x1)

μ(x)
.

Since μ(x0|x)+μ(x1|x)= 1, it suffices to have one of the two probabilities.
The assumption is that we get longer and longer segments of a random in-

finite sequence and the goal is to use this knowledge to make better and better
predictions.

Note that we cannot repeat the experiment by starting over with another ran-
dom infinite sequence. Therefore we cannot learn μ; if we ever can do anything,
we can only learn a part of it.

The key idea is to restrict the class of measures to computable ones, but since
μ is a real valued function we must define what computability means. It means

492 5 The Complexity of Computations

that there exists an algorithm (a Turing machine) that for a given string x and a
natural number k computes a pair of integers p, q such that |μ(x)−p/q| ≤ 1/k.
Now we are ready to state Solomonoff’s result.

Theorem 44 There exists a measure M such that for every computable mea-
sure μ, the following is true. Let X be a random infinite sequence and let Xn

denote the initial segment of length n. Then with probability 1,

lim
n→∞

M(Xn0|Xn)

μ(Xn0|Xn)
= 1.

The probability of this event is with respect to measure μ.

This theorem does not say anything about computability of M or the rate of
convergence, still it is a striking result. The meaning of the theorem is that we do
not have to try various hypothesis—there is one universal measure that suffices.
How can a single measure approximate all computable measures? The point is
in the last sentence of the theorem. It means that the sequences X are chosen
according to the probability distribution μ. In order to get intuition, recall the
problem of predicting a sequence defined by an algorithm on page 484. One can
view it as a simplified version of the theorem above, where each measure μ has
full weight on a single infinite sequence. The algorithm that solves this problem
is the measure M that satisfies the theorem for such special measures μ.

Concerning computability, one can prove that M cannot be computable. It
is, however, possible to generalize the concept of a computable measure so that
we can compute universal measures at least approximately. We say that ν is a
semimeasure, if instead of the equalities above it satisfies

ν(Λ)≤ 1 and ν(x0)+ ν(x1)≤ ν(x).

We say that ν is semicomputable from below, if there exists an algorithm which
for every x computes a nondecreasing sequence of rational numbers converging
to ν(x). Then one can show that there exists a semimeasure m that is universal, in
the sense of Theorem 44, for semimeasures semicomputable from below, and m
is also semicomputable from below. It follows that we can, at least theoretically,
approximate m(x0|x) with arbitrary precision. Thus Theorem 44, generalized in
this way, gives us at least a theoretical possibility to compute predictions.

One can show several connections between these concepts and the Kol-
mogorov complexity of which I will mention only one. One can prove that there
exists a constant c such that

2K(x)−c ≤m(x)≤ 2K(x)+c.
4. Using incompressibility instead of randomness. The existence of incompressible

strings is proved by a probabilistic proof (and moreover we know that we cannot
do it by a constructive proof for sufficiently long length of the strings). Once we
have such strings, we can use them to avoid probabilistic arguments in proofs
such as Erdős’ bound on the Ramsey number. Instead of estimating probabili-
ties, we estimate Kolmogorov complexities. Such proofs are often conceptually
simpler because they use formulas with fewer quantifier alternations.

Main Points of the Chapter 493

Main Points of the Chapter

• Complexity is an inherent property of computational problems. We distinguish
time complexity, space complexity, and other types.
• A number of fundamental problems in computational complexity is still open; the

main one is whether P=NP.
• The use of random bits helps us compute solutions of some problems faster.
• Pseudorandomness can replace true randomness in some computations, and it is

an essential concept in cryptography.
• To prove that secure cryptography is possible we would need to know that some

conjectures stronger than P =NP are true; namely, that one-way functions exist,
or equivalently that pseudorandom generators exist.
• Some functions can be computed faster by splitting the task into many subtasks

that can be computed in parallel.
• There are strong indications (but, again, we are not able to prove it formally)

that quantum computers can solve some problems, e.g., factoring integers, much
faster than classical ones. When quantum computers are built, we will be able to
compute tasks that are not feasible on classical computers using algorithms that
we know.
• Kolmogorov complexity of a string—the minimal length of a description of the

string—is a useful theoretical concept. In particular, it enables us to define in-
compressible strings.

Chapter 6
Proof Complexity

“You’re claiming that. . .mathematics might be strewn with
primordial defects in consistency? Like space might be strewn
with cosmic strings?”
“Exactly.” She stared back at me, feigning nonchalance. “If
space does not join up with itself smoothly, everywhere...why
should mathematical logic?”

Greg Egan, Luminous

LOGIC became important when mathematicians realized that mathematics can-
not be founded only on our intuition about mathematical entities and that it

was necessary to introduce axiomatic systems and formalize reasoning. Moreover,
it turned out that we will never have a complete set of axioms for number theory and
set theory. Therefore logic has an important role to play, both in studying what is
provable from particular sets of axioms and, even more, in studying what is not prov-
able. To this end, two fields of logic have been developed: proof theory and model
theory. The aim of proof theory is to study provability by syntactical means, namely,
to actually study proofs. In model theory, on the other hand, we use models to show
that a sentence is not provable. (Recall that in order to show that a sentence is not
provable from a set of axioms, it suffices to find a model that satisfies the axioms, but
not the sentence.) Both fields have, of course, a much wider range of applications.

When we are not able to prove a theorem from a set of axioms, the reason may be
not that it is not provable, but that the proof is too difficult to find. This is the problem
that mathematicians have to cope with in their everyday work. To prove a theorem
with a nontrivial proof requires ingenuity, experience, patience, and often also a little
bit of luck. Yet sometimes all this may not be enough. It may happen that every proof
of the theorem is so complex that it cannot even be written down. In some rare cases,
such as the Four Color Theorem, a computer can help us, but what if the lengths of
proofs exceed even the capacity of computers? This can indeed happen. For every
sufficiently strong theory, one can construct short sentences whose proofs are so
long that they cannot be physically represented in our universe. Although known
examples of such theorems are rather contrived, there is no reason why it cannot
also happen for interesting open problems.

Thus there is yet another role for logic: to study the complexity of proofs. The
basic measure of the complexity of a proof is its length. We may be unable to find

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_6,
© Springer International Publishing Switzerland 2013

495

http://dx.doi.org/10.1007/978-3-319-00119-7_6

496 6 Proof Complexity

a proof for various reasons, but large length is an absolute obstacle because an ex-
tremely long proof cannot ever be written down. Naturally, most of the research in
proof complexity theory focuses on studying the lengths of proofs. However, there
are other reasons for studying the lengths of proofs, the main one being the relations
of proof complexity to computational complexity. The starting point of both theories
is essentially the same. In computational complexity theory the classical concept of
computability is replaced by feasible computability, usually represented by com-
putability in polynomial time. Similarly, in proof complexity the concept of prov-
ability is replaced by feasible provability, where proofs of polynomial lengths are the
standard representation of the imprecise concept of short proofs. There are several
other analogies between these two theories, which strongly suggests that computa-
tional complexity and proof complexity are just two facets of the same concept.

Therefore the term proof complexity is now interpreted in a much broader sense
than a few decades ago. It can be briefly described as the study of the phenomenon
of complexity using the means of mathematical logic. In this field we study not
only the lengths of proofs, but also calculi for propositional logic and theories that
formalize reasoning with concepts of a given complexity.

6.1 Proof Theory

We have already encountered proof theory in this book several times. In previous
parts I wrote mainly about the formalization of first order logic and Gödel’s incom-
pleteness theorem, which is the most important result in proof theory. In this section
I will describe some other classical results of proof theory and some results about
the lengths of proofs in first order logic.

How to Speed-Up Proofs

The lengths of proofs may depend very much on the formal systems used. It may
happen that for two formal systems some theorems have much shorter proofs in
one than in the other. In proof theory this phenomenon is called speed-up.1 I will
mention two important situations in which speed-up occurs.

The first one concerns an axiomatic theory its extension obtained by adding a
new axiom. Let S be a theory and T an extension of S by an axiom α not provable
in S. Such a theory T is denoted by S + α. We will, of course, assume that both
theories are consistent. If we add an unprovable sentence to S, there will be an
infinite number of other sentences in the extension that are unprovable in S. But we
cannot talk about speeding-up unprovable sentences, as they have no proofs in S.
We are concerned with the sentences that are provable in both theories. If a sentence

1The choice of the word is not quite justified, as we may actually find a long proof more quickly
than a short one.

6.1 Proof Theory 497

φ is provable in both theories S and T , then it may have a shorter proof in T because
we may also use the new axiom α.

Indeed, it is not very difficult to prove that under very mild assumptions about S,
there is an extremely large speed-up in T for any α unprovable in S (it suffices to
assume that one can formalize a relatively weak fragment of arithmetic in S). The
speed-up is so large that it cannot be bounded by any computable function. This
means that if we take a sentence φ provable in S and we only have a proof P of φ

in T , we are not able to estimate, by any algorithm, the length of a proof P ′ of φ in
S. The reason is that with increasing lengths of proofs P the lengths of proofs P ′
grow at a rate so fast that it is beyond all computable functions. This result is due to
Mostowski [200].

For all practical purposes, it does not matter whether the speed-up is exponential,
superexponential, or non-computable because it just means that some proofs in the
weaker system are infeasible. What is remarkable about the result above is that such
a speed-up appears when T is extended with any unprovable sentence α, however
mild this extension is.

The second result, due to R. Parikh [211], concerns a single theory and two dif-
ferent ways of using the theory. Suppose a sentence φ is provable in a theory T , but
all the proofs are extremely long. Thus we are not able to write any of them down.
It may, however, happen that we can still learn that a proof of φ in T exists and that
we can prove this fact using T . This is the case when the sentence

“sentence φ is provable in T ”

has a short proof in T .
Let us denote the above sentence by PrT (φ). It is important to realize that the

two sentences φ and PrT (φ) are essentially different. The first one can be an arbi-
trary mathematical sentence, whereas the second one is a sentence speaking about
proofs in a formal system for the theory T . Furthermore, it is not possible to derive
one from the other in T , in spite of the fact that they convey essentially the same
information.

To be quite precise, we have to assume something about the theory T . First, it
has to be able to talk about finite structures, and it has to be sufficiently strong that
it can prove basic facts about syntax. Second, it has to be a sound theory, which
means that all sentences provable in T are true sentences. (For example, we know,
by the Second Gödel Incompleteness Theorem, that there are consistent theories T

that prove that they are inconsistent; such a theory T is not sound, since it proves a
sentence that is false.)

Let us get back to φ and PrT (φ) and consider the lengths of proofs of these sen-
tences. One can show that if φ has a short proof, then also PrT (φ) has a short proof.
More exactly, given a proof of φ we can construct a proof of PrT (φ) in polynomial
time. The converse is not true. There are sentences φ such that PrT (φ) has a short
proof, but φ has only very long proofs. Hence we can substantially shorten proofs by
proving sentences PrT (φ) instead of proving φ directly. The speed-up is extremely
large, but not as large as in the previous case. (In particular it can be bounded by
a computable function, but this makes little difference from the practical point of
view.)

498 6 Proof Complexity

What happens if we repeat this construction, namely, if we prove that it is prov-
able that φ is provable? It is better to use a bit of formalism in such cases. So the
question is: do we get a speed-up if we use PrT (PrT (φ)) instead of PrT (φ)? Yes,
we do, and again the speed-up is extremely large. We can continue in this manner
and each time we add another provability predicate, we get such a speed up.

In more intuitive terms, this phenomenon means that sometimes when we are
stuck with a problem, we can solve it by considering it ‘from a higher perspective’.
The ‘higher perspective’ here means considering not the sentence itself, but its prov-
ability. The ability of humans to switch to a higher level is often contrasted with the
limited abilities of computer programs in automated theorem proving. Furthermore,
the fact that we have an infinite hierarchy of levels creates the illusion that in princi-
ple we can solve any problem—we need only to go to a sufficiently high level. I will
explain in detail why this is wrong in Chap. 7. Here I will only show that iterating
provability, although it does give a very large speed-up, is not as powerful as one
would expect.

My argument will be based on comparing the two methods of speeding-up proofs
considered in this subsection. The question is: given a theory T , do we get shorter
proofs by extending by a new axiom, or by proving PrT (φ) instead of φ? To answer
this question, we need an important concept, the reflection principle for T . Roughly
speaking, it is the principle that allows us to derive the truth of a formula from
the fact that it is provable. Formally, the reflection principle for T is the set of
implications of the form

PrT (φ)→ φ,

for every sentence φ.
This principle is not derivable in T because a special instance of it implies the

consistency of T (see page 615). Thus there are sentences φ for which the impli-
cations above are not provable in T . However, for some T ′ stronger than T , it is
possible that T ′ proves (all implications of) the reflection principle for T . Further-
more, in typical cases the lengths of these proofs are short, namely, they can be
bounded by a polynomial depending on the size of φ. Let T ′ be an extension of T

that satisfies this property and let us now compare

• L1: the length of the shortest proof of PrT (φ) in T , and
• L2: the length of the shortest proof of φ in T ′.

Since T ′ is an extension of T , a T -proof of PrT (φ) is also a T ′-proof of PrT (φ). So
the shortest proof of PrT (φ) in T ′ has length at most L1. Also in T ′ we can prove
PrT (φ)→ φ by a short proof, say, of length m. Then, using modus ponens, we get
a proof of φ of length at most L1 +m. Thus we have obtained a bound

L2 ≤ L1 +m,

where m is only polynomial in the length of φ.
In other words, in T ′ we can prove φ almost as quickly as we can prove PrT (φ)

in T . There is essentially no speed-up between proofs of φ and proofs of PrT (φ) if
we work in the stronger theory T ′. But not only that: we can just as easily obtain

6.1 Proof Theory 499

PrT (φ) from PrT (PrT (φ)) and then derive φ as above. Clearly, we can continue in
this way for any finite number of applications of the provability predicate. Thus T ′
eliminates speed-up for any number of iterations of PrT !

It is not difficult to come up with such extensions. Let us take as an example
Zermelo-Fraenkel Set Theory, ZF. In order to obtain an extension of ZF in which
the sentences expressing the reflection principle for ZF have short proofs, we need
only to add the axiom postulating the existence of an inaccessible cardinal number,
which is the weakest of all large-cardinal axioms. Essentially the same can be done
with any strengthening of ZF. For example, let T be ZF augmented with an axiom
expressing the existence of a measurable cardinal. Then it suffices to add an axiom
saying that there exists an inaccessible cardinal above a measurable cardinal.

The conclusion is that it is much more effective to use new mathematical axioms
than “shifting to a higher perspective”. However, we must be aware of the danger
of introducing inconsistencies, if we use new axioms.

As for concrete examples of speed-up, the situation is similar as it is with con-
crete independent sentences. In fact, all concrete examples of speed-up have been
constructed from concrete independent sentences by instantiation. One such exam-
ple is due to H. Friedman.2 He proved that the special case of Kruskal’s Theorem for
labeled trees on a six-element set has a small proof (one that can be easily written
down) in the theory Π1

1 −CA, but any proof in ATR0 has length at least3

222...
2 }

1000 times.

Direct and Indirect Proofs

Imagine a proof as a path going from the assumptions of a theorem to the conclusion.
The path can be straight or circuitous. In logic we call a proof that goes straight from
the assumptions to the conclusion a direct proof ; a roundabout proof is called indi-
rect. Thinking of proofs in such a geometric way can, however, be rather misleading.
It can happen that there is a short indirect proof, while all direct proofs are long.

So, what precisely does it mean when we say that a proof is direct? A direct proof
is characterized by the property that it only uses concepts which occur in the the-
orem. We may also allow some simple combinations of these concepts, the precise
definition of which depends on the particular logical calculus used. A typical direct
proof is based on splitting the problem into several cases. An indirect proof, on the
other hand, contains auxiliary theorems, which are usually called lemmas. Lemmas
may be statements that formally have little to do with the theorem to be proved.

Direct proofs are as a rule easier to find. We need only to try combinations of
concepts already contained in the statement of the theorem. Direct proofs are also

2Unpublished; the result was presented in [272], but the proof therein is incomplete.
3See page 643 for the definitions of these theories.

500 6 Proof Complexity

easier to understand and thus they are more useful when we want to understand why
a theorem is true, which is in most cases the reason why we study a proof. This leads
us to an important question: can every theorem be proved using a direct proof?

The short answer to the above question is: yes. The more detailed answer is:
in principle yes, but in practice not always. We will see that direct proofs may be
much longer than indirect ones and that this may prevent us from writing down such
proofs.

I will describe two results that show that any proof can be transformed into a
direct proof. The first one is the important Herbrand Theorem [121]. This theorem
is due to Jacques Herbrand (1908–1931), a talented French mathematician who died
very young in a mountaineering accident.

To avoid technicalities, I will explain only a special case of Herbrand’s Theorem
(a more general form is in Notes). We will consider statements of the form ‘there
exists an x which satisfies φ’, which we represent formally by

∃x φ(x),

where we are assuming that this is a purely existential formula, namely, that there
are no quantifiers inside of φ. Herbrand’s Theorem concerns provability of such
sentences in pure first order logic.4

Theorem 45 The sentence ∃x φ(x) is provable if and only if for some terms
t1, t2, . . . , tn, the disjunction

φ(t1)∨ φ(t2)∨ · · · ∨ φ(tn) (6.1)

is provable.

The latter formula says that there are n objects, specified by terms t1, t2, . . . , tn,
such that φ holds for at least one of them. Notice that this can be interpreted as a
proof by case distinction. There are n possible cases such that in case 1 we prove
∃x φ(x) by showing φ(t1), in case 2 we prove ∃x φ(x) by showing φ(t2), and so on.

Herbrand’s Theorem moreover says that disjunction (6.1) is provable in proposi-
tional logic. This shows that we only need to use subformulas of φ and nothing else
(more precisely, subformulas with various terms substituted in them). Thus we can
construct a direct proof of ∃x φ(x). Furthermore, once we have such a disjunction,
we can determine its validity by an algorithm, say, by trying all combinations of
truth values.

Herbrand’s theorem has other important applications. In particular the fact that
(in a sense) it reduces provability in first order logic to provability in propositional
logic makes it attractive for automated theorem proving. It should be noted that
Herbrand’s Theorem does not give us any bound on the number of disjuncts, if we
only know the formula. If we could bound the number of disjuncts and the com-
plexity of the terms, we would get a decision procedure for first order logic, which

4By the completeness theorem, logical validity and provability are the same things. As we are now
interested in proofs, not just mere logical validity, I will use the latter term.

6.1 Proof Theory 501

is impossible, as we know. Moreover, such a Herbrand proof may be much longer
than the usual one, as we will see in a moment. Yet it seems easier to base theorem
proving programs on searching for terms and testing propositional validity, than on
generating sequences of formulas representing proofs.

Herbrand’s theorem has also been used for proof mining—to analyze proofs in
main-stream mathematics in order to obtain explicit bounds from purely existential
proofs and to improve known bounds. A nice example is H. Luckhardt’s “Herbrand
analysis” of proofs of Roth’s Theorem [187]. Roth’s Theorem is a result in num-
ber theory that states that for every irrational algebraic number a and ε > 0, the
inequality ∣∣∣∣a − p

q

∣∣∣∣< 1

q2+ε

has only a finite number of solutions with p and q coprime integers. The essence of
this result is that irrational algebraic numbers cannot be approximated by fractions
with error asymptotically less than one over the square of the denominator. Luck-
hardt studied upper bounds on the number of solutions as functions of the degree of
a (the degree of the irreducible polynomial whose solution is a) and ε. He improved
the best bounds that were known at the time.

Sequent Calculus and Cut-Elimination

Another way of transforming general proofs into direct ones was invented by Ger-
hard Gentzen (1909–1945). Incidentally, he also died young and tragically; he was
a victim of Czech maltreatment of Germans after Germany was defeated in 1945.

Originally Gentzen studied the natural deduction calculus. Recall that this is a
calculus which formalizes in the best way what mathematicians actually do (see
pages 97, 113). Obviously, for logical investigations of proofs, a calculus with fewer
and simpler rules is better. Therefore Gentzen gradually simplified his system even-
tually arriving at the sequent calculus. The crucial idea on which this calculus is
based is that one does not need elimination rules; it suffices to use introduction
rules. So we can view the sequent calculus as a formal system in which complex
formulas are gradually derived from simple ones. For each connective and quanti-
fier, we have a few natural rules that enable us to derive compound formulas from
their components.

Let us consider a couple of examples. Natural rules for conjunction and disjunc-
tion are:

• from A and B derive A∧B;
• from A derive A∨B;
• from B derive A∨B .

Unfortunately, this idea does not work without a technical modification of the
system. Recall that a proof is a sequence of formulas such that each formula is an

502 6 Proof Complexity

instance of an axiom schema or is derived from previous formulas by a logical rule
available in the given system. So one step of a proof is one formula. The modifica-
tion that Gentzen introduced is that one step may consist of several formulas. Such
a string of formulas is called a sequent. The meaning of a sequent is the disjunction
of the formulas in it. The reason why we do not write it in the form of a disjunction
is that we want to define operations on formulas rather than on subformulas. In this
context it is better to view a proof as a text whose lines are sequents. Therefore we
also say proof lines instead of proof steps.

In a sequent calculus we apply rules to a fixed small number of formulas (usually
just one) in one or more sequents and the rest of the sequents is simply copied to the
next proof line. Thus an application of the rule for conjunction looks like:

...

α, γ1, . . . , γk
...

β, δ1, . . . , δl
...

α ∧ β,γ1, . . . , γk, δ1, . . . , δl

The rules for other connectives and for quantifiers are treated in a similar fashion.
We also need some initial sequents, lines that can always be added. These are

all sequents of the form α,¬α, where α stands for an arbitrary formula. These se-
quents represent the law of excluded middle. Further, we need some structural rules,
namely, permutation, weakening and contraction. The first one enables us to per-
mute the formulas in a sequent. Using weakening we can add an arbitrary formula
to a sequent (which makes the disjunction of the formulas weaker; thus this rule
also preserves logical validity). To reduce the length of a sequent we are allowed to
“contract” pairs of identical formulas, by replacing them with a single formula.

There is another structural rule that is treated separately because it plays a special
role. This rule is called cut and enables us to eliminate a pair of complementary
formulas. Here is how it looks:

...

α, γ1, . . . , γk
...

¬α, δ1, . . . , δl
...

γ1, . . . , γk, δ1, . . . , δl

Notice that contraction and cut are the only rules that reduce the complexity of
sequents. Whereas contraction only discards repetitions of the same formula, using
cut we can completely eliminate a formula from the rest of the proof. Thus it is only
the presence of a cut that makes a proof indirect. We can view the first two sequents
participating in an application of the cut rule as lemmas needed to derive the third

6.1 Proof Theory 503

sequent. The role of these sequents as lemmas is more apparent if, for example, the
side formulas γ1, . . . , γk in the first sequent are missing. Then α itself is a lemma.
The second sequent, ¬α, δ1, . . . , δl , can be interpreted as the lemma ‘α implies the
disjunction of δ1, . . . , δl’, formally expressed by

α→ δ1 ∨ · · · ∨ δl.

Thus, from lemma α and this implication, we get δ1 ∨ · · · ∨ δl .
Gentzen proved that one can derive all true sentences in the system without the

cut rule. The reason for having the cut rule in the system is that it makes the system
more efficient. The cut rule is needed to simulate the rule of modus ponens, which
is the main rule used in natural reasoning. We will see that without the cut rule
some proofs must be extremely long. Moreover, Gentzen described an algorithm to
transform a proof with cuts into a cut-free proof [89, 90]. This is called the cut-
elimination procedure.

Recall that all propositional rules, except for cut, construct larger formulas from
smaller ones. The quantifier rules do not change the propositional structure of for-
mulas; they only change terms and add quantifiers. Hence the only parts that can
possibly occur in a cut-free proof without occurring in the proved sequent are terms.
Let us say that a formula α is a quasi-subformula of β if it is a subformula when we
disregard terms and variables. For example, ∃z(¬P(z,f (z))) is a quasi-subformula
of ∀x(∃y(¬P(x, y)) ∨Q(x)). Thus cut-free proofs have the following subformula
property:

Every formula in a proof is a quasi-subformula of some formula in the last
sequent.

The subformula property allows us to view cut-free proofs as direct proofs, and
Gentzen’s cut-elimination procedure as a way of transforming general proofs into
direct ones.

Herbrand’s Theorem can be easily derived from Gentzen’s Cut-elimination Theo-
rem. Consider a proof of a logically valid sentence ∃x φ(x). By Gentzen’s Theorem,
we can transform it into a cut-free proof. Then one can easily see that it is possible to
permute the proof lines so that all instances of propositional rules precede instances
of quantifier rules. Thus the resulting proof has the following form.

...

... [propositional rules]

...

φ(t1),φ(t2), . . . , φ(tn)
...
... [∃-introduction rule applied to formulas φ(ti),
... and contraction applied to pairs ∃x φ(x),∃x φ(x)]
...

∃x φ(x)

504 6 Proof Complexity

Recall that the interpretation of a sequent is the disjunction of the formulas in it. So
the sequent in the middle of the proof is a Herbrand disjunction and is derived in the
propositional calculus.

Although the cut-elimination procedure is not extremely complicated, it may re-
sult in a tremendous increase in the length of the proof. The estimates of the length
of the cut-free proof have the form of the superexponential function. If we denote by
n the length of a proof with cuts, then one can only bound the length of the cut-free
proof by

222...
2 }

n times.

It would already be bad if it were a single exponential, 2n, but this is much worse. It
is not just because we do not know a better cut-elimination procedure, but because
there is no better one. It has been proved that the superexponential cannot be re-
placed by a function that grows more slowly. Examples of sentences for which such
an increase of length is unavoidable were found by R. Statman [284]. These bounds
are quite general: they not only hold for cut-elimination in the sequent calculus, but
also show that if we want to get any proof with formulas of low complexity, we have
to increase the size of the proof this much. In particular, the bound also applies to
Herbrand’s Theorem.

In mathematics we distinguish elementary and nonelementary proofs. This is not
a precisely defined concept; we usually say that a proof is nonelementary if it uses
results from a branch of mathematics other than the one from which the theorem
comes. In many cases, a nonelementary proof was discovered first and an elementary
one was only found later. But in some cases we still only have nonelementary proofs.
This concept is very much related to the formal concept of direct and indirect proofs
and the fact that direct proofs may be much longer than indirect ones suggests that
the reason why we do not have elementary proofs of some theorems is that the length
of such proofs is too large.

We can draw a similar conclusion for automated theorem proving. Almost all
automated theorem provers are based on Herbrand’s Theorem. It is very likely that
in this way we will never be able to prove some theorems that have already been
proved by mathematicians. Therefore it is necessary to extend theorem provers so
that they will also be able to generate lemmas. Some research into this problem has
already been done, but finding useful lemmas is still more an art than a science.

Useful Inconsistent Theories

A logical theory classifies sentences into two categories: true and false. We know
that we cannot fully formalize the true sentences, for example, in arithmetic. Thus
we also have a third category—the independent sentences. However, what really
matters is that a consistent theory gives us some classification. When a theory is
inconsistent, everything is provable, so there is no classification. This is because in

6.1 Proof Theory 505

logic we can derive any sentence from a contradiction (ex falso sequitur quodlibet).
Therefore the problem of consistency is the main problem in the foundations of
mathematics.

Therefore inconsistent theories seem to be completely useless. But if we replace
the qualitative concept of provability by the quantitative concept of the lengths of
proofs, the situation looks different. If T is inconsistent, then we may still distin-
guish between sentences that have short proofs and those that have long proofs. This
is only possible when the shortest proof of contradiction is long, since otherwise ev-
ery short sentence also has a short proof.

Another reason for considering only consistent theories is that we believe that
reality is consistent. But quite surprisingly, if we take into account the lengths of
proofs, we can also use inconsistent theories to prove true facts. This is because it
can happen that although the theory is inconsistent, all sentences that have short
proofs are true.

The idea that inconsistent theories can be useful appeared in the seminal paper
Existence and Feasibility in Arithmetic of R. Parikh [211] (the same paper where
he showed the speed-up using provability predicates). To construct an inconsistent
theory with the required properties, Parikh started with an arbitrary consistent ex-
tension T of Peano Arithmetic. Then he added a new predicate F(x) (F standing
for ‘feasible number’) and several axioms. For the sake of simplicity, I will only use
the most important ones:

1. F(0) (0 is feasible);
2. if F(x) then F(x + 1) (if x is feasible, so is x + 1);
3. there exists a number x such that ¬F(x) (there exists an unfeasible number).

It is not difficult to show that this theory is consistent. To this end it suffices to
take a nonstandard model of arithmetic and interpret the predicate F as standard
numbers. For the consistency, it is important that we do not specify the unfeasible
number in axiom 3. If we replace the variable x by a concrete number, the theory
becomes inconsistent. The key idea of Parikh’s theory is to change the third axiom
so that it does talk about a concrete number, but a very large one.

3’. ¬F(t) (t is unfeasible).

Here one picks for t a suitable closed arithmetical term that represents a concrete
large number m.

This theory, let us call it FPAt , is clearly inconsistent. If we start with axiom 1
and apply axiom 2 m times we will prove that m is feasible. More precisely we
prove that the number represented by

0+ 1+ 1+ · · · + 1︸ ︷︷ ︸
m-times

is feasible. Then we need only to prove that this term represents the same number
as the term t . The length of such a proof can be estimated by some small multiple
of m. However, if the term t is a concise representation of m, there can be much
shorter proofs. In general, to ensure that no proof of contradiction in FPAt is shorter

506 6 Proof Complexity

than n, the value of the term t must be much larger than n. Parikh showed that if we
take an approximately n times iterated exponential (a stack of twos of length several
times n), then one can guarantee that there is no proof of contradiction of length less
than n.

In effect he showed more: if one considers sentences that do not mention the
predicate F , then such short proofs prove only true sentences, although the proof
may use F . Thus if we pick n to be a safe upper bound on the lengths of all proofs
that can ever be produced, and m to be the n times iterated exponential, then we can
only prove true sentences about numbers.

Let us observe that for this theorem to be nontrivial it is necessary to have a short
term t representing the large number m. Such a term cannot be constructed in the
basic language of arithmetic that uses only 0, S,+ and ×. We need to enrich the
language by exponentiation exp (the function 2x) and superexponentiation supexp.
These functions can be described using axioms that correspond to their recursive
definitions.

exp(0) = 1
exp(x + 1) = 2 · exp(x)
supexp(0) = 1

supexp(x + 1) = exp
(
supexp(x)

)
.

Using the function symbol supexp we can write a very short term

supexp
(
supexp

(
supexp(1+ 1+ 1)

))
whose value is large enough to ensure that no contradiction will ever be proved in
FPAt and, moreover, all arithmetical sentences that one will ever be able to prove
will be true statements.

This theory is used to justify the strict finitistic view called ultrafinitism. Ac-
cording to this approach to the foundations of mathematics we can only say that a
number n exists if it is small enough to be physically represented. Large numbers
are considered to be only abstractions that do not represent existing entities. In the
theory above, the predicate F is used to distinguish between small and large, or as
the ultrafinitists say, between feasible and unfeasible. But this theory does not render
correctly our intuition about small (feasible) on the one hand, and large (unfeasible)
on the other. We consider 22100

already to be a large number, as we certainly cannot
represent it in decimal notation in the visible universe. But if we take t = 22100

, we
will get a very short proof of contradiction in FPAt . (I estimate it to be half a page,
even if written completely formally.)

I think that the significance of this result is rather in showing that there are the-
ories that have very short axiomatic systems and are inconsistent, but where every
proof of contradiction is extremely long. Therefore we cannot exclude the possi-
bility that the set theories that we are using as the foundations of mathematics are
inconsistent, but we will never find a contradiction. The positive message is that if
this is so, it may still be all right: if the shortest proof of contradiction is really very
large, then what we are proving are true sentences anyway.

This is, of course, not the only possible scenario of what can happen if we admit
the possibility that we are using inconsistent theories. The reason why we are not

6.1 Proof Theory 507

able to find a contradiction (and perhaps never will) may not be the large length of
the proofs of contradiction. It could happen that there is a proof of contradiction
of medium length, but one that is, so to speak, well-hidden. Recall that deciding
whether a sentence has a proof of polynomial length, for some fixed polynomial, is
an NP-complete problem. Thus if P = NP (and if this manifests itself on the level
of medium length inputs), there is no efficient algorithm to find a proof of contradic-
tion, even if we know that it has medium length. Mathematicians are not algorithms,
so this is only an indication that it may be hard. But if one believes that cryptog-
raphy is possible (specifically, that there are secure encryption schemas), then one
must also admit that it is possible to hide a contradiction so that nobody will find it.

The prevailing feeling is that Nature is not evil. She does not reveal secrets easily,
but she also does not try hard to hide them from us. Therefore we believe that if
there is a contradiction in set theory, or if some large cardinal is inconsistent, we
will eventually discover this. Furthermore, we are not confined to simply searching
the proofs in a given theory. We may look at the theory from higher perspectives
and thus even be able to find a proof of contradiction whose length is beyond what
can be written down.

My own view is that, most likely, Zermelo-Fraenkel Set Theory is consistent and
is also consistent with most of the currently studied large-cardinal axioms. The rea-
son I am talking about the possibility of inconsistency is that we need to have a
complete picture of what can happen. We need it in order to understand the main
problem of the foundations of mathematics, which is the consistency of the founda-
tions.

Interlude—Life in an Inconsistent World

According to Gödel’s Second Incompleteness Theorem, Peano Arithmetic aug-
mented with the formal inconsistency of Peano arithmetic, the theory that we de-
note by PA+¬Con(PA), is consistent. By the Completeness Theorem, this theory
has a model M . Imagine a world W in which the natural numbers are M . Since
M is necessarily a nonstandard model, we should think of people living in W as
being able to compute with nonstandard numbers like we are able to compute with
standard natural numbers. I will leave to the reader’s imagination how they can do
it; for example, these people may have nonstandard size, or they have standard size,
but they have computers of nonstandard size and nonstandard speed, etc. This is not
important for our discussion.

Suppose that these people discover one of the proofs of contradiction in PA. Then
they would be very frustrated when trying to determine the theory of the natural
numbers. On the one hand they would see that the axioms of Peano Arithmetic are
satisfied in their natural numbers, on the other hand they would know that the axioms
are inconsistent. Since the axioms are true, but one can still derive a contradiction
from them, they would conclude that logic fails. Their life would be miserable: they
would only be able to watch what is going on, but not to make any predictions

508 6 Proof Complexity

because predictions need deduction. (This is certainly only a fictitious situation and
I am also exaggerating the problems that people in W would face.)

Why are we so sure that we do not live in an inconsistent world? The reason
is that logic in our world seems to work perfectly; even the extremely long and
complicated proofs in mathematics never fail. It is not only logic that is consistent,
mathematics works perfectly as well—once a theorem is proven, it holds true in all
circumstances without any exceptions. This confirms our belief in the soundness of
mathematical theories. As a result we are always ready to extend our theories by
statements expressing their soundness.

But let us have a closer look at the inconsistent world W before we condemn it
as a very unlikely alternative to ours. From our perspective, the natural numbers M

of W are a nonstandard model. Such a model contains nonstandard numbers, which
are integers larger than all ours. Peano Arithmetic has an infinite number of axioms,
hence in W there are also axioms of Peano Arithmetic that have nonstandard lengths
(‘nonstandard’ now means ‘longer than standard’). It is not true that all axioms of
Peano Arithmetic are satisfied in M ; we only know that the axioms of standard
length are true in M . It may even be impossible to define satisfiability for axioms of
nonstandard length. Furthermore, the proof of contradiction that is present in W is
a proof from axioms of nonstandard lengths5 and there is no proof of contradiction
from the axioms of standard lengths.

We would like to advise people in W to only use axioms of standard length, but
unfortunately they would not understand; they are not able to distinguish nonstan-
dard numbers from standard ones. In principle, they might somehow determine the
smallest axiom such that the contradiction is derivable from it and from the preced-
ing axioms. Then they could use the initial segment of axioms below this axiom to
avoid inconsistencies. But there is no effective procedure to find this axiom.

Here is what they always can do. Take the longest axiom in the proof of con-
tradiction from the Peano Axioms and discard this axiom, along with all axioms
of the same and larger lengths. When in the future you find a contradiction from
the reduced set of axioms, reduce the set of admissible axioms in the same way
again. After a finite number6 of such reductions, they will not prove contradictions
anymore, either just because they will not find them, or because they will reach a
consistent subset of the axioms of Peano Arithmetic. In any case, the reduced set
will contain all axioms of standard lengths.

Although this looks a little weird, it is not very dissimilar from what we are
doing in set theory. We are studying various axioms postulating the existence of
large cardinal numbers. When we discover that some large cardinal is inconsistent,
we restrict our set of axioms to large cardinals below it.7

5More precisely, at least one of them must have nonstandard length.
6Finite from the point of view of W , which can be a nonstandard number.
7Strictly speaking, if we say that a large cardinal is inconsistent, then it does not exist and we
cannot talk about cardinals below it. So this is only an intuitive explanation. We can simulate such
a situation by a model of ZFC + A + ¬Con(ZFC + A) for some large cardinal axiom A that is
consistent. This model will play the role of the inconsistent world W .

6.1 Proof Theory 509

We think we are lucky and do not have to do anything like that in our world. But
if we view foundations from the point of view of logicism, we have, in fact, already
imposed restrictions on the use of logic. It was Russell’s Paradox, discovered in the
logical system of Frege, that forced us to restrict the use of the Comprehension Ax-
iom. As explained in Chap. 3, there were essentially two proposals about how to
restrict the Comprehension Axiom. First, to use types and apply the axioms only
when the variables are properly typed. Second, to apply it only when the defined set
is in a certain sense small. The first way is used in various theories of types inspired
by Russell’s prototype. The second is the set theory developed from Zermelo’s ax-
ioms. Today most people view set theory as a branch of mathematics, so they do
not like the idea that it is “logic with restrictions”. But whether or not set theory
is logic with restrictions is only a matter of philosophy. If Frege’s formal system
introduced in Grundgesetze der Arithmetik were consistent, we would certainly call
it logic.

It may seem that finding a contradiction in formal foundations are rare events
in the history of mathematics, but the opposite is true: the quest for the founda-
tions of mathematics has always been a struggle with contradictions. Here are some
examples.

• As we know, in 1901 Russell found a contradiction in Frege’s Grundgesetze der
Arithmetik, the first formal system aiming to build foundations for mathematics.
• In 1932 Church published his formal system in the paper A Set of Postulates for

the Foundation of Logic [42]. A contradiction in this system was found shortly
after it appeared. In 1933 he published a revised version, but that also turned
out to be inconsistent. The consistent part of these systems developed into the
λ-calculus.
• In 1940 Quine published a book Mathematical Logic [233] in which he intro-

duced an extension of his previous system from his 1937 article New Founda-
tions for Mathematical Logic. Again a contradiction was found shortly after it
was published and he had to revise his system. However, even the consistency
of New Foundations is not clear—there is no proof of the relative consistency of
New Foundations relative to Zermelo-Fraenkel Set Theory or its extensions by
large cardinals, and some researchers suspect that the theory is in fact inconsis-
tent.
• The first papers about large cardinals appeared already in the 1910s. The concept

of a measurable cardinal was introduced around 1930. For a fairly long time many
logicians suspected that the measurable cardinal was inconsistent, but new, much
larger cardinals were studied and no inconsistency was found. This lasted until
1967, when W.N. Reinhardt proposed a large cardinal axiom based on elementary
embeddings. The axiom was soon shown to be inconsistent, but the proof is not
trivial. The largest cardinals that have been proposed and not found inconsistent
are based on weakening the condition used by Reinhardt.
• In 1971 Martin-Löf introduced the first version of his intuitionistic type theory.

Again the same story: it was inconsistent and had to be revised.

510 6 Proof Complexity

Ordinal Analysis of Theories

In mathematics we often use parameters which provide us with some basic infor-
mation about studied structures. Usually, the parameter is a natural number and is
called order, rank, dimension, degree etc. Such parameters enable us to compare
the structures we are studying or help prove that they are different. For theories in
first order logic, we do not have any useful numerical parameter (the number kT
proposed by Chaitin, which I mentioned in the last chapter, is practically impos-
sible to determine, thus is only of theoretical interest). It is, however, possible to
assign countable infinite ordinals to theories and in many cases the ordinal has also
been computed. These ordinals are constructive, which means that they are explic-
itly described (see page 186). Thus, although infinite, they can be represented by
finite objects. Since ordinals are linearly ordered, we can use them, for example, to
compare the strength of theories.

The study of ordinals assigned to theories is an important branch of proof theory,
called ordinal analysis of theories. This branch of proof theory started with the
work of Gentzen, who proved the consistency of Peano Arithmetic using transfinite
induction over ε0. The ordinal ε0 has a more intimate relation to Peano Arithmetic:
it is the least ordinal for which Peano Arithmetic is not able to prove that it is well-
ordered. The fact that Peano Arithmetic is unable to prove that ε0 is well ordered
follows from a combination of Gentzen’s result with Gödel’s. Indeed, if we had a
proof that ε0 were well ordered in Peano Arithmetic, then we could use Gentzen’s
proof to prove that Peano Arithmetic was consistent, which would violate Gödel’s
Theorem.

In this way the ordinal ε0 is uniquely determined by Peano Arithmetic. In general,
the least ordinal α for which a theory T does not prove that it is well-ordered is
called the proof-theoretic ordinal of the theory T . This is not quite precise because
rather than talking about ordinals, we should talk about their representations. In
a typical set theory T we can prove that there are uncountably many countable
ordinals, there are uncountable ordinals and more. This is not in contradiction with
the existence of a bound on provably well-ordered orderings. What the theory is
unable to prove is that specific definitions of orderings of natural numbers are well-
orderings. Namely, it is unable to prove this for definitions of very large constructive
ordinals. As the concept is rather subtle, we need a formal definition.

Definition 17 The proof-theoretic ordinal of T is the least ordinal α such that for
no representation of α, T proves that it is well-ordered.

Equivalently, α is the limit of all ordinals that can be represented so that T proves
that they are well-ordered.

In logic we often need to talk about “natural” representations of concepts in the-
ories. So it is remarkable that the proof-theoretic ordinal of a theory is simply an or-
dinal, not a suitable representation of an ordinal. The trick that enables one to avoid
talking about natural representations is to consider all possible representations.

6.1 Proof Theory 511

In order to avoid problems with formalizing the concept of well-ordering, one
only considers theories in which it is possible to talk about sets. Then we can use
the usual set-theoretical definitions. This excludes Peano Arithmetic as it is usually
defined, but one can define an extension in which sets are present and which is
essentially of the same strength.

Naturally, we would like to find proof-theoretic ordinals for as many theories
as possible. The motivation is not only to determine a parameter that reflects the
strength of theories, but also to get consistency proofs for theories stronger than
Peano Arithmetic. This is because having the proof-theoretic ordinal we are usually
able to produce a constructive proof of the consistency of the theory. Of course,
such consistency proofs do not solve the consistency problem, they only replace the
assumption of the consistency of the theory with the assumption that the particular
ordinal notation defines a well-ordered set, but it is additional evidence for believing
that the theory is consistent. In any case, the ordinal analysis usually provides us
with a better understanding of the theory and its relation to other theories.

Let us have a closer look at the case of Peano Arithmetic. This is the theory
that postulates the principle of induction for all arithmetical formulas. It is an easy
fact that the principle of induction is equivalent to the least number principle (that
every nonempty set has the least element). This is nothing else but the fact that
the set of natural numbers, which is the least infinite ordinal ω, is well-ordered.
Now, this may easily lead to the confusion: why did Gentzen reduce the consistency
of the theory that says that ω is well-ordered to the fact that ε0, which is a larger
ordinal, is well-ordered? The reason is that he wanted to find a constructive proof of
the consistency of Peano Arithmetic, a proof that would only use simple concepts,
which means algorithmically decidable relations. Therefore he could not use the
general least number principle; he had to use the principle restricted to computable
subsets. And this is the reason why he had to take a larger ordinal. Thus Gentzen’s
result can be presented as the reduction of

(a) the least number principle for arithmetical sets and the ordinal ω, to
(b) the least number principle for computable sets (a smaller class) and ε0 (a larger

ordinal).

How much did Gentzen fulfill Hilbert’s vision of the proofs of consistency? One
may be worried by the fact that the proof uses a transfinite ordinal much larger than
ω, the ordinal representing natural numbers. Indeed, in the standard set-theoretical
representation, ε0 is the set of all ordinals less than ε0, thus it is a set that contains
infinite sets (which, in turn, also contain infinite sets etc.). But recall that Cantor
normal form (Chap. 3, page 193) enables us to represent all ordinals below ε0 by
finite terms (or even natural numbers, if we prefer) so that the ordering relation is
algorithmically decidable. As a matter of fact, any constructive ordinal has a rep-
resentation of this kind by definition, but the representation of ordinals below ε0 is
especially simple.

So the complexity of (b) is not caused by the representation of the ordinal, but
by its properties. It is good to recall the application of ε0 to proving that Good-
stein sequences always end at zero (page 321). For each Goodstein sequence, we

512 6 Proof Complexity

constructed a strictly decreasing sequence of ordinals below ε0. We also noticed
that, for Goodstein sequences to get to zero, it takes an extremely large number
of steps. Therefore, also the decreasing sequences of ordinals are extremely long.
They are so long that it is quite nontrivial to prove that they actually reach zero.
For a linear ordering, the condition that every decreasing sequence of elements is
finite is equivalent to being well-ordered. Thus it is also quite nontrivial to prove
using limited means that the representation of ε0 by the Cantor normal form defines
a well-ordering.

According to the Second Incompleteness Theorem one cannot reduce the con-
sistency of Peano Arithmetic to a very simple statement; it must be a statement un-
provable in Peano Arithmetic. Therefore, Gentzen’s proof is not a reduction of the
strength of the statement, it is rather a transformation into a different kind of state-
ment. No matter whether we accept it as a solution of Hilbert’s problem for Peano
Arithmetic or not, it certainly shows the consistency from a different perspective
and that is always useful.

Let us now look at how one can determine the proof-theoretic ordinal. To prove
that α is the proof-theoretic ordinal of T , we have to show two things:

1. for every β < α, T proves that β is well-ordered (a lower bound);
2. T does not prove that α is well-ordered (an upper bound).

The second part is certainly more interesting. All proofs of 2. are based on the Sec-
ond Incompleteness Theorem, namely, one proves that the sentence “α is construc-
tively well-ordered” implies the consistency of T . To give you some idea of these
proofs, I will briefly sketch the main steps of a proof of the consistency of Peano
Arithmetic using ε0, which gives the upper bound on the proof-theoretic ordinal
of Peano Arithmetic. This proof is due to the German proof-theorist Kurt Schütte
(1909–1998) and is conceptually simpler than the original Gentzen’s proof.

Having in mind that we should use only constructive means, the idea of the proof
of consistency looks quite natural. This proof, like essentially all proofs of consis-
tency, uses induction on the length of a proof to show that every formula in the proof
is true, which in particular implies that a contradiction cannot appear in the proof.
To this end, we need to be able to express that a formula is true. According to the
Gödel-Tarski theorem on the undefinability of truth (see page 283), we cannot de-
fine the truth of arithmetical formulas in arithmetic, since this relation is of higher
complexity. But we do not need to consider all proofs as we are interested only in
proofs of contradiction. The important fact is that contradiction can be expressed by
a quantifier free formula, say 0= 1. However, in the rest of the proof we can have
arbitrarily complex arithmetical formulas, which is the main problem that we have
to cope with.

Now recall what we learned in the first subsection: there are means to reduce
the complexity of formulas in proofs. By Gentzen’s Cut-Elimination Theorem, we
can transform every proof into a cut-free one. If we have a cut-free proof, we know
that all formulas in the proof are quasi-subformulas of the proved sentence. Then in
order to prove that all formulas in the proof are true, we only need a truth defini-
tion for quasi-subformulas of the proved sentence. In particular, if the sentence has

6.1 Proof Theory 513

small quantifier complexity, we only need the truth definition for formulas of that
quantifier complexity.

This looks promising, but what is the formula that we want to show to be un-
provable? It is not 0= 1; we are considering provability from axioms, hence it is an
implication of the form

(α1 ∧ α2 ∧ · · · ∧ αn)→ 0= 1,

where α1, . . . , αn are some axioms of Peano Arithmetic. So we need another idea.
(Of course, we did not expect that the consistency proof would be so easy—if it
were, we could do it in Peano Arithmetic, which is impossible by the Second In-
completeness Theorem.)

The next idea is, basically, to eliminate also the use of induction axioms. Suppose
we have proved the assumption of an induction axiom

φ(0)∧ ∀x(φ(x)→ φ(x + 1)
)
, (6.2)

and we want to derive the conclusion

∀x φ(x). (6.3)

The crucial observation is that if we only need a numerical instance φ(n) of the
sentence ∀x φ(x), we can derive it from the assumption (6.2) only using logic,
namely, by n+ 1 applications of modus ponens.8

This is good because we want to eliminate the use of axioms so that we can then
apply cut-elimination to reduce the complexity of formulas in the proof. What is
not good is that we only get numerical instances, instead of the sentence with the
universal quantifier (6.3). At this point another idea steps in, which is to allow a rule
with an infinite number of premises (this is Schütte’s idea). The rule is:

From φ(0),φ(1),φ(2), . . . , derive ∀x φ(x).

Combining this rule with the proofs of numerical instances makes it possible to
derive the conclusion of the induction axiom for φ. Thus we can eliminate induction
axioms. What remains are the basic axioms that determine the properties of the
successor, addition and multiplication. This is a finite set of axioms and, moreover,
their quantifier complexity is low. In fact, if we introduce the predecessor function,
we can present them using purely universal sentences.

The elimination of the induction axioms is obviously not for free. The price we
have to pay is that we must use infinite proofs. It may look strange that we wanted to
find a constructive proof and yet ended up using infinite proofs that use a very non-
constructive infinite rule. The point is that we are not going to study such proofs in
general. We only need to describe the infinite proofs that result from finite proofs by
eliminating the induction axioms. We can represent each such proof by the program
that produces its parts. A program is a piece of finite text, so these infinite proofs
are represented by finite entities.

The proof that we obtain by eliminating the induction axioms is infinite, but it
shares an important property with finite proofs: the length from any initial sequent to

8Assume we represent n by the sum of n ones, 1+ 1+ · · · + 1. By the way, the reason why we
believe in the induction principle is that it is a repetition of modus ponens infinitely many times.

514 6 Proof Complexity

the last sequent is finite. Since the proof tree is infinitely branching, due to the new
rule, the latter property does not imply that there is a general bound on the length of
the branches of the tree. Typically there will be arbitrarily long (finite) paths from
initial sequents to the last sequent. The nice feature of such trees is that, although we
cannot use numbers to bound their depths, we can measure the depth using ordinals.

The next step is to apply cut-elimination. This is done very much like for ordinary
finite proofs, so I will not go into the details. Thus we finally obtain a proof all of
whose formulas are of low complexity, namely, they define computable predicates.
For such formulas, we do have a definition of truth in Peano Arithmetic. Now we
may apply the standard way of proving consistency—proving by induction that all
formulas in the proof are true. Since we are not in the standard situation, where
proofs are finite, we have to use a stronger means. We use transfinite induction on
the ordinals that bound the depths of such proofs to prove that all formulas in such
a proof are true.

These are the basic ideas of the proof. The technical part is to estimate the ordinal
depths of the infinite proofs obtained by the elimination of induction and cuts. Once
it is established that the depth is always some ordinal below ε0, all the pieces fit
together and the consistency of Peano Arithmetic is proved.

One can prove that the proof-theoretic ordinal exists for every theory T that ex-
tends Peano Arithmetic. But this general theorem gives us little information about
specific proof-theoretic ordinals. What we need is a representation of this ordinal
based on a combinatorial construction, such as the Cantor normal form of ordinals
less than ε0, rather than a construction based on syntactical concepts related to the
theory. This is already very hard for relatively weak set theories, and ingenious
tricks are needed to make even slow progress in this field. There seems to be no
hope to do the ordinal analysis of theories such as Zermelo-Fraenkel Set Theory
with the means presently available. Ordinal analysis fails also at the opposite end of
the spectrum of theories—for weak theories. One can analyze subtheories of Peano
Arithmetic where induction is restricted to Σn formulas, but for theories weaker
than arithmetic with induction for Σ1 formulas, we are not able to use ordinals to
distinguish different theories. This is quite unfortunate because such weak theories
play a key role in proof complexity, as we will see in the next section, and we lack
any means for proving that some theories are stronger than others.

Another way by which we can arrive at the same classification is based on fast
growing functions. In Chap. 4 we saw that the unprovability of some sentences may
be caused by the fact that they implicitly define very fast growing functions (see
page 320). As n grows, the values of such a function f (n) are so large that the
theory is unable to prove that computations of the value of f always terminate. This
suggests that we could compare theories according to how fast-growing functions
they are able to handle.

We will only consider computable arithmetical functions and, accordingly, only
definitions by Σ1 arithmetical formulas. We say that a function f is provably total
in a theory T , if there exists a Σ1-definition of f in T such that it is provable in T

that for every natural number n, the value of f (n) is defined.
If T is finitely axiomatized or given by a computable set of axioms, we can

effectively enumerate all definitions of computable functions in T and all proofs of

6.1 Proof Theory 515

their totality. Then we can take the “diagonal” over all provably total functions and
obtain a computable function that is not provably total. So for every theory, there
are functions that are not provably total. Hence, if we classify theories according
to how fast growing functions are provably total in them, the resulting hierarchy is
infinite.

In order to get a reasonable classification of theories, we must select a suitable
subset of all computable functions. Furthermore, the set should be linearly ordered
by the relation of growing faster. A natural way of defining such sets, called hi-
erarchies of functions, is to define functions by transfinite recursion. To this end,
we need a constructive ordinal β and for every limit ordinal α < β , we need a se-
quence α0 < α1 < α2 < · · · that converges to α. I sketched the basic idea of these
constructions in Chap. 4, page 336.

If we want to prove that the functions fα are provably total in T for all ordinals
α below some constructive ordinal β , we need to construct a representation of every
such α in T and prove in T that it defines a well-ordered set. Then we can use
transfinite induction over α to prove that all functions fα , for α < β , are provably
total. If T does not prove that α is well-ordered for some α < β , then it also does
not prove that fα is total. Thus using function hierarchies we get the same parameter
as before, the proof-theoretic ordinal of the theory. So the possibility of formalizing
large well-orderings is closely tied with the possibility of formalizing fast growing
functions.

The proof-theoretic ordinal of T gives, certainly, only partial information about
T . It is interesting, however, that in almost all of the cases in which it was deter-
mined, the ordinal completely determines the arithmetical sentences provable in T .
One can show that, for these theories, provable arithmetical sentences are precisely
those that are provable in Peano Arithmetic augmented with the schema of transfi-
nite induction for the proof theoretical ordinal of T .

Notes

1. Speed-up. The speed-up phenomenon can be nicely demonstrated using sen-
tences expressing finite consistencies. Let ConT (x) be a suitable formalization of
the assertion that there is no proof of contradiction in T of length at most x. For
fast growing functions that have simple formalizations in T , we will consider the
sentences ConT (f (n̄)), where n denotes the nth numeral in binary representa-
tion. More precisely, if f is not provably total in T , this sentence should express:
either f (n) is not defined, or ConT (f (n)).

Let S = T + ConT . Since ConT is ∀x ConT (x), the sentences ConT (f (n̄))

have short proofs in S. On the other hand, by Theorem 58, page 565, proofs of
these sentences in T must be almost as long as f (n). This demonstrates speed-up
by adding new axioms.

To demonstrate speed-up by provability, one can use the same sentences ex-
cept that the functions f must be provably total in T .

516 6 Proof Complexity

2. Sequent calculi. An efficient way of presenting proofs in the natural deduction
calculus is to use sequents of the form

φ1, . . . , φn ⇒ ψ,

where ψ denotes the currently proved formula and φ1, . . . , φn denote the cur-
rently active assumptions. In order to get a more symmetric calculus, one can
allow strings of formulas also on the right hand side. The logical meaning of
such a sequent

φ1, . . . , φn ⇒ ψ1, . . . ,ψm

is

φ1 ∧ · · · ∧ φn → ψ1 ∨ · · · ∨ψm,

(the conjunction of the first sequence of formulas implies the disjunction of the
second one). What I described above is a modification of Gentzen’s sequent cal-
culus proposed by Schütte [258], called one sided sequent calculus. I will define
a version of this calculus in more detail.

Sequents are finite multisets of formulas using the connectives¬,∧,∨ and the
two quantifiers ∀,∃. A multiset is represented by a string of formulas separated
by commas; viewing it as a multiset means that we ignore the order of formulas in
the string. To save using the rules for negation, we only allow negations in atomic
formulas. For a compound formula φ, we interpret ¬φ as a formula obtained by
pushing the negation to the atomic formulas while implicitly using the rules

¬(A∧B)≡¬A∨¬B, ¬(A∨B)≡¬A∧¬B, ¬∀xA≡ ∃x¬A,

¬∃xA≡ ∀x¬A, ¬¬A≡A.

The explicit rules are:

• axiom A, ¬A; (axiom)
• from Γ , derive Γ , A; (weakening)
• from Γ , A, A, derive Γ , A; (contraction)
• from Γ , A, B , derive Γ , A∨B; (∨-introduction)
• from Γ , A and Δ, B , derive Γ , Δ, A∧B; (∧-introduction)
• from Γ , A(y), where y is not free in Γ , derive Γ , ∀xA; (∀-introduction)
• from Γ , A(t), derive Γ , ∃xA(x); (∃-introduction)
• from Γ,A and Δ, ¬A, derive Γ , Δ. (cut)

Here I am using A and B to represent formulas, Γ and Δ to represent strings
of formulas, x and y to represent variables and t to represent a term. Proofs in
sequent calculi are usually presented in a tree form with applications of rules
shown by horizontal lines.

6.1 Proof Theory 517

Fig. 6.1 The proof-tree of
the example

Example Consider a proof of the propositional tautology ¬α ∨ (α ∧¬β)∨ (β ∧
¬γ)∨ γ .

α,¬α β,¬β
¬α, (α ∧¬β),β γ,¬γ
¬α, (α ∧¬β), (β ∧¬γ), γ

¬α ∨ (α ∧¬β), (β ∧¬γ), γ

¬α ∨ (α ∧¬β)∨ (β ∧¬γ), γ

¬α ∨ (α ∧¬β)∨ (β ∧¬γ)∨ γ

The graph representing the tree structure of this proof is in Fig. 6.1.

Proofs in sequent calculi are quite cumbersome. These calculi are not practical
for formalizing mathematical proofs, but are very convenient for proof theory. In
particular, the transformation of indirect proofs into direct ones is quite natural—
this is the cut-elimination procedure.

3. Cut-elimination. The main idea of cut-elimination is to replace cuts with complex
formulas by cuts with less complex formulas. By eliminating one cut with a com-
plex formula we may introduce a large number of cuts with simpler cut formulas,
but we still make progress because the number of complex cuts is reduced.

As an example, consider the elimination of a cut in which the cut formula
is a disjunction of two other formulas. Let the cut formula be φ ∨ ψ . In the
calculus introduced above, the negation of it is identified with ¬φ ∧ ¬ψ . One
has to consider several cases of how these formulas were introduced in the proof.
The most typical case is that φ ∨ψ was introduced by ∨-introduction and ¬φ ∧
¬ψ was introduced by ∧-introduction. Then instead of the cut applied to φ ∨ψ

and ¬φ ∧¬ψ , we apply two cuts to the pairs φ,¬φ and ψ,¬ψ . This is shown
schematically as the transformation of the proof

...

Γ ′, φ,ψ
Γ ′, φ ∨ψ

...
Γ,φ ∨ψ

...

Δ′,¬φ
...

Δ′′,¬ψ
Δ′,Δ′′,¬φ ∧¬ψ

...

Δ,¬φ ∧¬ψ
Γ,Δ

...

518 6 Proof Complexity

into the proof

...

Γ ′, φ,ψ

...

Δ′,¬φ
Γ ′,Δ′,ψ

...

Δ′′¬ψ
Γ ′,Δ′,Δ′′

...
Γ,Δ

...

In this particular type of proof the formula φ ∨ ψ was introduced only once,
therefore the proof after the elimination of the cut is not larger. In general, φ∨ψ

can be introduced several times. Then we have to introduce more cuts on the
pairs φ,¬φ and ψ,¬ψ and the resulting proof is larger. Thus we have to choose
a suitable strategy, i.e., an order for eliminating cuts, otherwise the procedure
may not terminate.

One strategy that leads to a terminating procedure is to always eliminate the
uppermost cuts. If the cut formula in such a cut is not atomic, the elimination
will produce new cuts, but the complexity of the formulas in the new cuts will be
smaller. Then we eliminate those, which will produce even more cuts, etc. But
since elimination of cuts on atomic formulas does not produce new cuts, we will
eventually eliminate all cuts.

This resembles the problem of Hercules and Hydra (see page 324), but here
Hydra behaves differently: if we cut a head, the new heads will grow on upper,
not lower, nodes. Also for cut elimination, one only needs a superexponential
number of steps, whereas in the game of Hercules and Hydra the number is
much larger. I invite the reader to design the corresponding game and to study
strategies for it.

4. Herbrand’s Theorem. There are constructive proofs that give an explicit con-
struction of terms in the disjunction and nonconstructive proofs that only prove
the existence of such terms. I will explain the idea of a nonconstructive proof. The
proof is very similar to the proof of the Completeness Theorem that I sketched
in Chap. 2 (page 107).

Suppose, as before, we have a sentence with only one quantifier and it is an
existential quantifier, ∃x φ(x). Arguing by contradiction, suppose that none of
the disjunctions of the form (6.1) is a propositional tautology. This is equivalent
to the fact that any finite set of term instances{¬φ(t1),¬φ(t2), . . . ,¬φ(tn)

}
is consistent. This means that one can assign truth values to the atomic sen-
tences so that all sentences ¬φ(t1),¬φ(t2), . . . ,¬φ(tn) are true. By the com-
pactness of propositional calculus (page 115), the set of all sentences ¬φ(t) is
consistent. Hence there exists a truth assignment A to atomic sentences such that

6.1 Proof Theory 519

all sentences ¬φ(t) are true. Using A, we construct a term model of the sen-
tence ∀x¬φ(x) in the same way as in the proof of the completeness theorem.
Namely, the elements of the model are terms, a function symbol f (x1, . . . , xk) is
interpreted as the mapping t1, . . . , tk �→ f (t1, . . . , tk) and, for a relation symbol
R(x1, . . . , xl), the corresponding relation is true for terms s1, . . . , sl , if and only
if the atomic formula R(s1, . . . , sl) is true in the assignment A.

Thus from the assumption that no disjunction of the form (6.1) is a proposi-
tional tautology, we have derived the existence of a model in which ∃x φ(x) is
false, hence cannot be provable. This proves the theorem.

Herbrand’s theorem for existential formulas with more existential quantifiers
is essentially the same. The general form of Herbrand’s theorem characterizes
provability (which is the same as logical validity) of arbitrary sentences in prenex
form (this means that all quantifiers precede the other parts of the formula). The
general case is reduced to the existential case by eliminating universal quantifiers
by means of new function symbols. This is the dual transformation to skolem-
ization that I mentioned in Chap. 2. Consider, as an example, a sentence of the
form

∃x∀y∃z∀u φ(x, y, z,u).

The herbrandization of this formula is

∃x∃z φ
(
x,F (x), z,G(x, z)

)
.

A sentence in the prenex form is provable if and only if its herbrandization is.
This is an immediate consequence of the fact that a sentence is consistent (has
a model) if and only if its skolemization is consistent. Thus the same proof as
above gives us that the sentence ∃x∀y∃z∀u φ(x, y, z,u) is provable if and only
if a disjunction of the form

φ
(
t1,F (t1), s1,G(t1, s1)

)∨ φ
(
t2,F (t2), s2,G(t2, s2)

)∨ · · ·
∨ φ

(
tn,F (tn), sn,G(tn, sn)

)
is a propositional tautology for some terms t1, . . . , tn, s1, . . . , sn. Notice that the
function symbols F and G may occur also inside of terms t1, . . . , tn, s1, . . . , sn.

One can also state a general form of Herbrand’s theorem without additional
function symbols. In general one has to state a rather complicated condition on
terms, but for the prefix ∀∃∀ it is fairly simple: a sentence of the form

∀x∃y∀z φ(x, y, z)

is provable if and only if a disjunction of the form

φ
(
x, t1(x), y1

)∨ φ
(
x, t2(x, y1), y2

)∨ · · · ∨ φ
(
x, tn(x, y1, y2, . . . , yn−1), yn

)
is a propositional tautology for some terms t1, . . . , tn that may only contain the
variables explicitly shown.

5. Parikh’s proof. The proof that there is no short proof of contradiction in Parikh’s
theory FPAt has two main steps. Suppose a proof d is a short proof of contradic-
tion.

520 6 Proof Complexity

In the first step we replace d by a direct proof d ′, which can be, for example, a
Herbrand disjunction. The direct proof d ′ can be fairly large; we can only bound
it by a superexponential function in the length of d . This is the reason why one
has to take the term t so that it defines a large number.

Let m be the number that t defines (the value of t). The second step is a proof
that any direct proof of contradiction must have size at least m. This is proved by
showing that in a direct proof of contradiction there must be a term with value n

for every n, 0≤ n <m. The basic idea is that one can obtain a contradiction only
using term instances of the axiom

F(x)→ F(x + 1)

and propositional logic. If there is no term s in the proof whose value is n, for 0≤
n <m, then we can interpret F(n) as the formula x ≤ n. With this interpretation
(and the natural interpretation of the arithmetical operations and the inequality
relation) all term instances of the axioms occurring in the proof become true.
Hence the proof cannot contain a contradiction.

Since there are at least m different terms in the proof d ′, its length is at least
m. This implies that if k is the length of d , then supexp(k) ≥ m. This gives the
required lower bound on the length of d .

6. A well-hidden contradiction. Given a one-way function, or a pseudorandom gen-
erator, one can construct a bit commitment schema. This is a function β(x, y)

computable in polynomial time whose values are 0,1 and ∗ such that

a. for every x, there exists y such that β(x, y)= 0 or β(x, y)= 1;
b. for no x, y and y′, β(x, y)= 0 and β(x, y′)= 1;
c. no polynomial algorithm is able, from a given x, to predict the bit 0 or 1

with probability substantially different from 1/2. (Here we assume that an n

is fixed and x is a randomly chosen bit string of length n.)

This function enables one to commit to a bit b ∈ {0,1} without having to reveal
information about it. To this end one takes x and y so that β(x, y) = b and
publishes only x. When he has to prove that he was committed to b, he reveals y.
(For the schema to be practical, one also needs to be able to generate instances
x, y such that β(x, y) ∈ {0,1}, which is not important for us now.)

Suppose that we have such a β . Let s be a string of length n. Consider two
theories

ZFC+∀y β(s, y) = 0 and ZFC+∀y β(s, y) = 1.

According to the first condition one of these theories is inconsistent and there
is a short contradiction—we only need to verify the computation of β(s, t) for
a suitable t . But if we could find a contradiction efficiently, any contradiction,
not just the one given by a witness t , we would be able to decide which bit is
encoded by s. So if the bit commitment schema is secure, it is difficult to find a
contradiction for a randomly chosen s.

7. Proofs, trees and ordinals. When rules with infinite numbers of premises are
used, the structures of the proofs are infinite well-founded trees. A tree is called

6.1 Proof Theory 521

Fig. 6.2 Schematic figures of trees of heights ω and ω · 2

well-founded if all its branches are finite. This makes perfect sense because we
want to derive sentences from axioms that are only at the leaves of the tree. If
there were infinite branches, there would be deductions that would not based on
any axiom.

A well-founded tree has a height, which is a countable ordinal defined induc-
tively as follows. A tree consisting of a single vertex, the root, has height 0. If
αi , for i ∈ I , are the heights of the subtrees attached to the root, then the height
of the tree is supi∈I (αi + 1). See an example in Fig. 6.2.

8. Proof-theoretic ordinals. Many types of proof-theoretic ordinals have been de-
fined. The one defined in this section is the most basic one and is usually denoted
by |T |sup. It is tempting to define the proof-theoretic ordinal of a theory T to be
the least order type of a recursive definition of an ordering using which one can
prove the consistency of T . This definition fails very badly—every theory would
have the ordinal equal to ω. The trick is simple; define the ordering to be the
natural ordering of natural numbers up to the Gödel number of the first proof of
contradiction in T and after that reverse it. However, if we fix a “natural” defini-
tion of a big constructive ordinal β , we can use this definition to analyze theories
with proof-theoretical ordinals less than β .

Ordinal analysis has been successfully applied to several theories stronger
than PA. In particular, the Feferman-Schütte ordinal Γ0 is associated with the
subsystem of Second-Order Arithmetic ATR0 and the Bachmann-Howard ordi-
nal ψ(εΩ+1) is associated with Kripke-Platek Set Theory (with the axiom of
infinity).

522 6 Proof Complexity

9. Theorems with short nonelementary proofs. There are examples of theorems
whose nonelementary proofs are shorter than all known elementary proofs. In
many cases first a nonelementary proof is found and later an elementary, usu-
ally longer, proof is also discovered. An example of this is the Prime Number
Theorem (page 61).

Another area where problems are stated using elementary concepts, but are
sometimes solved using nonelementary means, is finite combinatorics. Kneser’s
Conjecture (which is now a theorem of L. Lovász) is the following statement:

Theorem 46 Let n and k be natural numbers such that n ≥ 2k. Let C1 ∪ C2 ∪
· · · ∪ Cn−2k+1 be a partition of k-element subsets of an n-element set. Then in
one class Ci there are two disjoint sets.

Lovász solved the problem using topological methods. Soon after I. Baranyi
gave a simple proof based on the Borsuk-Ulam Theorem:

Theorem 47 An antipodal continuous mapping from an n-dimensional sphere
to an m-dimensional sphere exists only if m≥ n.

An antipodal mapping is a mapping that maps pairs of opposite points to pairs
of opposite points. Kneser’s Conjecture was stated in 1955 and was proved in
1978, but only in 2003 was an elementary proof found by J. Matoušek [194].

In logic there are several theorems that can be proved either using proof the-
ory, where the proofs are longer, or model theory, where the proofs are shorter.
An example is Herbrand’s theorem.

Strictly speaking, it is not clear that the nonelementary proofs are shorter
in the formal sense considered in this section. We would have to say explic-
itly what the theory is in which the nonelementary proof is formalized. Con-
sider, for example, Kneser’s Conjecture. The nonelementary proof is short, but
refers to the Borsuk-Ulam Theorem. Should we consider the Borsuk-Ulam The-
orem to be an axiom? This would not be fair, but if we do not, then we have
to take into account also the length of the proof of the Borsuk-Ulam Theo-
rem.

Ideally, we would like to have an example of a theorem that has a long proof
in Finite Set Theory (Zermelo-Fraenkel Set Theory without the axiom of infin-
ity) and a short proof in Zermelo-Fraenkel Set Theory. I am not aware of any
example of a mathematical result of this type. One problem is that a lot of meth-
ods that use infinite sets can be simulated in Finite Set Theory. Another is that
deriving basic algebraic, geometric and topological results requires quite lengthy
proofs.

But even if we had such a theorem, the most difficult problem would still be
there—to prove that an elementary proof cannot be short. We are only able to
prove that for contrived theorems.

6.2 Theories and Complexity Classes 523

6.2 Theories and Complexity Classes

The relationship between proofs and computations has been studied since the time
the fields of proof theory and computability theory started. A number of interesting
results connecting proofs with computations have been proved. Among the logical
calculi that can be used for formalizing computation the most prominent is the λ-
calculus of Church.

After the advent of computational complexity theory it was natural to look for
logical calculi that could be related to polynomial time computations. At that time
Parikh (in the same paper I mentioned some pages back [211]) proposed “an an-
thropomorphic system” PB based on Peano Arithmetic with induction restricted to a
subclass of formulas whose validity is efficiently testable.9 In Parikh’s theory PB in-
duction is restricted to bounded arithmetical formulas, formulas in which the range
of quantification is bounded to finite intervals. For such formulas, one can algorith-
mically decide their satisfiability in the domain of natural numbers (the algorithm
runs in linear space). An important property of PB, as well as of many theories
studied subsequently, is that it is not provable that for every x, there exists 2x , in
other words, the exponential function is not provably total. These two properties led
Parikh to the conclusion that such a system is closer to what humans can actually
do, if we view it from the philosophical point of view, and closer to the research in
complexity theory, if view it from the mathematical point of view.

Only a little later, in 1975, Cook introduced his system PV of polynomially veri-
fiable identities [49]. His aim was to design a system that was somehow connected
with polynomial time computations. Building on these two formal systems, more
theories were introduced in the work of J. Paris and A. Wilkie [215], S. Buss [34]
and others. Although different, the essence of these systems is the same.

Another line of research that started at about the same time concerned proving
lower bounds on the lengths of proofs in propositional calculus. This apparently
unrelated subject has a very close connection to the theories mentioned above. The
connection was discovered by Cook and described in the same paper in which he in-
troduced his theory PV . It is the fact that proofs of sentences of a certain type can be
translated into at most polynomially long proofs of sequences of tautologies in the
propositional calculus. This in principle enables one to prove the independence of
some sentences by proving lower bounds on tautologies in the propositional calcu-
lus. Thus the logical problem of proving independence is reduced to a combinatorial
problem of studying the lengths of propositional proofs. It has turned out that prov-
ing lower bounds on propositional proofs is a very hard problem, so this connection
has not produced many independence results. Nevertheless, it helped us more fully
understand the essence of the problems concerning these theories and the proposi-
tional calculus.

Originally the term ‘Proof Complexity’ was only used for the subfield that stud-
ies lengths of proofs. As the connections between theories and the propositional

9The notation PB has never been used afterwards, instead the theory was denoted by IΔ0, where
I stands for induction and Δ0 for bounded arithmetical formulas.

524 6 Proof Complexity

calculus became more apparent, the term acquired much wider meaning and it is
now used for the whole field that includes not only the complexity of propositional
proofs, but also the study of theories related to feasible computations.

Theories Corresponding to Complexity Classes

One of the key ideas of Proof Complexity is that it is possible to define theories that
in some sense correspond to complexity classes. The link is not mere formal similar-
ity; it is based on certain relations between a complexity class and the corresponding
theory. We are not able to construct such a theory for every complexity class, but
there are a number of important complexity classes for which theories have been
defined which relate closely to their corresponding classes. Here I will only outline
the basic idea of this correspondence.

As we are mostly interested in complexity classes that are near the bottom of the
hierarchy, we may view the corresponding theories as subtheories of Peano Arith-
metic. Recall that Peano Arithmetic is axiomatized by two sets of axioms:

1. Basic Axioms. These axioms state a few basic properties of the constant 0 and
the arithmetical operations. Specifically these are the following axioms (where,
for the sake of simplicity, I am omitting the axioms for the less-than-or-equal
relation ≤):

S(x) = 0 x + 0= x x · 0= 0

S(x)= S(y)→ x = y x + S(x)= S(x + y) x · S(y)= S(x + y)

x = 0→∃y(x = S(y)
)

2. The Schema of Induction. This is an infinite set of axioms, one axiom for every
arithmetical formula with free variable x, that states the principle of induction
for this formula. Formally, it is expressed by(

φ(0)∧ ∀x(φ(x)→ φ
(
S(x)

)))→∀x φ(x),

where φ(x) is the arithmetical formula. In other words, we state the principle of
induction in the maximal possible strength that we can achieve using only the
language of arithmetical operations.

Let us also recall that Peano Arithmetic is in a well-defined sense equivalent to Finite
Set Theory. The theory is fairly strong, in particular, essentially all mathematical re-
sults concerning numbers and finite structures can be formalized and proved within
the framework of Peano Arithmetic and Finite Set Theory.

Now suppose we want to prove theorems about sets and functions from a certain
class. Clearly, we will need the induction principle at least for sets from this class.
Specifically, if we are interested in a complexity class C and the sets in this class
are exactly those that can be defined by formulas from a class Φ , then we should
postulate the induction axiom for every formula from the class Φ . The key idea is to
study theories in which we state induction only for these formulas. In other words,
we take something like the minimal theory that is able to describe the objects we are
interested in and to prove general theorems about them.

6.2 Theories and Complexity Classes 525

Given a complexity class C, I will use the following symbol

ΘC

to denote the theory in which induction is restricted to sets of complexity C. This is a
rather informal notation for several reasons. In order to define this theory precisely,
we need to specify a class of formulas Φ that represents the sets in C. The language
of basic arithmetical operations is usually not rich enough to get a natural class of
such formulas, thus we must use more function and predicate symbols. Then we
also have to extend the set of basic axioms in order to fix the interpretations of the
new symbols. All these things are, however, just technicalities that we can ignore in
our informal description of the theories. So the structure of the set of axioms of ΘC
is essentially the same as for Peano Arithmetic:

1. Basic Axioms. A finite set of axioms concerning the primitive notions. In partic-
ular we can always include the basic axioms of Peano Arithmetic.

2. The Schema of Induction for the class of formulas Φ . An infinite set of axioms—
one axiom for every formula of Φ with free variable x that states the principle of
induction for this formula.

The theory PB introduced by Parikh was Peano Arithmetic with induction re-
stricted to formulas with bounded quantifiers. We call a quantifier bounded if the
quantified variable x occurs in a context of the form x ≤ t for some term t not con-
taining x. Informally, the range of quantification is restricted to the finite domain
of numbers between 0 and t . The theories introduced by Buss were also based on
induction for bounded formulas, except that he used a richer language. Since com-
plexity classes are always defined by bounding resources, the classes of formulas
defining them consist of bounded formulas in some language. Therefore we use the
term Bounded Arithmetic to denote all theories constructed in this way.

The schema described above enables us, in principle, to define the theory ΘC
for every complexity class C, but in order to view this theory as associated with the
complexity class, we want to have closer relations between these two objects. For
a number of complexity classes, such relations have been shown; I will say more
about these relations shortly.

Let us observe one particular similarity between complexity classes and these
theories. A complexity class is defined by restricting computational resources. A
Bounded Arithmetic theory is defined by restricting provability resources. We will
see other similarities of this type in the following subsections.

Several Reasons why Studying Weak Theories Is Important

According to the Incompleteness Theorem, there are unprovable true sentences in
Peano Arithmetic. We can make the theory stronger by postulating induction for
a larger class of formulas, but such a theory will still be incomplete. By stating
induction for a subclass of arithmetical formulas we are making things worse—the

526 6 Proof Complexity

theories are even more incomplete. In fact, the theories that we will consider will
be much weaker than Peano Arithmetic. Although we can never fully determine a
structure such as the natural numbers with arithmetical operations, we can at least
try to make the theory as strong as possible. Thus it may seem strange to do the
opposite, to work with a restricted set of axioms, but there are good reasons for
this. One should realize that by defining theories of Bounded Arithmetic we are not
trying to propose theories that should serve as “foundations for arithmetic”. We are
defining new objects of study—theories of a particular kind. The rule of thumb is
that the weaker the theory is, the more one can prove about it. Thus considering
weak theories is, in fact, an advantage.10

Now I will briefly review some reasons why researchers are interested in these
theories. Then, in the following subsections, I will describe the theories in more
detail.

1. It is possible to study problems that concern theories and that are analogous to
the problems about complexity classes.

Let us consider an example. As sketched above, one can define theories for some
complexity classes, in particular this is possible for P and NP. So let ΘP and ΘNP
be the theories corresponding to the complexity classes P and NP. Then we can ask
the question that corresponds to the fundamental problem P vs. NP in the realm of
theories:

Do the theories ΘP and ΘNP prove the same theorems?

I will state it more succinctly as the question

ΘP ≡ΘNP?

Most problems in complexity theory are stated as a question about whether or
not two complexity classes are the same. Similarly, the main open problems in proof
complexity ask for proving or disproving that two theories are equivalent. Although
they concern different concepts, the stumbling blocks preventing us from solving
these problems seem to be very similar. Thus we are led to the conclusion that logic
must play an important role not only in proof complexity, but also in computational
complexity. Therefore it seems conceivable that our inability to make any progress
in solving problems in computational complexity may be caused not by their math-
ematical complexity, but by some obstacles of a logical nature. If this feeling is
right, the study of theories of Bounded Arithmetic should help us solve both types
of problems.

2. It is possible to characterize functions from some complexity classes as functions
that can be formalized in the corresponding theories.

This is an important example of a formally provable relation between theories
and complexity classes. Let us consider an example again. ΘP, the theory associated

10Yet the theories are still too strong if one wants to apply the methods of main-stream model
theory. Thus one has to develop methods specific for this field.

6.2 Theories and Complexity Classes 527

with the complexity class P, has the following constructive property: if we prove
the existence of a number satisfying some polynomial time condition, then we can
construct this number in polynomial time. More precisely, if for some polynomial
time relation R, we prove that for every x, there exists y such that x is in relation
R with y, then one can find an algorithm that for every x, constructs such a y in
polynomial time.

Note that it is unlikely that in general such algorithms should exists for all poly-
nomial time computable relations of this type. Thus the provability in ΘP guarantees
us more than if we only knew that for every x such a y existed.

3. It is natural to argue about complexity classes using concepts of the same nature.

When Parikh defined his theory PB, he was motivated by such considerations.
He also observed that in his theory it is not possible to prove that for every number
n, there exists the number 2n, that is, the exponential function is not provably total.
Thus in proving a sentence about n one cannot use numbers much larger than n.
We know that this may prevent us from using nonelementary arguments, such as
arguments using probability and algebra, which are quite common in combinatorics
and number theory. But our aim is not to use these theories to prove new theorems,
rather to use them to understand what methods are needed for particular theorems.

Another example is Cook’s theory PV . Cook’s idea is that as P renders very
well the intuitive concept of efficiently computable functions, we should also have a
similar concept concerning proofs. I will explain his theory in more detail shortly.

4. We want to determine the axioms needed for proving that a given algorithm does
what it is expected to do.

When we are studying a computational problem from the point of view of com-
plexity, we ask what is the least time, space etc., that an algorithm needs for solving
the problem. We thus consider various computational resources needed for compu-
tation. But an algorithm is not just a piece of code in a programing language; there
is also an idea (or several ones) on which it is based. If we are to design a correct
algorithm for a problem, we have to use the definition of the problem and we have
to apply some ideas, methods, tricks, principles etc. The latter words can be formal-
ized as the axioms needed for proving the correctness of the algorithm. These are
not computational resources, but they can also be viewed as a kind of complexity of
the algorithm. It is natural to call them the proof complexity of the problem.

It is possible, for example, that for some problem P , we cannot solve P effi-
ciently using algorithms based on simple arguments, while there exists an algorithm
based on deeper mathematics that solves it efficiently. Thus we may have a trade-off
between the time complexity and the complexity of axioms needed for proving the
correctness of an algorithm for P .11 This shows that there exists an intrinsic con-
nection between computational and proof complexities. In order to formalize this
connection, we need a scale of formal systems. These formal systems need not only

11We do not have a concrete example for which we can prove this tradeoff, but we conjecture that
testing primality is a problem of this kind.

528 6 Proof Complexity

be theories formalized in first order logic, but we will see that one can also use proof
systems for the propositional calculus.

Universal-P Sentences and Formalization of Complexity Classes

Although we are interested in all sentences provable in the theories that we study,
some sentences are more important than others. I have already mentioned the set of
sentences Π1, which I also call universal-finite sentences. These are sentences of the
form ∀x φ(x), where in φ all quantifiers are bounded. Hence for a given x we can
algorithmically decide whether φ(x) is true or false. Such sentences are empirically
testable: we can test the validity of φ(x) for various values x, but we will never be
sure that ∀x φ(x) is true (unless we prove the sentence). On the other hand, a Σ1
sentence, which is of the form ∃x φ(x), with φ a bounded formula, is empirically
verifiable: given an element a that satisfies φ(a), we can verify the truth of ∃x φ(x).

Algorithmic decidability is a very rough approximation of what actually can be
computed. Having the concept of polynomial time computations, it is natural to con-
sider the sentences ∀x φ(x) with the predicate φ(x) being computable in polynomial
time. Thus we get a much better approximation of the intuitive concept of empiri-
cally testable sentences. Not surprising, these sentences play an important role in
proof complexity. I will call them universal-P sentences and use the notation

ΠP

for the set of these sentences.
This concept needs a more precise definition, otherwise it may lead to nonsen-

sical conclusions. For instance, if a sentence of the form ∀x φ(x), where φ is ar-
bitrary, is true, then the satisfiability of φ(x) is trivial, in particular, it is decidable
in polynomial time. Applying the above definition literally, we would conclude that
every true sentence starting with a universal quantifier is universal-P.

The point is that we must know a priori that φ is decidable in polynomial time.
More precisely, every theory T to which we apply this concept should be “aware”
of the fact that φ is decidable in polynomial time. This means that if we formal-
ize Turing machine computations, then for some Turing machine M , T is able to
prove that M accepts exactly those strings or numbers that satisfy φ and M runs in
polynomial time.

So the main question is how one should pick the class ΦP of formulas that define
sets in P. A simple solution is to take the formulas that define Turing machines with
built-in clocks that ensure polynomial bounds on their running time. This suffices for
formalizing ΠP and some other concepts that we will need. However, if we used it
to define the theory ΘP, we would run into problems. In order to prove properties of
Turing machines, we would need to use induction, but the induction axioms would
already be stated in terms of Turing machines. For defining ΘP, it is better to use
a class defined by simple syntactical conditions. Such a class can be defined if we
are willing to use a language with infinitely many primitive symbols. This is the

6.2 Theories and Complexity Classes 529

approach taken in the theory PV . For languages with finite sets of primitives, there
is another solution. One can take a class of formulas Γ that defines only a subclass
of P, but produces induction axioms that are strong enough to prove induction for
all predicates in P (see Notes).

All this also concerns sets of formulas ΦC for other complexity classes C. For
some complexity classes, for example for NP, it is easy to define a class of formulas
that is syntactically simple, but for others it may be even more difficult than for P.

It is clear that I am using the symbols ΦC,ΘC and ΠP as generic names for sets
that can be specified in various ways. But in spite of the ambiguity of the definition
of ΦC , the concept of the associated theory ΘC is quite robust: the theorems that one
can derive from various axiomatizations are the same. To stress the fact that I am
considering theories T and S as the set of theorems provable therein, I will use the
notation T ≡ S to express that T and S are equivalent in the sense that they prove
the same theorems.

Some Relations Between Theories and Complexity Classes

It is interesting that we can formulate problems in proof complexity that are like
problems in computational complexity, but one may wonder whether this similarity
has deeper roots or is just a superficial analogy. I will explain, using the example of
the problems P vs. NP and ΘP vs. ΘNP, what we know about the relation between
such pairs of problems.

Recall that the theories ΘP and ΘNP are defined by restricting the induction
axiom schema to a set of formulas that define sets in P and to a set of formulas that
define sets in NP respectively. Let these two sets of formulas be denoted by ΦP and
ΦNP. Naturally, we pick the classes so that ΦP is a subset of ΦNP and the basic
axioms are the same. This ensures that (the set of sentences provable in) ΘNP is an
extension of, or is equal to ΘP, just as the class NP is an extension of, or is equal to
the class P.

Suppose that P = NP. This means that formulas of ΦP define all sets that are
definable by formulas of ΦNP. So for every formula φ(x) from ΦNP, there exists an
equivalent formula ψ(x) in ΦP. However, the equivalence φ(x) ≡ ψ(x) does not
have to be provable in ΘP. It may happen that to prove this equivalence one would
need stronger axioms than are available in ΘP. Therefore it is possible that P=NP
and ΘP is not equivalent to ΘNP.

Let us now consider the opposite relation. Suppose that ΘP ≡ ΘNP. Formally,
this means that for every formula φ(x) from ΦNP, there exists a finite set of formulas
ψ1(x), . . . ,ψn(x) from ΦP such that the induction axiom for φ(x) follows from the
induction axioms for ψ1(x), . . . ,ψn(x) and the basic axioms. Notice that this does
not say anything about a formula from the class ΦNP being equivalent to a formula
from ΦP. So again, we cannot exclude the possibility that ΘP ≡ΘNP and P = NP
hold true simultaneously. However, although we are not able to prove such a direct
connection, the assumption ΘP ≡ ΘNP does imply an inclusion relation between
two complexity classes.

530 6 Proof Complexity

Theorem 48 If ΘP ≡ΘNP, then NP⊆ nonuniform-P.

The statement P= NP is equivalent to NP⊆ P because we know that the other
inclusion is true. Since also P⊆ nonuniform-P, the conclusion of the theorem is a
weakening of P=NP. This result is due to J. Krajíček, G. Takeuti and the author.

This theorem shows that there are provable relations between proof complexity
and computational complexity. Further, it shows that it is reasonable to conjecture
that ΘP ≡ΘNP since it follows from the generally accepted conjecture from com-
putational complexity that NP ⊆ nonuniform-P.

Several more implications of this kind have been proved, but no implication in
the opposite direction is known. In spite of not having consequences in complexity
theory, proving ΘP ≡ ΘNP would be an extremely important result in proof com-
plexity, since it is one of the central problems in this field. But it would also be
interesting from the point of view of computational complexity, as it would show
that P=NP cannot be proved using limited means.

Search Problems

A search problem is given by a binary relation R(x, y). The task is, for a given input
x, to find y such that x is in relation R with y. We will be interested in the special
kind of search problems where

1. the relation R is computable in polynomial time,
2. the length of y is polynomially bounded by the length of x.

This is a familiar situation—I explained the P vs. NP problem using search prob-
lems of this kind. But if we are only interested in complexity classes, as we were
when defining P and NP, we need only to decide whether or not the search problem
has a solution for a given input x; we do not need to find a solution. So the P vs.
NP problem concerns decision problems, whereas search problems concern actually
finding y. The class of all problems satisfying 1. and 2. is called Polynomial Search
Problems and I will abbreviate it by PS.

From the point of view of complexity, the class PS is not particularly interesting.
One can easily prove that all PS problems are solvable in polynomial time if and
only if P= NP. What is much more interesting is the subclass of Total Polynomial
Search Problems, which will be abbreviated by TPS.12 These are the PS problems
that satisfy another condition:

3. for every x, there exists y such that R(x, y) holds true.

They are called total because an algorithm solving the problem determines a func-
tion f such that for all x, R(x,f (x)) holds true. Note that there are no natural de-

12I deviate from the more common abbreviations FNP for PS and TFNP for TPS, since I find
the usual notation rather confusing. In FNP and TFNP the letter ‘F’ refers to ‘function’, but these
classes are not classes of functions.

6.2 Theories and Complexity Classes 531

cision problems associated with problems in TPS—since a solution always exists,
there is nothing to decide.

Example An example of a total polynomial search problem is the problem of find-
ing a proper factor of a composite number. As stated it is not total because prime
numbers do not have proper factors. But since primality is decidable in polynomial
time, we can make it total by stipulating that 0 is a solution for inputs that are primes.

Condition 3. is fundamentally different from the previous two. If we want to
guarantee that an algorithm A for R runs in polynomial time, we can simply equip
A with a step-counter and arrange it so that it always stops after the number of steps
reaches a particular polynomial value. Similarly, we can guarantee that the length of
y does not exceed some polynomial value. But if we are to produce a certificate that
condition 3. is always true, we have to give a proof of the condition. For some TPS
problems, the proof may be easy, for some it may be hard. The particular measure
of hardness that we will be interested in is the minimal theory in which condition 3.
is provable.

This brings us back to the theories that are studied in proof complexity. But be-
fore talking about theories in Bounded Arithmetic, I need to recall a general phe-
nomenon concerning incompleteness. In the section about concrete independent
combinatorial sentences I mentioned that these sentences are connected with fast
growing functions. The sentences were of the form

∀x∃y R(x, y),

where R(x, y) was some computable relation; these are the Π2 sentences. We can
also view such sentences as total search problems, but, of course, not polynomial
because we do not bound the size of y. The particular sentences that I presented were
not provable in Peano Arithmetic because, for increasing x, the least y satisfying the
relation R was increasing so fast that Peano Arithmetic was not able to capture such
a rate of growth. In general, every theory T (consistent and having a recursive set
of axioms) can handle only a limited rate of growth. Thus we can always define
a function that grows so fast that it is not possible to prove in T that the function
is total. This enables us to use fast growing functions as a scale for measuring the
strength of theories.

If measured by provably total functions, most of the theories of Bounded Arith-
metic would be at the bottom of the scale. In a Bounded Arithmetic theory one can
typically formalize only polynomial growth. More precisely, one can prove that a
function is total only when the length of the function value grows at most as a poly-
nomial in the length of the argument. But this does not mean that they are extremely
weak if we consider sentences of low complexity. In fact, this is an advantage of
studying these theories—we are naturally led to problems that concern low com-
plexity classes. Namely, if a Π2 sentence is provable in Bounded Arithmetic, then
the length of y is polynomially bounded by the length of x, so condition 2. is auto-
matically satisfied. It suffices then to assume condition 1. and we get a TPS problem.
So instead of fast growing functions, we study problems in TPS and instead of their
growth rate, we study their computational complexity.

532 6 Proof Complexity

Let us see what some particular theories can prove about TPS problems. Specif-
ically, we will consider the theories ΘP and ΘNP. In what follows we will always
assume that R is a binary relation computable in polynomial time (condition 1).
The next theorem, due to S.R. Buss [34], expresses formally the relation between
ΘP and P that I explained in paragraph 2. of the previous subsection.

Theorem 49 If a sentence ∀x∃y R(x, y), with R(x, y) representing a polynomial
time computable relation, is provable in ΘP, then the associated search problem is
solvable in polynomial time, that is, there exists a polynomial time algorithm that
for every x, constructs y such that R(x, y).

Theorems of this type are called witnessing theorems because one can efficiently
find a witness for the existential quantifier ∃y, given x an as input.

The class of search problems solvable in polynomial time is denoted by FP. Thus
the theorem says that the problems for which ΘP can verify condition 3. are from the
class FP. One can also show the opposite: every problem in FP can be formalized
in such a way that ΘP proves condition 3.

Since FP is a sort of a functional version of the class P, we get another reason
for associating the theory ΘP with the complexity class P.

In order to state the corresponding result for ΘNP, we need to define another class
of search problems, Polynomial Local Search, abbreviated by PLS. This class was
introduced by D.S. Johnson, C.H. Papadimitriou and M. Yannakakis [144]. A PLS
problem S is defined as follows. Given an input string a we have

1. a set Ua ;
2. a subset Fa ⊆ Ua whose members are called feasible solutions (but they are not

necessarily solutions of S); we assume that a fixed element, say 0, is always
in Fa ;

3. a neighborhood function ha that maps Ua into itself;
4. and a cost function c that assigns a rational number to every x ∈ Ua (we may

assume that c is the same function for all inputs a).

To motivate the definition of solutions of S, I will first give an interpretation of these
notions. We think of feasible solutions as potential solutions and we are interested
in their cost. We do not insist on finding a solution with a maximal cost. Instead,
we are satisfied with a solution that cannot be improved using the neighborhood
function. Thus the neighborhood function should be thought of as a heuristic that
helps improve the cost of a feasible solution. We always have some feasible solution,
namely 0, and we can try to improve the cost of a feasible solution that we have by
applying the function h to it. Since the set of feasible solutions is finite, we cannot
go on improving the cost forever; the process has to terminate. There may be two
reasons for stopping at some feasible solution x: (1) ha(x) is not a feasible solution,
or (2) the cost does not increase, that is, c(ha(x))≤ c(x). Such an x is defined to be
a solution of the search problem S.

Formally, an x is a solution of S for input value a if

1. x is a feasible solution, that is, x ∈ Fa , and
2. ha(x) is not a feasible solution, or c(ha(x))≤ c(x).

6.2 Theories and Complexity Classes 533

It should be stressed that we do not require x to be obtained by the process described
above. I used the process only to motivate the definition. Also note that a solution x

does not have to be a feasible solution with maximal cost; the definition only states
that it cannot be improved using the heuristic h—it is locally maximal.

As we are defining a class of TPS problems, we require that the primitives by
which a PLS problem is defined are computable in polynomial time. In particular,
the set Ua is a set of all strings of length n, where n is polynomial in the length of
the input a, one can decide in polynomial time if x ∈ Fa and one can compute in
polynomial time the functions ha and c.

Example One can view Linear Programming as the following problem: for a given
convex polyhedron P in n-dimensional Euclidean space and a linear function �, find
a vertex v of P on which � attains the maximum value. Dantzig’s simplex algorithm
for solving Linear Programming is very efficient in practice, but on some inputs
requires exponential time. The idea of the algorithm is to start with an arbitrary
vertex v of P and consider all neighbors of v, which are vertices connected by
edges to v. If there is among them u such that �(u) > �(v), replace v by u and
continue. If there is no such vertex, then �(v) is the maximum.

If properly formalized, Dantzig’s algorithm can be presented as an instance of
a PLS problem. However, it is not a typical member, because first, the solution
is always a global maximum, not a local one, and second, Linear Programming is
solvable in polynomial time (by different algorithms), whereas we believe that there
are PLS problems unsolvable in polynomial time.

Furthermore, we want PLS to be a true complexity class. As defined so far, it is
an interesting class of search problems, but it is not closed under polynomial reduc-
tions. Let us, therefore, stipulate that PLS is the class of all total search problems
that can be polynomially reduced to a search problem defined above.

The concept of polynomial reducibility of search problems is similar to the poly-
nomial reducibility of sets mentioned in Chap. 5. Suppose we have two polynomial
search problems P and Q, defined by relations r(x, y) and s(x, y) respectively. We
say that P is polynomially reducible to Q, if there exists a polynomial time algo-
rithm that for a given a computes b such that r(a, b) using queries to the problem Q.
This means that during the computation the algorithm may compute some c and re-
quest d such that s(c, d). It may ask several such queries, and if they are answered
correctly, it must produce a correct answer: some b such that r(a, b).

The natural algorithm to compute a solution of a PLS problem which I used to
motivate the definition does not help us to compute solutions efficiently. The size
of Ua can be exponentially large and the number of values of the cost function can
be exponential. Thus the natural algorithm typically runs in exponential time. It is a
generally accepted conjecture that there are PLS problems that cannot be solved in
polynomial time. On the other hand we also believe that PLS does not exhaust all
total polynomial search problems, in fact, it seems to be just a small subclass.

After a rather lengthy description, we can return to our theory ΘNP and at last
state a characterization of the total search problems that can be formalized in it. We

534 6 Proof Complexity

will say that a search problem P defined by a relation r(x, y) is properly formalized
in a theory T if

1. the relation r(x, y) is formalized by a formula from ΦP and
2. T proves that the search problem is total (condition 3. of the definition of TPS).

The following theorem is due to Buss and Krajíček [35].

Theorem 50 If a sentence ∀x∃y R(x, y), with R(x, y) ∈ ΦP, is provable in ΘNP,
then the associated search problem is in PLS.

Less formally:

Every TPS problem that can be properly formalized in ΘNP is in PLS.

Again, one can also prove that every PLS problem can be properly formalized in
ΘNP. Thus PLS characterizes the search problems properly formalizable in ΘNP.

The two characterizations give us another relation between the theories and the
complexity classes.

Corollary 1 If ΘP ≡ΘNP, then FP= PLS.

While the assumption is the same, the conclusion of the theorem is different from
the conclusion of Theorem 48 stated in the previous subsection. We do not know if
one conclusion follows from the other.

Bounded Arithmetic is a natural set up for studying search problems, but we
can ask the same question for arbitrary theories, in particular for theories that are
not based on postulating induction for a certain class of formulas. We only need
the theory to be strong enough to formalize polynomial time computations. We can
even take strong theories such as Zermelo-Fraenkel Set Theory. Each such theory
defines a subclass of search problems of TPS thus it seems that we could measure
the strength of theories by these search-problem-complexity classes. But there are
two obstacles: first, we are not able to prove that the hierarchy of search problems
increases; second, we do not have explicit descriptions of these classes, except for
the theories at the very bottom. Still, the mere fact that there is such a possibility
seems very interesting. Let me, therefore, state this fundamental fact explicitly.

It is possible that one could measure the strength of theories by complexity
classes contained in TPS.

I will say more about it in the last section of this chapter.

Notes

1. Bounded arithmetical formulas. Bounded quantifiers are of the form ∀x ≤ t and
∃x ≤ t , where x is the quantified variable and t is a term. The variables of t must

6.2 Theories and Complexity Classes 535

be different from x and must either be free or quantified before x in the formula
in which the bounded quantifier is used. Bounded quantifiers may be treated as
primitive notions or as abbreviations:

∀x ≤ t φ as an abbreviation of ∀x(x ≤ t→ φ),

∃x ≤ t φ as an abbreviation of ∃x(x ≤ t ∧ φ).

Formulas that contain no quantifiers or only bounded quantifiers are called
bounded formulas.

Example The following bounded formula defines that y is the least proper divisor
of x:

1 < y ∧ ∃z≤ x(y · z= x)∧ ∀w ≤ y
(∃z≤ x(w · z= x)→ (w = 1∨w = y)

)
.

Since the ranges of quantified variables in a bounded formula are finite inter-
vals, satisfiability of bounded formulas is algorithmically decidable.

2. Definition of ΘP. According to the general paradigm we should define a set of
formulas ΦP that define the sets in P and define ΘP as some set of basic axioms
plus induction axioms for all formulas in ΦP. We have met such a class in the
subsection about the equational theory PV . So one possibility is to define ΘP as
an extension of PV , or better of PV1, to first order logic. A rather unpleasant
feature of such a theory is that the set of function symbols is infinite. Because
of this, such a theory has an infinite number of axioms on top of the induction
axioms.

Apparently, there is no natural set of formulas based on a finite set of pred-
icates and functions that defines P. Nevertheless, one can define ΘP using a
language with only a finite number of primitives. The trick is that one does not
have to postulate induction for formulas defining all sets in P. It suffices to pos-
tulate induction for a set of formulas that define only some sets in P and derive
induction for the others from these axioms. An elegant theory of this kind, which
I am going to describe below, was proposed by E. Jeřábek [140].

The primitives of the language of the theory consist of the usual constant 0,
the successor function S(x), the arithmetical operations + and ·, the binary rela-
tion ≤ and three more functions |x|, x#y and 1 x

2y 2. The intended interpretation
of |x| is the length of x in binary representation, which is in mathematical sym-
bols 'log(x + 1)(. The intended interpretation of x#y is 2|x|·|y|. The intended
interpretation of the third function is clear from the symbols representing it—it
is x with y least significant bits truncated; it can also be defined as the y-times
iterated truncation function tr(x). (Recall that '· · ·(and 1· · ·2 denote rounding
up to an integer and respectively rounding down to an integer.)

The binary operation # plays a special role. Let us observe that for a natu-
ral number n, the length of n#n is approximately quadratic in the length of n.
Similarly, the length of n#(n#n) is approximately cubic in the length of n, etc.
Viewing numbers as binary strings, the presence of this operation (with the ax-
ioms that determine its properties) ensures the possibility of constructing strings
of polynomial length for every polynomial. This is a necessary condition if we

536 6 Proof Complexity

want to be able to formalize polynomial time computations, but it is also suffi-
cient if it is part of a suitable axiomatization. One can also show that the terms of
this language do not extend the length more than polynomially. Due to this fact
and the special form of the axioms, one can show that the theory can prove that
the length of a string can be extended polynomially, but not more than that.

Here are the basic axioms that determine the meaning of the primitive sym-
bols.

x + 0= x, x + S(y)= S(x + y),

x · 0= 0, x · S(y)= x · y + x,

1 x

20 2 = x, 1 x
2y 2 = 2 · 1 x

2S(y) 2 ∨ 1 x
2y 2 = S(2 · 1 x

2S(y) 2),
|0| = 0, x = 0→|x| = S(|1 x

21 2|),
0#1= 1, x = 0→ x#1= 2 · (1 x

21 2#1),

x = 0→ (y#x)= (y#1) · (y#1 x

21 2).
As usual, 1 and 2 are abbreviations for S(0) and SS(0).

A sharply bounded quantifier is a bounded quantifier in which the bound-
ing term t has the form |s|, i.e., the outermost function is the length function.
A sharply bounded formula is a formula with all quantifiers (if there are any)
sharply bounded. The class of sharply bounded formulas is denoted by Σb

0 . One
can easily see that the range of the quantified variables in a sharply bounded for-
mulas is bounded by a polynomial in the lengths of the free variables. Therefore,
satisfiability of sharply bounded formulas can be computed in polynomial time.
To obtain ΘP, we now add an infinite set of axioms, the instances of induction

(
φ(0)∧ ∀x(φ(x)→ φ

(
S(x)

)))→∀x φ(x)

for sharply bounded formulas φ.
The class of sets definable by sharply bounded formulas is most likely smaller

than P, yet this schema of induction suffices to prove induction for all sets in P. In
ΘP we define the sets of P using bounded formulas that are not sharply bounded.
The set of these formulas can be defined syntactically, hence it would be possible
to have the induction schema stated for all such formulas. It is only for reasons
of simplicity and elegance that induction is postulated only for sharply bounded
formulas.

3. Definition of ΘNP. To define ΘNP is a simpler task because there is a natural
class of formulas that define all sets in NP. Also the theory is stronger, hence
formalizing the necessary concepts in it is easier.

The class of formulas that we need is denoted by Σb
1 . It consists of formulas

of the following form: a prefix of bounded existential quantifiers followed by a

6.2 Theories and Complexity Classes 537

sharply bounded formula.13 The prefix can be empty, so Σb
0 ⊆ Σb

1 . We define
ΘNP as an extension of ΘP in which the induction schema is postulated for all
Σb

1 -formulas.
4. Alternative definitions of theories associated with P. Some authors associate dif-

ferent theories with P. In this book I associate a theory T with a complexity class
C if T has induction axioms for formulas defining the sets of the complexity
class C. In other words, my criterion is based on induction axioms. Others con-
sider witnessing theorems (such as Theorem 49) to be the criterion. This means
that they associate with a theory the smallest complexity class of functions for
which the witnessing theorem holds, and then they take the corresponding com-
plexity class of sets. If we use witnessing functions to determine theories corre-
sponding to complexity classes, we may postulate a somewhat stronger form of
induction. In particular, in the case of the class P, we may define the theory using
Polynomial Induction

φ(0, y)∧ ∀x(φ(tr(x), y)→ φ(x, y)
)→∀x φ(x, y)

for the set of Σb
1 -formulas. This theory, denoted by S1

2 , is stronger than ΘP,
assuming a plausible conjecture about complexity classes. Yet the witnessing
functions for S1

2 are still only FP.
Nevertheless, this discrepancy is not significant. The most important theorems

are those that are ΠP sentences and these theorems are the same in all proposed
theories for P.

5. On the proof of Theorem 48. The idea of the proof is first to derive nontrivial
information about computations from the provability of Σb

1 -induction from ΘP
and then reduce this information to a relation between two complexity classes.

Let γ (x, y) be a formula defining a relation computable in polynomial time;
think of the relation as a kind of search problem, in which x is a parameter and y

is a solution to x. Suppose that 0 is always a solution and no solution is greater
than x, i.e.,

∀x(γ (x,0)∧ ∀y(γ (x, y)→ y ≤ x
))

is true. We will, moreover, assume that this is provable in ΘP. Then it is provable
in ΘNP that for every x, there exists a largest solution. Expressed formally, the
following sentence is provable in ΘNP:

∀x∃y∀z(γ (x, y)∧ (γ (x, z)→ z≤ y
))
. (6.4)

Hence, if ΘP ≡ΘNP were true, then this sentence would also be provable in ΘP.
To derive a computational consequence of such an assumption, we will use the
following general result.

Lemma 15 Let φ(x, y, z) be a formula defining a polynomial time relation.
Suppose that

∀x∃y∀z φ(x, y, z)

13Σb
1 is often defined as a more general class where in the prefix sharply bounded universal quan-

tifiers are also allowed.

538 6 Proof Complexity

is provable in ΘP. Then there exists a number k and polynomial time computable
functions f0, . . . , fk−1 such that

φ
(
n,f0(n),m1

)∨ φ
(
n,f1(n,m1),m2

)∨ φ
(
n,f2(n,m1,m2),m3

)∨ · · ·
∨ φ

(
n,fk−1(n,m1, . . . ,mk−1),mk

)
is true for all numbers n,m1,m2, . . . ,mk .

This lemma was proved using Herbrand’s theorem (see the version without
additional function symbols on page 519). The best way to understand the com-
plicated formula is to interpret it as interactive computation with two players.
The two players are called Teacher and Student. Student is limited to polynomial
time computations and his goal is, for a given n, to compute a solution s, which
is a number satisfying ∀z φ(n, s, z). Student may make several attempts and each
time Teacher helps him by providing a counterexample to his s. This means that
Teacher gives Student some t such that φ(n, s, t) is false, unless Student has
already found a solution.

The meaning of the formula is that Student, represented by the functions
f0, . . . , fk−1, succeeds in at most k steps. Given n, Student first computes f0(n).
If it is not a solution, he gets m1 from Teacher and computes f2(n,m1), and
so on. Teacher cannot give counterexamples in all k rounds because that would
make the formula false. Hence Student must succeed.

Now, let us look at what would happen if sentence (6.4) were provable in ΘP.
Under this assumption we would be able to compute greatest solutions for every
search problem defined by a polynomial time relation, using only polynomial
time and a constant number of counterexamples. Without counterexamples, this
would imply P=NP. It seems likely that a constant number of counterexamples
cannot be of much help because the number of possible solutions can be expo-
nential. This intuition is confirmed by proving that in such a case we would have
NP⊆ nonuniform-P. Roughly speaking, Teacher’s advice can be simulated by
nonuniformity.

6. P= NP and collapsing theories. We are not able to use the assumption P= NP
to prove that two theories are equal. But if we moreover know that P = NP is
provable in a specific theory, then we can prove such a consequence.

Let us consider an example. We know that if P = NP, then EXP = NEXP.
The proof of this implication can be formalized in ΘEXP, hence if ΘEXP proves
P= NP, then it also proves EXP= NEXP. But if it proves that EXP= NEXP,
then we can derive induction for NEXP formulas from induction for EXP for-
mulas. Putting things together we get:

If ΘEXP proves P=NP, then ΘEXP =ΘNEXP.

Thus the provability of P=NP in some theory implies a collapse of two theories.
But, if P=NP is true, how would we find it out? Only by proving it in some

theory. The theory could be so strong that it does not correspond to any natural
complexity class; however, it is more likely that such a theory would not be too
strong (in particular, it is conceivable that it would be ΘEXP). Hence it is likely
that we would get a collapse of theories.

6.2 Theories and Complexity Classes 539

7. More on search problems. In the standard usage FP stands for the class of func-
tions computable in polynomial time. I am abusing the notation by using it for a
class of search problems.

If we have the correspondence P↔ΘP↔ FP, and NP↔ΘNP↔ PLS, the
curious reader may wonder what we can get from it about the relations between
the complexity classes. Namely, we have the following correspondences P↔
FP, and NP↔ PLS. The first one is easily explicable: one is a class of decision
problem, the other is a class of search problems with the same bounds on the
computational resources. In the case of NP↔ PLS, however, I do not have any
explanation that does not mention ΘNP.

Corollary 1 gives us some provable connection between the theory ΘNP and
a complexity class of search problems, but does not relate the theory ΘNP to the
complexity class NP. In order to obtain such a connection, we have to generalize
search problems. We will consider computations that run in polynomial time and
have free access to an NP set (use NP sets as oracles). Using such computations
we define the class PNP as the class of decision problems computable in polyno-
mial time with free access to NP. The following is a version of Theorem 49 for
ΘNP, due to Buss [34].

Theorem 51 If a sentence ∀x∃y R(x, y), with R(x, y) representing a PNP rela-
tion, is provable in ΘNP, then there exists a polynomial time algorithm that uses
a set in NP as an oracle such that, for every x, it constructs y such that R(x, y).

In this way we get an almost direct connection between the theory ΘNP and
the class NP. This relation does not determine ΘNP uniquely from NP, but it is
a good indication that our choice of theory is good.

Theorems 49 and 51 suggest a paradigm that one can use for finding more
pairs of complexity classes and associated theories. Indeed, associated theories
have been constructed for many important complexity classes.

8. The Bounded Arithmetic Hierarchy. One can define a hierarchy of theories that
corresponds to the Polynomial Hierarchy. This was done by Buss in [34]. For
each class of sets Σ

p
n , he defined the class of bounded formulas Σb

n that define
the sets in Σ

p
n . Then he defined theories T n

2 using a finite set of basic axioms
plus induction for Σb

n formulas. In my notation these theories are representatives
of ΘΣ

p
n

. We call the series of theories the Bounded Arithmetic Hierarchy. The
union of all theories T n

2 is denoted T2.
On page 402 we noted that if NP⊆ nonuniform-P, then Σ

p

2 =Π
p

2 . Hence,
by Theorem 48, ΘNP is stronger than ΘP if Σp

2 =Π
p

2 . One can extend this result
to higher levels of the Bounded Arithmetic Hierarchy and show that it does not
collapse if the Polynomial Hierarchy does not collapse.

9. Theories with oracles. A natural way to extend theories in Bounded Arithmetic
is to enrich the language so that one can talk about sets. The simplest such ex-
tensions are obtained by adding a new predicate R to the language and extending
the induction axioms to the corresponding class of formulas in the extended lan-
guage. Given a theory T , we denote such an extension by T [R].

540 6 Proof Complexity

For example, to obtain ΘP[R], consider the formalization of ΘP described
above. First we define sharply bounded formulas in the extended language in the
same way as in the original one, the only difference being that we can now also
use R. Then we extend the induction scheme to these formulas.

The interpretation of a sentence involving R is that the sentence is true for all
subsets R. The computational interpretation of R is as an “oracle”, a means to
obtain additional information for free. Indeed, theories augmented with R behave
very much like complexity classes with oracles. The difference is that whereas
in complexity theory an oracle is an explicit set, in logic it is just a variable.
We follow the complexity-theoretic terminology by calling the extended theories
relativized.

As in complexity theory, we can prove relativized separations. In particular,
we can prove without any unproved assumptions that

ΘP[R] =ΘNP[R] =ΘΣ
p
2
[R] =ΘΣ

p
3
[R] . . . ,

see [167]. This is proved by reducing the collapse of the relativized Bounded
Arithmetic Hierarchy to the collapse of the Polynomial Hierarchy relativized to
an oracle. J. Håstad proved that there exists an oracle with respect to which the
Polynomial Hierarchy does not collapse [115].

6.3 Propositional Proofs

Let us now return to the beginnings of Proof Complexity in the 1970’s. After defin-
ing the classes P and NP, Cook looked for a concept in logic that would corre-
spond to the class P. Once we accept polynomial time computations as a natural
formalization of feasible computations, it seems that there should be some concept
representing feasible proofs in a similar way. Polynomial time computations are
computations that perform a polynomial number of elementary steps in order to
produce the result. The corresponding concept in logic should be proofs consisting
of a polynomial number of elementary steps, so we need only to define elementary
proof steps. The question, however, is not as easy as it looks at first glance.

Feasibly Constructive Proofs

In 1975 Cook introduced a system intended to formalize feasible proofs. It was in
the seminal paper Feasibly constructive proofs and the propositional calculus [49],
which I consider to be the founding paper of the field of proof complexity, for all the
fundamental ideas of this field are more or less explicitly present in it. Cook called
his formal system PV , for Polynomial Verifiability. I will not describe all details
of the system PV ; I will rather focus on explaining the motivation behind some
particular concepts used in it.

6.3 Propositional Proofs 541

Let us put ourselves in Cook’s position back in the 1970s and try to devise such a
formal system. The first thing we have to do is decide what formulas such a system
should use. It is natural to require the following properties from the system:

1. the sentences should have low logical complexity;
2. the system should be able to formalize basic statements about feasible computa-

tions.

With hindsight, we guess that these sentences should be universal-P sentences, but
we have to be more specific about how we represent polynomial time computable
sets. Since we want to formalize polynomial time algorithms, a natural thing is to
have a name for every such algorithm. Therefore, in PV there is a term t (x1, . . . , xk)

for every polynomial time algorithm that has k numbers as inputs. The converse is
also true: every term defines a function computable in polynomial time. Although
PV formally talks about natural numbers, it treats them also as binary strings. In
particular, there is a term for every polynomial time algorithm whose input and
output values are binary strings.

In PV all formulas are equations of the form

s(x1, . . . , xk)= t (x1, . . . , xk)

with s and t terms. The meaning is that the equation holds for all natural num-
bers x1, . . . , xk , which is written in first order logic as ∀x1 . . .∀xk s(x1, . . . , xk) =
t (x1, . . . , xk), but as usual in equational theories, we omit the universal quantifiers
in PV . Using such formulas, we are able to express that two algorithms define the
same function. This gives us a particular formalization of ΠP sentences.

Proceeding further to the axioms and rules of the system, our next goal is to
satisfy the following requirement:

3. the nature of proofs should also be feasible.

It is much harder to give a more precise meaning to this vague statement, although
intuitively it seems reasonable. Here comes another useful idea—polynomial verifi-
ability. The idea behind this concept is:

Given an equality with a feasible proof, one should be able to verify the equal-
ity in a polynomial number of steps.

Using this concept we can specify the system that we are trying to design as the
strongest system in which all provable equalities are polynomially verifiable.

So what is needed now is a definition of the polynomial verifiability of PV equa-
tions. A naive definition of the polynomial verifiability of s(x)= t (x) would be to
say that we can verify in polynomial time that s(N) represents the same number as
t (N) for every given number N . But this does not say anything about provability,
since every true equality of this form is verifiable in this sense (we can simply run
the polynomial time algorithms corresponding to s and t on the input N and test if
they produce the same number). In order to obtain a nontrivial concept, one has to
add a condition about the uniformity of such verifications. Specifically, for a given
input length n the verification of s(N)= t (N) for all numbers N of length n should

542 6 Proof Complexity

have the same form. When formalized, it means that for every input length n, there
exists one verification that works for all N of length n. In such a verification the
number is represented by a variable x, so technically it is a proof of a general state-
ment, except that the domain of the variable is finite (the set of numbers of length
n). What we gain by restricting x to numbers of length n is that we do not need
essentially any general axioms in such proofs.

These ideas cannot be fully understood without seeing at least some details of the
formalism. So let us start with the language of PV . It contains the basic arithmetical
operations+ and×, and the constant 0, but on top of these also several less common
primitives. What will only be important for us are the two successor functions s0(x)

and s1(x) and the trimming function tr(x). The intended interpretations of them are:

s0(x)= 2x, s1(x)= 2x + 1, tr(x)= 1x/22,
where 1y2 is the largest integer less than or equal to y. Notice that these are bit
operations on the binary representations of the number x: s0 adds 0 to the binary
representation of x, s0 adds 1 to the binary representation of x, and tr(x) trims off
the last bit (except for 0, where tr(0)= 0). As usual, one can form compound terms
from the primitive function symbols and constants.

Furthermore, one can introduce new function symbols that represent functions
defined by recursion on notation. Given functions f (y), g0(x, y) and g1(x, y), we
say that h(x, y) is defined by recursion on notation, if it satisfies:

h(0, y) = f (y)

h
(
s0(x), y

) = g0
(
h(x, y), y

)
h
(
s1(x), y

) = g1
(
h(x, y), y

)
.

(6.5)

(The variable y plays the role of a parameter; for the sake of simplicity I am using
only one parameter.) The advantage of this kind of recursion is that for a number N
of length n and any number M , we need only n+ 1 applications of the functions f ,
g0, g1 in order to compute the value h(N,M). Indeed, if anan−1 . . . a1 is the binary
representation of N , then

N = san
(
san−1

(
. . . sa1(0) . . .

))
,

hence

h(N,M)= gan
(
gan−1

(
. . . ga1

(
f (M),M

)
. . . ,M

)
,M

)
. (6.6)

This suggests that if the initial functions f , g0, g1 are computable in polynomial
time, then so should h be. In general this is not true, because it can happen that the
numbers grow exponentially with the length of the first parameter. Therefore it is
necessary to add a bound on the size of the values of h. This is just an inessential
complication and I skip the technical details of how the growth of h is controlled
in PV .

Let us now proceed to the axioms and rules. PV contains basic axioms about
the primitive constants and functions. For example, we have the following axioms
connecting the two successors with the trimming function:

tr
(
s0(x)

)= x, tr
(
s1(x)

)= x.

6.3 Propositional Proofs 543

When we introduce a new symbol h for a function defined by recursion on notation,
we also add the corresponding equalities (6.5). The key axioms are the axioms of
induction. In PV we are only allowed to use equalities, thus one cannot state induc-
tion in the usual form. There is a way to simulate induction using only equations of
PV terms, but since I want to avoid technicalities, I will switch to an extension PV1
of PV in which one can use propositions made of equations.

The schema of induction in PV1 is motivated by recursion on notation, therefore
it is called Induction on Notation (sometimes ‘Polynomial Induction’ is also used).
Translating recursion on notation literally, we obtain the following form of induction
on notation:14

φ(0, y)∧ ∀x(φ(x, y)→ φ
(
s0(x), y

)∧ φ
(
s1(x), y

))→∀x φ(x, y),

where the formula φ(x, y) is an equality s(x, y) = t (x, y) for some PV terms s

and t . (Again I am simplifying it by only using one parameter y.) Instead of this,
people prefer the more concise equivalent version:

φ(0, y)∧ ∀x(φ(tr(x), y)→ φ(x, y)
)→∀x φ(x, y).

If we state induction as an axiom (in either way) we cannot avoid the use of the
universal quantifier in the antecedent. Therefore, in PV1 we represent the induction
principle by a deduction rule:

from φ(0, y) and φ(tr(z), y)→ φ(z, y), it is possible to derive φ(x, y).

Notice that the induction rule is the only general principle used in PV1; otherwise
we only have axioms of equality, a finite set of axioms about the primitive concepts
and the equations that determine the functions introduced by recursion on notation.

Now we can return to the concept of polynomial verifiability and explain it in
more detail. Suppose we prove an equality s(x)= t (x) and we want to verify it for
numbers of length at most n. To this end we have to formally express that x has
length at most n. This can be done by the following equation:

tr
(
tr
(
. . . tr(x) . . .

))= 0, (6.7)

where the function symbol tr is applied n-times. I will abbreviate the long term at
the left hand side by trn(x). As I said, verifying the equality s(x)= t (x) for numbers
of length at most n is nothing else but proving it only using elementary means. This
means that we should use an assumption saying that the length of x is at most n and
then only elementary rules. The assumption about the length will be represented by
equation (6.7) above. Since PV1 is based on elementary axioms and rules and one
general principle, we can define:

Polynomial verification is a proof that uses the axioms of PV1 without the
induction rule.

14It turns out that one can also use the standard form of induction without increasing the power of
PV . Nevertheless, for showing the connection with polynomial verifiability induction on notation
is more convenient.

544 6 Proof Complexity

Such a definition may not seem quite satisfactory. Why do we say that some
axioms are elementary and others not? A more detailed analysis of the axioms is
clearly needed. But I am afraid that this would not help very much if one just wants
to understand the essence of the problem. It is more instructive to watch how the
induction rule can be eliminated. If we accept the definition of the polynomial veri-
fiability as proposed above, elimination of the induction rule is all we need in order
to prove that the equalities provable in PV1 are polynomially verifiable.

So let us look at how induction can be eliminated. Let us consider an equality
s(x) = t (x) provable in PV1; I will abbreviate it by φ(x). Let a proof P of the
equality φ(x) be given and assume we need a polynomial verification for numbers of
length n. The idea is to use our assumption that x has length at most n expressed by
the equation (6.7) to transform P into a proof that does not use the rule of Induction
on Notation. Suppose P ends with an application of the induction rule, namely, that
φ(x) was obtained from assumptions φ(0) and φ(tr(z))→ φ(z). Since we have
trn(x)= 0, we get

φ
(
trn(x)

)
by substitution from φ(0). Now we will use the second assumption of the induction
rule. We will successively substitute terms trn−1(x), trn−2(x), . . . , tr(x) and x for
the variable z.15 Thus we obtain

φ
(
trn(x)

)→ φ
(
trn−1(x)

)
,

φ
(
trn−1(x)

)→ φ
(
trn−2(x)

)
,

. . .

φ
(
tr(x)

)→ φ(x).

Now we apply modus ponens n times and obtain φ(x). Thus we have eliminated one
application of the induction rule and the length of the resulting proof is bounded by
a polynomial in n. Repeating essentially the same procedure for all occurrences of
the induction rule we get a proof that does not use this rule and has polynomial size.
This proof is a polynomial verification of the equation s(x)= t (x).

The fact that universal sentences provable in PV (or PV1) can be polynomially
verified is one good reason for associating PV with the complexity class P. But, of
course, any theory that is weaker than PV also has this property. Therefore we need
another property to impose a lower bound on the strength a theory that we want to
associate with P. The ability of PV to prove that polynomial verifiability is sound
is such a property. More precisely, PV proves the formalization of the following
sentence:

If x has length n and y (a code of a proof) is a polynomial verification of φ(z)

for numbers of length n, then φ(x) is true.16

15Strictly speaking, we cannot use substitution to obtain the following formulas. Instead
we have to reproduce the proof of φ(tr(z)) → φ(z) for z replaced by each of the terms
trn−1(x), trn−2(x), . . . , tr(x).
16The general reflection principle is stronger than consistency, hence not provable in the corre-
sponding theory, but in this case the class of sentences is very restricted, so the sentence is prov-
able PV .

6.3 Propositional Proofs 545

This property pretty much determines PV : essentially, PV is the weakest system
that proves this reflection principle.

The concept of polynomial verifiability is important and deserves more detailed
study. There is, however, an alternative approach which is, in some sense, much
cleaner and therefore is the choice that is usually preferred over polynomial veri-
fiability. It is based on showing a similar relation of proofs in first order logic to
proofs in the propositional calculus. This means that we replace equational proofs
of equalities s(N) = t (N) by propositional proofs of tautologies that express the
same fact as s(N)= t (N).

Down to Propositional Logic

When I was a student I wondered why some authors of logic books pay so much
attention to the propositional calculus. Back then I thought that there was nothing in-
teresting about the propositional calculus. The two main reasons for me were: first,
I thought one could express only elementary facts using propositional logic; sec-
ond, the calculus is decidable. Both are true, but on a closer look, one can still find
very interesting problems. As a matter of fact, my current perception of the propo-
sitional calculus is quite the opposite—I believe that some of the most fundamental
problems are in this area.

I will start with some examples of what can be formalized in propositional logic.
The prevailing wrong impression that only trivialities can be expressed in propo-
sitional logic is caused by the fact that introductory logic texts mention only very
simple formulas. Once we are willing to work with long formulas, we can express
fairly complex statements.

The first set of examples are arithmetical statements. With n propositional vari-
ables we can encode n-bit numbers. Let number x be represented by propositional
variables p1,p2, . . . , pn and number y by q1, q2, . . . , qn. Then we can express the
equality x = y by

(p1 ≡ q1)∧ (p2 ≡ q2)∧ · · · ∧ (pn ≡ qn).

This is not a tautology, it is a formula talking about two unknown n-bit numbers,
which is true for some assignments and false for others.

A more interesting example is a formula that expresses x ≤ y for two n-bit num-
bers. Let the two numbers be represented as above with p1 and q1 being the most
significant bits, p2 and q2 the second most significant etc. Then the formula reads:(

(p1 ≡ q1)∧ · · · ∧ (pn−2 ≡ qn−2)∧ (pn−1 ≡ qn−1)∧ (pn ≡ qn)
)∨(

(p1 ≡ q1)∧ · · · ∧ (pn−2 ≡ qn−2)∧ (pn−1 ≡ qn−1)∧¬pn ∧ qn
)∨(

(p1 ≡ q1)∧ · · · ∧ (pn−2 ≡ qn−2)∧¬pn−1 ∧ qn−1
)∨

. . .

(¬p1 ∧ q1).

546 6 Proof Complexity

Using this formula (and the one obtained by interchanging pi ’s with qi ’s), we can
express the true arithmetical fact

(x ≤ y)∨ (y ≤ x),

for n-bit numbers, by a propositional tautology. We cannot express the above di-
chotomy by a single tautology for all numbers. If we want to talk about all numbers,
we have to use a sequence of tautologies parameterized by the lengths of the num-
bers.

Let us now consider the formula x + y = z where x and y are (at most) n-
bit numbers and z is an (at most) n + 1-bit number. Similarly as we did for x =
y, we want to say that each bit of x + y is equal to the corresponding bit of z.
Therefore, it suffices, for every i, to construct a formula which is true if the ith bit
of x + y is 1 and false if it is 0. To construct such a formula, the standard algorithm
based on computing the carry bits is used. Thus one obtains a formula whose size is
polynomial in n.

For x · y = z, we can also construct a polynomial size formula, although a it is
little more complicated. Then we can combine these formulas to construct tautolo-
gies that express various true arithmetical sentences. For example, we can construct
a tautology that expresses the distributivity law for n-bit numbers. All these tau-
tologies have polynomial sizes, when measured by the length of the numbers about
which they talk.

A more interesting example of an arithmetical tautology is the following. Let P
be a fixed prime number. The fact that P is prime can be expressed in first order
logic by

x · y = P → (x = 1∨ y = 1).

As we have formulas for equality and multiplication, we can write a formula, in
fact a tautology, expressing the primality of P . In this tautology the bits of x and
y will be represented by propositional variables, whereas the bits of P will be the
corresponding truth constants. If P has n bits, we need only to consider numbers x

and y with at most n bits, so we can write it as a single tautology.
Arithmetical tautologies are an ample source of interesting tautologies, but there

are others. Perhaps the most heavily researched set of tautologies are the tau-
tologies expressing the Pigeonhole Principle. The principle says that if there are
n+ 1 pigeons in n holes, then there is at least one hole in which there are at least
two pigeons. Let us consider propositional variables pij indexed by two indices
i = 1,2, . . . , n+1 and j = 1,2, . . . , n. One should think of the variable pij as being
true if and only if pigeon i sits in hole j . I will use

∧
and

∨
to denote conjunctions

and disjunctions of several terms. The pigeonhole tautology PHPn then reads:

n+1∧
i=1

n∨
j=1

pij →
n∨

j=1

n+1∨
i=1

∨
1≤i′≤n+1; i′ =i

(pij ∧ pi′j).

Notice that this formula closely follows the English description of the principle,
except for the last part, where instead of saying that there are two pigeons, we say
that there exist a pigeon i and there exists a pigeon i′ different from i.

6.3 Propositional Proofs 547

Let us now express the Pigeonhole Principle in first order logic. Let P(x, y) be a
symbol for a binary relation, where x is a number from 1 to n+ 1 and y is a number
from 1 to n. The first order sentence reads:

∀x∃yP (x, y)→∃y∃x∃x′(x′ = x ∧ P(x, y)∧ P
(
x′, y

))
.

The similarity of the two expressions above is quite conspicuous. The quantifiers
correspond to the big conjunctions and disjunctions and the binary relation is repre-
sented by propositional variables indexed by pairs. This suggests that we can trans-
late any first order sentence true in some finite relational structure into a proposi-
tional tautology; this is indeed possible.

So what can actually be expressed by propositional formulas? First recall that
every Boolean function of n variables can be defined using a propositional formula
(we could also say Boolean formula, meaning the same thing) with n variables. Such
representations are, for example, the well-known disjunctive and conjunctive normal
forms. These forms have exponential size, except for some very special Boolean
functions. We cannot use them when we want to express, say, that a medium size
number P is a prime because the formula would be too large.

Thus the right question is: which functions can be defined by medium size
Boolean formulas? In precise mathematical terms the question is: which sets of 0–1
strings can be defined by sequences of formulas of polynomial size? We know that
if we use Boolean circuits, instead of formulas, we can define every set in P by
a sequence of polynomial size circuits. Formulas can be viewed as a special kind
of circuits, circuits whose underlying graph is a tree. It seems that this is a weaker
computational model. Using sequences of polynomial size Boolean formulas, or
equivalently using sequences of polynomial size tree-like Boolean circuits, one can
define the sets in a class called NC1, a subclass of P. Whether the two classes are
equal or not, is one of the wide-open problems. The commonly accepted conjecture
is that NC1 is a proper class of P.

In this way the propositional calculus is closely connected with computational
complexity, but it is important to realize that there are also fundamental differences
between the two fields. In complexity theory we study the circuit complexity of
Boolean functions and we also study the formula complexity of Boolean functions.
In the propositional calculus we are primarily interested in tautologies. A tautol-
ogy is also represented by a Boolean formula, but the formula is true for every
assignment of the propositional variables. Hence the formula defines a very simple
Boolean function—the function identically equal to 1 (where 1 represents the truth).
The relation to the complexity of Boolean functions manifests itself only when we
look at the components from which tautologies are constructed.

Example Let φ(p1, . . . , pn) and ψ(p1, . . . , pn) be two propositional formulas.
Suppose that

φ(p1, . . . , pn)≡ψ(p1, . . . , pn)

is a tautology. Since it is a tautology, it defines the Boolean function constantly equal
to 1. But the function defined by φ, which is the same as the function defined by ψ ,
may be an arbitrary one.

548 6 Proof Complexity

In particular, for proof complexity it is more important to know which sentences
can be represented by sequences of Boolean formulas. Since we can define NC1

sets, we can also represent universal-NC1 sentences. The reason is that in logic we
are interested in tautologies. A tautology, although represented by Boolean formula,
is interpreted as if there were universal quantifiers in front of it. Saying that the
formula is satisfied by all truth assignments is the same as if we had these universal
quantifiers and said that the quantified propositional formula is true. Since these
implicit quantifiers range only over finite domains, we need infinite sequences of
Boolean formulas to represent a sentence in first order logic. The relation between
the sentence and the sequence of propositional formulas is that the sentence is true
if and only if all propositional formulas are tautologies.

Example Above I have sketched how to represent the true arithmetical sentence
∀x∀y(x ≤ y ∨ y ≤ x).

Given a sentence φ of first order logic, we call the sequence of Boolean formulas
representing φ a translation of φ into propositional logic. The word ‘translation’
is justified by the fact that we often want to preserve at least part of the syntacti-
cal structure of φ in the translation, which enables us to prove interesting relations
between proofs in predicate logic and proofs in the propositional calculus.

It is not difficult to show that in fact one can translate universal-P sentences into
sequences of propositional formulas. The universal quantifier enables us to bootstrap
the NC1 predicate into a P predicate. Thus we can represent our fundamental type
of sentences in propositional logic.

Propositional Proof Systems

Let us turn to the most important part of the propositional calculus, the proofs. We
have a variety of interesting tautologies and we wonder how difficult it is to prove
them. There are various axiomatizations of propositional logic. Essentially in all
these axiomatizations one can prove every tautology of size n by a proof of at most
exponential size in n, but exponentially large proofs are not very useful. The crucial
question is which tautologies have polynomial size proofs. Of course, this makes
sense only for infinite sequences of tautologies.

Example We may ask if the pigeonhole tautologies PHPn have polynomial size
proofs. The bound should be polynomial in the lengths of the tautologies, but since
PHPn has polynomial size in n, this is the same as being polynomial in n. Although
these are fairly easy tautologies, we know that in some weak proof systems they
have only exponential proofs.

In order to be able to answer such questions we must first specify what a propo-
sitional proof is. The presence of different axiomatizations suggests that the answer
may depend on how we define proofs. Therefore it is useful to introduce the concept
of a propositional proof system. A typical proof system is based on axiom schemas

6.3 Propositional Proofs 549

and derivation rules. A proof in such a system is a sequence of formulas that fol-
low either from the schemas or from the previous formulas by applying a rule. The
choice of the schemas and rules influences the minimal length of the proof of a
tautology. In order to get more efficient proof systems we can extend these basic
systems in various ways. We may add infinite families of tautologies, such as the pi-
geonhole tautologies. Or we can add some special kinds of rules. One of the strong
rules is the substitution rule. According to this rule, if we derive a tautology φ, we
may pick any variable p in φ and any proposition ψ and substitute ψ for p in φ. An-
other important rule is the extension rule. This rule allows us to abbreviate derived
tautologies by symbols in order to avoid the use of extremely large formulas.

One can also consider proof systems that differ more radically from the standard
concept. To give you a glimpse on how such proof systems might look, I will de-
scribe a classical result in algebra called Hilbert’s Nullstellensatz. Suppose a system
of m algebraic equations with n complex variables is given by

p1(x1, . . . , xn)= 0
p2(x1, . . . , xn)= 0

. . .

pm(x1, . . . , xn)= 0

(6.8)

where p1,p2, . . . , pm are polynomials. Suppose that we can find polynomials

q1(x1, . . . , xn), q2(x1, . . . , xn) , . . . , qm(x1, . . . , xn)

such that
m∑
i=1

qi(x1, . . . , xn)pi(x1, . . . , xn) (6.9)

is the constant 1 polynomial. Then we know that the system of equations (6.8) does
not have a solution. Indeed, if a string of numbers a1, . . . , an were a solution, then
after substituting a1, . . . , an into the sum (6.9) we would get a sum of zeros, which
is zero. But the sum is identically equal to 1, hence a solution cannot exist.

Thus using such strings of polynomials we can prove that a system of equations
does not have a solution. (We can check that the polynomial (6.9) is 1 by expanding
it into a sum of monomials.) Hilbert’s Nullstellensatz says that this method always
works, namely, if the system does not have a solution, then such a string of poly-
nomials q1, q2, . . . , qm exists. So we can view it as a proof system for unsatisfiable
systems of equations. The strings of polynomials p1,p2, . . . , pm play the role of a
tautology and strings of polynomials q1, q2, . . . , qm that satisfy the condition above
play the role of a proof. In this system we are assuming that the polynomials are
represented as sums of monomials. The system is formally not a propositional proof
system because it concerns complex numbers, but a modification of this system also
works for the two element field.17 Interpreting 1 as truth and 0 as falsehood, as
usual, we get a natural propositional proof system.

17For the two-element field, we must always include the equation x2
j − xj = 0 for all variables,

which expresses that variables represent zeros and ones.

550 6 Proof Complexity

What is remarkable about this system is that it is not based on sequential deriva-
tions of tautologies. A string of polynomials q1, q2, . . . , qm, which is a proof in this
system, in general does not have parts that are proofs of the unsatisfiability of other
systems of equations. The proof makes sense only as a whole.

Another noteworthy fact is the use of a mathematical theorem for designing a
proof system. Hilbert’s Nullstellensatz is a typical characterization theorem in which
a universal property is characterized by an existential property. The universal prop-
erty that is characterized is: ‘no string of number is a solution’; the existential prop-
erty is: ‘there exists a string of polynomials such that the sum (6.9) reduces to 1’. In
general, this is exactly what proofs should do. If we want to prove a general state-
ment, we need to characterize the fact that something holds in all structures (of some
given type), by the existence of a string of symbols (with some properties).

With these examples in mind we can now isolate the basic properties of proposi-
tional proof systems:

1. Soundness and Completeness.
2. Verifiability.

Soundness means that only tautologies are provable; completeness means that all
tautologies are provable. Thus the first condition says that the set of provable for-
mulas is the set of tautologies. This seems to be in contrast to the situation in first
order logic, where different theories may prove different sets of theorems. However,
what we are actually interested in are the sets of tautologies that have short proofs;
these sets are in general different for different systems.

The second condition talks about the nature of proofs. We would like a proof to be
undeniable evidence. Whether or not we accept it as such depends also on whether
or not we believe in the soundness of the system, but if we believe in it, then we
need only to know for sure that a given text is a proof in the system. Put otherwise,
we should be able to verify the correctness of a proof. The verification should be
a mechanical process and it should not require any ingenuity of the verifier. We
formalize it by the requirement that

2′. the correctness of proofs can be verified by an algorithm running in polynomial
time.

The general definition of a propositional proof system, due to S.A. Cook and
R.A. Reckhow [51], is based on these two conditions. The definition below is dif-
ferent, but equivalent to theirs.

Definition 18 A proof system is given by a binary relation R defined on strings in
a finite alphabet such that

1′′. for any x there exists y such that R(x, y) if and only if x represents a proposi-
tional tautology;

2′′. R(x, y) is decidable in polynomial time.

Since we are interested in proofs that have at most polynomial length, the central
problem about propositional proof systems is:

6.3 Propositional Proofs 551

Problem 3 Does there exist a propositional proof system P such that for some
polynomial p(x), every tautology φ has a proof in the proof system P of length at
most p(|φ|), where |φ| denotes the length of φ.

It is not difficult to see that this problem is equivalent to the following problem
about complexity classes:

Problem 4 Is NP= coNP?

Most researchers, though not all, believe that the answer to these problems is
negative: there is no such proof system, which is equivalent to NP = coNP. The
inequality NP = coNP implies P = NP, hence proving this conjecture could be
even more difficult than proving P =NP.

Let us call a proof system polynomially bounded when it satisfies the condition
from Problem 3. So the conjecture is that no propositional proof system is poly-
nomially bounded. Can we prove at least that some specific proof systems are not
polynomially bounded? Such results have been obtained and researchers have been
working on extending them to stronger proof systems with the aim of developing
new lower-bound methods that eventually may lead to the proof of the conjecture.
There are other reasons for proving lower bounds on the lengths of proofs in con-
crete proof systems, the most important of which is the close connection of propo-
sitional proof systems with first order theories.

Theories and Proof Systems

On our journey through formal systems we arrived at the bottom level—proposi-
tional proof systems. However, we will see that the bottom and the top are not as far
apart as it may seem on the first sight. In plain words, propositional proof systems
are closely connected with first-order theories.

In order to demonstrate these connections, we have to identify certain types of
proof system. The most common proof systems are based on axioms, or axiom
schemas, and derivation rules. One such system was described on page 112. The
proof systems of this type are called Frege systems. Frege was the first to introduce
a formal system for first-order logic. The propositional part of his proof system was
essentially what we call a Frege system today, except that we have to exclude his
substitution rule. All Frege systems are equivalent in the sense that I will explain
shortly.

Let us say that a propositional proof system P polynomially simulates a propo-
sitional proof system Q if, given a tautology φ and a proof d of φ in Q, one can
construct in polynomial time a proof d ′ of φ in P . When P polynomially simulates
Q we think of P as being at least as strong as Q.

One can prove that every two Frege systems P and Q polynomially simulate each
other. The proof is very easy when the two systems use the same set of connectives.

552 6 Proof Complexity

Then in order to simulate a proof d in Q by a proof in P , we need only to simulate
each step in the proof d . To simulate one step in d we need a constant number of
steps in P . Thus the proof d ′ in P is larger at most by a constant factor. Since any
two Frege systems simulate each other, Frege systems form a natural class of proof
systems.

The most important class of proof systems is called Extended Frege proof sys-
tems. An Extended Frege proof system is a Frege System augmented with the Exten-
sion Rule. As mentioned before, the rule is used to abbreviate long propositions and
is formalized as follows. For every proposition ψ , we may introduce the proposition

q ≡ψ,

where q is a variable that does not occur in the previous part of the proof. Further-
more, q must not occur in the proposition that we are proving. The reason for using
this rule is that we may have proofs that have a small (polynomial) number of steps,
but some of the formulas occurring in the proof may be (exponentially) large. In
particular, there are proofs that are exponentially large, but have only polynomial
number of steps. Repeated applications of the extension rule enable us to transform
such proofs into polynomial size proofs.

However, we are not able to prove that it is necessary to use the Extension Rule
in order to avoid the exponential blowup of formulas, although it seems very likely
to be the case. On the positive side, we know that every two Extended Frege systems
polynomially simulate each other. Thus Extended Frege proof systems form another
natural class of proof systems, which we denote by EF.

The reason why we consider Extended Frege systems important is their rela-
tion to the theory ΘP. The main relation is the content of the following theorem of
Cook [49].

Theorem 52

1. In ΘP it is provable that Extended Frege systems are sound.
2. If it is provable in ΘP that a propositional proof system P is sound, then Extended

Frege proof systems polynomially simulate P .

Thus the Extended Frege proof systems are determined by the condition of being
the strongest systems whose soundness is provable in ΘP.

We have obtained the triad of closely related concepts

P ΘP EF

one in computational complexity, one in first order logic and one in propositional
logic. There are more such triads, though the propositional proof systems of them
are not as natural as EF.

There is another important connection between ΘP and EF. Let ∀x φ(x) be a true
ΠP sentence. Let a sequence of tautologies τn, n = 1,2, . . . , be the propositional
translations of ∀x φ(x). Thus τn expresses in propositional logic that φ(x) holds

6.3 Propositional Proofs 553

true for all numbers x of length n. Now we can ask whether the tautologies have
feasible proofs. The feasibility can be interpreted in a weaker sense as the existence
of proofs of polynomial lengths, and in the stronger sense, as the existence of an
algorithm that for a given n constructs in polynomial time a proof of τn. According
to our intuition, we expect that if ∀x φ(x) is an “easy” theorem, then the tautologies
τn should have short proofs (that are also easy to find). The intuition is correct;
we just have to define easiness as provability in a weak theory and to consider a
suitable propositional proof system. The prime example is the pair ΘP and EF (also
from [49]).

Theorem 53 1. Suppose a ΠP sentence ∀x φ(x) is a theorem of ΘP. Then there
exists a polynomial time algorithm that constructs proofs of the propositional trans-
lations τn of this sentence in an Extended Frege proof system. In particular, the
propositional translations have polynomial size proofs.

2. If a proof system P has the property stated in 1. for Extended Frege systems,
then P polynomially simulates Extended Frege systems. In plain words, Extended
Frege systems are the weakest systems for which 1. holds true.

The opposite of 1. is not true, there are sentences ∀x φ(x) that are not provable in
ΘP, but whose propositional translations have polynomial size proofs in EF proof
systems (moreover the proofs are constructible in polynomial time).

In order to prove 1., one has to transform a proof in first order logic into a proof
in propositional logic. This is similar to what we have already seen: starting with a
general proof in first order logic, we want to reduce the complexity of formulas in
the proof. In the case of Theorem 53, we want to reduce the complexity all the way
down to propositional logic. To this end we can use polynomially verifiable proofs.
Recall that such proofs, although they are in first order logic, use only elementary
axioms. Thus one only needs to simulate the elementary axioms and rules PV1,
which is only a technical problem. In this way one can translate proofs of theorems
of PV1 into proofs in an Extended Frege system. Since PV1 and ΘP prove the same
ΠP sentences, we obtain the same for ΘP.

The relation of ΘP to EF is similar to the relation of P to nonuniform-P. Recall
that P⊆ nonuniform-P and a language A in the alphabet {0,1} is in nonuniform-P
is if and only if there exists a sequence of polynomial size Boolean circuits Cn such
that for every n, the section of A consisting of inputs of length n is the set of inputs
accepted by the circuit Cn. So we have a polynomial time Turing machine on the one
hand and a sequence of circuits on the other. Similarly, we have a proof of a sentence
ψ on the one hand, and a sequence of propositional proofs of the translations of ψ

on the other. The similarity of these relations suggests that we should view EF, the
class of proof systems associated with theory ΘP, as the nonuniform version of the
theory. It is therefore natural to extend the triad to the quadruple:

P nonuniform-P

ΘP EF

554 6 Proof Complexity

The two rows represent complexity classes and formal systems; the two columns
represent uniform and nonuniform concepts.

I have mentioned that there are other triads of complexity classes, theories and
propositional proof systems. In particular, there exists a propositional proof system
G1 associated with ΘNP, which means that G1 is the strongest propositional proof
system whose soundness is provable in ΘNP. The associated proof systems for ΘP
and ΘNP are a means that potentially can be used to show that these two theories
are different. Here is the idea of such a proof. Suppose that ΘP ≡ΘNP. Since ΘNP
proves the soundness of G1 and we are assuming ΘP ≡ ΘNP, ΘP also proves the
soundness of G1. Since Extended Frege systems are the strongest systems whose
soundness ΘP proves, they must polynomially simulate G1. In particular, if P is
an Extended Frege system, then every tautology has at most a polynomially longer
proof in P than in G1. Hence a possible strategy for proving ΘP ≡ΘNP is to find
a sequence of tautologies τn, n = 1,2, . . . such that for some polynomial p(n) the
tautologies have proofs of lengths at most p(n) in G1, but do not have proofs of
polynomial length in P .

In this way the problem of separating ΘP from ΘNP has been reduced to a com-
binatorial problem about proving lower bounds on the lengths of proofs in EF. Un-
fortunately, we are not able to use this reduction because we are not able to prove su-
perpolynomial lower bounds on EF proofs for any sequence of tautologies. In other
words, we are not able to disprove that EF proof systems are polynomially bounded.
If, contrary to our expectation, EF proof systems were polynomially bounded, then
in particular we would have NP = coNP. Thus not only are we not able to prove
that NP= coNP, which means that no propositional proof system is polynomially
bounded, but we are also not able to prove the (probably) weaker statement that
Extended Frege proof systems are not polynomially bounded.

As it is one of the central problems in the area, I will state this explicitly.

Problem 5 Are EF proof systems polynomially bounded?

We are not able to prove superpolynomial lower bounds even for the (probably)
weaker class of Frege proof systems. These are the most natural propositional proof
systems, yet we do not know how to prove such bounds. Although this problem does
not seem to have any direct connection with complexity, it seems as difficult as the
open problems about complexity classes. In particular, it looks very much like the
problem of proving superpolynomial lower bounds on Boolean circuits computing
Boolean functions defined by NP sets. A Boolean circuit can be represented by a
sequence of elementary Boolean operations; likewise a Frege proof is a sequence
of applications of elementary logical rules; and an Extended Frege proof is only
slightly more complex. We do not have any methods for proving more than lin-
ear lower bounds for any concrete Boolean function; likewise we lack methods for
proving more than linear lower bounds on Extended Frege proofs of any tautology.

Proving lower bounds can not only help us prove separation of theories, it can
also be used to prove independence results. According to Theorem 53, to prove that
a ΠP sentence φ is unprovable in ΘP, it suffices to prove superpolynomial lower

6.3 Propositional Proofs 555

bounds on the lengths of proofs in EF of the propositional translations of φ. The
same is true for any theory that has an associated proof system (in fact, as we will
see shortly, for all theories). Such independence results have actually been proved
for some weaker systems, but it would take us too far afield to explain these results.

Proving that some sentence is unprovable in ΘP seems to be a very weak re-
sult. Indeed, ΘP is much weaker than Peano Arithmetic, Peano Arithmetic is much
weaker than Zermelo-Fraenkel set theory and Zermelo-Fraenkel set theory is much
weaker than the strongest set theories that have been considered (obtained by adding
large cardinal axioms to Zermelo-Fraenkel set theory). But our goal is not to show
independence result for the strongest possible theories. We want to know what is
provable in some particular theories. We have a good reason for asking what is
provable in ΘP, namely, we want to prove that it is weaker than ΘNP. We also hope
that once we are able to prove independence results for ΘP, we will have a method
that will enable us to prove such results for other theories.

There is another important reason for trying to prove independence results in this
way. Unless a theory T is very weak, we know only one general method of proving
the independence of ΠP sentences with respect to T —using Gödel’s theorem. Un-
fortunately, the Gödel sentences are not useful for proving independence of concrete
mathematical theorems. Therefore we are looking for other methods; proving lower
bounds on propositional proofs is an alternative.

Proof Complexity and Computational Complexity

When comparing proof complexity with computational complexity the most striking
fact is that many concepts in one field have a counterpart in the other. Here are some
pairs of such concepts.

computational complexity proof complexity

complexity classes theories

elementary operations basic axioms

computations with bounded resources induction restricted to a class of formulas

the P vs. NP problem the ΘP vs. ΘNP problem

circuits propositional proofs

Although in most cases the correspondence is not buttressed by a formal defini-
tion, the similarities are very conspicuous. This suggests that the two fields study the
same general phenomenon from different perspectives. Yet the two fields are essen-
tially different. They have different goals and, in spite of some relations, the open
problems in proof complexity are not equivalent to open problems in computational
complexity.

In particular, researchers working in proof complexity are not trying to solve P
vs. NP or some other problem about separating complexity classes. Proof complex-

556 6 Proof Complexity

ity studies how difficult it is to prove certain theorems. Thus in the case of P vs. NP,
the questions relevant for proof complexity are: how strong a theory do we need to
prove P=NP (if it is true), and how strong a theory do we need to prove P =NP (if
it is true)? When a proof of P= NP or of P = NP is found, we will be able to give
an upper estimate on the theory in which it is provable. Meanwhile we can only try
to show the unprovability of such statements in weak theories.

Concerning the unprovability of such statements, very little has been achieved so
far. In fact, it seems that to prove such results is as hard as to solve the corresponding
problems. For example, proving that ΘP ≡ΘNP, which would show that P=NP is
not provable in ΘP, seems as difficult as actually proving P = NP. But there are
some results in this direction. One of the early results, due to Buss [34], is the
following.

Theorem 54 P =NP∩ coNP is not provable in ΘP.

This is an easy corollary of Theorem 49 (see Notes for the proof). The conjecture
P =NP∩ coNP is important in cryptography because if it were true that P=NP∩
coNP, then the protocols currently used would probably be insecure.18 Specifically,
the existence of one-way length preserving bijections implies P =NP∩ coNP.

In principle, it should be possible to use proof complexity to show that the cur-
rently known methods are not adequate to solve the P vs. NP problem by proving
superpolynomial lower bounds on the circuit complexity of functions in NP. Un-
fortunately, we do not have such a result yet. Partial progress in this direction has
been made by Razborov [241, 242]. He considered circuits of a special form: two
disjoint circuits C and D connected by the XOR output gate. He defined a theory
in which the two parts of such circuits are represented by two predicates R and S.
The restrictions on induction axioms depend on whether or not the formulas con-
tain both predicates R and S, or only one. For formulas containing both predicates,
the restriction is much stronger. For this kind of circuit and this theory, he was
able to prove that the theory cannot prove superpolynomial lower bounds on the
size of the circuit in general, but if the circuit has constant depth, then one can use
the random restriction technique to prove exponential lower bounds.19 The result
about the unprovability of lower bounds is only conditional; it requires the PRG-
conjecture.

Although the setting is rather unnatural, this result confirms the conjecture that
there is a qualitative difference between proving lower bounds for restricted types
of circuit and for general ones.

Once I was asked why we study proof complexity when it seems that the prob-
lems in proof complexity are as difficult as in those computational complexity. If,

18The conjecture only talks about polynomial time algorithms, but for practical purposes it is im-
portant what the polynomial bound is in these algorithms. The protocols would be insecure in
practice if the polynomial bounds were small.
19In fact, in order to formalize the lower-bound proof, he had to find a new proof of that result.

6.3 Propositional Proofs 557

for example, we are interested in the P vs. NP problem, we should address the prob-
lem directly. My answer is, to put it shortly, as follows. Firstly, as I explained above,
our aim in proof complexity is not to solve problems from computational complex-
ity (but, of course, if we discover a possible way to do this using proof complexity
we will go after it). Secondly, I am a logician and am interested in the founda-
tions of mathematics. Proof complexity is directly connected with the foundations
of mathematics, whereas the connection with computational complexity is not so
tight. Furthermore, I believe that there may be hurdles of a fundamental nature that
prevent us from solving the basic problems of computational complexity. If this is
the case, we are more likely to find them using logic.

Nevertheless, there are a few cases in which proof complexity has indeed helped
solve a problem in computational complexity. In the rest of this subsection I will
describe such a result. It concerns an important problem called Integer Linear Pro-
gramming. An instance of Integer Linear Programming is given by a finite set of
linear inequalities with rational coefficients:

a11x1 + a12x2 +· · ·+ a1nxn ≥ b1
a21x1 + a22x2 +· · ·+ a2nxn ≥ b2

. . .

am1x1 + am2x2 +· · ·+ amnxn ≥ bm,

(6.10)

where aij are rational numbers and xj are unknowns. The aim is to find an integral
solution, which means to find integers c1, c2, . . . , cn that satisfy the inequalities.

This problem is closely related to the Linear Programming problem, which is
defined in the same way, with the difference that what we are looking for now are
any rational solutions. Furthermore, if a solution exists, then we want to find a
solution that optimizes some linear function. For Linear Programming, polynomial
time algorithms are known, whereas Integer Linear Programming is not solvable in
polynomial time unless P=NP. Deciding whether the set of inequalities (6.10) has
an integral solution is an NP-complete problem. Linear Programming is a potent
tool in designing efficient algorithms. Integer Linear Programming could play an
even more important role, if it were solvable in polynomial time. Still, it makes sense
to design algorithms for Integer Linear Programming and study how they perform
on particular types of data, even if we believe that P = NP. On the other hand,
if somebody believes that P = NP and wants to prove it, then it would be a good
strategy to try to find a polynomial time algorithm for Integer Linear Programming.

Let us now focus on decision problems, since they determine the complexity
of these two problems. From high school, we know two operations that preserve
solutions of linear inequalities:

1. adding two equations;
2. multiplying an equation by a positive constant.

According to a well-known result, the system of inequalities (6.10) does not have a
rational solution if and only if we can derive from it the contradictory inequality

0≥ 1

558 6 Proof Complexity

using these two deduction rules. The proof is always short, since it suffices to mul-
tiply the equations (6.10) by nonnegative constants and then add them. The tricky
thing is how to find the constants.

It can happen that a system of linear inequalities has a rational solution, but does
not have any integral solutions. Thus we need something else to characterize the
solvability of (6.10) in the domain of integers. In 1975, building on work of R.E.
Gomory [104], V. Chvátal [45] proved that it suffices to add another simple rule in
order to characterize unsolvability of (6.10) over the integers.

3. If the constants c1, c2, . . . , cn are integers, then from

c1x1 + c2x2 + · · · + cnxn ≥ d

we can derive

c1x1 + c2x2 + · · · + cnxn ≥ 'd(,
where 'd(denotes the least integer such that 'd(≥ d .

In other words, if the coefficients on the left hand side are integral, we can round up
the number on the right hand side. This rule is clearly true in the domain of integers
because if the coefficients on the left hand side are integral, then the sum on the left
hand side is an integer. The method based on 1., 2. and 3. is called the method of
cutting-planes.20

Knowing that 1. and 2. suffice for designing a polynomial time algorithm for
Linear Programming, it is natural to ask whether 1., 2. and 3. suffice for designing
a polynomial time algorithm for Integer Linear Programming. Since we believe that
P = NP, we expect the answer to be negative. So the question is: can we prove
that there is no polynomial time algorithm for Integer Linear Programming based
on the method of cutting-planes? Proving P = NP may be extremely difficult, but
what we are asking for is much weaker: we only want to prove that a certain type of
algorithms cannot run in polynomial time.

Such a result was proved in 1996 [225] and the proof uses methods developed in
proof complexity. It is quite natural to view the three rules of the method of cutting-
planes as the derivation rules of a proof system. Since the variables x1, x2, . . . , xn
range over integers, adding the inequalities 0≤ x1 ≤ 1, 0≤ x2 ≤ 1, . . . ,0≤ xn ≤ 1
further restricts the solutions to zeros and ones. Thus we can think of inequalities as
a kind of Boolean formulas. In particular, we can express disjunctions of variables
and negated variables by inequalities (for example, the disjunction x ∨ y ∨ ¬z is
equivalent to x + y + (1− z)≥ 1). This enables us to represent various interesting
tautologies by unsatisfiable sets of inequalities.

Let τ be a propositional tautology and let S be the system of unsatisfiable in-
equalities representing τ . If d is a derivation of the contradictory inequality 0 ≥ 1
from S, we say that d is a cutting-planes proof of τ . This defines the cutting-planes

20I am only talking about characterizing unsolvability, for the sake of simplicity, but Gomory and
Chvátal proved the more general result that the method of cutting-planes suffices to derive all
inequalities that are consequences of the initial ones.

6.3 Propositional Proofs 559

proof system. It is one of the few proof systems for which we are able to prove ex-
ponential lower bounds on the lengths of proofs. Translated back to Integer Linear
Programming, it means that there are systems of inequalities that are not satisfied by
integers, but for which any derivation of a contradiction based on the rules 1., 2. and
3. is of exponential length. In particular, whatever strategy we use in an algorithm
that is based only on these three rules, the algorithm must run in exponential time.

Similar results have been obtained for some other methods for solving Integer
Linear Programming.

Notes

1. The method of feasible interpolation. Feasible interpolation, invented by J. Kra-
jíček [162], is a useful way of proving lower bounds on the lengths of proofs in
propositional calculus. It is based on the classical result called Craig’s Interpo-
lation Theorem, due William Craig [53]. That theorem is normally stated for first
order logic, but also has a version for propositional logic:

Theorem 55 Let φ(p̄, q̄) denote a proposition with propositional variables
p1,p2, . . . , pn, q1, q2, . . . , qm and ψ(p̄, r̄) denote a proposition with proposi-
tional variables p1,p2, . . . , pn, r1, r2, . . . , rk . Suppose that

φ(p̄, q̄)→ψ(p̄, r̄)

is a tautology. Then there exists a proposition ι(p̄) that contains only the common
variables p1,p2, . . . , pn such that the two implications

φ(p̄, q̄)→ ι(p̄), ι(p̄)→ψ(p̄, r̄)

are tautologies.

Proposition ι(p̄) is called an interpolant of φ(p̄, q̄)→ψ(p̄, r̄). The intuition
behind this theorem is that the logical connection between two formulas must be
mediated by common primitive parts of the formulas. The proof of this theorem
is not difficult if one uses semantic considerations.

In general the size of the interpolant can be exponentially larger than the two
propositions. Krajíček’s crucial idea was that one may be able to bound the size
of the interpolant by the size of the proof of φ(p̄, q̄)→ ψ(p̄, r̄). This is indeed
true for some propositional proof systems with one proviso: one has to consider
the size of the interpolant not as a formula, but as a circuit. Using circuits we can
define Boolean functions in a more concise way. Let us define this property of
proof systems precisely.

Definition 19 A proof system P has the feasible interpolation property, if
there is a polynomial time algorithm such that given an implication of the form

560 6 Proof Complexity

φ(p̄, q̄)→ ψ(p̄, r̄) and its proof d in the proof system P , the algorithm con-
structs a circuit C(p̄) that interpolates the implication. In particular, the size of
the circuit C is bounded by a polynomial in the size of the proof d .

If a proof system P has the feasible interpolation property, then we can reduce
the problem of proving lower bounds on proofs in P to proving lower bounds on
Boolean circuits. To this end we need to find a suitable implication which is a
tautology and prove a lower bound on the size of any circuit that interpolates
it. This reduces one difficult problem to another, probably even more difficult
one. Yet this method is useful. There are plausible conjectures about the sizes of
circuits from which one can prove that some concrete tautologies must be hard
for P. The most remarkable fact is, however, that in many cases we can prove
unconditional results (results that are not based on any unproved conjectures).
This is because quite often we can prove that the interpolating circuits must have
special properties.

In particular, for some proof systems one can prove that if the common vari-
ables p̄ occur only positively in φ, then one can construct a monotone circuit. For
monotone circuits, exponential lower bounds have been proved. The fact that one
can prove exponential lower bounds on the size of monotone circuits that com-
pute certain function does not automatically give us lower bounds on the proofs;
we need more. We need to show that small monotone circuits cannot interpolate
certain implications. It is quite remarkable that the lower bounds on monotone
circuits that had been proved ten years before feasible interpolation was discov-
ered give us exactly what is needed. We do not know whether this is only a fluke
or if there is a deeper reason behind it.

Lower bounds based on monotone feasible interpolation have been proved for
the resolution calculus [162], the cutting-planes proof system [225], the propo-
sitional intuitionistic calculus [134] and several other systems. Unfortunately,
the application of this method is limited to relatively weak proof systems. It has
been shown that Frege systems do not have the feasible interpolation property
assuming that factoring is hard, a conjecture widely accepted in computational
complexity, [29, 166].

2. Sentences unprovable in ΘP. Although we lack methods for proving the inde-
pendence of arithmetical sentences from ΘP, we can at least prove some partial
results.

The first kind of result concerns proofs of unprovability based on conjectures
from computational complexity. An example of such an independence is the fol-
lowing theorem [166] (independence of a sentence expressing a consequence of
the Euler-Fermat theorem):

Theorem 56 If the cryptographic protocol RSA (see page 430) is secure, then
ΘP does not prove the following sentence

∀x∀y(x > 1∧ (x, y)= 1→∃z(yz ≡ 1 mod x
))
.

(The meaning of the expression (x, y)= 1 is that x and y are coprime.)

6.3 Propositional Proofs 561

The second kind of result involves sentences that are likely to be false. An
example of such a sentence was given in Theorem 54. It was stated rather infor-
mally as ‘P = NP ∩ coNP is not provable in ΘP’. The precise statement is as
follows.

If ΘP proves that ∀x φ(x) ≡ ψ(x), where φ and ψ are Σb
1 and Πb

1 sen-
tences respectively, then the sentences define a set in P.

Proof Let φ(x) have the form ∃y α(x, y) where α is sharply bounded. Let ψ(x)

have the form ∀z β(x, z) where β is sharply bounded. We are assuming that the
bounds on the quantifiers ∃x and ∀y are implicit in the formulas. The assumption
about the provability of ∀x φ(x)≡ψ(x) in ΘP implies that

∀x∃y∃z(α(x, y)∨¬β(x, z))
is provable in ΘP. According to Theorem 49, there exist polynomial time com-
putable functions f and g such that the following is true:

∀x(α(x,f (x)
)∨¬β(x,g(x))).

Whence,

φ(x)≡ α
(
x,f (x)

)
.

Since α(x, y) is sharply bounded and f computable in polynomial time,
α(x,f (x)) defines a set in P. This finishes the proof. �

3. Unprovability of circuit lower bounds. In [162], Krajíček proved the following
result, which captures the essence of Razborov’s result about the unprovability
of circuit lower bounds.

Theorem 57 Assuming the PRG-Conjecture (see page 435) the following is true.
If P is a propositional proof system with the feasible interpolation property, then
for every Boolean function f , it is hard to prove in P any exponential lower
bound on the circuit complexity of f .

This theorem is stated very informally and requires specification. Let n and
m be numbers. We represent Boolean functions of n variables by 0–1 strings of
length 2n that list the values of the function, the truth tables. Then we construct
a formula α(x̄, ȳ) where x̄ is a string of 2n variables and ȳ is some string of
auxiliary variables whose length depends on the parameter m. In α the variables
x̄ encode a truth table of a Boolean function of n variables and the variables y

encode a circuit of size m. The formula expresses that x̄ is a Boolean function
that does not have a circuit of size m or less.

Let P be a propositional proof system with the feasible interpolation property.
Let f be an n-variable Boolean function whose complexity is strictly larger than
m and let ā be the truth table of the function. Then α(ā, ȳ) is a tautology. The
content of the theorem is that, assuming the PRG-Conjecture and m ≥ 2nε

, for
some ε > 0, then α(ā, ȳ) does not have a polynomial size proof in P .

562 6 Proof Complexity

(Here we are comparing the sizes of proofs with the sizes of formulas. The
size of the formula α(ā, ȳ) is 2cn for some constant c. Thus a proof of polynomial
size means one of size 2dn, for some constant d .)

6.4 Feasible Incompleteness

In the last section, we saw some interesting connections between complexity theory
and logic. However, the fact that complexity theory is connected with logic does
not imply that there must also be such a connection to the foundations of mathe-
matics. Therefore in this section I will present more concrete connections between
complexity theory and the foundations. I will be mostly talking about conjectures,
so the arguments are rather speculative. Whether or not these argument do give such
connections depends very much on whether or not such conjectures are true. I be-
lieve that they are true, but they seem even more elusive than the main problems
in complexity theory. In any case the conjectures are concrete mathematical state-
ments, hence they can be proved or refuted (at least in principle), and those who do
not like speculations can view the conjectures simply as difficult open problems.

Before considering specific conjectures, I will state a general thesis. The thesis,
which is not a mathematical statement, is intended to encompass various related
conjectures that researchers working in proof complexity have contemplated, al-
though most of them have never been stated explicitly. It is possible that we will
eventually find a single conjecture that will imply all the others, which will allow us
to proclaim this conjecture to be the formalization of the thesis.

The Feasible Incompleteness Thesis The phenomenon of incompleteness mani-
fests itself at the level of polynomial time computations.

There are two types of consideration that lead to the thesis. The first one con-
cerns the problem of consistency. Because of Gödel’s Incompleteness Theorem the
program of proving the consistency of the foundations of mathematics by finitistic
means, as proposed by Hilbert, is not realizable. The foundations of all contem-
porary mathematics are based on Zermelo-Fraenkel Set Theory. To prove the con-
sistency of Zermelo-Fraenkel Set Theory, not only do finitistic means not suffice,
but we need an even stronger theory than the theory itself. Being unable to prove
consistency, we may ask if we can prove at least that there are no short proofs of
contradiction. If, in particular, we could show that the smallest proof of contradic-
tion has to be very large, say of length at least 109, we would be sure that we will
never encounter such a proof in practice. We could view this as a partial realization
of Hilbert’s program. Also recall that, as we have seen in Sect. 6.1, inconsistent the-
ories may be useful in the sense that their theorems with short proofs are true. So
for practical purposes we do not need absolute consistency.

Given a bound n we can always find a finitistic proof of at most exponential
length of the statement expressing that a given consistent theory T does not prove

6.4 Feasible Incompleteness 563

contradiction by proofs of size n. This is because we can list all strings of length n

and for each of them prove that it is not a proof of contradiction “by inspection”. The
question is whether there are shorter proofs than these exponential size “brute force”
proofs. So we again encounter the problem of exponential expansion. It should not
then come as a surprise that the problem is connected with open problems in com-
plexity theory.

The second source of conjectures is proof complexity, namely, the theories that
we call Bounded Arithmetic. The main open problems concern the separation of
pairs of theories associated with the pairs of complexity classes that are conjectured
to be different. We not only want to show that the sets of theorems provable in these
theories are different, but moreover we would like to show that the theories differ
already for low complexity theorems. Again, we are not able to accomplish this
goal, thus we can only make conjectures.

It seems that there is nothing special about theories corresponding to low com-
plexity classes, thus it is natural to state conjectures about general theories. Some
conjectures are quite specific, with little relation to classical incompleteness results,
but some have the distinctive flavor of the incompleteness phenomenon. They say
that every theory has only a limited ability to formalize complex functions and com-
plex sets, which means that if the complexity of sets and functions is too high, the
theory is unable to prove their properties. In other words, the conjectures say that a
possible cause of incompleteness is computational complexity.

When we do not have proofs we argue by analogy. The analogy here is that we
know that the unprovability of certain sentences can be caused by the fact that they
describe a function that grows very fast, so fast that the theory is unable to prove
that such large numbers exist. If the extremely fast growth of a function can cause
unprovability, then why not the extreme complexity of a function?

These two kinds of reasoning that lead to the Feasible Incompleteness Thesis also
produce two different types of conjectures. The first type concerns the constructibil-
ity of proofs and the length of proofs of certain sentences. The second type concerns
the provability of sentences connected with problems in computational complexity.
However, I will show that there is a conjecture that can be interpreted in both ways,
which supports my feeling that there should only be one thesis.

All but one of the conjectures that I am going to state have equivalent versions
stated using only concepts from computational complexity. So we can also view
them as conjectures from complexity theory that have important consequences in
proof complexity. This fact again confirms the close ties between the two fields. The
form of these versions is typically a statement saying that some class of problems
does not have a complete member, that is, one to which all others can be efficiently
reduced. The equivalences and the implications between conjectures are fairly easy
and I will sketch the proofs of most of them.

The reason I state the Feasible Incompleteness conjectures is that it is unlikely
that the related problems are going to be solved soon. It may even happen that
the set-theoretical axioms that we use, however strong they are, are not suited for
problems in the theory of computational and proof complexity. If that is the case,
then we need two things:

564 6 Proof Complexity

1. Some arguments (which do not have to be completely formal) showing that this
is indeed the case.

2. New axioms that will enable us to decide the problems.

I imagine that this could be achieved by a system of conjectures that would do
both—explain why the problems are not provable in the current formal systems
and also decide them. Therefore we should look for general principles that could be
accepted as such new postulates. Whether or not the Feasible Incompleteness Thesis
points in the right direction is yet to be seen.

The Feasible Consistency Problem

I will now consider the first kind of problem in more detail. As we have seen before,
the standard way of formalizing the intuitive concept of feasibility is by considering
arbitrarily large instances and using polynomial bounds. So again, instead of bounds
for concrete numbers we will rather study how the lengths of proofs of consistency
grow as we increase the bounds on the lengths of proofs. Further, it is natural not
to limit ourselves to specific theories, but rather to consider a general situation. So I
will assume that we have two theories S and T , both consistent and both formalized
by a finite number of axioms. The latter condition excludes some important theories,
such as Peano Arithmetic and Zermelo-Fraenkel Set Theory, but all that I am going
to say will also hold true for them. It is simply a convenient assumption to avoid the
complications caused by infinite sets of axioms. T is the theory whose consistency
we are studying and S is the theory in which we are proving facts about T . You
can think of T as being a strong theory that we might need for the foundation of
mathematics (say, a finite part of Zermelo-Fraenkel Set Theory) and S as being a
fairly weak theory about whose soundness we do not have any doubts (a theory that
formalizes “finite means”, such as a finite part of Peano Arithmetic). I will need to
distinguish between proofs in S and T using short expressions, so I will call the
former S-proofs and the latter T -proofs.

Given such theories S and T , we want to know how difficult is to prove the
sentences:

“there is no proof of contradiction derivable from the axioms of T whose
length is at most n,”

for specific numbers n= 1,2, I will abbreviate these sentences by saying “T is
consistent up to length n” and I will use the formulas

ConT (n)

to denote them. I will call ‘the feasible consistency problem’ for these theories the
following question:

If one is allowed to argue only in the theory S, how difficult is it to prove the
sentence expressing that T is consistent up to length n, where n is a concrete
number?

6.4 Feasible Incompleteness 565

The most interesting values of n are those that estimate proofs that can actually
be written down, but we prefer to study the more mathematical question of how the
length of such proofs increases with increasing n. This problem is stated informally,
so let us consider how it can be formalized. One possibility is:

Problem 6 Do the sentences ConT (n) have S-proofs of length at most p(n) for
some polynomial p?

We can measure the difficulty of proving the sentences ConT (n) not only by the
length of S-proofs, but also by the difficulty of finding them. Thus we have another
formalization of the problem above:

Problem 7 Is there a polynomial time algorithm for finding S-proofs of ConT (n)?

Clearly, a positive answer to Problem 7 implies a positive answer to Problem 6,
since an S-proof constructed by a polynomial time algorithm can only be of poly-
nomial length. I conjecture that if S is essentially weaker than T , then the answer to
Problem 6 is negative, which implies a negative answer to Problem 7.

These problems are most interesting when T is strong and S is weak, but let us
also see what happens in general.

1. Suppose that T is weak and S is strong (which is the opposite of what we are
actually interested in). The consistency of T is clearly equivalent to the statement
that ConT (n) is true for all n. Formally, this is the sentence ∀x ConT (x). Suppose
that S is so strong that it proves the consistency of T , thus it proves ∀x ConT (x).
Then, to get ConT (n), an instance of the general statement ∀x ConT (x), we need
only to apply a single logical rule, the rule of deriving a specific instance from
a general statement. Thus in such a case the proofs are always short and easy to
construct. In fact, if n is represented in binary, the lengths of such proofs will only
be logarithmic in n, as opposed to polynomial in n.

2. Suppose that T = S. This is an important special case, since it corresponds to
Gödel’s Second Incompleteness Theorem. This similarity suggests that Problems 7
and 6 should have negative answers, but the opposite is true. There are polynomial
size proofs of ConT (n) in T and they can be constructed in polynomial time [223].
Although the analogy with the Second Incompleteness Theorem fails, there is still a
difference between this and the previous case. In the previous case (when S proved
the consistency of T) we had logarithmic size proofs, assuming n was represented
in binary. In the present case (T = S) this is not true anymore. No matter how
concisely we represent n, the lengths of the proofs of ConT (n) are still close to n.
So, in a sense, we do get an exponential difference between these two cases. This
lower bound was proved by H. Friedman in 1979 [81].

Theorem 58 For every consistent and finitely axiomatized theory T , there exists
ε > 0 such that, for every n, every T -proof of ConT (n) has size at least nε .

566 6 Proof Complexity

In other words, the length of the smallest T -proof of ConT (n) grows asymptot-
ically at least as fast nε . (There is a polynomial gap between the lower and upper
bounds; the true value seems to be close to n.)

3. Suppose that T is essentially stronger than S. To ensure this relation we may
suppose, for example, that T proves the consistency of S. The feasible consistency
problem in this case is wide open. Since T is at least as strong as S, the sentence
ConT (n) implies ConS(n

′), for n′ at most polynomially smaller than n. Thus Fried-
man’s Theorem (applied to S) tells us that the shortest S-proofs of ConT (n) have
lengths at least nε′ , for some ε′ > 0. But for all we know, the shortest S-proofs of
ConT (n) may be of exponential length. It would indeed be interesting to prove this,
but again it is the kind of statement which we do not have the slightest idea how to
prove.

The Relation to the P Versus NP Problem

In fact, it may be as difficult as proving P = NP. To see the relation between the
feasible incompleteness problem and problems in complexity theory, I will present
an argument that in several steps naturally leads to a conjecture about the feasible
incompleteness problem.

(i) Assume P =NP. Then there is no polynomial time algorithm for deciding if a
sentence has a proof of length21 at most n in first order logic.

(Polynomial time means that the algorithm runs in time polynomial in n and the
length of the sentence.) This is because this problem (properly formalized) is NP-
complete. Thus, in fact, the latter statement is equivalent to P =NP.

(ii) Hence if P =NP, there do not exist a consistent finitely axiomatized theory S

and an algorithm A with the following property: given a sentence φ and a number n

such that φ does not have a proof of length at most n in first order logic, A constructs
an S-proof of this fact in polynomial time.

This is because constructing a proof of some sentence is at least as hard as deciding
if the sentence is true. Naturally, the reason why there is no such algorithm for a
theory S may be that there are no such proofs. But since the sentences in question
talk about finite things, every sufficiently strong S can prove them. So the reason
may be rather that the proofs are more than polynomially long. If we assume a little
bit more, then this is indeed what happens. I will state this explicitly.

(iii) Assume coNP =NP. Then there do not exist a consistent finitely axiomatized
theory S and a polynomial p with the following property: for every number n and

21The length of a proof is the length of a string of symbols that represents the proof.

6.4 Feasible Incompleteness 567

every sentence φ, if φ does not have a proof of length n in first order logic, then
there is an S-proof of length at most p(n) of (the formalization of) the statement
that φ does not have a proof of size n.

Again, the assumption and the conclusion are in fact equivalent. Let us reformulate
the nonexistence of S and p as follows:

For every consistent finitely axiomatized theory S, there exists a sequence of
sentences {φ1, φ2, φ3, . . .} such that

1. no φn has a proof of length n in first-order logic, and
2. the sentences ‘φn does not have a proof of length at most n’ do not have

polynomially bounded S-proofs.

We would certainly like to know what the sentences φn are, but the mere assump-
tion that coNP = NP does not give us any hint. We may also wonder whether the
sequence is in some sense uniform. The most uniform sequence is a sequence in
which all elements are the same. If all sentences φn are one fixed sentence φ, then
the condition about the nonexistence of proofs of length n is simply the condition
that φ is unprovable in first order logic. Let T be the theory axiomatized by¬φ; then
the condition that φ is unprovable is equivalent to T being consistent. Similarly, the
conclusion of the statement above is that the sentences expressing the consistency
of T up to proofs of length n do not have polynomially bounded S-proofs. Thus
we have arrived at the main conjecture associated with the Feasible Incompleteness
Thesis.

Conjecture 4 For every consistent finitely axiomatized theory S, there exists a con-
sistent finitely axiomatized theory T such that the sentences ConT (n) do not have
polynomially bounded S-proofs.

Let us analyze further why the conjecture seems probable. To this end I will state
a simple consequence of Gödel’s Second Incompleteness Theorem.

For every consistent finitely axiomatized theory S, there exists a consistent
finitely axiomatized theory T such that S does not prove the consistency of T .

We know that one can simply take T = S, which is Gödel’s theorem, but suppose
we did not know it. Then we could explain the theorem as follows. If one randomly
produces a finite set of axioms (which is the same as producing a single sentence),
then it is difficult to decide if the set is consistent or not. If there were a theory S

that, contrary to the statement above, could prove the consistency of every consistent
theory, then it would help us to decide this difficult question; in fact, it would give us
an algorithm. But since there is no algorithm for deciding consistency, there cannot
be such a theory.

The Feasible Incompleteness Thesis says that if we limit ourselves to polyno-
mial time computations and polynomial size proofs, we should see essentially the
same picture as in the unlimited case. Thus it seems unlikely that we can prove the
consistency of T up to n by a short S-proof when T is much stronger than S.

568 6 Proof Complexity

Let us return to the connections with problems in complexity theory. I started
with a statement equivalent to P =NP, then I made it stronger. The stronger version
was equivalent to coNP =NP. Then I made it more specific, thus again stronger. So
the resulting Conjecture 4 is at least as strong as coNP =NP, which in turn implies
P = NP. Thus Conjecture 4 not only talks about an important problem in proof
complexity and the foundations of mathematics, it also decides the most important
problem in complexity theory.

In general, the fact that some conjecture implies P = NP is not surprising; one
can easily produce lots of such conjectures. What is remarkable, however, is that
Conjecture 4 talks about consistency and provability. Thus we can support our belief
in P =NP by an essentially different type of reasoning.

Conjecture 4 can be equivalently expressed using concepts from computational
complexity theory; I will show this in the Notes. Here I will mention another equiv-
alent formulation that is based on the concept of the propositional proof system.

Call a propositional proof system P length-optimal if for every propositional
proof system Q, there exists a polynomial p such that for every tautology τ , if there
is a proof of length n of τ in Q, then there is a proof of length at most p(n) of τ in
P . In plain words, if there exists a short proof of a tautology in any proof system,
then there also exists a short proof of the tautology in P . Conjecture 4 is equivalent
to the following statement:

Conjecture 4′ There exists no length-optimal proof system.

The proof of the equivalence of Conjectures 4 and 4′ is based on two construc-
tions:

1. a construction of a propositional proof system for an arbitrary (sufficiently
strong) consistent theory;

2. a construction of a theory for an arbitrary propositional proof system.

We already know that some theories can be naturally associated with proposi-
tional proof systems; but this can be done only for some special theories. Fortu-
nately, for proving the equivalence, we do not need theories and propositional proof
system to be associated so tightly. The nature of the statements that we want to prove
to be equivalent is, so to speak, asymptotic. Thus we only need

1. for every theory a propositional proof system that is strong enough, to simulate
all provable ΠP-sentences;

2. for every propositional proof system a theory that is strong enough, to prove its
soundness.

Such calculi and theories can be constructed quite easily. Given a theory T we define
a propositional proof system PT as follows. Let taut(x) be a formula expressing that
x is a tautology. Then a proof of a tautology φ in PT is simply a proof of taut(φ)
in T . As concerns the second construction, given a propositional proof system P ,
we simply take a sufficiently strong base theory and extend it by the axiom saying
that P is a sound proof system.

6.4 Feasible Incompleteness 569

This enables us to switch between theories and proof systems. If S were a theory
that could prove ConT (n) shortly for all finite consistent theories, then the proof
system PS would be length-optimal. Vice versa, if a proof system P were length-
optimal, then the theory S with the axiom that P is a sound proof system would
prove the sentences ConT (n) shortly. (For more details see the proof of the equiva-
lence of related Conjectures 7 and 7′ in Notes.)

Conjecture 4 is not specific about how strong a theory T must be, given the
theory S, and how big the lower bound is. The most common way of making a
theory stronger is to add its consistency (which is unprovable in it according to the
Second Incompleteness Theorem). Concerning the lower bound, we can conjecture
that it is close to the best upper bound that we have, which is exponential. Thus we
arrive at the following stronger conjecture (proposed by J. Mycielski when we were
discussing Conjecture 4).

Conjecture 5 Let S and T be finitely axiomatized consistent theories. If T proves
the consistency of S, then the shortest S-proofs of ConT (n) have exponential
lengths.

Can Computational Complexity Cause Incompleteness?

The second kind of conjecture is about the provability of sentences of the form

∀x∃y φ(x, y), (6.11)

where φ represents a binary relation computable in polynomial time. In Chap. 4
(page 320) we saw concrete examples of independent sentences of this form. These
sentences had the property that they described very fast growing functions and the
independence of these sentences was caused by the fact that the theories were not
able to prove the existence of such rapidly growing functions. In this chapter we
saw (page 514) that one can define hierarchies of functions indexed by constructive
ordinals, by which one can measure the strength of such sentences.

We met sentences of this form again in Sect. 6.2 of this chapter. There they were
used to define TPS, the class of total polynomial search problems. Recall that total
means that the sentence (6.11) is true (thus the sentence implicitly defines a function
defined for all x) and polynomial means that the relation φ is decidable in polyno-
mial time and, for a given x, the length of every y satisfying φ(x, y) is polynomially
bounded by the length of x. I briefly mentioned the possibility that with increasing
strength, theories can formalize more and more search problems. This is essentially
the conjecture I am going to describe in more detail now.

The basic idea is as follows. We know that the unprovability of a sentence of the
form ∀x∃y φ(x, y) can be caused by the fact that the function it implicitly defines
grows very fast. If the length of y is polynomially bounded by the length of x, then
the unprovability cannot be caused by the growth of the implicitly defined function,
but it is possible that it is caused by the computational complexity of the function.

570 6 Proof Complexity

Let x be a fixed number of length n, and suppose that the bound on the length of y is
p(n) for some polynomial p. Although the length of y is polynomially bounded, we
only know that it is somewhere in an exponentially large set (namely, a set of size
2p(n), if we consider binary strings). If one can only use polynomial time algorithms,
it does not help that this set is finite; it is like exploring an infinite set. Therefore it is
conceivable that there is an infinite hierarchy of total polynomial search problems,
like there is an infinite hierarchy of fast growing functions, and that every theory can
formalize search problems only up to certain level. If this is indeed the case, we can
say that the incompleteness concerning such sentences is caused by computational
complexity.

Recall that a theory T properly formalizes a search problem defined by a binary
relation r if r(x, y) is defined by a formula φ(x, y) from the class ΦP and T proves
∀x∃y φ(x, y). We will say that a search problem R1 is strictly stronger than a search
problem R2, if R2 is polynomially reducible to R1, but R1 is not polynomially
reducible to R2. Now we are ready to state the conjecture.

Conjecture 6 For every finitely axiomatized consistent theory T , there exists a total
polynomial search problem Q which is strictly stronger than all search problems
that T properly formalizes.

To see that the conjecture is about incompleteness, consider T and Q with the
properties stated in the conjecture. Then for any formula ψ(x, y) that defines Q, the
theory T does not prove ∀x∃y ψ(x, y).

But there is a caveat here: the fact that there exist unprovable sentences of this
form is a trivial consequence of Gödel’s Incompleteness Theorem. In fact, for every
total polynomial search problem R, we can find a formula φ(x, y) which defines R

such that ∀x∃y φ(x, y) is not provable in T by incorporating the consistency of T

into φ(x, y) (see Notes). The essence of the conjecture is that the unprovability of
∀x∃y ψ(x, y) is caused by the complexity of Q, which is expressed by saying that
the sentence is unprovable for representations of Q by any ΦP-formula.

Again, this conjecture has several interesting consequences in computational
complexity theory. An immediate consequence of the conjecture is that the hier-
archy of total polynomial search problems is infinite in the following sense: there is
no total polynomial search problem to which one could reduce every total polyno-
mial search problem. The latter statement implies P = NP. Furthermore, it has an
equivalent stated only using the concepts of search problems and reducibilities.

Conjecture 6′ There exists no complete problem among total polynomial search
problems, that is, no problem to which total polynomial search problems are re-
ducible.

The equivalence of Conjectures 6 and 6′ is a consequence of the existence of a
complete problem among those for which the condition of totality is provable in the
theory T (see Notes).

6.4 Feasible Incompleteness 571

The above conjecture concerns sentences with two quantifiers and a polynomial
time computable relation. The natural question is whether one can state a conjecture
of this kind also for sentences with only one quantifier, namely for ΠP-sentences.
I will present such a conjecture in the next subsection and give another example in
Notes.

A Connection Between the Two Parts of the Thesis

We have seen two types of conjectures that are instances of the Feasible Incom-
pleteness Thesis. At first they may seem very different. The first type of conjectures
concern the lengths of proofs, whereas the second type is about unprovability. Yet
they are not so different. I will give an example of a conjecture that is slightly weaker
than Conjecture 4, but can also be stated in the form very similar to Conjecture 6.

Conjecture 7 For every consistent finitely axiomatized theory S, there exists a con-
sistent finitely axiomatized theory T such that S-proofs of sentences ConT (n) cannot
be produced by an algorithm in time p(n), for p a polynomial.

Notice that Conjecture 4 gives a stronger reason why sentences ConT (n) are
hard for S, namely, that their proofs are more than polynomially long. The above
conjecture only says that it is difficult to find these S-proofs. Like Conjecture 4,
it can also be stated in terms of propositional proof systems. To this end, define
that a propositional proof system P is optimal if it polynomially simulates every
propositional proof system. This property is, clearly, stronger than being length-
optimal.

Conjecture 7′ Optimal propositional proof systems do not exist.

The fact that Conjectures 4 and 7 can be stated in terms of propositional proof
systems (as Conjectures 4′ and 7′) shows that, in a sense, the hardness of sentences
ConT (n) is caused by complexity. More precisely, it is caused by the existence of
infinite hierarchies of propositional proof systems. But we can get a statement whose
form is much closer to Conjecture 6 by blending the two versions of Conjecture 7
into one. Loosely speaking, the conjecture says that the complexity of propositional
proof systems causes the unprovability of their soundness.

Conjecture 7′′ For every finitely axiomatized consistent theory T , there exists a
propositional proof system P such that T does not prove the soundness of any for-
malization of P by a ΦP-formula.

Recall that soundness means that all propositional formulas provable in the proof
system are tautologies. The soundness of P can be expressed by the ΠP-sentence:

For every P -proof d , every propositional formula φ and every truth assign-
ment a to the variables of φ, if d is a proof of φ, then φ is satisfied by a.

572 6 Proof Complexity

Thus we have a natural conjecture about the unprovability of ΠP-sentences dif-
ferent from Gödel’s sentences. (For the proof of the equivalence of these conjec-
tures, see Notes.)

The diagram below shows the known dependencies between the conjectures.

2 1⇔ 1′ NP = coNP

5⇔ 5′ 4⇔ 4′ ⇔ 4′′ P =NP 3⇔ 3′′

The subject of feasible incompleteness has not received the attention it deserves.
Most researchers are convinced that solving the big open problems in complexity
theory, such as proving P = NP, can be achieved by developing better combinato-
rial methods or using other parts of mathematics which have deeper theories, such
as algebraic geometry, group representation theory etc. But we have seen in this
chapter that computational complexity has many connection with logic and in par-
ticular with proof complexity. The connections with feasible incompleteness show
a link to the foundations of mathematics. In light of this evidence it is conceivable
that the open problems in complexity theory may require a fundamentally different
approach. If one wants to embark on this project, the natural starting point is the
study of feasible incompleteness conjectures.

Notes

1. Lower bounds on the proof complexity of ConT (n)—proof of Theorem 58. We
will assume that T is finitely axiomatized, consistent and sufficiently strong for
formalizing syntax. The following notation comes in handy for this proof. For
a sentence φ, we will denote by ‖φ‖T the length of the shortest proof of φ

in T , if there is one, and otherwise ‖φ‖T =∞. Further, we will denote by n̄

the binary numeral representing a natural number n. The binary numeral is the
term of length approximately logn defined as follows. If we have the successor
functions s0 and s1, then we use the representation given by the formula (6.6),
page 542. Otherwise we replace the successor functions by the terms that define
them and use the same formula, or use a formula that defines this expression, in
case there are no such terms. We will also assume that the rule of modus ponens
is in the proof system for first order logic considered here.

Now the theorem we want to prove is stated simply as the following inequal-
ity for all n: ∥∥ConT (n̄)

∥∥
T
> nε, (6.12)

where ε > 0 is a constant. However, instead of this, we will only prove a closely
related inequality ∥∥ConT

(
n̄c
)∥∥

T
> n− c′ logn, (6.13)

6.4 Feasible Incompleteness 573

for some constants c and c′. Intuitively this is the same as (6.12) with ε smaller
than 1

c
, but formally it needs a little argument which I am omitting.

The proof is based on the Diagonal Lemma 2 (page 291). According to that
lemma, one can construct a formula δ(x) such that the sentence

∀x (δ(x)≡ ∥∥δ(x̄)∥∥
T
> x

)
(6.14)

is provable in T .
The first step is to prove that δ(n̄) is true for every n which is, by (6.14),∥∥δ(n̄)∥∥

T
> n. (6.15)

Indeed, suppose the contrary ‖δ(n̄)‖T ≤ n. Then in particular, δ(n̄) is provable
in T . By Σ completeness, ‖δ(n̄)‖T ≤ n is provable in T . On the other hand,
since T proves δ(n̄), it also proves ‖δ(n̄)‖T > n according to (6.14). Thus T

is inconsistent. Since we are assuming that T is consistent, we have obtained a
contradiction, hence (6.15) must be true.

The part of the proof that we have just done corresponds to the proof of
the First Incompleteness Theorem. As in the proof of the Second Incomplete-
ness Theorem, we will now formalize the above proof in T . However we need
more—we need also to estimate the lengths of proofs of the formulas occurring
in the proof.

When proving (6.15), we have shown that the assumption ‖δ(n̄)‖T ≤ n im-
plies that T is inconsistent. One can estimate the lengths of proofs and show
that if δ(n̄) has a proof of length at most n in T , then a contradiction has length
at most nc for some constant c; written formally∥∥δ(n̄)∥∥

T
≤ n → ‖0= 1‖T ≤ nc.

Let us look at the contrapositive implication where the negation of the conse-
quent is replaced by consistency up to nc

ConT

(
n̄c
) → ∥∥δ(n̄)∥∥

T
> n.

Using (6.14) we can replace the consequent by δ(n̄). Thus we get

ConT

(
n̄c
) → δ(n̄). (6.16)

Since δ(n̄) follows from ConT (n̄
c) and the sentence above by modus ponens,

we have ∥∥δ(n̄)∥∥
T
≤ ∥∥ConT

(
n̄c
)∥∥

T
+ ∥∥ConT

(
n̄c
)→ δ(n̄)

∥∥
T
.

We can also write it as∥∥δ(n̄)∥∥
T
− ∥∥ConT

(
n̄c
)→ δ(n̄)

∥∥
T
≤ ∥∥ConT

(
n̄c
)∥∥

T
.

We already have a lower bound on ‖δ(n̄)‖T , (6.15), so in order to prove a lower
bound on ‖ConT (n̄

c)‖T , it remains to show an upper bound on ‖ConT (n̄
c)→

δ(n̄)‖T . The reason why it has a proof of logarithmic length is that (6.16) is
provable in T as the universal sentence

∀x(ConT

(
x̄c
) → δ(x̄)

)
.

574 6 Proof Complexity

Thus to prove a numeric instance of it, we only need to substitute the numeral
representing n, which has logarithmic length. This finishes the proof of (6.13).

2. Upper bounds on the proof complexity of ConT (n). For stating the upper bound
on the lengths of proofs of finite consistencies we need the concept of a se-
quential theory. Essentially, a theory T is sequential if there are formulas for
coding and decoding finite sequences of arbitrary objects of the theory. The
basic axioms these formulas must satisfy are, stated informally:

a. an empty sequence has a code,
b. given a sequence x and an object y, one can code a sequence that is the

prolongation of x by object y.

More important than the details of the definition is the fact that it is a natural
property satisfied by many theories.

Theorem 59 [223] For every finitely axiomatized sequential theory T , there
exists a constant c such that for all n,∥∥ConT (n̄)

∥∥
T
≤ nc.

The proof of the theorem uses the fact that in sequential theories it is pos-
sible to define partial truth predicates. A partial truth predicate is a formula
that defines truth for a subset of all formulas. (Recall that by the Gödel-Tarski
Theorem 4.2 it is not possible to define truth for all formulas inside a theory.)
Given a number n, it is possible to construct a formula Trn(x) that defines truth
for formulas of length at most n. The size of Trn(x) and the proofs of its basic
properties are polynomial in n. Specifically, there are polynomial size proofs of
the sentences expressing:

• if φ is an axiom of length at most n, then it is true;
• if φ and ψ1, . . . ,ψk are sentences of length at most n and φ follows from

ψ1, . . . ,ψk by a single application of a logical rule, then if ψ1, . . . ,ψk are
true then also φ is true;
• φ ∧¬φ is not true.

From this, we get polynomial size proofs of ConT (m)→ ConT (m + 1) for
all m < n. Noting that ConT (0) is trivially provable, we get a polynomial size
proof of ConT (n).

The gap between the lower and upper bounds has been reduced to the factor
c(logn)2, where c is a constant, for a particular proof system for first-order
logic [224].

3. Theories with infinite sets of axioms. The lower bound on ConT (n) can be gen-
eralized to theories with an infinite number of axioms. The only reason for using
finitely axiomatized theories was that we needed the proof system to be defined
by a polynomial time decidable relation. In order for the relation ‘d is a proof
of sentence φ’ to be decidable in polynomial time, we do not need a finite set
of axioms; it suffices to have a set of axioms such that there exists a polyno-
mial time algorithm for deciding if a sentence is an axiom. If this condition is

6.4 Feasible Incompleteness 575

satisfied and the proof relation is formalized by ΦP-formulas, then the proof
goes through. In particular PA and ZFC have sets of axioms defined by simple
syntactical conditions, hence decidable in polynomial time.

The upper bound on ConT (n) can be generalized to theories that are axiom-
atized by a finite number of axiom schemas. Thus we get polynomial upper
bounds for PA and ZFC.

4. Conjecture 4 in purely computational terms. I have mentioned that Conjecture 4
implies some separations of pairs of complexity classes. In particular we know
the following implications

Conjecture 4→NEXP = coNEXP→NP = coNP→ P =NP.

Thus NEXP = coNEXP is the strongest separation among the three; yet it does
not seem to be equivalent to the conjecture. To state the computational version
of the conjecture we need the following concept. We say that a set X of strings
in a finite alphabet is polynomially sparse if there exists a polynomial p(x) such
that for every number n, the number of strings of length n is at most p(n).

The following statement is equivalent to Conjecture 4:

Let A be a coNP-complete set. Then there is no nondeterministic Turing
machine M with the following properties:

a. M accepts A (i.e., A is the set of strings accepted by M);
b. for every polynomially sparse set X ⊆ A, X ∈ P, there exists a poly-

nomial q(x) such that M accepts every string w ∈X in time q(|w|).
The inequality NP = coNP is equivalent to the statement that a coNP-

complete set cannot be accepted by a nondeterministic Turing machine in poly-
nomial time. The above statement strengthens it by saying that even some sparse
subsets of A that are in P cannot be accepted by such a machine in polynomial
time.

Although rather complicated, this version of the conjecture has an advan-
tage—since it is stated purely in terms of Turing machines and computations,
it can be relativized. An oracle has been constructed with respect to which the
conjecture is true [164]. Thus we have some evidence supporting Conjecture 4.

5. Making formulas artificially stronger. Suppose a total polynomial search prob-
lem P is defined by a formula ∀x∃y φ(x, y) and let T be a consistent finitely
axiomatized theory. We can make a formula that defines the same search prob-
lem and that is unprovable in T by forming the conjunction of ∀x∃y φ(x, y)

with ConT . If we write this as ∀x∃y φ(x, y) ∧ ConT , it does not look like a
definition of a search problem, but we can express it equivalently by:

∀x∃y (x is not a proof of contradiction in T ∧ φ(x, y)
)
.

This shows that it is very important which formula we use to represent a search
problem in a theory T .

6. “Syntactical” and “semantical” complexity classes. Complexity theorists distin-
guish complexity classes that are defined syntactically and those that are defined
semantically. A class C is syntactically defined if, for a Turing machine M , we

576 6 Proof Complexity

can decide whether or not it defines an element of C “simply by looking at it”,
whereas if C is only defined semantically, we have to “test M for what it actually
does”. I propose the following definition instead of this vague description.

Definition 20 A class C is syntactically defined if there exists an algorithmi-
cally decidable set of Turing machines M, such that for every X, X ∈ C if and
only if there exists an M ∈M such that M defines X (i.e., X is the set of inputs
accepted by M). Otherwise the class is defined semantically.

Examples of syntactical classes are P and NP. The standard definition of P is
not syntactical, since it is algorithmically undecidable if a Turing machine runs
in polynomial time. Therefore, for the class P, we take M to be Turing ma-
chines equipped with a clock running in polynomial time. This means that the
program for the Turing machine contains a simple routine that counts the num-
ber of steps and stops the machine after polynomial time, disregarding whether
or not the other computations are finished. The set of Turing machines for NP is
defined in the same way except that we use nondeterministic machines. A class
that is not known to be syntactical is BPP. (But if the conjecture BPP = P is
true, then it is syntactical.)

The rule of thumb is that syntactical classes possess complete sets, while se-
mantical classes do not. Thus there are NP-complete sets but no BPP-complete
sets are known.

One can easily show that syntactically defined classes have a property that
links this concept with provability in theories.

Proposition 12 If C is syntactically defined, then there exists a true theory T

such that for every X ∈ C, there exists a Turing machine M such that M defines
X and T proves the sentence ‘the set of inputs accepted by M is in C’.

If C is not syntactically definable, then it is possible that there is no such
theory. If that is the case, it still does not imply that the sets in C form an
infinite hierarchy with respect to the quasiordering by polynomial reductions;
there may exist a complete problem in C. The conjecture that they do form an
infinite hierarchy can be viewed as an instance of the Feasible Incompleteness
Thesis. Conjectures 4′ and 6′ are statements of this form, except that they talk
about search problems (objects determined by binary relations) rather than sets.
Next is another such example.

7. A conjecture about ΠP-sentences. An interesting concept related both to com-
putational complexity and proof complexity is the concept of pairs of disjoint
NP sets. The words define this concept quite precisely—we consider pairs
(A,B), where A ∩ B = ∅ and A ∈ NP, B ∈ NP. We say that a pair (A,B)

is polynomially reducible to a pair (A′,B ′) if there exists a polynomial time
computable function f which maps A into A′ and B into B ′. We say that a
pair (A,B) is polynomially separable if it is polynomially reducible to the pair
({0}, {1}).

6.4 Feasible Incompleteness 577

In complexity theory such problems are called ‘promise problems’. The
“promise” is that we only get inputs from A or from B . The problem is to de-
cide from which set the input comes. The promise is what makes the definition
of the class of problems “semantical”.

Clearly, if (A,B) is polynomially reducible to (A′,B ′) and (A′,B ′) is poly-
nomially separable, then so is (A,B). We conjecture that there are pairs that are
not polynomially separable. This conjecture is a consequence of the conjecture
NP∩coNP = P. The latter conjecture, in turn, follows from some cryptographic
conjectures, such as the conjecture that there exist one-way permutations.

The following is a stronger conjecture than the conjecture about the existence
of polynomially inseparable pairs.

Conjecture 8 There is no complete disjoint NP pair. In more detail, there is
no pair of disjoint NP sets (C,D) such that every pair of disjoint NP sets is
polynomially reducible to (C,D).

This conjecture is supported by a result of C. Glaßer, A. Selman, S. Sen-
gupta and L. Zhang [94] that there exists an oracle with respect to which the
conjecture is true. An equivalent conjecture concerning provability in theories
is the following:

Conjecture 8′ For every finitely axiomatized consistent theory T , there exists
a pair of disjoint NP sets (A,B) such that for no formal definitions of the sets
A and B is it provable in T that A is disjoint from B .

This is similar to Conjecture 6, but the sentences it concerns are ΠP. Indeed,
let ∃y φ(x, y) be a definition of A and ∃y ψ(x, y) be a definition of B . Then
the disjointness of A and B can be expressed by:

∀x∀y∀z (¬φ(x, y)∨¬ψ(x, y)
)
.

Since φ(x, y) and ψ(x, y) define polynomial time computable relations, this
sentence is ΠP.

One can show that Conjecture 8 implies Conjecture 7.
8. The equivalence of Conjectures 6 and 6′.

(6)⇒ (6′). This direction is easy. Suppose Conjecture 6′ is false. Let S be a
complete TPS. Let T be a sufficiently strong finitely axiomatized fragment of
arithmetic or set theory augmented with the axiom expressing that R is total.
Then such a T shows that Conjecture 6 is false.

(6′) ⇒ (6). This implication requires us to be more specific about how we
formalize TPS problems. Suppose a search problem S is defined using a binary
relation R(x, y), where x’s are inputs and y’s are potential solutions. Further we
have a polynomial bound p on the lengths of solutions y, namely, we require
|y| ≤ p(|x|) for some polynomial p. There is one more implicit polynomial
bound, which is the bound on the running time of the Turing machine com-
puting the relation R. When S is formalized in some theory, we also need that

578 6 Proof Complexity

the theory is able to prove the inequality |y| ≤ p(|x|) for the solutions and the
polynomial upper bound on the running time of the Turing machine.

For TPS problems S1 and S2, we will use the inequality S1 ≤ S2 to denote
that S1 is polynomially reducible to S2. An easy fact is that for every S1 and S2,
there exists an S such that S1 ≤ S and S2 ≤ S. Simply take the product of the
relations defining S1 and S2. Slightly less trivial is the following lemma.

Lemma 16 For every finitely axiomatized consistent theory T , there exists a
TPS problem ST , such that every TPS problem properly formalized in T is
polynomially reducible to it.

Proof. We will define the binary relation R(x, y) for ST . Let us view x as con-
sisting of three parts. The first part is an input z to a search problem; the second
part is a description of a search problem S and a T -proof that it is total. The third
part is an arbitrary string whose purpose is to pad the input to a sufficient size
so that its length bounds the length of the solutions of S and the time needed to
compute the binary relation of S. If x has such a form, then we define R(x, y)

to be true if y is a solution for z in S. If x is not of this form, then we define
R(x, y) to be true for all y. I leave to the reader to verify all the conditions that
R has to satisfy. �

With this lemma in hand, the rest of the proof is easy. Suppose Conjecture 6′
is true. Let T be a finitely axiomatized consistent theory. According to our
assumption, there exists a TPS problem Q′ which is not reducible to ST . Let
Q be a TPS problem such that both Q′ ≤Q and ST ≤Q. Then Q is also not
polynomially reducible to ST , due to the transitivity of≤. Again, by transitivity,
if P is properly formalized in T , then Q ≤ P . So Q has all the properties
required by Conjecture 6.

9. The equivalence of Conjectures 7, 7′ and 7′′. We will consider finitely axioma-
tized consistent theories. Furthermore, we will assume that they are sufficiently
strong. Consistency and the latter condition imply that such theories prove only
true ΠP sentences.

Recall that, given a theory T satisfying the conditions above, one can con-
struct a propositional proof system PT which simulates T for ΠP sentences.
This means that for a ΠP sentence φ, one can define a sequence of tautologies
τn, n= 1,2, . . . expressing the truth of the finite instances of φ such that these
sentences have polynomial size proofs in PT .

Given a propositional proof system P , one can easily construct a theory TP

that proves the soundness of the system. This means that for a formula pr(x, y)
formalizing ‘y is a P -proof of x’ and a formula taut(x) formalizing ‘x is a
tautology’, T proves the sentence ∀x∀y (pr(x, y)→ taut (x)).

I will now outline the proofs of implications between these conjectures.
(7′) ⇒ (7). Suppose (7) is false and let S be the theory that witnesses this

fact. We will show that the propositional proof system PS is optimal.
Let P be an arbitrary propositional proof system. Let d be a P -proof of a

tautology φ. According to the definition of PS , it suffices to construct in poly-
nomial time an S-proof of the sentence taut(φ̄).

6.4 Feasible Incompleteness 579

We will now argue in T . “Suppose φ were not a tautology; let a be a falsify-
ing assignment of φ. Then TP , the theory associated with P , would prove that φ
is falsified by a (since TP is sufficiently strong, it satisfies Σ -completeness). The
length of this proof is polynomial in the length of φ, which is at most the length
of d . Also by Σ -completeness, TP proves that d is a P -proof of φ. This proof
of polynomial length in the length of d . But TP proves the soundness of P , thus
we get that TP proves a contradiction by a proof whose length is polynomial in
the length of d .”

The above proof can actually be constructed in polynomial time. Since we
also assume that we can construct in polynomial time S-proofs of ConTP (n̄), we
can construct an S-proof of taut(φ̄), hence a PS -proof of φ. This algorithm runs
in time that is polynomial in the length of d . Thus it is a polynomial simulation
of the proof system P by the proof system PS . This finishes the proof that PS

is optimal.
(7′′)⇒ (7′). Suppose (7′) is false. Let Q be an optimal propositional proof

system. We will show that TQ, the theory that contains an axiom that Q is
sound, falsifies (7). The proof system Q is defined by a polynomial time relation
R(x, y) that defines that y is a proof of x. We are assuming that R is ΦP-
formalized in TQ.

Let P be an arbitrary propositional proof system. Since Q polynomially
simulates all propositional proof systems, there exists a polynomial time com-
putable function f such that d is a P -proof of φ if and only if R(φ,f (d)).
Hence we can define the proof system P using the polynomial time computable
relation R(x,f (y)). To obtain a ΦP-formalization of P in TQ, use the formal-
ization of R(x, y) and a ΦP-formalization of the function f . Since TQ proves
the soundness for the formalization of R(x, y), it also proves soundness for the
formalization of R(x,f (y)).

(7) ⇒ (7′′). Suppose (7′′) is false. Let S be a theory that falsifies (7′′). We
will show that it also falsifies (7).

Let T be a consistent finitely axiomatized theory. Let τn be the propositional
translations of ConT (n̄). We can define these translations so that S proves that
ConT (n̄) is equivalent to taut(τn) by proofs that can be constructed in poly-
nomial time. Let P be an arbitrary propositional proof system (say, a Frege
system). Extend P by postulating that τn is a proof of itself. Let P ′ be the ex-
tended propositional proof system. According to our assumption, S proves the
soundness of P ′. Hence to prove that τn is a tautology in S, we only need to
verify that it has the right form. This only requires polynomial size proofs that
can easily be constructed. Hence proofs of ConT (n̄) can also be constructed in
polynomial time.

10. Impagliazzo’s worlds and other scenarios. Since we do not know answers to
basic problems in complexity theory, we have to be prepared for possibilities of
how the true relations between the complexity classes can be. In 1995 Russell
Impagliazzo attempted to organize the possible scenarios into five “worlds” for
which he also invented suitable names: Algorithmica, Heuristica, Pessiland,
Minicrypt, Cryptomania, [135].

580 6 Proof Complexity

Algorithmica is the world in which P= NP (or at least NP⊆ BPP). This is
the best world for somebody who is concerned with efficient computations. In
this world not only can one solve all NP problems, but also polynomial search
problems, find optimal solutions, and more.

The other extreme, Cryptomania, is a world in which there are hard prob-
lems, but which offers a different advantage: one can do all the tricks in cryp-
tography that one needs. This is the world that most people assume is ours. To
prove it, it would suffice to show that factoring is hard; however, some experts
doubt that the latter is true.

But there is also a bad alternative, Pessiland (the worst land), where you can
do neither: you cannot compute efficiently problems in NP, and you cannot do
cryptography either. The hard problems in this land cannot be used to conceal
messages; in particular, one-way functions do not exist.

The other two are intermediate worlds. In Heuristica P = NP, but one can
still solve random instances of NP problems efficiently with high probability.
In Minicrypt one can do some basic cryptography, because there are one-way
functions and pseudorandom generators, but there are no secure public-key sys-
tems.

Impagliazzo’s classification focuses on cryptography and comparison of
worst-case complexity with average-case complexity. Different point of views
would, clearly, lead to a different sets of worlds. The following is a natural
classification from the point of view of proof complexity:

a. P=NP; in this world it is decidable in polynomial time if a proposition is a
tautology. Consequently, tautologies have polynomial size proofs that can be
constructed in polynomial time. Also for first order logic there is an efficient
algorithm to find a proof of a logically valid sentence, if a short proof exists.

b. P =NP and NP= coNP; here tautologies have polynomial size proofs, but
we do not have a polynomial time algorithm to find these proofs.

c. NP = coNP and there exists a propositional proof system that polynomially
simulates all propositional proof systems. For all we know, such a system can
be a Frege system. If we know the optimal proof system P , then it makes no
sense to use other systems.

d. NP = coNP and there exists a length-optimal proof system, but not one that
polynomially simulates all proof systems. Here it is reasonable to try different
proof systems when proving a tautology.

e. There does not exist a length-optimal proof system. (This implies NP =
coNP.)

As before, also here most researchers believe that our world is the most com-
plex one, which is the last world in the list.

Main Points of the Chapter

• Every proof in first order logic can be transformed into a direct proof, but it may
expand superexponentially.

Main Points of the Chapter 581

• Theorems may have much shorter proofs if we

1. either add a new axiom to the axiomatic system that we use,
2. or instead of proving the theorem, we only prove that the theorem is provable.

The second way is an instance of what is called “considering from a higher per-
spective”, but the first one is more effective.
• A theory can be useful even if it is inconsistent because it can happen that con-

tradiction has a very long proof and all sentences provable by short proofs are
true.
• Countable ordinals can be used to gauge the strength of theories.
• There are many analogies between computational complexity and proof com-

plexity. In particular, there are theories that we view as counterparts of particular
complexity classes, such as P and NP.
• Proof complexity, although closely related to computational complexity, is nev-

ertheless a different theory. In particular, the open problems of proof complexity
are not mere reformulations of problems from computational complexity.
• The main problems in proof complexity are whether or not certain pairs of the-

ories prove the same theorems. In some cases it is possible to derive separations
of pairs of theories using conjectures about separations of pairs of complexity
classes.
• The problem of separating theories can often be reduced to proving lower bounds

on the lengths of proofs in the propositional calculus. Therefore, problems about
the lengths of proofs in proof systems for the propositional calculus also belong
among the central problems in proof complexity.
• According to the Feasible Incompleteness Thesis, the phenomenon of incom-

pleteness should already manifest itself at the level of polynomial length proofs
and polynomial time computations.
• Several conjectures that can be viewed as instances of the Feasible Incomplete-

ness Thesis have been put forward. They have various implications in computa-
tional complexity; in particular P =NP would be a consequence of some of these
conjectures.
• This connection hints that the essence of the big open problems in complexity

theory could be logical, rather than combinatorial.

Chapter 7
Consistency, Truth and Existence

And God created every living creature that now moveth, and one
was man. Mud as man alone could speak. God leaned close as
mud as man sat up, looked around and spoke. Man blinked.
“What is the purpose of all this?” he asked politely.
“Everything must have a purpose?” asked God.
“Certainly,” said man.
“Then I leave it to you to think of one for all this,” said God.

Kurt Vonnegut, Jr. Cat’s Cradle

IN previous chapters I surveyed mathematical results that were often only loosely
connected with the foundations of mathematics. I will now turn to questions

more intimately connected with foundations. These questions have already appeared
at several places in the book, but they were discussed only briefly.

At the end of the 19th century, when the formalization of mathematics started, it
seemed quite possible that a complete axiomatization of the whole of mathematics
could be achieved. If this were accomplished, we would have one set of axioms for
everything that we would ever need in mathematics. It also seemed possible to prove
the consistency of such a formal system. Hilbert was among the first who realized
the importance of these problems and he promoted the program whose aim was to
find such an axiomatization and to prove its consistency. As we know, these hopes
were dashed by Gödel’s Incompleteness Theorem. So we may need new axioms to
solve open problems now, or in the future, and we always have to worry about the
consistency of our formal systems. But what should we do about it? Stated more
explicitly, we need answers to the following two fundamental questions:

1. How can we find new mathematical principles (axioms) and recognize that they
are true?

2. Is contemporary mathematics safe from contradictions?

If Hilbert’s program did achieve its goals, these two questions not only would
have been answered, but we would also have mathematical proofs justifying the an-
swers. Hilbert envisioned that we would prove that certain axiomatization of num-
bers and sets of numbers were complete and thus we would not need to look for new
axioms. Furthermore, he expected that we would also prove that the axiomatization
was consistent, answering the second question once for ever.

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7_7,
© Springer International Publishing Switzerland 2013

583

http://dx.doi.org/10.1007/978-3-319-00119-7_7
Rh

Rh

584 7 Consistency, Truth and Existence

As the questions stand now, it seems that we cannot solve them as mathematical
problems. Not having a mathematical answer to these questions, we can only build
systems of beliefs that support particular answers to these questions. In other words,
we have to turn to philosophy. Once we allow metaphysical considerations we im-
mediately arrive at another important question, closely related to the above two:

3. Do mathematical entities exist in reality?

How is this related to the questions above? Suppose we are studying some math-
ematical structure M , such as the natural numbers, and we propose a theory T for
it. If we believe that M satisfies the axioms of T and we believe that M is real,
then we also know that T is consistent because reality is consistent; consistency is
a basic attribute of reality. Assuming, moreover, that M is a uniquely determined
structure, there is a unique way how to extend T , if T is not complete. Hence if
the Incompleteness Theorem applies to theories describing M , as is the case with
natural numbers, we cannot fully formalize the truth about M , but we know that for
each sentence φ, one of the sentences φ and ¬φ is an axiom that we can add. This
does not tell us how to find extensions of T that are true in M , but at least we know
that there is an answer to the question above for every sentence φ.

In fact, question 1. is also metaphysical because it talks about truth. One has to
assume reality if one claims that an axiom is true. The need for new methods, prin-
ciples, or axioms is felt also by those who reject the reality of abstract mathematical
concepts. Instead of studying reality, it is possible to assume a pragmatic view and
just look for useful axioms. But it is clear that the way one approaches this problem
influences the way one looks for new axioms.

While mathematical reality is elusive, most people believe in physical reality.
But mathematics is used to describe physical reality with great success, so the two
realities must be connected. Therefore I consider the following question also to be
one of the most fundamental problems.

4. How is physical reality connected with mathematics?

I will start this chapter with a brief survey of some schools in the philosophy of
mathematics and explain how they approach the first three problems. In the second
section I will discuss some mathematical results that are relevant to these questions.
I will mention some relatively simple, but important observations about logical the-
ories, and several deep results in set theory, that have bearings on these questions.
In the last section I will address question 4. I will not attempt to give a comprehen-
sive answer; I will only state some basic questions and offer a view that is radically
different from the standard one. Its appeal is in its connection with computational
complexity.

7.1 Consistency and Existence

Geometrical Foundations

During the history of mathematics the role of the most fundamental concept alter-
nated between the natural numbers and the geometry of space. For Pythagoreans,

Rh

Rh

7.1 Consistency and Existence 585

numbers were not only the most basic concept of mathematics, but they were also
attributed with the mystical role of being the essence of everything. In contrast,
Euclid’s approach to the foundations was geometrical. This is clear from the fact
that the first four books of Elements are completely devoted to geometry. Euclid
used three notions that correspond to numbers as we view them today: magnitudes,
ratios and numbers. Magnitudes are lengths of lines, angles, areas and volumes.
For us, they are just positive real numbers. Ratios are ratios of two magnitudes. A
contemporary mathematician may be puzzled why ratios are entities different from
magnitudes. A physicist is, however, more likely to guess the true reason: Euclid
connected mathematical concepts with physical reality. Magnitudes have physical
dimension, which means that they are measured in physical units, such as meters,
square meters, kilograms etc., while ratios are dimensionless, so their nature is dif-
ferent. Numbers are defined in Elements by choosing a unit and saying that a num-
ber is what is composed of units. So they are positive integers—natural numbers
without zero. We can think of numbers as certain lines and use geometry to derive
arithmetical theorems.

One would expect that having made the connection between natural numbers and
geometry, Euclid derived all arithmetic from geometry. Unfortunately, the physical
interpretation of magnitudes prevented him from doing so. He did note that addition
of numbers corresponds to connecting two lines, but he did not interpret multiplica-
tion as an operation producing a line from two lines. The reason is that the product of
two lines has a different physical dimension, thus it should be associated with area,
rather than length. The mutual interpretations of arithmetic and geometry, though
based on easy constructions that Euclid knew, were explicitly stated by Descartes
much later.

What is important for us here is that Euclid’s contemporaries did not have a prob-
lem with the foundations of mathematics. Although the interpretation of arithmetic
in geometry does not explicitly appear in Elements, it is clear that they believed
that they could fully rely on geometry. Since geometry was viewed as a science
about physical space, mathematical entities were also part of the physical world.
Assuming such geometrical foundations, all questions about meaning, consistency,
existence etc., can be easily answered by pointing to physical reality.

Due to the authority of Euclid, the geometric view of numbers persisted for a long
time. For example, when explaining basic arithmetical concepts at the beginning of
Arithmetica Universalis, Isaac Newton mentions a geometric construction of the
product of two quantities (see also Fig. 7.1):

“And so if you were to multiply any two Lines, AC and AD, by one another, take AB for
Unity, and draw BC, and parallel to it DE, and AE will be the Product of this Multiplication;
because it is to AD as AC, to Unity AB, . . .”1

In the 19th century, when the first systematic treatments of the foundations of
mathematics appeared, mathematics differed from ancient Greeks’ mathematics in
an essential way. New kinds of geometries had been discovered and mathematicians

1Universal Arithmetick (English translation of Arithmetica Universalis), (1720), [208], page 4.

586 7 Consistency, Truth and Existence

Fig. 7.1 Multiplying two
real numbers using geometry

realized that physical space did not have to be Euclidean. Furthermore, a lot of new
concepts had been defined, many of which had little to do with geometry. In partic-
ular, algebraic structures were more related to the natural and real numbers than to
geometry. Therefore it seemed more natural to base the foundations on arithmetic.
When geometry is replaced by arithmetic, one can still keep the connection with
reality; after all, the natural numbers are precisely the concept invented for counting
physical objects. However, what most philosophers of mathematics wanted was not
to explain numbers by physical reality, but conversely, to explain physical reality by
mathematics. Thus the natural numbers had to be treated as a primitive concept.2

Research in the logical foundations at the beginning of the 20th century showed
that the natural numbers and pure logic (more precisely, first order logic) do not
suffice—we also need sets. But natural numbers can be defined using sets, so sets
alone suffice for the foundations. Unfortunately, if we base the foundations on sets,
we completely lose any connection with the physical world and we have to turn to
metaphysics.

A Platonist’s View of Mathematics

In philosophy realism is the belief that there is a reality that is independent of the
human mind. When talking about physical entities that we can observe using our
senses, most people would agree with realism. The problems arise when one asks
about the existence of abstract concepts. For example, we may all agree that a partic-
ular chair in the room exists, but does the abstract idea of a chair exist? Mathematics
only studies abstract entities which makes accepting realism more difficult.

Since the publication of On Platonism in Mathematics [22] by Paul Bernays
many authors have used the term ‘platonism’ for ‘mathematical realism’, although
others consider platonism to be only a branch of it. Here I will use the term ‘platon-
ism’ in the more general sense.

Platonism is attractive for several reasons. Assuming that the axioms describe
a real set-theoretical universe, the problem of their consistency is eliminated—in

2Ironically, Frege, who contributed so much to the foundations based on numbers, seeing his
project fail, also contemplated geometrical foundations (see [30], page 147).

Rh

7.1 Consistency and Existence 587

reality there cannot be an inconsistency because either a sentence is true or it is
false, but not both. Another very important consequence of this assumption is that
the main mathematical structures are uniquely determined. In particular, the natural
numbers, as a mathematical structure, are unique. Therefore the object of the study
of number theory is absolutely clear. Real numbers are also uniquely determined.
Problems start when one asks about the cardinality of the set of real numbers. The
axioms of Zermelo-Fraenkel Set Theory are not able to decide what this cardinality
is. (This is the problem of the validity of the Continuum Hypothesis mentioned in
Chap. 3.) Similar problems arise in the study of the properties of subsets of real
numbers.

Logicians have another reason for accepting platonism: the inner consistency of
this belief. Recall that in order to avoid semantic paradoxes, one has to distinguish
between the object language, the language that we study, on the one hand, and the
metalanguage, the language in which we reason about the object language, on the
other. So when we are talking about sentences in set theory, the object language is
the language of set theory and the metalanguage is usually English. Metalanguage
can also be a formal system. For instance, we may reason about Zermelo-Fraenkel
Set Theory in itself. The two languages may be the same, but we should distinguish
the two levels: the object level and the level of discourse. When we prove theorems
about formal systems, we apply mathematics. Thus we have to use some set theory
(or arithmetic in which syntax can also be formalized). From the point of view of set
theory, formal systems describe real objects. We can prove that natural numbers are
uniquely determined and that formal systems, such as Peano Arithmetic, prove true
theorems about them. Similarly, axiom systems for set theory prove true theorems
about sets, cardinal numbers etc.

To sum up, if we assume platonism, then we can prove that it is right. This is,
obviously, a circular argument. As such, it is not acceptable as a proof, but it can be
used as a test of consistency: it shows that an assumption applied to itself does not
lead to contradiction. That is why I call the above argument inner consistency.

Platonistic belief also entails the fact that every mathematical statement is either
true or false.3 This does not imply that we should always be able to learn which of
the two possibilities is true for every particular mathematical sentence. Neverthe-
less, a typical platonist believes that such a decision is always possible at least in
principle.

In some fields of mathematics the source of this belief is the presence of a variety
of proof methods. This is especially apparent in number theory. The ancient Greeks
used elementary methods for proving theorems about numbers, but one can also
trace back to them some methods that use higher order concepts. The method of
sieves, first used by Erastothenes, is based on using sets of numbers, which is a
higher order concept. After the discovery of calculus, analytical methods became
popular in number theory. Contemporary number theorists often use deep theorems

3This view is not shared by all philosophers, see Notes. Other philosophers of mathematics argue
that one should focus on questions about the truth value of mathematical statements. I will come
to this shortly.

588 7 Consistency, Truth and Existence

from algebra and algebraic geometry. This shows that, although the object of the
study, the set of natural numbers, remains the same, number theorists are able to
use more and more tools. For some problems, tools are not available, but number
theorists hope they will eventually be developed.

Logicians generally agree on the fact that essentially all known results in num-
ber theory can be proved in Peano Arithmetic because the higher order concepts
needed in nonelementary proofs, such as infinite sets and functions defined on inte-
gers (which are not expressible in Peano Arithmetic) can be simulated by suitable
concepts. In Chap. 4, I discussed some mathematical theorems not provable in Peano
Arithmetic, but these were not typical mathematical theorems. They were based on
fast growing functions, whereas a typical problem is not of this kind. Moreover,
the unprovable arithmetical sentences that use fast growing functions can be proved
using set theory. It is possible to construct arithmetical sentences that can only be
proved using much stronger axioms, even large-cardinal axioms, but we do not know
of any arithmetical sentences that are not likely to be proved in set theory extended
with large-cardinal axioms. There are, of course, many notorious open problems that
we do not know how to solve, but mathematicians believe that they only need new
methods, not new axioms. Apparently there is no immediate need of new axioms in
number theory.

An interesting case is set theory because many statements here have been shown
to be independent of the axioms of Zermelo-Fraenkel Set Theory (assuming this
theory is consistent, which is not a problem for a platonist). Platonism in set theory
does not necessarily mean believing in the truth of Zermelo-Fraenkel axioms, but
since other set theories are not used in mathematics, a platonist believing in some
other axiom system of set theory is rather an exception. The test case, and the most
popular among the independent statements, is the Continuum Hypothesis. Since it
is independent of the axioms of Zermelo-Fraenkel Set Theory, the problem is not
caused just by the lack of a method—one has to come up with new axioms in order
to decide it. We can resolve it formally by adding the Continuum Hypothesis, or
its negation as an axiom, but this is not acceptable because it would be an arbitrary
choice. If the universe of sets is a reality, we should find out what is true by studying
it, not by postulating axioms in an arbitrary fashion. The new axioms should be
general principles that we recognize as true.

Set theorist have proposed a number of new axioms that seem to be true general
principles. The most important ones are axioms about the existence of large cardi-
nals. I presented the concept of a large cardinal in Chap. 3. Roughly speaking, such
an axiom postulates the existence of an essentially higher type of infinity. A platon-
ist views the Incompleteness Theorem as the impossibility of capturing all types of
infinity by one axiom system. Therefore, extending a system of axioms by postulat-
ing the existence of higher infinities is what one necessarily has to do in order to get
closer to the complete truth. (We know, however, that large cardinal axioms alone
do not suffice to prove all true sentences.)

How does one find large-cardinal axioms? An interesting observation is that
when platonists are to decide the truth of a large-cardinal axiom, they use con-
sistency as the criterion. This looks like a rule: a cardinal number κ with some

7.1 Consistency and Existence 589

properties exists, if it is consistent to assume that it exists. Of course, there is no
such formal rule, but in concrete cases this is indeed what is used. There cannot be
such a rule for several reasons, one of which is the impossibility of deciding the
consistency of an axiom. Therefore in practice a large-cardinal axiom is accepted if
it survives serious attempts to be disproved.

I mentioned in Chap. 3 that all large-cardinal axioms that have been proposed so
far are compatible, except for a few inessential cases. Thus we do not have prob-
lems with choosing the right ones from them—we can accept them all. This is very
important because, besides consistency, the most difficult problem when choosing
axioms is which axioms should be chosen from a set of axioms that are incompati-
ble. Moreover, the large-cardinal axioms form a linear scale. As we do not have an
explanation for the linearity other than that these axioms describe real entities, this
fact seems to support platonism.

Probably only few mathematicians are pure platonists in the sense that they be-
lieve in the reality of all mathematical entities ever considered. A moderate platonist
believes in the reality of the natural numbers and other countable structures, but not
more. A typical mathematician is a less moderate platonist and also believes in the
existence of the real numbers, real and complex functions etc. This view is sup-
ported by physical reality—space around us is a continuous structure, hence real
numbers have a physical model. It is harder to imagine cardinalities higher than the
continuum (the cardinality of the real numbers) because there are no physical enti-
ties that we could associate with such sets. Therefore the extreme form of platonism,
the belief in the reality of all infinite cardinalities studied in set theory, is professed
only by set theorists.

In the 1970s, Michael Dummett and Haim Gaifman independently proposed an
approach to ontological questions in mathematics based on factually meaningful
questions instead of the elusive notion of existence [64, 84, 85]. The basic idea is
as follows. While it is difficult to determine what a person means when he says that
a certain abstract entity exists, one can learn his views by asking whether or not he
considers questions about the entity meaningful. The person should say whether or
not the questions can, in principle, be answered yes or no. If he says that the question
has a definite truth value, we can infer that he believes that the entity exists. For
mathematicians, this approach is certainly attractive because it looks more scientific
and avoids metaphysical discussions.

In a recent article Gaifman presented a list of seven questions that can be used
to determine to what degree a mathematician is a platonist [86]. One can test math-
ematicians’ views by asking them which questions in the list have definite truth
values. For example, the first question in the list is

“What is the largest prime number dividing 2243112609 − 1?”

A mathematician who says that this question is meaningless is classified as ul-
trafinitist. Similarly one can characterize finitists. Note that this approach can give
us more detailed information about mathematicians’ views than if we simply talked
about existence. This is because not only we ask whether questions about a par-
ticular mathematical structure are meaningful, but also which questions are. For

Rh

590 7 Consistency, Truth and Existence

instance, it is conceivable that somebody may claim that all Π1 (universal-finite)
sentences about natural numbers are either true or false, but deny it for more com-
plex arithmetical sentences. This difference cannot be determined by asking whether
the natural numbers (as a mathematical structure) exist.

The most famous platonist was Gödel, whose platonistic conception included the
universe of sets. He did not consider platonism as the more acceptable alternative,
but as “the only tenable view”. Here is what he wrote about the Continuum Hypoth-
esis in 1947 (when its independence had not been proved yet):

“It is to be noted, however, that even if one should succeed in proving its undemonstrability
as well, this would (in contradistinction, for example, to the proof for the transcendency of
π) by no means settle the question definitively. Only someone who (like the intuitionist)
denies that the concepts and axioms of classical set theory have any meaning (or any well-
defined meaning) could be satisfied with such a solution, not someone who believes them
to describe some well-determined reality. For in this reality Cantor’s conjecture4 must be
either true or false, and its undecidability from the axioms as known today can only mean
that these axioms do not contain a complete description of this reality;”5

In the same paper Gödel proposes to use large-cardinal axioms to settle the truth
of statements that are independent of the axioms of Zermelo-Fraenkel Set Theory,
which is called the Gödel Program nowadays. The theory of large cardinals is one of
the most active areas of set theory. The list of the studied large cardinals is fairly long
and the cases where a proposed large-cardinal axiom turned out to be inconsistent
are rare. Each stronger cardinal enables us to prove more arithmetical sentences.
It is therefore conceivable that, in principle, one may be able to derive every true
arithmetical sentence from some large-cardinal axiom. However, there is a limit to
what large-cardinal axioms can help us prove—they cannot decide sentences that
concern sets of higher cardinality, in particular, they cannot decide the Continuum
Hypothesis. I will say more about this in the next section.

Gödel expected that large-cardinal axioms alone might not suffice, but he still
considered it likely that for any independent sentence, axioms would be found that
would decide it. But how are we going to find them? Here is what he wrote about it.

“There might exist axioms so abundant in their verifiable consequences, shedding so much
light upon a whole discipline, and furnishing such powerful methods for solving given prob-
lems (and even solving them, as far as that is possible, in a constructive way) that quite
irrespective of their intrinsic necessity they would have to be assumed at least in the same
sense as any well established physical theory.”6

His point is that we will recognize new true axioms fairly easily, because they will
distinguish themselves by their power and usefulness. There is historical evidence
that supports this idea: an example is the Replacement Axiom Schema, added to Zer-
melo’s original axiom system. We know that adding just one new infinity makes set

4Here he refers to the Continuum Hypothesis.
5Kurt Gödel, What is Cantor’s Continuum Problem? (1947) [98], pages 519–520. The italics are
mine.
6Ibidem, page 521; both quotations reprinted with the permission of The American Mathematical
Monthly.

7.1 Consistency and Existence 591

theory stronger. But what happens when we add Replacement is an explosion of in-
finities; the resulting increase in the strength of the theory is tremendous. Moreover,
the schema is also useful; for example, it enables us to generalize certain construc-
tions to arbitrary cardinalities. The ‘verifiable consequences’ probably refer to the
parts of mathematics that we assume to be clear. These may be theorems that have
difficult proofs, but are easily provable using the new axioms, and theorems about
natural numbers that we can test experimentally.

Since this is an important idea, let me give it a name.

The Principle of Power and Usefulness The universe of sets is determined by the
axioms that furnish powerful methods and are abundant in their verifiable conse-
quences.

This idea reminds me of the anthropic principle from cosmology. This principle
is used to explain why fundamental constants of physics seem to be tuned extremely
favorably for us: even a small change in the values would have prevented life from
forming because there would be no suns and no planets—the universe would be
simple and dull. With a grain of salt, the principle above can also be justified by the
anthropic principle: we live in the world not only with the most interesting physics,
but also with the most interesting mathematics.

Intuitionistic Mathematics

I briefly mentioned intuitionistic mathematics when I was describing constructive
mathematics in Chap. 2. Now I will say more about the philosophical aspects of in-
tuitionism. Intuitionism is a radically different approach to the foundations of math-
ematics. Initially intuitionism did not only concern the philosophy of mathematics;
intuitionists proposed an essential revision of mathematics and rebuilding it on con-
structive foundations. Research in intuitionistic mathematics is still going on, but it
does not attract the attention of working mathematicians as much as before. Nev-
ertheless, most of the current attempts to revise the foundations are still connected
with intuitionism.

The main proponent of intuitionism was the Dutch mathematician L.E.J.
Brouwer. After a short and successful period of activity in algebraic topology (he
proved, for example, the well-known Brouwer’s Fixed Point Theorem) he turned
his mathematical activity to the foundations of mathematics and set to work re-
vising mathematics on intuitionistic grounds. Other mathematicians, notably Her-
mann Weyl, who had similar views embraced this program as a realization of their
ideas about the foundations of mathematics. This stream of thought went in the
opposite direction than formalism and to some extent was a reaction to it. Hilbert
became worried by the influence that intuitionism was gaining and the possible
consequences in case it prevailed. He considered it his duty to defend traditional
mathematics against it, which resulted in the well-known controversy between the
two great mathematicians.

Rh

592 7 Consistency, Truth and Existence

Below is my attempt to define intuitionism by five main principles, accompanied
with quotations from Arend Heyting and Hermann Weyl.

1. Mathematics studies mental mathematical constructions.

“[Brouwer’s program] consisted in the investigation of mental mathematical construc-
tions as such, without reference to questions regarding the nature of the constructed
objects, such as whether these objects exist independently of our knowledge of them.”7

2. Classical logic is only adequate in the domain of finite structures; infinite struc-
tures require a different kind of logic, intuitionistic logic.

“. . . in mathematics from the very beginning we deal with the infinite, whereas ordinary
logic is made for reasoning about finite collections.”8

3. Basic mathematical concepts do not need definitions or explanations because
people have natural intuition about them. (This is sometimes called primordial
intuition and from that the term intuitionism is derived.) The most important one
is the concept of natural numbers.

“A mathematical construction ought to be so immediate to the mind and its result so
clear that it needs no foundations whatsoever.”9

4. Language and formalism is not able to describe mathematics precisely.

“As the meaning of a word can never be fixed precisely enough to exclude every possi-
bility of misunderstanding, we can never be mathematically sure that the formal system
expresses correctly our mathematical thoughts.”10

5. The natural numbers should be viewed only as a potential infinity. (Recall that
potential infinity is the possibility to extend a mathematical object without limits,
although at each stage the object is finite. In particular, for every natural number
n, we can construct the number n+ 1, but we should never view such a process
as completed, which would be viewing it as an actual infinity.)

“Brouwer made it clear, as I think beyond any doubt, that there is no evidence support-
ing the belief in the existential character of the totality of all natural numbers. . . . The
sequence of numbers which grows beyond any stage already reached by passing to the
next number, is a manifold of possibilities open towards infinity; it remains forever in
the status of creation, but is not a closed realm of things existing in themselves.”11

According to the first principle, mathematics is subjective. Intuitionists admit that
the individual sensations must correspond to some abstract entities, otherwise there
would be no correspondence between the mathematics of different individuals, but
they say that mathematics should not study such metaphysical concepts. According
to intuitionists, banning metaphysical consideration is a way to avoid paradoxes.

7A. Heyting, Intuitionism, An introduction, (1971) [122], page 1.
8ibidem, page 1.
9ibidem, page 6.
10ibidem, page 4.
11H. Weyl, Mathematics and logic, (1947) [308], page 9.

Rh

7.1 Consistency and Existence 593

In intuitionism existence is replaced with constructibility. In this intuitionists re-
vert to the common approach before the advent of nonconstructive proofs of exis-
tential sentences. As Bernays noted

“Euclid postulates: One can join two points by a straight line; Hilbert states the axioms:
Given any two points, there exists a straight line on which both are situated.”12

Contemporary mathematicians also often say ‘one can construct x’ or ‘one can find
x’ instead of ‘there exists x’, but they do not mean that there exists an algorithm
for finding x. It is just easier to imagine an existential statement as an idealized
construction. As we noted in Chap. 5, nonconstructive proofs are ubiquitous, but
mathematicians are still interested in explicit constructions or descriptions of the
objects claimed to exist. Intuitionistic logic has a means to distinguish between con-
structive and nonconstructive proofs of an existential formula. In the first case the
existential formula is true, in the second case only the doubly negated existential
formula is true. Such doubly negated sentences are expressed in words by ‘it is not
possible that x does not exist’. For most mathematicians, it seems more effective
to use ‘there exists’ in general and, if they want to stress that the proof is construc-
tive, to specify how the element can be constructed (for example, by an algorithm
running in polynomial time).

For intuitionists the algorithm or the process of construction is more essential
than what the construction actually produces, whereas platonists and formalist are
only interested in the object and do not care what means are used to justify its exis-
tence. There is an aspect of practical importance in the intuitionistic approach: if we
want to use the fact that an object with certain properties exists, we need to have an
explicit example of such an object, which means we have to construct one. But what
is a construction? Aren’t constructions just another kind of mathematical structures?
Indeed, in mainstream non-intuitionistic mathematics algorithms are treated in the
same way as any other kind of structures.

Intuitionists do not see any reason for reducing mathematics to logic. They claim
that we have better intuition about basic mathematical concepts, in particular, about
the natural numbers, than about logic. They argue that the principle of mathematical
induction is as obvious as any logical rule. According to Brouwer, “mathematics
is the exact part of our thinking” (which is very close to Immanuel Kant’s view of
mathematics). Probably everybody would agree that the principle of mathematical
induction is intuitively as clear as logical axioms and rules, but this fact should not
be used against formalizing mathematics. When we formalize natural numbers in
first order logic using the axioms of Peano Arithmetic, we are not saying that logic
is more important; we are only making the rules precise about what constitutes a
proof of an arithmetical sentence and what does not.

If we identify mathematics with our informal ideas, then the fourth principle,
the impossibility of formalizing mathematics, is to some extent true. Whenever we
formally define a mathematical concept, we have many possibilities of how to do it

12Paul Bernays, Sur le platonism dans les mathématiques [22], (1935) page 53. The italics are
mine.

Rh

Rh

594 7 Consistency, Truth and Existence

and each of these gives a different flavor to the defined entity. Consider, for instance,
the definition of a group. One can define groups using the unit, the operation of
multiplication and the operation of inversion. One can also define groups using only
the operation of multiplication, and there are other possibilities. We may prefer one
of these possibilities for various reasons (historical, practical, etc.), but none has
the right to be identified with the concept of a group. So if we interpret the fourth
principle as the impossibility to uniquely determine one formalization of a given
concept, then it is true. But this is not the intended meaning of 4. What it intended
to say was that one can never completely determine a mathematical concept by a
formal definition. But formalization of mathematics has reached such a high level
that we can safely claim that every mathematical concept is fully formalizable. I
dwelt on this subject in Chap. 2 at length, so let me only continue with the example
of groups. The fact that we have many formalizations of groups is unimportant. We
know that each of the formalizations captures what we want to express and they are
equivalent in a sense that can be precisely defined.

Intuitionists maintained that one reason why paradoxes appeared in mathematics
was not respecting the fourth principle. Indeed, if we speak informally about con-
cepts such as true, definable, etc., we may produce paradoxes. Such paradoxes are
called semantical because of their connection with the semantics of the language (an
example is Berry’s paradox mentioned in Chap. 1, page 38). As I have explained in
previous chapters, these paradoxes have two causes: (1) not distinguishing between
the syntactical concepts that are objects of the study and the syntactical concepts
used in our arguments, and (2) the use of certain concepts without precise defini-
tions. Once we define the concepts properly and distinguish the levels of discourse,
they disappear. Thus, in fact, formalism helps to get rid of semantical paradoxes.

Intuitionists circumvent the problem of consistency by pointing out that intu-
itionistic mathematics is based on our intuition about the basic concepts which is
a priori consistent. It would be too easy to dismiss this argument by simply point-
ing to numerous errors in mathematical writings. Instead, let us compare it with the
view of platonists. Platonists say that mathematics is consistent because it describes
reality. They refer to a basic tenet of every realistic philosophy that reality is con-
sistent. Intuitionism is an idealistic philosophy, so it naturally seeks the justification
for consistency in the mind. Thus whether or not one accepts the intuitionistic jus-
tification for the consistency of mathematics depends only on whether one accepts
idealistic or realistic philosophy. However, mathematical practice rather shows that
intuition is not a good criterion for consistency. In general, it is true that a compli-
cated proof that is not based on an intuitively clear idea is more likely to be wrong.
But there are cases when a wrong proof was accepted as correct because it looked
precisely like the right kind of proof for the given theorem. In some cases the the-
orem was eventually proved using different means, but in some cases the theorem
was disproved. One could argue that the wrong proof was based on wrong intuition,
but how do we tell apart a wrong intuition from a correct one?

Rejecting intuitionistic philosophy does not necessarily mean declaring its math-
ematics to be unworthy. Intuitionistic mathematics, stripped of philosophy, is a re-
spectable branch of mathematics with interesting results and problems that surpass

7.1 Consistency and Existence 595

the realm of intuitionism. For instance, some formal systems developed for con-
structive mathematics and based on intuitionistic logic turned out to be very useful
in computer science.

I conclude this part with an observation concerning a connection between the
intuitionistic conception of mathematics and quantum physics. Consider a sentence
φ such that neither a proof of φ, nor a proof of ¬φ is known. For a classical math-
ematician, either φ or ¬φ is true anyway; intuitionistic mathematicians reject the
statement that either φ or ¬φ is true unless they know a proof of one of these two
sentences.

Now consider a physicist measuring a quantum bit b (which is represented by a
suitable physical system, say, the state of an atom). Measuring a quantum bit means
that the result will either be b= 0 or b= 1. Assume also that the physical interaction
of the measuring apparatus with the quantum bit is negligible. A classical physicist,
one that would not use quantum theory, would conclude that before measuring the
bit was either 0 or 1. However, if the bit was a nontrivial superposition of 0 and 1,
then this is not true.

If one wants to argue about quantum systems without using the mathematical
description of the states, it is possible to use quantum logic. This is a logic that is
different from classical logic, and is also different from intuitionistic logic, so the
connection between intuitionistic mathematics and quantum physics is not the use
of the same logic. What is in common is that what a subject learns depends on his
actions. In the first case, by proving one of the two possibilities, the intuitionistic
mathematician makes the sentence φ ∨ ¬φ true. In the second case, by measuring
the bit b, the physicist makes b= 0∨ b= 1 true.

By this example, I want to prepare the reader for the idea, which I will discuss
later in this chapter, that an observer could play an active role not only in physics,
but also in mathematics.

Logicism

After Dedekind had shown that it is possible to reduce all mathematics to the natu-
ral numbers, it seemed that the ultimate foundations had been established. But soon
after that mathematicians and philosophers working in the foundations of mathe-
matics realized that the reduction was not to the natural numbers alone, but to the
natural numbers and logic. Logic cannot be eliminated for obvious reasons, but if
we use logic, do we need arithmetic at all? If we could do without arithmetic, then
we would indeed have the best foundations we could hope for. The basic thesis of
logicism is that this is possible, that we only need logic. If we accept this thesis, then
mathematics is a part of logic.

For further discussion it will help to state the basic thesis of logicism explicitly.

The Logicist Thesis Mathematics can be founded purely on logic.

Rh

596 7 Consistency, Truth and Existence

The founder of logicism was Frege. When he started his research, mathematical
logic did not exist, so he had to invent the logical calculus himself. As I mentioned
in Chap. 2, he did it in his Begriffsschrift and developed further in his later works. As
we know, his system was inconsistent because of Russell’s paradox. He considered
this to be a serious problem and did not try to fix the system to avoid the paradox.
Although he did not present a consistent system, his work has had a tremendous
impact. In particular it contained the first formalization of what we now call first
order logic. His ideas are still used by modern logicists.

Russell was the next most important figure in logicism. The following quotation
from his work expresses the Logicist Thesis in different words.

“The fundamental thesis of the following pages, that mathematics and logic are identical,
is one which I have never since seen any reason to modify.”13

He proposed to avoid the paradox that he had found by introducing types. I presented
his Theory of Types in the chapter about set theory, but in fact, Russell did not
view the Theory of Types as an axiomatic system for set theory. As his aim was to
prove the Logicist Thesis, he viewed his system as a higher order logic rather than
as set theory. Also the systems proposed by logicists later were mostly versions of
the Theory of Types.

Another important logicist was Church. In his paper A Set of Postulates for the
Foundations of Logic, published in 1932 [42], he talks about the foundations of
logic, rather than mathematics, but he compares his system with Russell’s and Zer-
melo’s (saying that those “appear somewhat artificial”). So he, clearly, assumed the
Logicist Thesis and intended his system to give foundations for mathematics. His
idea was to avoid the paradoxes by disallowing the law of excluded middle. Nev-
ertheless, the system was found to be inconsistent, and so also was its modification
published in 1933. It turned out that the important feature of the system was not
disallowing the law of excluded middle, but the particular way of using terms. This
consistent part has been studied under the name λ-calculus.

The Logicist Thesis is not a mathematical statement that one could prove or
disprove formally, but in contrast to the principles of other philosophical views of
mathematics it is a fairly concrete statement. In principle, we could prove it by
defining a logical calculus and showing that all mathematics can be formalized in
it. It will be more difficult to disprove it conclusively because we will need to make
more precise what logic in general is and what mathematics is, but I think that the
arguments against the Logicist Thesis are quite convincing. I will now present a
couple of such arguments.

Russell’s paradox certainly undermined the position of logicism, but Russell’s
solution, the Theory of Types that appeared shortly afterwards, gave new impetus to
this approach. The detrimental blow to logicism was actually Gödel’s Incomplete-
ness Theorem. The consequence of the Incompleteness Theorem is that starting
from second order logic, higher order logics are not axiomatizable (by decidable

13Bertrand Russell, The Principles of Mathematics, Introduction to the second edition, (1903),
[251]; the italics are mine.

7.1 Consistency and Existence 597

sets of axioms). In particular, it is not possible to formalize them by a finite set of
axiom schemas and rules. In plain words it means that we will never be able to state
all principles that are true in these logics. As I argued in Chap. 2, this is the reason
why we should not consider these logics to be genuine logics. What then remains is
first order logic. But first order logic is too weak—we cannot formalize the struc-
ture of natural numbers in first order logic without assuming axioms specific for
arithmetic.

One may play down the problem of incompleteness by saying that we actually
do not need all true sentences of higher order logics, or that we can define com-
pletely different logics. Incompleteness is, however, a deeper problem. It concerns
all formal systems and the independent sentences are of very low logical complexity
(they are Π1). These sentences can be equivalently stated as expressing that certain
Diophantine equations do not have solutions. Therefore incompleteness concerns
very concrete and important mathematical problems. Consequently, we have to view
mathematics as an open ended system. We have to discover new axioms not only in
order to decide what is true about infinite sets, but also because we need to decide
such simple arithmetical sentences.

Example As we noted in Chap. 4 (see page 308), one can construct a Diophantine
equation that is unsolvable if and only if Zermelo-Fraenkel set theory is consistent.
An example is the equation on page 306 with suitable parameters A, B, C, D. If the
Logicist Thesis is true, every true mathematical sentence should be derivable from
logic. Hence there should be a logical principle that implies the unsolvability of this
equation, a principle so strong that it implies the consistency of ZFC.

So I only see two ways in which one can still defend the Logicist Thesis.

1. To propose a formal system having a logical character and say that what it does
not cover are only artificial problems that are not genuinely mathematical.

2. To say that set theory is a part of logic.

There are rationales behind both approaches. Indeed, practically all results in main-
stream mathematics can be proved in Finite Set Theory (the axiomatic system equiv-
alent in its strength to Peano Arithmetic) provided that they are suitably formalized.
But 1 violates one of the basic principles of science: the freedom to investigate ev-
erything. According to this principle we should not prohibit studying any mathemat-
ical problem, however artificial it may look. Accepting 1 would mean renouncing
any mathematics that cannot be done in the proposed formal system. In contrast, the
standard foundations based on Zermelo-Fraenkel Set Theory are viewed as an open
system to which we can add more axioms when needed.

Concerning 2, one can argue that the formal system for set theory that we use
today, Zermelo-Fraenkel Set Theory, which developed from Frege’s system by re-
stricting the Comprehension Schema to certain formulas, is part of logic. But math-
ematicians working in set theory do not view it as logic. They rather view it as the
study of particular mathematical structures. Recall that Cantor started to study sets
because of a problem in mathematical analysis. He needed to understand what kinds

Rh

Rh

598 7 Consistency, Truth and Existence

of sets of reals there are. This is still a central problem in set-theoretical topology
and descriptive set theory. The latter two areas can hardly be viewed as logic. An-
other area of set theory that cannot be considered logic is the theory of large cardinal
numbers. While we could say that the axioms of Zermelo-Fraenkel Set Theory are
of a logical nature, I do not think we can say the same about the large-cardinal ax-
ioms. Those axioms are often statements about combinatorial structures, properties
of measures and other purely mathematical sentences. Admittedly, one cannot ex-
clude that an extremely strong logical principle will be found that would be stronger
than the strongest large-cardinal axioms that we assume to be consistent. But I do
not think we have one now.14

In modern logicism, formal systems are based on typed λ-calculi. These calculi
originated from Russell’s Theory of Types and from systems proposed by Church.
Typed λ-calculi are studied mainly because of their key role in functional program-
ming, but they also have several features that are very attractive for logicists. Before
stating these properties, let us briefly recall that in typed λ-calculi there are two sorts
of objects: types and terms. Types define kinds of functions and they are also inter-
preted as formulas. Terms represent functions and can also be viewed as proofs. The
duality of the interpretations of types and terms is the Curry-Howard isomorphism.

Here are the properties that are useful for the foundations.

1. Logical formulas and proofs are objects of the system and do not have to be in-
troduced via coding or numbering, unlike in arithmetical theories or set theories.
Therefore, one can view such a system as logic.

2. Since terms represent computable functions, the semantics of the system is very
concrete. Unlike in set theories, one does not need to consider infinite sets and
uncountable cardinalities.

3. In order to prove the consistency of the system, one only needs to prove the
convergence of an associated procedure.

4. Structures definable by recursion have typically very simple definitions; this also
concerns natural numbers. This property is useful in programming and computer
assisted proof search and proof verification.

So why bother with set-theoretical foundations? Why don’t we switch to typed
λ-calculi? The reason is that the above properties, however attractive they look, do
not present big gains. Let us look at them more closely.

1. Formalization of syntax in arithmetic and set theory is a one time task. Once we
do it, we do not have to refer to the way it was done. All we need are some basic
properties that the formalization satisfies. Hence property 1. cannot be a reason
for abandoning set theory.

2. I exaggerated when presenting property 2. In fact, when complicated types are in-
troduced, one often refers to their set-theoretical interpretation in order to justify
them. On the other hand, when studying a classical system based on set theory,

14The axioms about elementary embeddings (see page 204) are not of purely logical nature because
they need the concept of ordinal.

7.1 Consistency and Existence 599

we may focus on computable functions that are provably total in the system.
Then we can say that these functions are the true semantics, whereas the other
objects of the system are only ideal objects. (This is roughly the way Hilbert
interpreted mathematical concepts.)

3. For weak systems, it is easy to prove their consistency by proving the conver-
gence of normalization procedures, but for strong ones, one faces the same kind
of problems as when proving the consistency of classical systems. Note that con-
sistency is expressed by a Π1 sentence, whereas the convergence of a normal-
ization procedure is a Π2 sentence. This is not surprising because we know that
it is easier to find a combinatorial interpretation of the Σ1-reflection principle
than an interpretation of consistency. The principles independent of Peano Arith-
metic that I mentioned in Chap. 4 are equivalent to the Σ1-reflection principle
of Peano Arithmetic. When using ordinal analysis to prove that a theory T is
consistent, we need to show, for a particular definition of the associated proof-
theoretic ordinal α, that every algorithm that produces a decreasing sequence of
ordinals below α terminates after a finite number of steps. So ordinal analysis is
a “strategy” similar to proving termination of a normalization procedure.

4. While some concepts do have simple definitions in typed λ-calculi, I am not
sure that this is true of the majority of mathematical concepts. I am afraid that
complicated definitions in typed λ-calculi may often obfuscate the true nature of
many mathematical problems.

Thus I view these systems as a very interesting and useful research area, but I
do not consider them to be a solution of the fundamental problems stated at the
beginning of this chapter.

Formalism and Hilbert’s Philosophy of Mathematics

It is difficult to define schools in the philosophy of mathematics precisely. Philoso-
phers of mathematics often disagree in classifying the views of particular mathe-
maticians. This also concerns formalism, but one obvious feature on which all au-
thors agree is that formalism stresses the importance of formalizing mathematics.
Specifically, a formalist maintains that every field of mathematics can be and should
be formalized because this is the only way to achieve absolute precision in math-
ematics. But this view is now accepted by almost all mathematicians, at least to
the extent that one should always explicitly state the axioms used in the field under
study. So a positive attitude towards the formalization of mathematics is not suffi-
cient for classifying somebody as a formalist. What distinguishes formalists from
platonists is ontology. For a pure platonist, such as Gödel, all sets, whatever their
cardinality is, are as real as finite sets. A formalist distinguishes between real enti-
ties and ideal ones. The real entities are typically finite structures, such as natural
numbers, but often also real numbers. Ideal mathematical entities are those that do
not have natural representations in physical reality.

When we classify ontological views, we cannot use only two categories; instead
we have to consider a whole spectrum of views. Some mathematicians claim that

Rh

600 7 Consistency, Truth and Existence

only finite structures are real and the rest is only a fiction. This is called finitism.
Others may accept real numbers and subsets of real numbers as objective reality,
while rejecting sets of larger cardinality. And so on up to pure platonism. So there
does not seem to be a clear line between platonism and formalism and I will not
attempt to make the distinction more precise.

The most extreme form of formalism is game formalism. According to this con-
ception, mathematical concepts have no meaning; they only serve as symbols in
formal games. Proving theorems in a particular field of mathematics is just playing
the game determined by the rules of that field. It is hard to believe that any math-
ematician ever really viewed mathematics in this way. It is more likely that game
formalism was just an attempt to solve, or rather to avoid, the philosophical question
about what the subject of mathematics is. Let us see what J. Thomae, a proponent
of this approach, wrote about it.

“For the formalist conception, arithmetic is a game with signs that are well referred to as
empty, by which one means to say that they (in the calculating game) have no content given
to them beside that which comes from their role in the rules of combination (rules of the
game).
. . .
The formal standpoint allows us to throw off all metaphysical difficulties. That’s the gain it
offers us.”15

But it is not true that this is a safe way to avoid all metaphysical problems because
then the questions arise: What is the nature of games? Are they real entities or only
mental constructions? And why is mathematics so useful in applications?

A prominent formalist was H.B. Curry, the co-inventor of combinatory logic. His
philosophy, roughly speaking, was that the subject of mathematics is the study of
formal systems.

“The definition I advocate is briefly this: Mathematics is the science of formal systems.
. . .
The essence of mathematics is that we make definitions by recursion, and then draw par-
ticular consequences by applying the definition and general consequences by mathematical
induction.”16

But he rejects the idea that mathematics is merely a formal game where the symbols
have empty meaning. According to Curry, propositions do have meaning whose
truth is “determined by the fundamental definitions”.

When it was shown in the works of Frege, Russell and Whitehead that logic
can be formalized, Hilbert realized that formalization is not only a way to make
mathematical reasoning absolutely precise, but can also be a way to avoid para-
doxes. Because, once a theory is fully formalized, the question about its consistency
becomes a mathematical problem, and, in fact, a purely combinatorial one. This
idea must have been really new and unusual because Frege asked Hilbert repeatedly

15J. Thomae, Elementare Theorie der analytischen Functionen einer complexen Veränderlichen,
Halle, 1898; as cited by M. Detlefsen in [63], page 301.
16H.B. Curry, Outlines of a Formalist Philosophy of Mathematics, [54], pages 56 and 57.

7.1 Consistency and Existence 601

about it in his correspondence with him. According to Frege, the only way to show
the consistency of a system is to interpret it.17

Hilbert was fascinated by the possibility of proving consistency using mathemati-
cal means and spoke about it on many occasions. It was necessary to limit the means
by which the consistency was to be proved; proving the consistency of a theory T

using T itself would be a circular argument (but now we know that even this is not
possible). The natural choice for limited means was ‘finite means’, which means
reasoning only about finite mathematical objects. Finite mathematics was consid-
ered to be safe from contradictions by all philosophers of mathematics. Hence a
proof of consistency by finite means could not be questioned.

Hilbert was not a game formalist in the sense that he would deny that mathemat-
ical concepts had any meaning. When he talked about a “formula game” (“Formel-
spiel”), he rather used this term to explain that one can formalize mathematical rea-
soning so that it can be mechanically checked without knowing the meaning of the
symbols. His views about the existence of mathematical entities were more complex
and, in fact, very liberal: he was willing to identify existence with consistency.

“If contradictory attributes be assigned to a concept, I say that mathematically the concept
does not exist. So, for example, a real number whose square is −1 does not exist mathe-
matically. But if it can be proved that the attributes assigned to the concept can never lead
to a contradiction by the application of a finite number of logical processes, I say that the
mathematical existence of the concept (for example, of a number or a function which sat-
isfies certain conditions) is thereby proved. In the case before us, where we are concerned
with the axioms of real numbers in arithmetic, the proof of the compatibility of the axioms
is at the same time the proof of the mathematical existence of the complete system of real
numbers or of the continuum.”18

In this he agreed with the French mathematician Henri Poincaré (1854–1912). (In-
cidentally Poincaré is considered to be an intuitionist by some authors,19 which
demonstrates how difficult is to classify the schools in the philosophy of mathemat-
ics.)

“Mathematics is independent of the existence of material objects; in mathematics the word
exist can have only one meaning, it means free from contradiction.”20

It should be noted that at that time it was still conceivable that a complete axioma-
tization of real numbers would be found. For further reference I will state this view
as a principle.

17Ironically, Frege was right, at least in the case of strong systems, as it turned out when Gödel
proved the Second Incompleteness Theorem.
18D. Hilbert, Mathematical Problems, (1902) page 446 [125]. This is from his list of problems
presented in 1900, the section about his second problem, The Compatibility of the Arithmetical
Axioms. In this English translation the German word ‘Widerspruchslosigkeit’ was translated as
‘compatibility’. The literal translation of the German word is ‘contradiction-freeness’, which we
today translate as ‘consistency’. Hilbert proposed to prove the consistency of a theory in which one
can formalize both the natural numbers and the real numbers. A natural theory for this purpose is
Second-Order Arithmetic, see page 295.
19E.g., by A.A. Fraenkel, Y. Bar-Hillel and A. Levy, in Foundations of Set Theory, [75].
20H. Poincaré, The Foundations of Science, page 454, [220].

602 7 Consistency, Truth and Existence

The Existence from Consistency Principle If a mathematical concept is consis-
tent, then there exist entities representing this concept.

Later Hilbert moderated his claim and presented it only as an open problem, in
fact, as one of the main problems of foundational studies.

“In this [that they are to a large extent behind the times] I see the reason, too, why these most
recent investigations in fact stop short of the great problems of the theory of foundations, for
example, the question of the construction of functions, the proof or refutation of Cantor’s
continuum hypothesis, the question whether all mathematical problems are solvable, and
the question whether consistency and existence are equivalent for mathematical objects.”21

In this quotation there is another problem of the foundations of mathematics that
he often mentioned: the problem whether all mathematical problems are solvable.
Above it is stated as an open problem, but earlier he called it ‘the axiom of solvabil-
ity’. It was no coincidence that Hilbert mentioned the Existence from Consistency
Principle and his Axiom of Solvability in the same sentence. These two principles
are closely related. If there is no proof that no object satisfies property P , then it is
consistent to assume that there is such an object. If we accept the Existence from
Consistency Principle, then an object satisfying P indeed exists. Thus, in principle,
the problem to find an x satisfying P is always solvable—either there is a proof
that there is no such x, or there exists an x such that P(x) holds true. What Hilbert
did not realize was that proving consistency could be an unsolvable problem. The
idea of the axiom of solvability can be traced back to his lecture at the International
Congress of Mathematics in Paris in 1900, where the well-known ‘no ignorabimus’
quotation appeared:

“We hear within us the perpetual call: There is the problem. Seek its solution. You can find
it by pure reason, for in mathematics there is no ignorabimus.”22

In his lecture On the infinite presented in 1925 he was more explicit about his
views about the existence of mathematical entities ([126], page 376). He distin-
guished between concrete mathematical objects and ideal ones which ‘are not to be
found in reality’. Ideal objects are introduced by what he called ‘the method of ideal
elements’. He mentioned the points at infinity in projective geometry, complex num-
bers and ‘number ideals’ (ideals in rings) as examples. These ideal elements are used
to extend structures to make some laws universally valid. (For example, the points
at infinity are added because we want to guarantee that every pair of lines intersects;
we need to add points at which parallel lines intersect.) His explanation of infinite
sets was that they are such convenient ideal elements.

21D. Hilbert, The foundations of mathematics (Die Grundlagen der Mathematik, 1927), [127],
page 437, (the italics are mine). As this lecture was given two years before Gödel proved the
Completeness Theorem, Hilbert may have had in mind the problem of the completeness of the
calculus for first order logic. At the time when Gödel worked on the Completeness Theorem, it
was known as an open problem posed by Hilbert.
22D. Hilbert, Mathematical Problems, (1902), page 446 [125]. ‘Ignorabimus’ means ‘we shall
never know’. By this word, he referred to the doctrine advocated by some scientists in the late 19th
century which declared that there are a priori limitations to the knowledge we can acquire.

7.1 Consistency and Existence 603

Hilbert also talked about ‘ideal propositions’, propositions that talk about ideal
elements. He, more or less, accepted the view of intuitionists and others who main-
tained that classical logic is only adequate for reasoning about finite objects. But in-
stead of using a different logic he proposed the concepts of ideal elements and ideal
propositions. Ideal elements are introduced in order to facilitate reasoning about
real elements. We are only interested in propositions about real elements, but we
may use ideal propositions, meaning propositions about ideal elements, to prove
real propositions.

Example The concept of an ideal, which is very important in many branches of
mathematics, comes from the “ideal numbers” introduced by Ernst Kummer. Since
the theorem about the unique factorization of numbers is false in some rings, Kum-
mer introduced the ideal numbers to have a substitute for this theorem in such rings.
This enabled him to prove Fermat’s Last Theorem for many exponents. His method
cannot be used for all exponents because in some rings the unique factorization
theorem fails even if one uses prime ideals instead of prime numbers.

Hilbert maintained that ideal elements and ideal propositions can solve the prob-
lem that we use the logic of finite structures to argue about infinite ones. I am not
aware of him giving a particular example of this, so I made up one myself. Let us
assume the viewpoint that the natural numbers are only potentially infinite, which
means that their totality does not form a real object. Then it also is reasonable to
assume, as intuitionists do, that the law of excluded middle does not hold true for
sentences such as ‘either all numbers have property P , or there exists a number
that does not have property P ’. Indeed, how can we talk about all numbers before
they are all created? But there is another solution, one that is used by the majority
of mathematicians: let us pretend that the set of all natural numbers exists, or in
Hilbert’s words, let us add it as an ideal element. Then we can retain classical logic.

According to Hilbert, the part of mathematics that deals with real structures is
consistent, but when we introduce ideal propositions we may inadvertently produce
contradictions, as happened to Frege and Cantor. This problem, he thought, could
be solved by providing proofs of consistency.

Hilbert always stressed that one should in no way limit the concepts and the meth-
ods that mathematicians use. The only reason for not allowing a method should be
the fact that it produces contradictions. This was fully in accord with his views on
the existence of mathematical entities. It was also this liberal approach that led him
to promote the problem of consistency as the main goal of research in the founda-
tions. He described the reaction to the paradoxes in set theory (clearly, referring to
intuitionism) as follows:

“The reaction was so violent that the commonest and most fruitful notions and the very
simplest and most important modes of inference in mathematics were threatened and their
use was to be prohibited.”23

23D. Hilbert, On the infinite, (1925), [126] page 375.

604 7 Consistency, Truth and Existence

Then he went on to say that on the contrary, we should look for new ways of proving
theorems and just make them secure by proving their consistency.

“But there is a completely satisfactory way of escaping the paradoxes without committing
treason against our science. . . .
(1) We shall carefully investigate those ways of forming notions and those modes of infer-
ence that are fruitful; we shall nurse them, support them, and make them usable, wherever
there is the slightest promise of success. No one shall be able to drive us from the paradise
that Cantor created for us.
(2) It is necessary to make inferences everywhere as reliable as they are in ordinary ele-
mentary number theory, which no one questions and in which contradictions and paradoxes
arise only through our carelessness.”24

The main contribution of Hilbert’s formalist philosophy is the identification of
the consistency problem as a mathematical problem. The proposed solution, proving
consistencies by finite means, turned out to be impossible, but had Hilbert not asked
this problem, it is possible that Gödel would not have worked on it and proved the
Incompleteness Theorems.

Quine’s Web of Belief and Consistency

Quine was one of the most influential philosophers of science of the 20th century.
He is also famous for his work in logic, in particular in set theory, which I men-
tioned in Chap. 3. His philosophy is a modern form of naturalism that puts science
and scientific methodology above traditional philosophy. In particular, according to
Quine, one should apply the scientific method to epistemology, which means that
we should study, using psychology, neurology etc., how various beliefs are formed
in human brains. (The subsection below is an example of such an approach.) This
kind of naturalism is attractive for most natural scientists because it resonates with
their belief in the superiority of science over philosophy.

The main aspect of Quine’s philosophy is holism. It is the view that one cannot
consider a thing separately because it only makes sense in the context of all other
things. This concerns both results in science and science as a whole. Whenever we
perform an experiment we are using some theory to design it and to interpret the
result. There is no experiment without a theory. But not only this—each theory only
makes sense in the context of other theories. Everything is just a part of a “web of
belief ”. He thought of knowledge as a field whose periphery consists of empirical
statements and in which, as one progresses towards the center, the empirical state-
ments are gradually replaced by concepts and theories whose abstractness increases.
In particular, mathematics occupies a central region.

“The totality of our so-called knowledge or beliefs, from the most casual matters of ge-
ography and history to the profoundest laws of atomic physics or even pure mathematics
and logic, is a man made fabric which impinges on experience only along the edges. Or

24Ibidem, page 375–376.

7.1 Consistency and Existence 605

to change the figure, total science is like a field of force whose boundary conditions are
experience.”25

But unlike the solutions of typical partial differential equations, the closer to the
center we go, the more ambiguous the web is.

“The edge of the system must be kept squared with experience; the rest, with all its elaborate
myths or fictions, has its objective the simplicity of laws.”26

According to Quine, mathematics is as empirical as other sciences. It is empir-
ically tested whenever we test any theory that uses mathematics. Abstract mathe-
matical concepts are posited; they are chosen from alternatives according to their
usefulness. He was rather skeptical about the usefulness of the most abstract con-
cepts in mathematics. The reason for accepting them is only the necessity to keep
the whole system of mathematical theorems coherent. Let me suggest my own ex-
ample. Suppose we do not believe in (the usefulness of) uncountable cardinalities.
We may still accept them in our set theory, because prohibiting Cantor’s proof would
mutilate set theory too much, but we should not expect them to be very useful.

One interesting idea that concerns the discovery of new concepts and axioms is
his Principle of Minimal Changes. According to this principle one should always
choose the modification of the current system that results in minimal disturbances.
This is similar to the Principle of Minimum Description Length that I mentioned in
Chap. 5 (page 488): a theory with a simple description is more likely to be in accord
with the large systems of other theories than a complicated and contrived one.

The most interesting aspect of holism, coherentism and similar approaches is that
they suggest a way to justify the belief that the whole of mathematics is consistent.
The idea is that if there were a contradiction in current mathematical knowledge,
it would have soon been discovered because it would have had a big impact on
the consistency of the whole web of belief. Or perhaps it would not be discovered,
but we would see that things somehow do not fit together. In other words, holism
suggests that it is unlikely that a contradiction would be hidden in a distant corner
without giving us any sign of its presence.

I think this is actually the way most mathematicians perceive the consistency
problem. The justification by coherence is also used in individual theories. Recall,
for example, the case of non-Euclidean geometries. Although Lobachevsky and
Bolyai did not construct models of these theories, the fact that they were able to
develop coherent theories persuaded them, and other mathematicians as well, that
the theories were consistent. In set theory, where consistency is the most pressing
problem, such an argument is often used too. Set theorists believe that certain ax-
ioms are consistent, or even true because the resulting theory “behaves well”.

Although this seems very plausible, we do not have any mathematical result sup-
porting this idea. On the contrary, as we noted in the previous chapter, one can
construct a theory with a concealed contradiction, provided that some conjectures
in cryptography are true (see page 520).

25W.V.O. Quine, From a Logical Point of View, [232], page 42.
26Ibidem, page 45.

606 7 Consistency, Truth and Existence

Psychological Reasons for Accepting Certain Beliefs

I now digress to psychology because I think little attention is paid to it when on-
tological commitments in mathematics are discussed. Most mathematicians are not
philosophers, therefore their beliefs are not based on well-developed philosophical
systems; rather they are influenced by education, by what they hear from their col-
leagues, and by their daily experience with mathematical work. Hence their choice
of a particular approach to the existence of mathematical objects is guided more by
unconscious psychological processes than conscious logical deductions. I will only
consider platonism and intuitionism.

There are several psychological factors that make platonism an attractive belief.
I mentioned one at the very beginning of the book. When people are thinking about
an object for a long time, the object becomes more and more real in their minds, no
matter whether it is real or imaginary. The natural tendency of the human mind is
to believe in the existence of the objects perceived by sight. The reason is that sight
gives considerably more information about them than any other sense, and also more
than one can learn if the object is only reported. However, if a lot of information is
provided to the brain by different means, it can compensate for not seeing the ob-
ject. The information about the object can also be provided by the thinking subject
itself. One can add more features to the mental image of the object by logical de-
duction, or by fantasy. An example of the former is a mathematician thinking about
a mathematical concept; the latter happens in mystical ecstasies. The job of a math-
ematician is to read, think, talk and write about mathematical objects. The more a
mathematician learns and proves about an object, the more real it seems to him.

Another factor is that platonism is to an extent indoctrinated into students during
their studies. This is not because teachers would like to influence students’ philo-
sophical views. The reason is simply the fact that when teaching science it is best to
assume the viewpoint of a realist. The human mind naturally prefers learning about
reality to learning about ideas that are not represented by real objects. Knowledge
concerning real things is useful in practical life. Furthermore, it is much easier to
explain things from the perspective of a realist. No alternative to platonism has such
a clarity and inner consistency. For this reason, I have also explained mathematics
from this standpoint in previous chapters.

The concept of intuition clearly belongs to psychology. Intuition is the ability
to reach a correct conclusion from given or observed data without apparent use
of deductive reasoning. This concerns all intellectual activities, but let us focus on
intuition in mathematics. What is referred to as can be classified into three types:

1. inborn mathematical abilities,
2. mental pictures of mathematical concepts,
3. subconscious reasoning.

The first kind includes logical reasoning and the ability to generalize from exam-
ples. Further, it includes the ability to count with small numbers and to understand
elementary concepts of three-dimensional geometry. Here we can also include the
important ability to learn algorithms. By this I mean performing a series of actions

7.1 Consistency and Existence 607

to reach a desired goal. When somebody learns enough mathematics, these actions
can be mathematical operations. Another inborn mathematical ability is probabilis-
tic reasoning.

The mental picture of a concept is the total knowledge about it, a sort of database
of everything related to it. If the database is well organized, the subject is able to
answer questions about the concept very quickly. A mental picture is formed by ex-
perience, education and contemplation. Inborn mathematical abilities are also based
on experience, but not individual experience; they are the result of the experience of
ancestors which has been encoded in the genomes by means of natural selection.

Routine activities are often performed subconsciously. Mathematics is no
exception—a good mathematician is able to solve a simple problem very quickly
without consciously performing all the necessary deductions. As most of these de-
ductions are done subconsciously, they are carried through much faster. Since it
happens so fast and since even the mathematician himself does not realize it, it
looks like a little miracle, but instead we call it intuition. When an actual proof is
required, the mathematician can slow down and report all the steps in the deduction
he is doing.

The primordial intuition about numbers, the term used by intuitionists, should
clearly refer to an inborn intellectual ability. My skeptical view is that the inborn
abilities concerning arithmetic do not go beyond comparing the cardinalities of very
small sets. The intuition about geometry is certainly much more developed, because
it is needed for image recognition, planning movement, etc. (It may be developed
even better in birds because they move in three dimensions.) I think that most in-
tuition of adults about numbers comes from education, and the inborn ability of
logical reasoning is more developed than the intuition of numbers. Although logic
is rarely taught outside of universities, most people understand logical deductions
and are able to use them. On the other hand, children are taught counting at a very
early age, so it is difficult to determine what is an inborn ability and what is not. We
would have to test people with no education.

Having said that, if you explain mathematical induction to people who never
heard about it, they will immediately recognize it as a valid principle. I do not have
an explanation for this, but I think it just needs deeper psychological study. Accept-
ing the fact that humans have intuition about mathematical induction simply as a
dogma is an unscientific approach.

Notes

1. Forms of platonism. Platonism in mathematics has been a matter of intensive
research in philosophy. This is quite natural, as it bears on fundamental problems
of philosophy. To give you a glimpse of this research I will list several forms that
have been identified (see [41, 184]).

a. Working realism is a methodological approach (not a philosophical view) to
present mathematics as if platonism were true. I assumed this position when
explaining mathematical structures and the semantics of first-order logic.

608 7 Consistency, Truth and Existence

b. Epistemological and ontological platonisms. Epistemological platonism is
the view that mathematical entities exist and humans can acquire knowledge
about their properties, whereas ontological platonism is only the claim that
mathematical entities exist. It is disputed whether purely ontological platon-
ism is a tenable view.

c. Truth-value realism is defined as the view that every mathematical statement
has a definite truth value: either it is true, or it is false. This definition certainly
needs an explanation. In mathematics we study various theories and various
structures, hence the truth of mathematical statements depends on a particular
theory or a particular structure. Therefore the definition should only be ap-
plied to statements about concrete structures, such as the natural numbers, the
real numbers, the universe of sets etc. Hence this belief presupposes that one
can uniquely determine these structures. Most mathematicians agree that the
natural numbers are unique, but not everybody accepts the uniqueness of the
universe of sets.

d. Full-blooded, or plenitudinous platonism is an attempt to reconcile platon-
ism with the incompleteness of axiomatic set theories. According to this view
there exist a multitude of set-theoretical universes that have different prop-
erties. For example, in some universes the Continuum Hypothesis is true, in
others it is false. If applied to all mathematical structures, this view essen-
tially boils down to the Existence from Consistency Principle, discussed in
connection with Hilbert’s philosophy of mathematics.

2. A definition of the natural numbers in the polymorphic λ-calculus. The natural
numbers are objects of type

(X→X)→ (X→X)

where X is a type variable.
This is an example of a very concise definition of a fundamental mathematical

structure. To explain why this simple formula defines the natural numbers, we
first observe that objects of this type are functions that map functions of some
unknown type to functions of the same type. (The type is unknown because X is
a type variable.) If we do not know anything about the nature of functions, then
there is very little we can do with them. Given a function f , we can do precisely
the following: we can replace it by the identity function (which is present in every
type), or leave it as it is, or iterate it several times. If we express it in symbols,

f �→ id, f �→ f, f �→ ff, f �→ fff, . . .

we see that this naturally corresponds to 0,1,2,3, This is not only a conve-
nient representation of numbers, but one can also argue that it is an explanation
of this concept: natural numbers are quantities expressing the “amount of itera-
tion” of a process. One such process is counting objects.

Note that in first order logic the terms that we can form from one unary func-
tion symbol,

x, f (x), f
(
f (x)

)
, f

(
f
(
f (x)

))
, . . .

correspond to the numbers defined in the λ-calculus, but they are only syntactical
concepts and cannot be defined inside of logic.

7.2 The Attributes of Reality 609

7.2 The Attributes of Reality

The concept of truth in mathematics is elusive and some philosophical schools even
reject it as meaningless. Yet looking at concrete examples we feel that we have
intuition of what is true and what is not. But there is no mystical faculty of the brain
that is above logical reasoning. We accept certain theories as true and others as false
because in the back of our mind we have some idea of how reality should behave.
The main attribute of reality, we believe, is that it is consistent. Therefore we not
only assume that our theories are consistent, but also that they do not imply their
own inconsistency. Consistency is the most important attribute of true theories, but
there are also reflection principles, which are stronger than consistency. We can add
these principles to the theory to make our assumptions explicit. Then we can add
reflection principles for these extended theories and so on. We will see how far one
can get in this way.

Most set-theorists believe that any axiomatic system is able to cover only a
small part of all infinities. Therefore one has to study axioms that postulate higher
infinities—the large cardinals. This is a very natural way to extend the axioms of
set theory, but it is not sufficiently universal; for example, one cannot decide the
Continuum Hypothesis by adding only large cardinal axioms. Still, the study of the
consequences of large cardinal axioms is useful and it also gives us hints how to
choose other axioms, as we will see shortly.

The Importance of Universal-Finite Sentences

Recall that a universal-finite sentence is a sentence asserting that some computable
property P holds for all numbers. Thus the form of this sentences is:

∀x ψ(x)

where the formula ψ(x) expresses that the property P holds for x. The finiteness
in the name means that, for a given x, we can test in finite time whether it has
the property P . This is not a completely formal definition because it does not say
how we express the property. The class of sentences of this kind that has a natural
syntactical definition is the class in which the formulas ψ contain only bounded
quantifiers. Since the ranges of quantification in these formulas are bounded, we
can test ψ(x) efficiently. The class of these sentences is denoted by Π1 and the
sentences are called Π1 sentences.

I also introduced the class ΠP, the universal-P sentences, the subclass of
universal-finite sentences in which the property is computable in polynomial time,
and called them empirically testable sentences. Here the condition of computability
is strengthened to polynomial time computability, which captures more accurately
what can be computed in practice. The importance of these sentences stems from the
fact that these sentences are the output of mathematical research that can be applied
in practice.

610 7 Consistency, Truth and Existence

More specifically, applicable results of mathematics are of two kinds:

1. predictions and
2. algorithms.

In general, scientific theories should give us predictions of the form: if we apply
a function f (describing an action) to x (data about an object), we obtain y = f (x)

(data about the result of the measurement) that satisfies some relation R(x, y). If
the scientific theory is from a field that uses mathematics, such as physics, chem-
istry etc., the predicted relation between the initial situation and the result, which I
denoted by R(x, y), is derived using mathematics. Thus the sentence ∀x R(x,f (x))

is a mathematical theorem. Should the prediction be practically testable, R and f

must be efficiently computable, which implies that the sentence ∀x R(x,f (x)) is
universal-P. So predictions are, from the point of view of logic, universal-P sen-
tences.

Algorithms are also associated with empirically testable sentences. The reason is
that when designing an algorithm it does not suffice only to write down the program;
we must also prove that the proposed algorithm does what it is supposed to do. The
situation can be formally described in a similar way as above: if f is the algorithm
and R is the relation that we want to satisfy, we need to prove ∀x R(x,f (y)).

In the rest of this section the distinction between universal finite and universal-P
will not be significant, thus I will only talk about Π1 sentences. These sentences
play an important role in the foundations of mathematics apart from their place in
applications of mathematics. In spite of their special form, they occur very often
in mathematics. Many open problems, including the Riemann Hypothesis, can be
equivalently stated as Π1 sentences. The statement P =NP is not a Π1 sentence and
we do not know an equivalent Π1 form of this conjecture, but if we state a specific
lower bound on the complexity of a specific NP-complete problem, instead of P =
NP, we obtain a Π1 sentence. Some other conjectures can also be strengthened
in such a way in order to obtain a Π1 sentence. What is especially important for
foundations is that the sentences that express consistencies of theories are Π1.

A simple, but important observation is that it is not possible to prove the inde-
pendence of a Π1 sentence without actually proving it. For further reference, I will
state it formally and give it a name.

Proposition 13 (The Unambiguity of Π1 Sentences) If a Π1 sentence is indepen-
dent of a sufficiently strong theory, then it is true.

The condition of being sufficiently strong is precisely the property called Σ -
completeness. Recall that Σ1 sentences are existential sentences. Formally, they are
defined in the same way as Π1 sentences with the universal quantifier replaced by
an existential quantifier. A theory is Σ -complete if it proves every true Σ1 sentence.
Peano Arithmetic is Σ -complete, but even much weaker theories have this property.
The simplest Σ -complete theory is Robinson Arithmetic (which is essentially Peano
Arithmetic without the axioms of induction, see page 116). The point is that in
order to prove a Σ1 sentence, we only have to find the witness for the existentially

7.2 The Attributes of Reality 611

quantified variable and check that it satisfies the computable property ψ . Essentially,
the computation is the proof that the witness satisfies the property.

The principle above is just a reformulation of Σ -completeness. Suppose that a
Π1 sentence φ is independent of a Σ -complete theory T . Then, in particular, ¬φ is
not provable in T (and this is the only property needed). But ¬φ is equivalent to a
Σ1 sentence and T is Σ -complete. So ¬φ cannot be true, hence φ is true. (It is also
instructive to see a model-theoretical proof, see Notes.)

The independence of a sentence φ from a theory T means that neither φ nor ¬φ
is provable in T . We cannot prove the independence of a Π1 sentence φ from a Σ -
complete theory without deciding the truth of φ because such a proof would entail
proving that ¬φ is not provable and hence φ is true. But if we only prove that φ

is unprovable in T , we do not learn anything about the truth of φ. If, for instance,
we showed that the Riemann Hypothesis were unprovable in Peano Arithmetic, we
would only learn that it must be difficult to prove it if it is true, but it can still go
either way. The bottom line is that, for Π1 sentences, we can only prove that they
are difficult to prove, in other words, that they have high proof complexity.

Let us now turn to more philosophical matters. We can restate the Unambiguity
of Π1 Sentences as follows:

If it is consistent to assume that there exists no counterexample to a Π1 sen-
tence φ, then there is none, hence φ is true.

If we compare this with the Existence from Consistency Principle (page 602),
then the two principles seem to be in conflict. According to the Existence from
Consistency Principle, if it is consistent that a number with certain properties exists,
then it exists. But for some Π1 sentences φ it can be consistent (with respect to
some theory) both that a counterexample to φ exists and that it does not. Then the
two principles are apparently in conflict because, according to the Unambiguity the
counterexample should not exist and according to the Existence from Consistency
Principle it should.

However, it is possible to avoid this conflict by interpreting the Existence from
Consistency Principle correctly. If the existence of a number with some computable
property is consistent with, say, Peano Arithmetic, then there exists a model M of
Peano Arithmetic in which there exists such a number n. If a number with this
property does not exist in the standard natural numbers, the model M has to be non-
standard. Then we should interpret the Existence from Consistency Principle as say-
ing that the number exists in some mathematical structure, the nonstandard model
M . Furthermore, we should assign the same status of existence to the nonstandard
model M as to the standard model.

The importance of Π1 sentences should also be reflected in the formation of the-
ories. Indeed, it seems that when we choose between the alternatives of whether to
accept a sentence α or ¬α as an axiom, we often prefer the choice that has more
Π1 sentences among its consequences. The simplest example is adding the sentence
ConT (expressing the consistency of T) to a consistent theory T . Should we ac-
cept ConT or ¬ConT ? We accept the former because it is true. But this is also the
choice that produces more Π1 consequences: T extended by ConT trivially proves

612 7 Consistency, Truth and Existence

the Π1 sentence ConT , whereas T extended by ¬ConT does not prove any new Π1
sentences (see Notes).

Similarly, by adding a large-cardinal axiom we obtain a new Π1 sentence, while
by accepting the negation of this axiom we do not get any. When neither α nor ¬α
implies any Π1 sentence, we do not know what to do. Incidentally, this is the case
with the Continuum Hypothesis—both it and its negation have no Π1 consequences
and we still do not have an argument that would conclusively decide which is true.

The Consistency Strength

The purpose of theories proposed as the foundations of mathematics is to provide
a framework in which one can formalize the concepts studied in mathematics and
represent proofs of theorems about these concepts. Logicians also use these theories
to prove that other theories are consistent. It may seem that proving consistencies is
only a very special use of these theories, but the opposite is true. If a theory T proves
the Completeness Theorem for first order logic, then, working in T , the consistency
of a theory S is equivalent to the existence of a model M of S. The theory S may
be a set of axioms that specify a certain kind of structures. In mathematics we only
study concepts that are “nonempty”, which means that they are represented by at
least one structure; empty concepts are useless. When we are proving that there
exists a structure of the type S that satisfies some additional property φ, we are, in
fact, proving the consistency of the theory S extended by φ.

A theory that should serve as foundations for mathematics should, clearly, be suf-
ficiently strong to prove all basic theorems. In particular, it should be able to prove
the Completeness Theorem. A mathematician may object that this theorem belongs
to logic and is not important for mainstream mathematics. But the proof of the com-
pleteness theorem only needs very weak set-theoretical axioms, hence a theory not
able to formalize the proof would be very weak. Therefore it is desirable that the-
ories intended as foundations should prove as many consistencies as possible. We
say that they should have big consistency strength.

For the rest of this section, I need to change the notation for consistency state-
ments. I will use Con(T) instead of ConT to improve readability since I will need
to substitute complicated expressions for T .

Formally, we define the consistency strength of a theory T as the set of all sen-
tences of the form Con(S) provable in T , where Con(S) is a formalization of the
consistency of a theory S. If T is Σ -consistent, then it proves only the consistency
of consistent theories. We can also define consistency strength using the concept of
Π1 sentences. This is due the following fact.

Proposition 14 The sentences of the form Con(S) are Π1, and for every Π1 sen-
tence φ, Peano Arithmetic proves φ ≡ Con(Q+ φ).27

27Recall that in general the expression T + φ denotes the theory obtained from a theory T by
adding a sentence φ as an additional axiom and Q is Robinson’s Arithmetic—Peano Arithmetic
without induction.

7.2 The Attributes of Reality 613

Thus the consistency strength of a theory T is simply the set of all Π1 sentences
provable in T . Since theorems that can be presented in the form of a Π1 sentence
play a key role in mathematics, the consistency strength of the foundations matters,
whether one is interested in logic or not.

I believe that the crucial reason for Zermelo-Fraenkel Set Theory becoming the
number one choice for axioms of set theory was its high consistency strength. This
is supported by the ease of formalizations of mathematical concepts, a property of
Zermelo-Fraenkel Set Theory inherited from Cantor’s presentation of set theory.
Furthermore, there is a way to make the consistency strength of Zermelo-Fraenkel
Set Theory still bigger, apparently without any limit. Every axiom that introduces a
large cardinal bigger than the previous ones has bigger consistency strength because
it proves the consistency of the axioms introducing smaller large cardinals. When
Gödel talked about axioms furnishing powerful methods and Hilbert talked about
modes of inference that are fruitful, none of them explicitly referred to consistency
strength, but in fact this was the essence of what they said.

Big consistency strength of a theory T is a positive property, but we pay for it by
taking a bigger risk that T may turn out to be inconsistent. Most theorems only need
relatively weak fragments of Zermelo-Fraenkel Set Theory, but there are some that
need a substantial part of it and there are a few that even need large-cardinal axioms.
So sometimes we have to take the risk of using an inconsistent theory. We have seen
how some philosophical approaches cope with the problem of consistency, but there
is no satisfactory solution. Apparently, we have to live with the risk.

We can also measure the complexity of a theory T by the difficulty of proving its
consistency. We say that T1 is more likely consistent than T2, if Con(T2)→ Con(T1)

is provable in some weak base theory, say PA. We also say that T1 is equiconsistent
to T2, if Con(T1) ≡ Con(T2) is provable in PA. Equiconsistency and equal consis-
tency strength are related, but different concepts.

Sound Theories

When we decide to use some theory T as the foundations of mathematics we want
T to be consistent, but this is, certainly, not the only requirement. We want much
more: T should only prove true sentences. But what does this mean? If T is the only
formal system that provides us with the information about mathematical structures,
how can we then test that T only proves true sentences? Does this requirement make
sense if we are not platonists?

Let us call a theory T true, if it proves only true sentences. This is just a vague
notion that will serve us to start the discourse. (A platonist may accept it as a clear
definition, but it will still remain a metaphysical concept, not a mathematical one.)
I will show that one can partially formalize this concept by presenting mathemati-
cal properties that a true theory must satisfy. The formalized concept will be called
soundness. The fact that soundness can be defined is very important for the founda-
tions because it gives us hints how to make theories stronger. It is also important for

614 7 Consistency, Truth and Existence

philosophers to know that such a concept can be formalized. The most important
thing is to realize that there is a big difference between assuming the axioms of T

and assuming that T is sound.
To define soundness we have to model a situation in which there is a theory T

and there is a structure M that is intended to be described by T . Due to Gödel’s
Incompleteness Theorem, the theories we are interested in are always incomplete,
so T cannot fully determine the sentences that are true in M . To describe such a
situation, we need a metatheory S in which we can talk about the theory T and in
which it is also possible to define M . Furthermore, we also need to be able to define
satisfiability of formulas of T in M . The metatheory must be sufficiently strong to be
able to formalize these things, but otherwise it may be relatively weak. In particular,
we do not need the consistency of T to be provable in S.

Suppose now that T is intended to describe the natural numbers using the lan-
guage of arithmetic with the non-logical symbols 0,1,+,× and ≤. Then we need
to have a model M of the natural numbers in S and we should be able to define
satisfiability of arithmetical formulas in M . To this end we can take S to be a set
theory and we only need fairly week axioms. In such a set theory we have many
models that satisfy the axioms of Peano Arithmetic, but there is one that is uniquely
determined up to isomorphism, which we call the standard model of arithmetic. It
is, in a sense, the shortest one, one that is an initial segment of any other. This is
the structure that we use to formalize natural numbers in set theory and which we
denote by N. It is this structure to which we refer when defining soundness.

This setting enables us to define the soundness of arithmetical theories. So we
define in S that an arithmetical theory T is sound, if all axioms of T , hence also
all theorems of T , are true in N. A little more generally, we can define arithmetical
soundness of any theory in which the natural numbers are formalized, which, in
particular, concerns set theories.

Definition 21 (Arithmetically sound theories) A theory T in which the natural num-
bers are formalized is arithmetically sound if all arithmetical theorems of T are true
in the structure N. (This is a definition in a theory S in which the structure N is
defined.)

In this and the following subsection we will restrict ourselves to the study of
arithmetical soundness. One can define more general concepts of soundness, but
they are not so natural. Arithmetical soundness is natural because the concept of
natural numbers is very robust. For one thing, when considering models of arith-
metic, we have one that clearly stands out—the standard model. For another, the
only axioms which we use for natural numbers, except for the basic ones, are induc-
tion axioms for various classes of formulas. In contrast to this, if we assume in S that
there exists a model M of set theory, there is no natural choice of a canonical one.
Also it is not clear which axioms of set theory we should assume to hold true in M .

The following is a basic fact about arithmetically sound theories.

Proposition 15 If T is an arithmetically sound theory, then T + Con(T) is also
arithmetically sound, in particular, T +Con(T) is consistent.

7.2 The Attributes of Reality 615

Let me stress that this is a genuine mathematical theorem—here is the proof.
Arguing in the metatheory S we observe that if T is arithmetically sound, then T

is consistent because it has N as a model. Hence the arithmetical sentence Con(T)

holds in N. Therefore, all axioms of T + Con(T) are true in N, which means that
T +Con(T) is arithmetically sound.

This proposition shows, in particular, that the sentence ‘T is arithmetically
sound’ is stronger than the sentence ‘T is consistent’. Indeed, from the mere con-
sistency of T we cannot deduce that T + Con(T) is consistent. For example, if
T = T0 +¬Con(T0), where T0 is consistent, then T is consistent, but T + Con(T)

is inconsistent because Con(T) implies Con(T0).
If T is an arithmetical theory, then arithmetical soundness formalizes the concept

of the soundness of T completely. It is therefore interesting to study this concept
for arithmetical theories. The assumption that T is arithmetically sound is not ex-
pressible by an arithmetical sentence, but there are a lot of interesting arithmetical
sentences that are consequences of it. They are based on consistency statements and
reflection principles. Starting with a sound arithmetical theory T , we can repeatedly
apply Proposition 15 to obtain stronger and stronger theories. We will study this and
similar processes shortly.

Reflection Principles

We have seen that soundness entails consistency. While soundness is not express-
ible in the language of arithmetic, consistency is. It will certainly be interesting to
learn other arithmetical consequences of soundness. These sentences may depend
on the metatheory, but there are facts that hold true essentially for any metatheory
that is able to formalize soundness. The arithmetical consequences of soundness
serve us as a paradigm of how we can make theories stronger in general. For the
sake of simplicity, I will only consider arithmetical theories in the following two
subsections.

Reflection principles are natural generalizations of consistency statements. Re-
call from the previous chapter (page 498) that the reflection principle for a theory T

is the schema (one axiom for every sentence φ in the language of T)

Rfn(T): PrT ('φ()→ φ.

The sentence PrT ('φ() expresses that φ is provable in T . Hence PrT ('φ()→ φ

expresses that an arithmetical sentence φ follows from the provability of φ in the
theory T . So the schema Rfn(T) is a way to formalize the soundness of T . Al-
though it looks like the right way of expressing soundness, it captures only some
consequences of it. The soundness of T cannot be stated using only the language of
T , but there are consequences of soundness stronger than Rfn(T) that can be stated
in this language, as we will see shortly.

616 7 Consistency, Truth and Existence

The sentence Con(T) formalizing the consistency of T is a special instance
of the reflection principle. Namely, if φ is any sentence provably false in T , then
PrT ('φ()→ φ is equivalent to consistency. For example, the sentence

PrT
('0= 1()→ 0= 1,

is equivalent to Con(T) because it is, clearly, equivalent to ¬PrT ('0 = 1(). This
shows that some instances of the schema are not provable in T ; in fact, PrT ('φ()→
φ is provable in T only if φ is provable in T . (This is Löb’s Theorem.)

If T is arithmetically sound, then the sentences Rfn(T) are also arithmetically
sound. The proof of this fact is essentially the same as for Con(T): If T is arithmeti-
cally sound, then all arithmetical sentences that it proves are also true. The set of
sentences Rfn(T) is a formalization of the latter fact, thus these sentences are true.

The sentences of Rfn(T) are not consequences of any finite part of the set Rfn(T).
Therefore this schema cannot be axiomatized by a single axiom. To state a reflection
principle as a single axiom one has to restrict the complexity of sentences used in
the schema. For the sake of simplicity, from now until the end of the next subsection,
I will consider only arithmetical theories.

Recall that the classes of arithmetical formulas Πn and Σn, for n= 1,2, . . . , are
defined by restricting the number of alternations of unbounded quantifiers to n.28

By the Gödel-Tarski Theorem 4.2 (page 283), it is not possible to define truth for all
arithmetical formulas using an arithmetical formula, but it is possible to define truth
for Πn and Σn formulas for every fixed number n. This means that it is possible to
define formulas

SatΠn(x, y) and SatΣn(x, y),

for which one can prove in T that they satisfy the Tarski inductive conditions29 for
Πn and Σn formulas. The meaning of the variables x and y is that the formula with
Gödel number x is satisfied by the string of numbers coded by the number y.

A sentence φ is true if it is satisfied by every string of numbers, which is the same
as being satisfied by the empty string, because φ does not contain free variables.
Thus from SatΠn(x, y) and SatΣn(x, y), we can define the truth predicates

TrΠn(x) and TrΣn(x).

A consequence of the validity of Tarski’s conditions is that, for every sentence φ ∈
Πn (and similarly for Σn),

TrΠn

('φ()≡ φ

is provable in T .
Now we can state the Πn- and Σn-reflection principles as single sentences:

RFNΠn(T): ∀x (Pn(x)∧ PrT (x)→ TrΠn(x)),
RFNΣn(T): ∀x (Sn(x)∧ PrT (x)→ TrΣn(x)),

28See page 139.
29See page 88.

7.2 The Attributes of Reality 617

where Pn(x) and Sn(x) are formalizations of ‘x is a Πn sentence’ and ‘x is a
Σn sentence’. Notice that these sentences are different from the corresponding
schemata. In a schema, such as Rfn(T), we state the reflection principle for each
concrete sentence. But in RFNΠn(T) and RFNΣn(T) we quantify sentences in the
formulas. This makes these principles stronger than the schema Rfn(T) restricted to
Πn and Σn formulas, except for the class of formulas Π1.

The weakest of these reflection principles is RFNΠ1(T). One can prove that it
is equivalent to Con(T). The next one, RFNΣ1(T) is a very interesting case. As
stated, it is an artificial sentence based on syntactical concepts. But often it can be
equivalently stated as a truly mathematical sentence. In particular, if T is Peano
Arithmetic, then all known “mathematical” independence results are equivalent to
RFNΣ1(PA) (see Chap. 4, Concrete independence). The concrete independent sen-
tences found for stronger theories also have this property: they are equivalent to the
Σ1-reflection principles of these theories.

To see that RFNΣ1(T) is stronger than Con(T), we observe that

RFNΣ1(T)→ RFNΣ1

(
T +Con(T)

)
,

provably in a weak metatheory. Compare this proposition with Proposition 15. The
only difference is that the property that T and T +Con(T) are arithmetically sound
is replaced by the Σ1-reflection principle. So we can view Σ1-reflection principle
as an approximation of the arithmetical soundness, one that suffices to prove that
the consistency statement can be added to T . Thus we can prove in T +RFNΣ1(T)

that all theories in the progression

T Con
0 = T , T Con

1 = T Con
0 +Con

(
T Con

0

)
, T Con

2 = T Con
1 +Con

(
T Con

1

)
, . . .

(7.1)

are consistent.
The set of all axioms RFNΣn(T), n = 1,2, . . . is called the uniform reflection

principle and is denoted by RFN(T). This principle is stronger than Rfn(T) (as the
notation suggests).

Assuming T is arithmetically sound, we can add reflection principles to T while
preserving truth. Thus we get strengthenings of Proposition 15 such as:

Proposition 16 If T is an arithmetically sound theory, then T + RFN(T) is also
arithmetically sound.

To see how strong the uniform reflection principle is, consider, as an example,
the following classical result of G. Kreisel and A. Levy [169].

Theorem 60 Elementary Arithmetic augmented by the uniform reflection principle
proves the same sentences as Peano Arithmetic. Formally,

EA+RFN(EA)≡ PA.

Elementary Arithmetic is a convenient basic subtheory of Peano Arithmetic ob-
tained by restricting the induction schema to Δ0 formulas and adding an axiom

618 7 Consistency, Truth and Existence

saying that exponentiation is a total function. (This theory is often denoted more
conspicuously by IΔ0 + Exp.) So EA is very weak when compared with PA. The
theorem shows that one can replace essentially all induction axioms by the uniform
reflection principle.

Iterating the extension by the uniform reflection principle, we obtain the progres-
sion of theories

T RFN
0 = T , T RFN

1 = T RFN
0 +RFN

(
T RFN

0

)
, T RFN

2 = T RFN
1 +RFN

(
T RFN

1

)
, . . .

(7.2)

all of which are arithmetically sound provided that T is an arithmetically sound
theory. It is a strictly increasing progression, since T RFN

n+1 proves the consistency of
T RFN
n . This progression is increasing faster than (7.1) because adding the uniform

reflection principle is more than adding the consistency. In fact, we can insert an in-
finite progression of the type (7.1) between every two consecutive elements of (7.2).

Transfinite Iterations of Consistency and Reflection Principles

If we want to obtain stronger consequences of the assumption that the theory T is
arithmetically sound, the natural next step is to prolong the progressions of theories
transfinitely. This idea first appeared in Turing’s paper (based on his PhD thesis) in
1939 [294].

Let us first consider the operation of adding consistency. To prolong the progres-
sion (7.1), define T Con

ω to be the union of all theories T Con
n , n ∈ ω. I am now using ω

to denote the natural numbers because this is the symbol that one uses in the context
of ordinal numbers. We need ordinals to define transfinite iterations. Informally, we
can express T Con

ω by

T Con
ω ≡ T +Con(T)+Con

(
T +Con(T)

)+Con
(
T +Con

(
T +Con(T)

))+ · · · .
The next theory is

T Con
ω+1 ≡ T Con

ω +Con
(
T Con
ω

)
.

In general, we want to define, for every constructive ordinal α, a theory T Con
α so

that the progression satisfies the natural conditions of the definition by transfinite
recursion:

1. T Con
0 := T ;

2. T Con
α+1 ≡ T Con

α +Con(T Con
α);

3. if λ is a limit ordinal, then T Con
λ is equivalent to the union of theories T Con

α for
α ≺ λ.

I will use the symbol ≺ for a strict ordering on ordinals. Since ordinals will be
represented by natural numbers, we need to distinguish between the ordering of
numbers and ordinals.

7.2 The Attributes of Reality 619

Note that one can only construct such progressions for constructive ordinals. The
reason is that in order to formally define T Con

α we have to formalize theories T Con
β

for all β ≺ α, in particular, we have to formalize these ordinals. In fact, one can-
not formalize such progressions uniformly for all constructive ordinals. It is only
possible, for every given constructive ordinal α, to define a progression of theories
indexed by ordinals less than α. I will denote such a progression by {T Con

β }β≺α , but
this notation is rather misleading. These progressions are not uniquely determined
by the theory T and the ordinal α. They are sensitive to the particular choice of the
formalization of ordinals. For a constructive ordinal α, a well-ordering of natural
numbers of type α can be defined by various arithmetical formulas ν(x, y). Differ-
ent choices of ν, for the same ordinal α, may define theories that prove different
theorems (even if we only considered Π1 theorems). In concrete instances one uses
ordinals that possess certain standard notations. When such notations are formalized
in a natural way, the ambiguity of the definition of transfinite progressions disap-
pears. Therefore, throughout this subsection I will assume that the ordinals and the
transfinite progressions are formalized in a natural way. In particular I will assume
that a natural ordering of a sufficiently large type is fixed and denote it by ≺.

Transfinite progressions based on iterating consistency, as defined above, can be
used to measure the strength of true Π1 sentences. Namely, given such a progression
{T Con

β }β≺α and a true Π1 sentence φ, we can ask what is the least ordinal β such that

φ is provable in the theory T Con
β , provided that there is any such theory in the pro-

gression. In some cases one can even characterize all Π1 sentences provable in the
theories T Con

β . The prototype of such results is the theorem of U.R. Schmerl [256].

Theorem 61 The Π1 theorems of EACon
ε0

are exactly the Π1 theorems of Peano
Arithmetic.

In this theorem EACon
ε0

is the last theory in the progression {EACon
α }α≤ε0 that starts

with EA.30

Interesting results have also been proved for transfinite iterations of reflection
principles. I have mentioned that the Σ1-reflection principle is linked with fast grow-
ing functions. This connection was used by L. Beklemishev to show that transfinite
hierarchies of fast growing functions can be characterized by transfinite progres-
sions based on iterating the Σ1-reflection principle [18]. Namely, for a particular
hierarchy of recursive functions fα , the axiom saying that fα is a total function is
equivalent to the αth theory in the progression.

Transfinite progressions are a very useful tool for analyzing theories, but let us
now look at this concept from the point of view of the foundations of mathematics.
The first impression is that they may be an ideal means for discovering truth in
arithmetic. It looks as if we could start with a very weak theory, such as EA, and
only assuming that it is arithmetically sound we could get to much stronger theories.
It is true that we can get beyond PA but not very far.

30Recall that ε0 is the limit of ω,ωω,ωωω
,

620 7 Consistency, Truth and Existence

In order to prove that EACon
α is arithmetically sound, we need two assumptions:

1. that EA is arithmetically sound, and
2. transfinite induction up to α.

If α is sufficiently large, then 2. is not a consequence of 1.; in fact, it can be much
stronger than 1. So in such a case we are using an assumption about ordinals, not the
soundness of EA. One possible way to avoid the additional assumption about trans-
finite induction was proposed by G. Kreisel and S. Feferman [70, 168]. The idea
is based on the concept of autonomous progression. These are, roughly speaking,
progressions {T Con

β }β≺α such that on stage β the theories defined so far can prove
transfinite induction up to β . Thus starting with a theory that proves transfinite in-
duction only for small ordinals, we may still get fairly long progressions because
we may prove transfinite induction for larger ordinals on the way.

When we are adding only consistency statements, this does not work. For ex-
ample, although we can get a little beyond EA by assuming that it is arithmetically
sound and adding consistency statements, we cannot reach PA. The reason is that
when adding consistency statements we are only adding Π1 sentences. These sen-
tences do not change the ordinals for which one can prove transfinite induction. In
our example the autonomous progression {EACon

α } stops at ω2 because EA proves
transfinite induction only for ordinals less than ω2.31

The situation changes dramatically when we use reflection principles (at least
Σ1-reflection principle) instead of consistency. Then the self-enforcing effect takes
place: the further the progression goes, the more ordinals we can use; then we can
go even further and prove well-foundedness for even more ordinals etc. But however
strong it may seem, it still has an upper bound; it stops at some constructive ordinal.
The general reason for the existence of an upper bound is that this is an algorithmic
construction and therefore it cannot exhaust all constructive ordinals.

As the theory of autonomous progression is rather complicated, it is better to
look at a concrete example. Consider the transfinite progression that starts at PA and
is based on iterating the uniform reflection principle. Thus the progression satisfies
the clauses:

1. T RFN
0 := PA;

2. T RFN
α+1 := T RFN

α +RFN(T RFN
α);

3. if λ is a limit ordinal, then T RFN
λ is the union of theories T RFN

α for α ≺ λ.

Define that this progression is autonomous at an ordinal β if transfinite induction
up to β + 1 is provable from T RFN

γ for some γ ≺ β + 1. Say that it is autonomous
below α if it is autonomous at every β < α.

Transfinite induction up to β is the schema: for all arithmetical formulas φ(x),

∀y ≺ β
((∀z≺ y φ(z)

)→ φ(y)
)→∀x ≺ β φ(x).

This is the set of sentences that is often used to express that ≺ is a well-ordering
up to β . The particular form is not important; what is, however, important is that

31Here I am talking about transfinite induction for Δ0 formulas.

7.2 The Attributes of Reality 621

we state it as a schema for all arithmetical formulas. Thus it is a generalization of
the usual induction that is postulated in Peano Arithmetic. We can view the usual
induction as a special case of transfinite induction, namely, as transfinite induction
up to ω.

Although in PA the axioms postulate induction only up to ω, one can derive in
this theory transfinite induction for every α < ε0, and, as we noted in Chap. 6, ε0 is
the precise bound. For the other terms in the progression {T RFN

α }, the bounds were
computed by Schmerl [256].

Theorem 62 For every α, the ordinal εα is the largest ordinal ξ such that T RFN
α

proves transfinite induction up to β for every β < ξ . Moreover, T RFN
α is equivalent to

PA augmented with the schema of transfinite induction up to β for every arithmetical
formula φ(x) and every β < εα .

Let us recall the definition of the ordinals εα . These are ordinals ε satisfying
ωε = ε, indexed in the increasing order. Thus ε0 is the least such ordinal, ε1 is the
second least and so on.

One can nicely demonstrate the self-enforcing effect of autonomous progres-
sions by the following example. Since PA (which is the first term T RFN

0) proves
transfinite induction for every α < ε0, we know that the progression is autonomous
below every εα for α < ε0. Since lim{εα ; α < ε0} = εε0 , the progression is au-
tonomous below εε0 . The same argument shows that it is autonomous below lim{εα ;
α < εε0} = εεε0

and so on. Hence the progression is autonomous below

lim{ε0, εε0, εεε0
, . . .}.

The name of this ordinal is φ2(0). Since for every α < φ2(0), we have εα < φ2(0),
this is as far as we can go; the progression is not autonomous at φ2(0).

The theory T RFN
φ2(0)

is the union of T RFN
α for α < φ2(0), so it is the theory that

characterizes what is “autonomously provable”. How strong is this theory? If com-
pared with Peano Arithmetic, it is much stronger; if compared with typical set the-
ories, it is much weaker. One can show that very weak set-theoretical axioms give
much stronger consequences. The natural framework for studying the strength of
autonomous progressions is in subsystems of Second-Order Arithmetic. These are
theories in which the language of arithmetic is extended so that one can speak about
sets of numbers. Introducing these theories would take us too far afield, so I confine
myself to a few remarks about it in Notes.

Interlude—Incompleteness and the Human Mind

In 1961 the British philosopher John Lucas published a paper in which he argued
that the Incompleteness Theorem implies that humans are qualitatively different
from machines, in particular, human thinking cannot be simulated by computer.
Although logicians immediately rejected his argument, Lucas’s argument was ac-
claimed by some philosophers as a proof that artificial intelligence is impossible,

Rh

622 7 Consistency, Truth and Existence

that is, that human thinking is superior to what can be achieved by any man-made
device. Several variations of the argument appeared afterwards. The typical form of
the argument is this:

Let C be a computer that supposedly simulates human thinking. Represent the
set of sentences that C is able to prove by a formal system T and apply the
Incompleteness Theorem. Thus we get the sentence γT that is not provable
in T , hence not provable by the computer C. But we, humans, know that γT is
true, hence we know more.

Here γT is Gödel’s self-referential sentence expressing that γT is unprovable
in T , which is equivalent to the consistency of T , assuming very mild conditions
about T . Hence if T is consistent, then γT is true.

It is difficult to point to mistakes in these attempted proofs because the arguments
are always very vague. Moreover, they are wrapped into lengthy discussions which
makes it difficult to distinguish between comments and what should be the steps in
the alleged proof. When explaining their “proofs” the authors not only use different
wordings, but also change the essence of the argument. But if someone is patient
enough to extract the logical structure of the argument, in spite of all these obstacles,
a logical gap becomes immediately apparent.

But why am I so sure that the proof is wrong? It is very simple. If you want to
prove that X proves (knows, ascertains, . . .) more than Y , then you must assume
more about X. Hence if you want to prove that humans are different from machines,
you must assume that they have certain properties that machines do not. But this
is exactly what you want to prove. So these alleged proofs either contain a logical
error or tacitly use assumptions that, more or less, trivially imply the conclusion.

Therefore, if one wants to show that machines cannot do what human brains can,
one has to use some empirical facts about human brains. The authors should be fair
and state these facts explicitly as the assumptions of the proof. It is certainly wrong
when the empirical fact used in the proof only appears in the form such as “we can
see to be true” or “a rational being can, standing outside the system, see that it is
true”. Once the empirical assumptions are stated explicitly, the discourse can focus
on the only relevant question (which has nothing to do with mathematics): whether
or not these assumptions are true facts.

Let us have look at the errors that occur in these attempted proofs anyway. I was
able to find three kinds of errors which I explain below. Note, however, that some
arguments can be classified in more than one way because we always have to guess
what the intended meaning of the argument was.

1. Failing to distinguish an object in the proof from the subject presenting the proof.

In my presentation of the argument above the gap is clear: the claim that we know
that γT is true is not justified. We know that γT is true, if we know that T is con-
sistent, but how do we know that T is consistent? Suppose we believe that T is
consistent. Then C also believes that T is consistent, since it simulates our thinking.

The problem is that the authors of the argument confuse the subject that is making
this argument with the objects about which they are talking. So let us sort it out and

7.2 The Attributes of Reality 623

distinguish who is who. There is the computer C, there is a human H that C is
supposed to simulate, and there is another person presenting the argument. I will
call the human H ‘she’, the person presenting the argument ‘we’, and the computer
C is, naturally, ‘it’.

The first thing to note is that the argument requires the assumption that T , the set
of sentences that C can prove, is consistent. Otherwise C can prove any sentence
and we cannot deduce that H proves more than C. This assumption was not stated in
the paragraph presenting the alleged proof above, but it is assumed either implicitly
or explicitly in these arguments.

So we want to prove that if T is consistent, then H proves more sentences than C.
The consistency of T is an assumption in our proof, not a fact that H knows. We
cannot use this assumption to deduce that H knows that T is consistent. Note that
we also do not know if T is consistent, we are only assuming it in order to prove the
implication. Thus the argument breaks down.

In order to expose the error more clearly I distinguished H and we, but it does
not matter if they are the same person. One only needs to realize that if we make an
assumption about H , or about ourselves in an argument, it is only an assumption, it
is not a fact that we know.

Example Lucas’s original argument is an example of this kind of error. His paper
starts with an explanation why Gödel’s self-referential sentence for a formal system
is not provable in the system—he just repeats the basic argument of Gödel’s proof
of the Incompleteness Theorem. A few paragraphs below he states the essence of
his argument:

“Gödel’s theorem must apply to cybernetical machines because it is of the essence of being
a machine, that it should be a concrete instantiation of a formal system. It follows that given
any machine which is consistent and capable of doing simple arithmetic, there is a formula
which it is incapable of producing as being true—i.e., the formula is unprovable-in-the-
system-but which we can see to be true. It follows that no machine can be a complete or
adequate model of the mind, that minds are essentially different from machines.”32

Look at the pieces of text that I italicized. In terms of C, H and ‘we’, the first itali-
cized piece of text is the assumption that C is consistent. So in the proof we know
that C is consistent (the second italicized piece). But this is only our assumption in
the proof—it does not imply that H knows that C is consistent.

Another example is in Penrose’s book Shadows of the Mind. Penrose’s argument
concludes with the following paragraph:

“Moreover, if we know that A is sound, then we know that Ck(k) does not stop. Thus we
know something that A is unable to ascertain. It follows that A cannot encapsulate our
understanding.”33

In that argument A stands for the sentences available to the computer (which I de-
noted by T above) and ‘Ck(k) does not stop’ is the Gödel sentence for the formal

32J.R. Lucas, Minds, machines and Gödel. Philosophy, 36 (1961), pages 120–124; the italics are
mine.
33R. Penrose, Shadows of the Mind, Oxford Univ. Press (1994), page 73.

624 7 Consistency, Truth and Existence

system A (which I denoted by γT above). Penrose deduces that “we know something
that A is unable to ascertain” from the assumption that “if we know that A is sound”
and then he goes on, as if the latter one was not only an assumption, but a proven
fact.

Some people may still doubt that it is an error not to distinguish the object from
the subject. So I made up an example where it is absolutely clear. I will use the fact
that no mathematician knows that the Riemann Hypothesis is true. In my argument
I replace ‘we’ by ‘I’. The argument is about me, so ‘H’ (the human) also represents
me. The computer ‘C’ is replaced by a mathematician. I will “prove” that I know
more than any other mathematician.

I will suppose that RH is true. Thus I know that RH is true. Since I am H, H
knows that RH is true. Hence H knows more than any other mathematician.

It is an absolute nonsense, but the reasoning is exactly the same as in the argu-
ments above.

2. Using the assumption that humans know that they are consistent.

Here we have to be more careful and distinguish between ‘know’ and ‘believe’. A
person knows φ if he believes that φ is true and, moreover, φ is true. Gödel’s formula
concerns belief, not knowledge, because truth cannot be defined in the language
about which it talks.

It seems perfectly all right to assert:

What I believe, including this sentence, is consistent.

But if you carefully read Chap. 4 (see page 293), you already know that although
such sentences can be written formally, they are always inconsistent (provided that
the belief includes sufficiently strong axioms of arithmetic). This is an immediate
consequence of the Second Incompleteness Theorem. Thus if H believes that she is
consistent, she is inconsistent, and then C is also inconsistent because we assume
that C simulates H .

One can also use a weaker assumption: for every consistent sentence φ, H can
recognize that φ is consistent. This assumption does not imply that H is inconsis-
tent, but it implies that H can decide an algorithmically unsolvable problem. To
conclude from this assumption that humans can do more than computers, we do not
need the Incompleteness Theorem.

Variations of this use soundness or truth instead of consistency. But the point is
not so much what the assumption is, but the fact that there is an additional assump-
tion that does not appear in the claim. So instead of proving:

humans can do more than machines,

the proof only gives:

if humans can recognize consistent (sound, true, . . .) sentences, then they can
do more than machines.

7.2 The Attributes of Reality 625

Such a statement is not interesting because we know that recognizing consistent
(sound, true, . . .) sentences is an algorithmically unsolvable problem.

Example An example of this kind of error is in Penrose’s Reply to Commentaries
on Shadows of the Mind:

“We try to suppose that the totality of methods of (unassailable) mathematical reasoning that
are in principle humanly accessible can be encapsulated in some (not necessarily computa-
tional) sound formal system F. A human mathematician, if presented with F, could argue as
follows (bearing in mind that the phrase “I am F” is merely a shorthand for “F encapsulates
all the humanly accessible methods of mathematical proof”):
(A) “Though I don’t know that I necessarily am F, I conclude that if I were, then the system
F would have to be sound and, more to the point, F’ would have to be sound, where F’ is F
supplemented by the further assertion “I am F”. . . . ”34

Note the italicized part where he uses the assumption that human beings believe
that they are sound.

3. The failure to distinguish between consistency and soundness.

A typical spurious argument based on this misunderstanding is as follows:

According to Gödel’s Theorem a formal system T (of the sentences available
to a computer, etc.) is unable to prove: ‘if T is consistent, then also T +
Con(T) is consistent’. But we, humans, immediately see that it is true.

The author goes on and explains why it is true:

Since T is sound, and Con(T) is a true sentence, T + Con(T) is also sound,
hence consistent.

The last line is perfectly correct—it is exactly Proposition 15 from the previous
subsection. What is wrong is an unjustified shift: the assumption above that T is
consistent has been replaced by the assumption below that T is sound. While C is
only allowed to use Con(T), we can use the soundness of T . As we know from the
previous two subsections, the second assumption is much stronger.

Example It seems that this kind of confusion was a source of a mistake in the fol-
lowing argument in Lucas’s paper:

“Even if we adjoin to a formal system the infinite set of axioms consisting of Gödelian
formulae, the resulting system is still incomplete, and contains a formula which cannot be
proved-in-the-system, although a rational being can, standing outside the system, see that it
is true.”35

There is nothing mysterious in the conclusion that we can add consistency to the
resulting system if we are assuming that we start with a sound system as we have
seen in the previous subsection. The soundness of T can be formalized, and thus it

34R. Penrose, Beyond the Doubting of a Shadow, PSYCHE, 2(23), (1996); the italics are mine.
35J.R. Lucas, Minds, machines and Gödel, Philosophy 36, 120–124, (1961).

626 7 Consistency, Truth and Existence

can be one of the sentences given to the computer. If this is the case, the computer
can make the same deduction, namely, it can also derive that T +Con(T) is sound,
hence consistent. So a computer knowing the soundness would also recognize all
these axioms as true.

Incidentally, Gödel did believe that the human mind has abilities superior to arti-
ficial devices. In a lecture given in 1951 he said:

“. . . if the human mind were equivalent to a finite machine, then objective mathematics not
only would be incompletable in the sense of not being contained in any well-defined ax-
iomatic system, but moreover there would exist absolutely unsolvable problems. . . , where
the epithet ‘absolutely’ means that they would be undecidable, not just within some partic-
ular axiomatic system, but by any mathematical proof the mind can conceive.”36

But notice that unlike Lucas and Penrose, Gödel did not claim to prove the superi-
ority of humans. Gödel only argued that the assumption that human thinking could
be simulated by machines had an unlikely consequence—the existence of problems
that we would never solve. But the question whether the consequence is unlikely is
a matter of the philosophy that one accepts.

Another often quoted part of the same paper is referred to as Gödel’s dichotomy:

“Either mathematics is incompletable in this sense, that its evident axioms can never be
comprised in a finite rule, that is to say, the human mind (even within the realm of pure
mathematics) infinitely surpasses the powers of any finite machine, or else there exist abso-
lutely unsolvable Diophantine problems of the type specified.37 ”

The essence of both statements is the same. In the second one he talks about for-
mal systems, instead of machines, and is more specific about the nature of the un-
solvable sentences. In both statements the empirical evidence that should enable us
to show the difference between the human mind and machines is stated explicitly.
This evidence, or rather belief, is the non-existence of absolutely unsolvable prob-
lems.

The human mind is certainly not equivalent to a formal system, but in spite
of its complexity, changing content, etc., we can estimate the logical strength of
the mathematical assumptions that a particular person uses. Logical strength is
not a function of the complexity of knowledge; it only depends on the mathe-
matical axioms the person believes. Then, using this estimate, we can indeed pro-
duce a sentence that the person is unable to prove. But in order to deduce that
the sentence is true, we have to use stronger axioms than those that the person
uses.

36K. Gödel, Some basic theorems on the foundations of mathematics and their implications, in
[99], page 310.
37Because at that time Hilbert’s 10th problem was still open, Gödel refers to the representation
of Π1 sentences in the form ∀x1 . . .∀xn∃y1 . . .∃ym p(x1, . . . , xn, y1, . . . , ym) = 0, where p is a
polynomial.

7.2 The Attributes of Reality 627

What Do We Actually Mean when We Accept Some Axioms?

Most of the discussion concerning the applicability of Gödel’s Theorem to the hu-
man mind revolves around the problem that the collection of facts that a person
accepts as true is too complex to be formalized. What we have in our brains is, in-
deed, a very complex structure composed of pieces of information. Most likely, if
we applied logic strictly, we would also find out that it is inconsistent. But all this
complexity, and possibly inconsistency, is due to facts that have nothing to do with
the logical strength of our mathematical assumptions. Furthermore, to determine the
logical strength of the mathematical facts we do not need the totality of all the theo-
rems that a person knows, but only the axioms he uses. So if we only ask about the
axioms, we can learn the strength of somebody’s mathematical assumption fairly
easily—we can simply ask the person which axioms of set theory he believes. If we
only use these axioms, and not the full description of his knowledge, the construc-
tion of the Gödel sentence can also be fairly simple.

The problem is, however, that the axioms which a person believes are not pre-
cisely delimited. Mathematicians would typically say that their assumptions are ex-
actly the axioms of Zermelo-Fraenkel Set Theory, but when we ask them if they
also accept Con(ZFC) as true, they would say yes. And we can go on and ask about
Con(ZFC+Con(ZFC)), get the same answer and so on.

Some philosophers of mathematics proposed the explanation that humans have
some higher faculty that enables them to recognize truth. But this is an unscientific
approach because there is a very simple explanation that does not refer to any as
yet unknown phenomena: if mathematicians accept a set theory (or another kind
of theory) T as foundations for mathematics, then they always assume that T is
sound. We know that this entails that extensions such as T +Con(T) are also sound.
It would certainly be very unreasonable to accept a theory that is not sound. In
particular, if we assume arithmetical soundness, we get all reflection principles, and
even some iterations of them.

Let us continue our interview and ask the mathematician if his assumptions can
be characterized by ZFC + ArithSound(ZFC), where ArithSound(ZFC) is a sen-
tence expressing the arithmetical soundness of ZFC. At this point he would prob-
ably say that he does not understand, or does not care. But suppose he would say
that this is what he means. Then we can continue and ask: what about the true
sentence expressing the consistency of his theory—the sentence that we denote by
Con(ZFC+ ArithSound(ZFC))?

But how do we know that this sentence is true? What we have in the back of
our mind is that we can again use the arithmetical soundness assumption. But now
it is not enough to assume that ZFC is arithmetically sound because the sentence
ArithSound(ZFC) is not arithmetical. We need a higher order soundness that talks
about relations on natural numbers. Thus we are leaving the firm ground of arith-
metic and have to use concepts that are not as clear as the numbers. At this stage
we can still find a reasonable formalization of soundness because the set-theoretical
formulas that we need are of very low complexity. But the situation will recur and
we will need still higher and higher concepts of soundness. We are being dragged

628 7 Consistency, Truth and Existence

more deeply into set theory and things are becoming less and less clear. The conse-
quence is that the arguments saying that we can go on making the theory stronger
by adding assumptions about soundness will be less and less convincing. In any
case, eventually we will need to define soundness with respect to all set-theoretical
formulas. This requires us to go beyond ZFC. One can certainly do this, but if our
mathematician were to say that this is what he believes, he would be contradict-
ing himself because originally he said ZFC and now he would be talking about a
completely different theory.

This is obviously just an idealized example. In reality, set theorists know that
extending set theory in such a way is very inefficient and unnecessarily complicated.
Instead of trying to formalize the concept of soundness and extending the theory by
axioms based on this concept, we can add an axiom saying that there exists an
inaccessible cardinal. This is a very simple axiom and is at least as strong as those
one would get by using soundness. Its simplicity is an advantage not only when
using the axiomatic system, but also in the theoretical study of it. It help us to assess
how likely it is that this assumption is consistent (and if we are platonists, how likely
it is that it is true).

Therefore, research into the set-theoretical foundations of mathematics focuses
on large-cardinal axioms. The ideas of truth, soundness and reflection principles are,
nonetheless, used in this area and some principles studied in large-cardinal theory
are called reflection principles. In this area one can also study “attributes of reality”,
that is, what we implicitly expect to be true when we postulate some large-cardinal
axiom. One such attribute is the belief that if a large cardinal with property P exists,
then there exist many such cardinals.

Let us get back to our mathematician. What can we conclude about his mathe-
matical assumptions? I think we have to conclude that the strength of his belief is not
the same for all assumptions that he accepts. As we go beyond ZFC (in our example
situation) the strength gradually decreases. If we imagine that the strength can be
measured by real numbers, then these numbers would gradually approach zero. But
there would be no particular place where it would fall from a positive value to zero.
If we, however, go far enough it could be zero. This is not in contradiction with the
fact that he has finite memory. The scale concerns all assumptions that he can in
principle consider.

Since the structure of the assumptions that one can consider is very complicated,
I will give a simplified example.

Example Let a theory T be fixed and consider the progression of theories T Con
α

obtained by adding consistency for ordinals α ≤ ω2. Recall that every ordinal α <

ω2 can be written as α = ω ·m+ n, where m and n are natural numbers. Suppose
that the strength of our mathematician’s belief in T Con

ω·m+n is expressed by the number
1/m and it is 0 for T Con

ω2 . Then the degree of belief in a particular theory S in this
progression is the same as the degree for S +Con(S). If, however, we go from S to
SCon
ω , then the degree decreases but is not zero, assuming it is not zero for S. If we

make the leap bigger by going from S to SCon
ω2 , it will drop from nonzero to zero.

7.2 The Attributes of Reality 629

This is not a realistic example because for most mathematicians, their belief
will not decrease with the jump from S to SCon

ω . Our mathematician believing in
ZFC would probably accept all reflection principles with the same confidence, but
he may have less belief in ZFC + ArithSound(ZFC). The strength of his belief in
ArithSound(ZFC) must be positive, otherwise he would not use it to support his
beliefs in reflection principles. There is nothing wrong in believing in the general
principle ArithSound(ZFC) less than in its consequences, although it may seem a
little strange at the first sight. Such situations are not uncommon in science, or even
in daily life. In science we often extrapolate and generalize our partial knowledge
and we are aware of the fact that the generalizations are only conjectures that can be
refuted. Note that I am not claiming that the more general a principle is, the less we
believe in it; there are some very general principles, such as formal logic, that we
trust the most. I am only saying that in some cases we are not quite sure that a gen-
eral principle to which special cases seem to point is correct. In theoretical physics
even inconsistent theories are used to calculate with very high precision what ele-
mentary particles do. In set theory, logicians propose very big leaps by postulating
large-cardinal axioms with increasing strength. That we have more confidence in
ZFC than in its extension by a very strong large-cardinal axiom is quite natural.

The Large-Cardinal Program

There are some ad hoc definitions of large-cardinal axioms that are used to prove
some general theorems about them, but it seems that it is impossible to define them
in such a way that the definition would capture completely our idea of what a large
cardinal is. Here is my attempt to give at least an approximate description.

Large-Cardinal Axioms A large-cardinal axiom postulates the existence of an in-
finite cardinal number κ that cannot be obtained from smaller large cardinals by
using methods by which the smaller ones were defined.

Let us consider some “non-examples”. The axiom saying that κ is an inaccessible
cardinal below which there is a smaller inaccessible cardinal, in other words, that
there exist at least two inaccessible cardinals, is not provable from the axiom saying
that there exists at least one. Yet we do not accept it as a large cardinal axiom because
the step from one inaccessible cardinal to two is “too small”—it is not based on a
new idea. A much stronger axiom is this:

There exists an inaccessible κ such that there are κ inaccessible cardinals
below κ .

This is still not considered a new large-cardinal axiom, since the idea of this
definition is essentially the same as in the definition of an inaccessible cardinal,
except that it is applied to inaccessible cardinals instead of all cardinals.

630 7 Consistency, Truth and Existence

What one would like to put in the definition is that ‘the condition defining κ

speaks inherently about largeness’. But this is impossible because each new large-
cardinal axiom introduces a new kind of largeness.

Axioms postulating the existence of very large cardinalities were the first axioms
that were used to make ZFC stronger. Unlike some other axioms extending ZFC,
large cardinals axioms are not controversial. Set theorists do not dispute whether
to accept a large-cardinal axiom, or rather its negation. The only issue on which
they may disagree is whether it is likely that a particular large-cardinal axiom is
consistent or not. It seems that large-cardinal axioms are the kind of sentences to
which the Existence from Consistency Principle is applicable: if it is consistent that
a particular large cardinal exists, then it exists.

We have also noted that large-cardinal axioms enable us to prove more Π1 sen-
tences, thus they may have even practical consequences. But they also decide some
sentences about sets of real numbers (see page 214).

The usefulness and the noncontroversial nature of these axioms is the reason for
trying to use large-cardinal axioms as a sort of universal means to decide sentences
that are not decidable using only the axioms of ZFC. An early proponent of this
approach was Gödel; therefore this program is also called the Gödel Program. Here
is what Gödel wrote about it in 1946.

“It is certainly impossible to give a combinational and decidable characterization of what
an axiom of infinity is; but there might exist, e.g., a characterization of the following sort:
An axiom of infinity is a proposition which has a certain (decidable) formal structure and
which in addition is true. Such a concept of demonstrability might have the required closure
property, i.e., the following could be true: Any proof for a set-theoretic theorem in the next
higher system above set theory (i.e., any proof involving the concept of truth which I just
used) is replaceable by a proof from such an axiom of infinity. It is not impossible that for
such a concept of demonstrability some completeness theorem would hold which would say
that every proposition expressible in set theory is decidable from the present axioms plus
some true assertion about the largeness of the universe of all sets.”38

Before turning to results in this program, which often require rather technical
concepts, I should mention another application of large cardinals, which can be ex-
plained very easily. This is the empirical evidence that large-cardinal axioms can be
used to calibrate all proposed set-theoretical axioms. More precisely, for almost all
axioms α that have not been shown inconsistent with ZFC, either the consistency
of ZFC+ α is provable already in ZFC or ZFC+ α is equiconsistent to ZFC + β ,
where β is some large-cardinal axiom. Recall that the large cardinals so far consid-
ered form an almost linear scale; specifically, except for a few rare exceptions, the
consistency strengths of any two large cardinals are comparable. Thus large-cardinal
axioms serve as a linear scale for measuring consistency strength. This scale could
be in principle used for other theories, not only for extensions of ZFC, but the con-
sistency of essentially all other theories is provable already in ZFC.

Although large cardinal axioms are statements about very large sets, they are
more likely to decide the truth of low complexity sentences than those that are

38K. Gödel, Collected Works, Vol II, Oxford Univ. Press, p. 151.

7.2 The Attributes of Reality 631

higher in the hierarchy. Therefore I will start with sentences talking about finite
sets, more precisely about hereditarily finite sets. These are finite sets whose ele-
ments are finite and the elements of whose elements are finite, and so on. These
sets can be easily enumerated by natural numbers; hence one can equivalently study
arithmetical sentences instead of these sentences.

We know that the set of provable arithmetical sentences increases with the in-
creasing strength of large-cardinal axioms.39 It is, therefore, conceivable that for
every true arithmetical sentence φ, a large cardinal axiom eventually will be found
which will imply φ. Unfortunately there is no evidence for this in mathematical
practice—none of the well-known open problems in number theory has been solved
by a large cardinal axiom.

Problem 8 Can every arithmetical sentence be decided by a large-cardinal axiom?

It should be stressed that this is not a mathematical statement that can be proved
or disproved. In order to answer this question one will have to use some formal
definition of large-cardinal axioms, or at least some obvious property that must be
satisfied by all such axioms.

It may be easier to solve some special instances of this problem. In particular it
seems likely that the problem has a positive answer if restricted to Π1 sentences.
We know that every Π1 sentence follows from its consistency (and the axioms of
Robinson Arithmetic). Hence Problem 1 restricted to Π1 sentences can be equiva-
lently stated as follows:

Problem 9 Can the consistency of any consistent theory be proved in ZFC plus
some large-cardinal axiom?

Until now all proofs of consistency have been done in ZFC, possibly augmented
with large-cardinal axioms. Is this evidence for the claim that large cardinal axioms
suffice, or is it just because we do not have better ideas about how to prove consis-
tencies?

Large Cardinals and Forcing

There are sentences about infinite sets that are decided by large cardinal axioms, but
they are scarce. Therefore a more pragmatic approach has been proposed, based on
the following idea: it is certainly not possible to avoid incompleteness, but maybe we
can at least avoid the known methods for proving independence. As we are now con-
sidering set theory, namely extensions of ZFC, we have only two methods: Gödel’s

39For this, we do not need the strong condition on large cardinal axioms stated above. For exam-
ple, the axiom saying that there are at least two inaccessible cardinals also has more arithmetical
consequences than the axiom postulating the existence of at least one.

632 7 Consistency, Truth and Existence

Second Incompleteness Theorem (the unprovability of consistency) and Cohen’s
forcing. Gödel’s method produces independent Π1 sentences, but we know that if
such sentences are independent, then they are true. By this method combinatorial
Π2 sentences were also shown to be independent from Peano Arithmetic and from
some stronger systems, including ZFC plus some large cardinals. But again, it is
clear that these sentences are true. Gödel’s Second Incompleteness Theorem is also
used to prove that a large-cardinal axiom is not provable from large-cardinal ax-
ioms postulating smaller cardinals. Also in this case it is clear which sentence (if
consistent) we should consider true.

Hence from the practical point of view, Gödel’s incompleteness is harmless. But
we cannot say this about Cohen’s forcing. On the positive side, it is conceivable
that one can avoid the incompleteness results produced by the forcing method by
extending ZFC with some axioms. The best would be to add axioms for which we
have reasons to assume that they are true. What we have at hand are large-cardinal
axioms. As we will see, they alone cannot do the job, but they still perform very
well at the bottom of the hierarchy of set-theoretical sentences.

The aim of this approach is to obtain an extension of ZFC that is invariant under
forcing in the following sense. Let T be an extension of ZFC and φ a sentence. Say
that in T the sentence φ is invariant under forcing, if the independence of φ from
T is not provable using forcing. To be more specific, I will also define this using
generic extensions of models, on which the forcing method is based.

Definition 22 In an extension T of ZFC a sentence φ is invariant under forcing,
if for every model M of T and every generic extension M[G] that is also a model
of T , the following is true: if φ is true in M , then φ is also true in M[G].

If a sentence φ is provable in T , then it is, clearly, invariant under forcing in T .
As we will see shortly, there are also sentences that are not provable in T and are
invariant under forcing in T .

It seems that there is no consistent extension T of ZFC in which all sentences
are invariant under forcing.40 Therefore this approach focuses on sentences of low
complexity. What has been achieved is best explained using the following three
sets of sets of low complexity. Let H(ω0) denote the hereditarily finite sets, H(ω1)

denote the hereditarily countable sets and H(ω2) denote the sets that are hereditarily
of cardinality at most ℵ1. Let Φ(ω0),Φ(ω1) and Φ(ω2) denote the sets of sentences
that speak about sets in H(ω0),H(ω1) and H(ω2) respectively. Note that in Φ(ωi)

the range of quantification is also restricted to H(ωi). We can equivalently define
Φ(ωi), for i = 0,1,2, by saying that Φ(ωi) is the set of all first order sentences of
the structure (H(ωi);∈).41

40Recall that in this book I am always assuming that theories are axiomatized by algorithmically
decidable sets of axioms.
41The explanation of the notation H(ωi) is that these are sets of sets of hereditary cardinality less
than ωi . The notation Φ(ωi) is introduced only for this section.

7.2 The Attributes of Reality 633

Sentences of Φ(ω0) are studied in finite combinatorics and in the theory of natu-
ral numbers. As we have already noted, we do not have to take the whole of Φ(ω0);
it suffices to consider only arithmetical sentences. These sentences are already in-
variant under forcing in ZFC. The reason is very simple: a generic extension M[G]
has the same ordinals as M , hence, in particular, M[G] has the same natural num-
bers as M . Thus M[G] satisfies the same Φ(ω0) sentences as M .

Sentences in Φ(ω1) are a very interesting case—there exists a large-cardinal ax-
iom α such that ZFC+ α makes all sentences in Φ(ω1) invariant under forcing. To
state the axiom α we need the concept of a Woodin cardinal, mentioned in Chap. 3
(see page 229). This invariance result is the theorem of Woodin [309, 310].

Theorem 63 In the theory

ZFC+ ‘for every cardinal κ , there exists a larger Woodin cardinal’

every sentence of Φ(ω1) is invariant under forcing.

If we extend ZFC by classes, we can express the axiom by saying that there are
so many Woodin cardinals that they do not form a set; in other words, there exists a
proper class of Woodin cardinals. Although it is formally not correct to use it in the
context of ZFC, logicians prefer this version.

The axiom used in this theorem is not strictly speaking a large-cardinal axiom
because it does not postulate the existence of a single large cardinal. Most authors,
however, call also such axioms large-cardinal axioms.42

This theorem is probably the most remarkable result in the large cardinal pro-
gram. It shows that we can indeed sharpen our blurred image of the universe of sets
using large cardinal assumptions.

That said, in practice this large cardinal axiom is not very convenient. It speaks
about very large sets, while we are only interested in countable sets. It would be
better to have a low complexity axiom that would do the same job. There is no single
axiom that could be used instead of the large cardinal assumption, but one axiom is
very close to it. It is the Axiom of Projective Determinacy, abbreviated by PD. This
axiom suffices for all practical purposes, which means that the Φ(ω1) sentences that
occur in mathematical practice are invariant in ZFC+PD. Projective determinacy is
provable in ZFC extended with the axiom postulating the existence infinitely many
Woodin cardinals (one does not need a proper class of Woodin cardinals).

To explain this axiom, recall the concept of an infinite game and the Axiom
of Determinacy (see page 219). A game is given by a set X of countably infinite
sequences of zeros and ones; the sequences in X are the winning positions of the
first Player 1; the other sequences are winning position for Player 2. The Axiom
of Determinacy says that every game is determined, which means that for every X,
one of the players has a winning strategy. This axiom is inconsistent with ZFC,

42It is very easy to define a large-cardinal axiom that is only slightly stronger. Such is the axiom
postulating the existence of an inaccessible cardinal λ such that there are λ Woodin cardinals below
λ. If one wants to use an established large cardinal, then the supercompact cardinal would suffice.

634 7 Consistency, Truth and Existence

that is, it is provable in ZFC that there is a nondetermined game. The construction
of such a game uses the Axiom of Choice in an essential way, hence the game,
or more precisely the set X that defines the game, is not explicitly definable. For
some classes of definable sets, it has been proved that the sets in the classes always
define determined games. The Axiom of Projective Determinacy says that for a very
large class of definable sets the games are determined. Namely, it postulates that
all games definable in the structure (N,P(N),+,×,∈) are determined. (The name
‘projective’ comes from the name for sets definable in this structure—these sets are
called projective.)

The case of the structure H(ω2) and the sentences Φ(ω2) is more complicated. In
1961 Solovay proved that the existence of a measurable cardinal implies a property
of the universe of sets that points to the negation of CH (see page 214). But soon
after that Levy and Solovay proved that a measurable cardinal cannot decide CH
and some other statements that were proved independent by forcing [183]. Their
result, stated more precisely, is as follows.

Theorem 64 Measurable cardinals are preserved by generic extensions that use
small sets of forcing conditions.43

What this means is that given a model with a measurable cardinal, we can do
essentially all forcing constructions and we will still have this cardinal in the mod-
els. In particular, we can change the validity of the Continuum Hypothesis in both
directions while keeping the measurable cardinal in the model. (The technical con-
dition about small sets of forcing conditions is satisfied in these constructions.) A
generalization of this result states that, for a particular definition of large cardinals,
no large cardinal can make all Φ(ω2) sentences invariant under forcing. In particu-
lar, none of the studied large-cardinal axioms makes all Φ(ω2) sentences invariant
under forcing.

So an axiom of a different kind is needed. Such an axiom was proposed by
Woodin and denoted by (").

Theorem 65 In the theory

ZFC+ ‘there exists a proper class of Woodin cardinals’+ (")

every sentence of Φ(ω2) is invariant under forcing.

The innocent-looking (") is a rather complicated sentence that I am not going to
explain. Let me just say that it belongs to the so called forcing axioms, one of which
is the Martin Axiom (see page 363).

Although it seems to settle the case of Φ(ω2) sentences, it is not exactly what pla-
tonists would like to have. Woodin proved that if the theory in Theorem 65 without
(") is consistent then it is consistent also with it, but what is not known is whether

43The latter condition on generic extensions means that the cardinality of the partial order defining
the forcing conditions is less than the measurable cardinals that should be preserved.

7.2 The Attributes of Reality 635

this theory is consistent with larger cardinals. Why is this important when we do
not know if large cardinals are consistent anyway? The point is that large cardi-
nals seem to go in the right direction. As we have seen, postulating their negation
would be rather unnatural. So once we believe that large cardinal axioms are true,
all sentences that are incompatible with them must be false.

There is more to say about this case, but things get really complicated. Without
going into details, I will state some results concerning the Continuum Hypothesis.
As originally stated, CH is not a sentence about H(ω2), but there is a sentence in
Φ(ω2) that is equivalent to it in ZFC. Thus the study of the invariance of sentences
of Φ(ω2) could give us some clue whether one should accept CH or reject it. The
axiom (") implies the negation of CH; in fact, it implies that 2ℵ0 =ℵ2. But this fact
is a rather weak argument for the failure of CH because there may be other axioms
that make Φ(ω2) sentences invariant under forcing and imply CH.

Woodin developed a very complicated theory aiming to prove that this cannot
happen. He proved (see [312]):

Theorem 66 Assuming the Strong Ω-conjecture and the existence of a proper class
of Woodin cardinals, if ZFC+ α is an extension of ZFC in which Φ(ω2) sentences
are invariant under forcing and which is compatible with large-cardinal axioms,
then ZFC+ α refutes CH.

(The Strong Ω-conjecture will be explained in Notes.) This theorem would be a
good evidence for refuting CH, but unfortunately there is still something missing—
the proof of the Ω-conjecture. There are a number of results that hint that the Ω-
conjecture should be true, but even if the Ω-conjecture were proved, the theorem
above could not be accepted as a very strong evidence for the failure of CH because
there are other results that point to the truth of CH. For example, an earlier result
of Woodin shows that if one wants to make another set of sentences invariant under
forcing, the Σ2

1 sentences, then one has to make CH true (see Theorem 67 in Notes).
Although there are results that help us understand what is going on at these

small levels of the set-theoretical universe, it is still not possible to say conclusively
whether CH or its negation is true. My personal view is that one may eventually be
able to decide CH by presenting a collection of axioms and a persuasive justification
of this extension of ZFC. If this happens, it will be a great achievement, but we will
still have to cope with incompleteness in set theory. I am afraid that the justifications
for sentences that are higher in the hierarchy will become less and less compelling
as we climb the hierarchy upward. This trend is quite apparent already in the three
levels discussed in this subsection.

Do We Need Axioms of an Essentially New Kind?

Set theory is the field where most of the search for new axioms is going on. Most of
this research concerns principles about infinite sets. Here I want to discuss axioms

636 7 Consistency, Truth and Existence

that could help us prove theorems about finite sets. I will focus on the most basic
type of sentences, the Π1 sentences. I view the problem of finding axioms that de-
cide Π1 sentences as one of the most fundamental problems in the foundations of
mathematics, for the reasons I have already explained.

It may seem that this problem is not urgent because there are no examples of
truly mathematical Π1 theorems that needed special axioms. It is possible that all
open problems that are of this form are provable in the axiomatic systems that we
are already using, such as Zermelo-Fraenkel Set theory, or even Finite Set The-
ory. Indeed, it seems that even such difficult proofs as Wiles’ proof of the Fermat’s
Last Theorem can be done in Finite Set Theory. But it is also possible that we do
not have such examples of independent sentences simply because we do not have
suitable methods to prove independence, and that, in fact, some open problems are
independent of the theories that we are using. In any case, we know that there are
true Π1 sentences that are not provable in our theories and it is likely that among
them there are some that we need now or will need in the future.

Let us recall that true Π1 sentences are the simplest sentences to which the
Incompleteness Theorem applies; thus, in particular, there is no formal system in
which they are all provable. But we also know that they have a very special prop-
erty, the unambiguity (see page 610), which suggests that deciding their truth may
be simpler than for sentences of higher complexity. Another special property is that
every Π1 sentence follows from the statement expressing its consistency. So we
only need to find ways to prove arithmetical sentences that express the consistency
of theories.

Recall also that ordinal analysis, one of the most important technique in proof
theory, reduces the proof of the consistency of a theory T to the statement that,
roughly speaking, a particular constructive ordinal α is well-ordered. More pre-
cisely, the consistency of T is reduced to a sentence expressing the fact that a par-
ticular representation of α defines a well-ordering. If we disregard the “small com-
plication” that one has to find a suitable representation of the ordinal, it seems that
we do have a method for systematically generating theories that will exhaust all true
Π1 sentences. We will construct larger and larger ordinals α and, from the sentences
expressing transfinite induction up to α, we will derive more and more true Π1 sen-
tences. There is no systematic way of constructing large ordinals, but it seems that
it is easier to come up with a large constructive ordinal than to invent a completely
new axiom. Furthermore, it seems easier to recognize a well-ordering than a true
Π1 sentence.

Unfortunately, this does not work in practice. Pictures of ordinals, such as those
on page 186, may give the impression that we can easily recognize what is an ordinal
and what isn’t. But these pictures are deceiving since these ordinals are very small.
Imagine rather that you are given a very complicated definition of a binary relation.
How would you then find out that it defines a well-ordering? Finding (representa-
tions of) large constructive ordinals is also very difficult. Already for moderately
strong theories one needs very large constructive ordinals with highly nontrivial
proofs of the well-ordering property of their notations. For Second-Order Arith-
metic, which is just a tiny fragment of set theory, these ordinals are beyond the
scope of current techniques.

7.2 The Attributes of Reality 637

However, we are now discussing not practice, but philosophy, so we should rather
ask: can this work at least in principle? Namely:

Problem 10 Is it the case that for every true Π1 sentence φ, there exists a construc-
tive ordinal α such that φ follows from the sentence expressing transfinite induction
up to α?

This question is still stated too vaguely. In order to state it as a mathematical
problem we would need to say precisely for which representations of the ordinal
α we state transfinite induction. If we fix a representation A of a large construc-
tive ordinal α and watch what is going on for ordinals β < α represented by initial
segments of A, then usually everything works perfectly: not only do we get an in-
creasing hierarchy of Π1 sentences as the ordinals grow, but we also get that the
arithmetical part of the theories corresponding to these ordinals can be fully axiom-
atized just using transfinite induction, suitably stated for these ordinals. All of this
only works for fixed α and A. If we want to consider all constructive ordinals, we
have to talk about arbitrary representations of ordinals, and then we run into trou-
ble. We obtain the trivial answer that every Π1 sentence follows from transfinite
induction stated for a suitable notation for ω because one can encode the truth of
the sentence in the definition of the notation. We, clearly, need to restrict the set of
possible definitions of well-orderings, but we do not know how. As a matter of fact,
it is even not clear whether one can formalize the question above in a nontrivial and
meaningful way.

Transfinite induction stated for a representation of a constructive ordinal is a
Π2 sentence. We met concrete Π2 sentences independent of Peano Arithmetic in
Chap. 4 and such sentences are also known for fairly strong theories. These sentence
are very special in that they define fast growing computable numerical functions.
Constructive ordinals are also used to define hierarchies of fast growing functions
and the fact that these functions are well-defined is proved using transfinite induc-
tion over these ordinals. But fast growing functions are interesting independently of
constructive ordinals. In particular, they can be used to derive more Π1 sentences.
One can show by concrete examples that adding an axiom that a fast growing func-
tion is total (defined for all numbers) results in more Π1 sentences being provable.

Why should we use more complex Π2 sentences to derive simple Π1 sentences?
Again, as in the case of ordinals, fast growth is a concrete combinatorial property
and it apparently enables us to state stronger and stronger principles without any
upper limit. Unfortunately this idea suffers the same problem as the one based on
constructive ordinals: we do not know how to formalize it. We would like to de-
scribe functions so that the only information that we get from the definition is their
asymptotic growth. We need to avoid trivial examples in which information about
the truth of Π1 sentences is encoded in the definitions. It seems that there are only
two ways to define fast growing functions: (1) using ordinals, or (2) using specific
combinatorial principles, such as those that we saw in Chap. 4. If we use ordinals
then we only transform this problem into another one. If we use combinatorial prin-
ciples to define fast growing functions, then we cannot say that the Π1 sentences

638 7 Consistency, Truth and Existence

that we derive from these functions are derived only using their fast rate of growth.
So again we do not know if this idea is sound and can be formalized.

There is another type of axioms that produces new true Π1 sentences; these are
axioms postulating the existence of large cardinals, which I discussed in the previous
subsection. If α and β are two large-cardinal axioms and it is provable in ZFC that
β defines a cardinal larger than α, then also ZFC + β proves the consistency of
ZFC+α. Thus the consistency of ZFC+α is a Π1 sentence unprovable in ZFC+α

and provable in ZFC+ β .
All three types of axioms mentioned above talk about infinity: transfinite ordi-

nals, functions whose values go to infinity and infinite cardinals. The higher the
infinity is, the more Π1 sentences we get. This is not only empirically verified, but
one can also prove theorems confirming this fact. What is not clear is whether we
can get all Π1 true sentences in this way. I have stated this problem for large cardi-
nals and constructive ordinals, but it is a more general problem.

Problem 11 Does infinity alone (such as large constructive ordinals, fast growing
functions and large cardinals) suffice for proving all true universal-finite sentences,
or do we also have to look for axioms of an essentially different nature?

Gödel believed that in fact one can decide every sentence of set theory using a
“true assertion about the largeness of the universe of all sets”. We have noted that
this is not true unless one comes up with a completely new type of large-cardinal
axioms, but the answer may still be positive for Π1 sentences.

The statement of Problem 11 is only an informal question, a question from the
philosophy of mathematics rather than a mathematical problem. We do not have a
formal mathematical statement that expresses its meaning because we do not have
a formal definition of axioms of infinity. Finding a formalization of this problem,
even if it were only of a special case, would already be big progress.

Although the history of mathematics points rather to the first possibility, that
infinity is all that we need, I think we should also seriously consider the second
possibility—that we may need axioms that do not postulate infinities in any form.
One piece of supporting evidence for the second possibility comes from set the-
ory. We know that the large cardinal program has certain limitations, namely, large-
cardinal axioms cannot decide some relatively low complexity sentences about in-
finite sets. This is still a long way from arithmetical sentences, not to say from Π1
sentences, but it does show a certain weakness of the axioms of infinity.

When looking for Π1 sentences that do not follow from axioms of infinity what
comes to mind are open mathematical problems of this logical complexity (such
as the Riemann Hypothesis). I think, however, that we should rather look for such
sentences in logic and complexity theory. These fields are closely connected with
the foundations of mathematics and therefore it is more likely that in these fields
there are some problems that are not decidable using standard means.

Consider Conjecture 6 (page 570) that says that for every finitely axiomatized
consistent theory T , there exists a total polynomial search problem Q which is
strictly stronger than all search problems that T properly formalizes. This conjecture

7.2 The Attributes of Reality 639

itself could be such an axiom, but it is more interesting to see what it would imply.
If the conjecture were true, we would have an essentially different way of extending
our theories by new Π1 sentences: rather than postulating that some fast-growing
functions are total, these sentences would say that certain polynomial search prob-
lems are total. Admittedly, it is neither clear whether such sentences would be use-
ful, nor how we would find them, but this is not important for our theoretical dis-
cussion. What is important is that in this way we would be able to state axioms of a
different nature.

Assuming that we do need axioms of an essentially new nature, how will we
ascertain this fact? How will we prove that we need a new kind of axioms? This
is a big problem and it may not have a mathematical solution. All I can suggest
is to scrutinize the arithmetical consequences of axioms of infinity and look for a
property that all consequences of axioms of infinity have. When we find one, then
we should look for true sentences that do not have this property.

Notes

1. A model-theoretical proof of the Unambiguity of Π1 Sentences. This proof rests
on the fact that every model of Peano Arithmetic contains the standard model
as an initial segment. Another fact needed in the proof is that if a Π1 sentence is
true in a model M , then it is also true in its standard submodel. The proof is now
easy: If a Π1 sentence φ is consistent with Peano Arithmetic, then there exists
a model in which it is true, but then it is also true in its standard part which is
isomorphic to the natural numbers. Hence φ is true.

2. Are independence proofs of P = NP possible? The sentence P = NP can be
equivalently stated as a Π2 sentence by formalizing the following sentence:

For every polynomial time algorithm A, there exists a CNF formula φ for
which A decides the satisfiability of φ incorrectly.

Here we are using the fact that satisfiability of Boolean CNF formulas is NP-
complete. It seems unlikely that we can push this down to Π1, so the Principle
of Unambiguity of Π1 Sentences does not apply here. But note two things.

a. When proving lower bounds, we usually do not talk about all polynomials,
but rather about one function that grows faster than all polynomials. Suppose
f is such a function and suppose moreover that it is efficiently computable.
For example, f (x)= xlogx . Then the formalization of the following sentence
is a Π1 sentence.

For every n and every circuit C of size at most f (n), there exists a
formula φ of size n for which C does not decide the satisfiability of φ
correctly.

(There is an existential quantifier, but it is a bounded one, since it only quan-
tifies formulas of size n.) This sentence is stronger than P = NP, but if f

grows very slowly, the difference is not essential.

640 7 Consistency, Truth and Existence

b. If we strongly believe that P =NP, then showing that P=NP is unprovable
in a theory T is less interesting than showing that P =NP is unprovable in T .
If P =NP is indeed true, the former fact would only confirm our belief, but
would not say anything about the theory T . The latter fact would, however,
show that it is hard to prove P = NP—one would need a theory stronger
than T to prove it. Now, if we proved that P = NP were unprovable in T ,
then also all the Π1 statements of the form above would be unprovable. But
this still would have no consequences concerning the truth or falsehood of
P =NP.

Let me recap in terms of models. It is unlikely that we will be able to con-
struct a model in which P =NP without actually knowing that P =NP is true.
But it is conceivable that we will be able to construct a model in which P=NP
and that would show that it is difficult to prove that P =NP.

3. The role of the metatheory. Let S be our metatheory. To define the arithmetical
soundness of a theory T in S, we must have a definition of arithmetical truth.
For example, PA does not suffice because, by the Gödel-Tarski Theorem, we
cannot define arithmetical truth by an arithmetical formula.

Suppose we can define satisfiability of arithmetical formulas in S. Then
we can define the concept of arithmetical soundness, but this may still not be
enough. We also need to prove some properties about it. In particular, we would
like to be able to show that if an arithmetical sentence φ is true, then every sen-
tence derivable from φ, hence also the theory axiomatized by φ, is sound. To
this end we have to be able to apply induction to the definition of satisfiability
of arithmetical formulas.

In theories such as ZFC, or Z2 (see below), we have induction for all formu-
las. Hence, whenever we have a definition of satisfaction for a class of formulas,
we can apply induction. This is not true in general.

In PA, where we do not have a definition of satisfaction for arithmetical
formulas, the closest approximation to arithmetical soundness is the uniform
reflection principle RFN(T), which can only be expressed by an infinite set of
sentences.

The following proposition is an illustration of what is going on in PA.

Proposition 17 For every arithmetical sentence φ, PA) φ→ RFN(φ), hence
in particular PA) φ→ Con(φ).

Note that in RFN(φ) and Con(φ) we consider the theory axiomatized by the
single axiom φ; the proposition would be false if we used PA+ φ.

Proof Suppose that n is given such that φ is a Σn sentence, or a sentence
of lower complexity. We are to prove PA) φ → RFNΣn(φ). In PA we can
prove the cut-elimination theorem, which implies that if a Σn sentence ψ is
provable from φ, then there exists a proof d that uses only Σn sentences. Using
the definition of satisfiability SatΣn we can now prove by induction that all
formulas in d are satisfied by all assignment of numbers to their free variables.

7.2 The Attributes of Reality 641

In particular, ψ is true. (See also Lemma 2.34 and Theorem 2.35 in Part III
of [111].) �

To sum up, we need two conditions for formalizing the concept of soundness:

• the language of the metatheory should be able to define truth of the sentences
under consideration;
• induction should hold for a class of formulas that includes the formula defin-

ing truth.

In informal reasoning about foundations people often make assumptions that
are not justified; one such mistake is taking the above two conditions for
granted. It is important to keep in mind that every theory, including metathe-
ories, has limitations on what the language can express.

4. Proof of Proposition 14.

a. The provability of φ→ Con(Q+ φ) in PA is an immediate consequence of
Proposition 17.

b. Let φ be ∀x ψ(x) where ψ(x) is a bounded formula. We will argue in PA.
Suppose Con(Q+φ) is true. If φ is false, we have¬ψ(n) for some n. By Σ -
completeness, Q proves ¬ψ(n̄). But ∀x ψ(x) is an axiom of Q+ φ, hence
Q+ φ is inconsistent contrary to our assumption. Hence φ is true. Thus we
have proved Con(Q+ φ)→ φ in PA.

5. Equal consistency strength vs. equiconsistency. If T is an arithmetical theory
axiomatized by a finite number of axioms, then PA proves T ≡ T +Con(T) by
Proposition 17. So T and T +Con(T) is an example of a pair of equiconsistent
theories that do not have the same consistency strength.

6. Extending T by ¬Con(T) does not add new Π1 sentences. The precise state-
ment of this fact is:

Proposition 18 Let T be a theory in which the Completeness Theorem for
predicate calculus and the Second Incompleteness Theorem are provable. Then
T +¬Con(T) proves the same Π1 sentences as T .

We will derive the proposition from the following lemma.

Lemma 17 For every model M of T , there exists a model M ′ of T +¬Con(T)

such that NM (the natural numbers of M) is an initial segment of N
M ′ (the

natural numbers of M ′).

Let M be a model of T . If M |� ¬Con(T), we can take M ′ =M . So suppose
that M |� Con(T). Using the Incompleteness Theorem we get M |� Con(T +
¬Con(T)). Using the Completeness Theorem we can define in M a model M ′
of T +¬Con(T). From the point of view of M , NM is the standard model, so
it is an initial segment of every model of natural numbers, in particular NM is
an initial segment of NM ′ .

Let us now prove the proposition. Suppose that T +¬Con(T) proves a Π1
sentence φ. To prove that φ is provable already in T , we need to show that φ

642 7 Consistency, Truth and Existence

holds true in every model of T . So let M be an arbitrary model of T and let M ′
be the model from the lemma; then N

M ′ |� φ. Since NM is an initial segment of
N

M ′ , φ is true also in NM , which means that it is true in M .
The Completeness and the Incompleteness theorems are provable already in

IΣ1, the subtheory of PA in which the induction schema is restricted to Σ1
formulas.

7. More reflection principles. The uniform reflection principle RFN(T) is usually
stated as the schema

∀x (PrT
(⌈

φ(x̄)
⌉)→ φ(x)

)
for all formulas φ(x). This is equivalent to the definition I used, which is the
union of RFNΣn(T), n = 1,2, Further, it is equivalent to the formalized
ω-rule, which is

∀x PrT
(⌈

φ(x̄)
⌉)→∀x φ(x).

The formalized ω-rule follows from the uniform reflection principle using only
logic. The opposite implication requires a proof. Recall that the ω-rule is used
to eliminate induction axioms. This is a hint for the proof of Theorem 60.

ω-consistency, introduced by Gödel, is the schema

∀x PrT
(⌈

φ(x̄)
⌉)→¬PrT

(⌈∃x ¬φ(x)
⌉)

.

It can also be viewed as a kind of reflection principle.
8. The definition of transfinite progressions of theories. Consider progressions

starting with some arithmetical theory T and obtained by adding consistencies.
First observe that we can replace the three conditions 1., 2. and 3. on page 618
by the following informally stated condition:

T Con
α := T + {Con

(
T Con
β

);β ≺ α
}
.

In order to formalize this condition in arithmetic, we need an arithmetical for-
mula σ(x, y) whose meaning is ‘x is an axiom of T Con

y ’. Let τ(x) be a formula
that defines the axioms of T . Then the condition above is formalized by

∀x∀y (σ(x, y)≡ τ(x)∨ ∃z (z≺ y ∧ x = ⌈Con(σz̄)
⌉))

, (7.3)

where 'Con(σz̄)(is a formalization of the consistency of the theory axiomatized
by sentences whose Gödel numbers x satisfy σ(x, z). This is a self-referential
formula to which one can apply the Diagonal Lemma 2 (page 291). If one ap-
plies this lemma to the theory T , which ensures that (7.3) is provable in T , then
the progression is uniquely defined. This means that for any choice of σ(x, y)

such that T proves (7.3), we get equivalent theories in the progressions.
Ambiguity may be caused by the choice of the formula for the axioms of

T and the choice of the formula for the ordering of ordinals ≺. If one chooses
natural formulas representing these concepts, the progressions behave as we ex-
pect. One can specify some properties that natural formalizations should satisfy,
but there is no general definition. “Pathological” formalizations were found by
Turing [294] and Feferman [70]. Turing showed that for every true Π1 sentence

7.2 The Attributes of Reality 643

φ, one can formalize PAω+1 so that it proves φ. This has, however, no practical
meaning because in order to see that such a formalization is correct, one must
know a priori that φ is true.

9. Subsystems of Second-Order Arithmetic. Second-Order Arithmetic, Z2, is a
fairly strong theory. Five subsystems of Z2 have been identified as important
benchmarks: RCA0, WKL0, ACA0, ATR0 and Π1

1 − CA0 (listed in order of in-
creasing strength). For us, only ACA0 and ATR0 are important, but I will also
mention another theory, ACA.

ACA0 is the subsystem of Z2 in which the Schema of Comprehension is re-
stricted to arithmetical formulas with sets only as parameters. In other words,
ACA0 has a comprehension axiom for every formula in which sets are not quan-
tified. This theory is a conservative extension of PA, which means that it proves
the same arithmetical sentences as PA. The acronym stands for Arithmetical
Comprehension Axiom and the zero indicates that we only have an induction
axiom of the form stated above instead of a schema of induction for all formu-
las.

ATR0 is an extension of PA in which an axiom schema postulates that it
is possible to define sets by transfinite recursion using arithmetical formulas.
Thus ATR stands for Arithmetical Transfinite Recursion. The schema can be
informally described as follows.

Let φ(x,Y) be an arithmetical formula with a set parameter Y , let ≺ be
a well-ordering of natural numbers. Then there exist sets Ya for every
number a such that

x ∈ Ya ≡ φ
(
x, {Yb}b≺a

)
.

To state the schema formally, first represent the indexed system Ya by the
binary relation Z = {(a, x);x ∈ Ya}, and then represent the binary relations ≺
and Z as sets using the pairing function on natural numbers.

The schema of transfinite recursion of ATR0 works in a similar manner as au-
tonomous progressions. If we want to prove the existence of a set by transfinite
recursion, we first need to prove that the relation representing the ordering is a
well-ordering. This connection is not superficial. Feferman defined a theory IR
that proves the same arithmetical sentences as ATR0 and used IR to characterize
the sentences provable in a certain autonomous progression [71].

In the example of a transfinite progression that I described on page 621 the
resulting theory T RFN

φ2(0)
is only a small subset of arithmetical theorems of ATR0.

This is quite apparent from the comparison of the ordinals for which the theo-
ries prove transfinite induction (for arithmetical formulas). While T RFN

φ2(0)
proves

transfinite induction only for ordinals less than φ2(0), ATR0 proves transfinite
induction for all ordinals less than Γ0. Recall that Γ0 is the least ordinal γ

such that γ = φγ (0), so it is much bigger than φ2(0). This shows that simple
set-theoretical axioms are much stronger than transfinitely iterated arithmetical
principles.

ACA0 is said to be a predicative extension of PA, because the formulas in
the comprehension schema of ACA0 use sets only as parameters. Hence when

644 7 Consistency, Truth and Existence

defining a new set we do not refer to the totality of all sets, but only to param-
eters which are interpreted as sets that we have already constructed at previous
stages. Repeated applications of such a comprehension axiom can be viewed
as defining sets by recursion. Kreisel’s idea from the late 1950’s is that there
is no reason to restrict the recursion to ω. If the theory is able to see that α is
well-ordered, we should allow recursion up to α. This was the seminal idea that
led to introducing various predicative systems. The ordinal Γ0 and the theory
ATR0 are often presented as upper bounds on predicative ordinals and theories.

ACA is the strengthening of ACA0 in which induction is postulated for all
formulas in L2. While in the theories with the induction axiom (all five theories
mentioned above) induction holds for the same class of formulas as compre-
hension, here this is not the case.

10. Predicativism. This is a stream in the philosophy of mathematics whose aim is
to develop mathematics on the basis of predicative theories. It is based on the
idea, due to Poincaré and Russell, that one can secure the consistency of formal
systems by using only predicative definitions of sets. Restricting to predica-
tive definitions presents rather severe limitations since non-predicative defini-
tions are used very often in mathematics. Hermann Weyl developed methods
to overcome these difficulties at least in some cases [307]. Currently the main
proponent of predicativism is Solomon Feferman.

11. Well-orderings and autonomous progressions. An informal argument suggests
that an upper bound on autonomous progressions {T RFN

β }β<α is any theory S in
which one can prove that T is arithmetically sound. In other words, the arith-
metical soundness of T should suffice to prove that all theories in the progres-
sion are sound. The idea is to use transfinite induction. In order to get to T RFN

β

we need transfinite induction up to β . By the induction assumption S knows
that all theories T RFN

γ , for γ < β , are arithmetically sound. Since these theories
prove transfinite induction up to β , and because of the autonomy of the progres-
sion, S knows that transfinite induction up to β is true. So apparently we have
enough transfinite induction in S to prove that all theories in the progression
are sound. However attempting to formalize this argument one immediately
finds the hidden flaw. When we formalize transfinite induction up to β in T ,
we can state it only for formulas in the language of T . In S we must be able
to express the truth for all formulas of T and this is not possible in the same
language. Since the theory S must have a richer language, we also need trans-
finite induction for formulas in the richer language. The theory S does prove
transfinite induction up to β for formulas in the language of T , but this is not
enough. (This mistake appears in otherwise excellent book of T. Franzén [76].)
Additional assumption about well-orderings are needed.

If the metatheory is strong, we may be able to prove that the theories in an
autonomous progression are true by other means. For example, we may know
that S proves transfinite induction up to φ2(0) (for appropriate formulas) and
thus deduce that the theories PARFN

α , for α < φ2(0), are true. In some theories
it is also possible to amplify the transfinite induction stated for sets to trans-
finite induction for a class of more general formulas. This principle is called

7.2 The Attributes of Reality 645

the Bar Rule. Using this rule one can define a more precise upper bound on
{PARFN

α }α<φ2(0): all sentences provable in the latter arithmetic theory are prov-
able in the subsystem of Second Order Arithmetic ACA+BR, where BR stands
for the Bar Rule stated for all formulas in L2. (See [219], where Δ1

0-CA is used
instead of ACA.)

12. Reflection principles in set theory. Reflection principles have a different mean-
ing in set theory, although there are similarities between the uses in arithmetic
and set theory. In set theory reflection principles are formalizations of the fol-
lowing idea.

The class of all sets V is so big that it is impossible to describe it. There-
fore any property of V must already be satisfied by some Vα of the cumu-
lative hierarchy.

We can also say that the class of all ordinal numbers ON is so big that every
property of ON is already satisfied by some cardinal κ . Indeed, ON looks very
much like a large cardinal, except that it is not a set. For example, it satisfies the
conditions that define inaccessible cardinals (see page 198).

Formalizations of this rule of thumb were used to define large cardinals. In
particular, for a class Γ of set-theoretical sentences with one class variable, we
define that κ is Γ -indescribable if for every R ⊆ Vκ and every φ ∈ Γ ,

(Vκ ;∈,R) |� φ ⇒ ∃α < κ (Vα;∈,R ∩ Vα) |� φ.

By choosing suitable sets of sentences Γ , one can give equivalent definitions of
inaccessible, weakly compact and other cardinals. These cardinals are, however,
relatively low in the hierarchy of large cardinals.

13. Ω-logic and the Ω-conjecture. Woodin introduced Ω-logic in order to describe
sentences that are invariant under forcing. The definition of semantics is not
difficult. Given a sentence of set theory φ, we say that it is Ω-valid, or write
|�Ω φ, if for every ordinal α, φ is true in every generic extension of Vα which
is a model of ZFC. I will not define when a sentence is Ω-provable, which is
written as)Ω φ. Let me just say that an Ω-proof is represented by an infinite
object, a subset of ωω with certain properties. Although Ω-proofs do not have
the structure of usual proofs (a sequence or a tree of formulas), all theorems
of ZFC are Ω-provable and modus ponens is an admissible rule. Further, Ω-
provability is sound with respect to Ω-validity, that is, if)Ω φ then |�Ω φ.
What is missing is the completeness—this is the Ω-conjecture.

The Ω-conjecture Every Ω-valid sentence is Ω-provable.

Unfortunately, one often needs a stronger assumption, the Strong Ω-
conjecture. The definition of this conjecture (see [157]) is too technical to be
included here.

The result about Σ2
1 mentioned after Theorem 66 is the following theorem

of Woodin (see [157]).

646 7 Consistency, Truth and Existence

Theorem 67 Assuming the Strong Ω-conjecture and the existence of a proper
class of Woodin cardinals, the following is true.

a. ZFC+CH makes all Σ2
1 sentences invariant under forcing.

b. For every Σ2
1 sentences φ that makes Σ2

1 sentences invariant under forcing,
φ is Ω-equivalent to CH.

Σ2
1 sentences are the sentences in the 3rd-order arithmetic that start with an

existential 3rd-order quantifier and the rest is a 2nd-order formula.
It is well-known that CH can be stated as a Σ2

1 sentence. Hence Theorems 66
and 67 imply that, assuming the strong Ω-conjecture, there is no extension of
ZFC compatible with large-cardinal axioms that makes all sentences invariant
under forcing.

7.3 Finitism and Physical Reality

The geometry of three dimensions developed in antiquity, as presented in Euclid’s
Elements, was intended to describe physical space. In the 19th century, when non-
Euclidean geometries were discovered, some scientists began to suspect that Eu-
clidean geometry was not the geometry of physical space. But only after Einstein’s
Theory of Relativity was tested did it become clear that this is the case. The reason
is that bodies with mass cause curvature of space around them. Even more dra-
matic things happen with space in black holes. Furthermore, the geometry of space
changes over time, which 19th century scientists certainly did not expect to be pos-
sible.

Today the fact that flat Euclidean geometry is not the geometry of physical space
is accepted as a natural phenomenon. Maybe, there are other mathematical struc-
tures that we identify with physical reality, but one day we will discover that they
are different. In this section I will discuss the possibility that the discrepancy be-
tween physical reality and mathematical models may concern even so basic concept
as the natural numbers.

Mathematical and Physical Natural Numbers

The natural numbers can be represented in various ways in physical reality. When
we use numbers to count objects, they are represented by sets of physical objects.
But instead of using objects, let us consider the representation of numbers in Eu-
clid’s style. Let � be a line going from a point A to infinity. Let a unit length be
fixed, say 1 meter. Imagine that we make marks every 1 meter on the line �. This
will be our representation of the numbers. As we know, addition and multiplication
can be defined geometrically, so we have a representation of the structure with these

7.3 Finitism and Physical Reality 647

operations. I will call this structure the small physical natural numbers, or lengths,
and denote it by Lphys.

We can use another physical structure to represent the natural numbers. In this
structure a number is represented by a string of zeros and ones that we place on the
marks on a finite initial segment of the line �. In this case addition and multiplication
cannot not be defined geometrically, but, in principle, these operations can be done
mechanically for arbitrary long strings. Thus we get the second structure, which I
will call the physical natural numbers and denote by Nphys.

One can think of many other representations of numbers by physical objects.
We may use physical quantities other than length, such as time, or the strengths
of fields. Thus we may obtain more than two different structures, but it seems that
all representations should reduce in some natural way to the two structures defined
above, and maybe even down to one, if the two are isomorphic.

The Natural Numbers in a Finite Universe

If the universe is finite, then the line � has a finite length and both ways repre-
sent only numbers of finite segments of the mathematical natural numbers. We have
Lphys = {0,1,2,3, . . . , n} for some number n, and Nphys = {0,1,2,3, . . . ,2n − 1}.
So the physical and mathematical natural numbers are different and, moreover,
Lphys = Nphys. The largest numbers in Lphys and Nphys depend on the unit that we
use. By taking smaller units we can represent larger numbers. Hence the largest
number in Lphys is defined by convention.

Recall the informal classification of natural numbers to small, medium and large
that I used to motivate concepts in computational complexity in Chap. 5. A small
number is a number n such that we can let a computer run for n steps. In particular,
we can do exhaustive search of numbers less than or equal to n. Medium numbers
are those n which we can write down and compute with, but for which it is impos-
sible to do exhaustive search up to n. Large numbers are the numbers that are larger
than medium numbers—we cannot even write them down in binary notation. This
classification was based on what humans can do with numbers. In a finite universe
the three categories can be given a physical meaning: the small numbers are Lphys,
the medium numbers are Nphys and large numbers are all the rest. Although we can-
not do it systematically, we can define also some large numbers, represent them by
symbols and compute with them. Therefore the fact that large numbers do not have
natural representations should not be considered a reason to prohibit them. They are
just a different kind of entity. I will call the set of all three kinds of numbers the
mathematical natural numbers, and I will use the standard notation N for them.

In a finite universe, complexity theory can be based on this classification of num-
bers, instead of the concept of polynomial growth. What I used before only as a
motivation for defining the basic concepts of computational complexity now be-
comes real. Therefore in a finite universe computational complexity should play
an important role. According to current theories, physical processes are efficiently

648 7 Consistency, Truth and Existence

computable, which means that one can compute the results of experiments in poly-
nomial time (except that we may need to use quantum Turing machines, not just
the classical ones). If this is the case, then complexity theory should tell us not only
what humans can efficiently compute, but also what is physically possible.

Clearly, all this is a very simplified picture of a possible reality. First, infinity
can manifest itself in various ways as we noted above. Second, in computational
complexity there are two basic computational resources—time and space. It is rea-
sonable to conjecture that if space is finite, then so is time, but it is not clear what
would be the relation between these two finite entities. To get a theory similar to
standard complexity theory, we would need to have the structure of time be essen-
tially the same as Lphys so that we could say that what is physically computable is
computable in time t bounded by the largest element of Lphys, or its small multiple.

I do not want to go into detail about how this could be formalized because it
would require a model of a discrete universe and I do not know any such model.
Instead, let us see if it is possible at all that the universe could be finite. Some people
still think that this is the kind of question that will never be resolved, but this is a
misconception. The slight variations of the cosmic microwave background can be
used not only for studying the evolution of the universe from the big bang, but also to
test hypotheses about the shape and the finiteness of space. The more precise recent
measurements were compared with predictions of various models of the universe. It
turned out that some finite models fit the data better than models assuming infinite
space. To test the conjectures about the finiteness of space it is necessary to come
up with a specific model that also determines the shape. The model that fitted the
data best was the Poincaré dodecahedral space, which always has finite size [188].
It would be very interesting if space had such an exotic structure, instead of the
familiar kinds of structure, such as the sphere or the torus.

The problem of the finiteness of space has not been conclusively resolved yet,
but there is, however, a good chance that this or some other model will be confirmed
with high reliability when more data are available and more computations are per-
formed. That said, one cannot rule out that sceptics are right after all. For example,
the universe may be finite, but too big for us to be able to ascertain this fact.

If the universe is finite, its size is at least the size of the observable universe,
whose diameter is estimated to be 8 × 1026 meters, which is approximately 1062

Planck lengths.44

The Natural Numbers in an Infinite Universe

The prevailing opinion is that the universe is infinite. For the sake of simplicity, I
will assume that both space and time are infinite. This will suffice for explaining in
what sense the physical and the mathematical natural numbers could be different.

44Physicists believe that it is impossible to distinguish two events occurring in a distance shorter
than the Planck length.

7.3 Finitism and Physical Reality 649

The standard view of philosophers of mathematics and physics is that if the uni-
verse is infinite, then the mathematical natural numbers are exactly what one can
physically represent; in particular, all representations are isomorphic. It is difficult
to state this as a thesis because of the vagueness of the concepts involved, but I will
try it anyway.

The Natural Number Thesis The concept of natural numbers studied in mathe-
matics is unique and any reasonable physical representation of natural numbers is
a model of this concept.

We can express a special case of the thesis for the two particular representations
mentioned above by the equations:

N= Lphys =Nphys.

Recall that the discovery that the geometry of space is not Euclidean was pos-
sible only after non-Euclidean geometries had been found. Hence to challenge the
Natural Number Thesis one must first propose a different kind of natural numbers.
Therefore my main aim in this section is to present an alternative view of the physi-
cal natural numbers. This is certainly not the first attempt to offer a different theory
of natural numbers. I have explained one such theory in Chap. 3, Vopěnka’s Alter-
native Set Theory. Vopěnka and others, however, did not distinguish between the
mathematical natural numbers and the physical natural numbers. Their aim was to
propose different kinds of foundations of mathematics.

The theory that I am going to present is not supported by observations of physical
reality. I mean it only as an example of a different approach. It is definitely a con-
troversial proposal, but I will also mention even bolder extensions of this theory. I
believe that it is important to look for alternatives to the classical view of the natural
numbers. Once we have more theories, we can compare them and decide which is
more likely to be the right one.

An important concept that we have met several times in this book is the concept
of fast growing functions. We have seen explicit examples of extremely fast growing
functions in Chap. 4. We also know that there are functions that grow much faster
and that every theory is only able to formalize functions up to some limited growth.
In the “ideal” natural numbers, which these theories try to describe, we have all these
wildly growing functions. In more technical terms, we believe that if it is consistent
to assume that a fast growing function exists, then it does exist.

How is it in the physical world? Let us consider the exponential function y =
2x . From the point of view of the theory of fast growing functions the exponential
function represents only a very mild growth. On the other hand, in complexity theory
it is the paradigm of a function growing too fast. The question is whether Lphys is
closed under this function (which would mean that for every number n in Lphys,
there is a number representing 2n in Lphys). Our intuition tells us that this must be
so. The argument behind this feeling is that if some n is in Lphys and 2n is not, then
we would find a number m less than n such that 2m is in Lphys but 2m+1 is not.
But if we can represent 2m, we should also be able to represent 2m+1, because it is

650 7 Consistency, Truth and Existence

only twice as large as 2m and we assume that space is infinite. Hence Lphys must be
closed under exponentiation.

In this argument it is reasonable to assume that if length x exists then also length
2x does. So let us assume that Lphys is closed under multiplying by 2. What is,
however, wrong is the assumption that one can test the existence of a representation
of 2x for all numbers x up to m. When we test numbers 0,1,2, . . . in order to find
an m with the above properties, the numbers 20,21,22, . . . go beyond any number
in Lphys because 2n is not in Lphys and Lphys is closed under multiplying by 2. Thus
we will have to search an infinite part of the line � in order to find m. It seems
unrealistic that one could do this in finite time.

A Theory of the Physical Natural Numbers

The new theory TPhN that I am going to propose is based on postulating that
the exponential function is not defined on all physical natural numbers because it
grows too fast. This approach is a particular form of finitism. When speaking about
finitism, one should distinguish subjective from objective finitisms. Intuitionism is
an example of a subjective finitism. Intuitionists reject actual infinity because, for
them, mathematics is a mental activity. Since humans are finite beings, they can only
imagine finite structures. Another form of finitism is based on the idea that, although
mathematics is real, our limited means enable us to handle only finite structures.
This is also a subjective approach. Objective finitism, on the other hand, rejects
actual infinity on the basis that finiteness is an essential property of the universe.
An extreme form of finitism, called ultrafinitism, considers only small numbers as
meaningful. The system I am going to present can be classified as objective ultra-
finitism. But I should stress that this is only an attempt to present an alternative view
of physical reality. I do not mean it as a basis for the foundations of mathematics.

I will present the theory TPhN using four axioms stated informally and mention
possible ways to make the system a formal theory later. In the informal presenta-
tion I will tacitly assume that we already have some basic axioms that enable us
to formalize basic concepts mentioned in the axioms. All objects of this theory are
numbers; their intended interpretation is Nphys. The predicate L denotes logarithms,
or lengths of numbers, and its intended interpretation is Lphys. It will also be con-
venient to use the symbol N for the universe of all numbers, although there are no
other elements in the theory.

Axiom 1 (Infinity) L contains 0 and 1 and is closed under + and ×.

I am stating this simple axiom explicitly because the question which functions
are total plays an important role in this theory. This axiom, in particular, implies
that the numbers are an infinite structure. Note that this axiom can be stated without
referring to L; we only need to require stronger closure properties of the universe of
numbers.

7.3 Finitism and Physical Reality 651

Axiom 2 (Feasible Computations) For every algorithm A (presented as a Turing
machine), every number m in L, and every number n, there exist m steps of the
computation of A on the input n.

This axiom is intended to make the theory strong enough to formalize computa-
tions. We have to ensure that computations can be formalized so that one can prove
that computations of length m exist for every m in L. Since L is known only to
be closed under + and ×, such computations are very much like computations in
polynomial time.

Axiom 3 (Induction) For every predicate P(x), every number m in L, and every
number n, if there exists an algorithm A that can test the predicate P for numbers
x = 0,1,2, . . . , n, and such that A needs time at most m for every such x, then the
following holds true. If P(0) and P(x)→ P(x + 1) for all x = 0,1,2, . . . , n− 1,
then P(n).

Axiom 3 is a special case of the general principle of induction. In this axiom I
only postulate induction for efficiently testable predicates. The reason is that I as-
sume that physical processes correspond to efficient computations. In other words,
efficiently testable means experimentally testable. It is natural not to postulate in-
duction for predicates that we cannot test.

So far the axioms are satisfied by the mathematical natural numbers N. The last
axiom makes TPhN incompatible with N.

Axiom 4 (Limited Universe) There exists a number ν such that 2ν does not exist.

The axiom can also be stated in physical terms as

Lphys =Nphys.

To present the theory TPhN formally, one has to specify the language of the
theory and add several more axioms. So one should view Axioms 1–4 not as a
formal theory, but as a specification of a class of theories. This is similar to the
generic name ΘC for theories corresponding to a complexity class C. In fact, the
theories that conform to Axioms 1, 2 and 3 in the best way are the theories of ΘP, the
theories associated with the complexity class P. Hence TPhN can be specified by:

ΘP +Axiom 4.

In other words, if we want a formal theory, we only need to take one of the theories
formalizing ΘP and add Axiom 4.

I will now give a physical justification of Axiom 3. Induction, as stated in the
axiom, is equivalent to the statement that if P(0) and ¬P(n), then there exists an
x < n such that P(x) is true and P(x + 1) is false. In the theory TPhN we iden-
tify physical processes with algorithms, so we should show that such an x can be
produced by an algorithm. Note, however, that, in general, n does not have to be in
Lphys, so we do not have enough time and space to check all numbers between 0 and

652 7 Consistency, Truth and Existence

n for the property P , although we can do it for each of them individually because
m ∈ Lphys. The algorithm is based on the binary search, a well-known trick used in
many algorithms. Take n/2 if it is an integer, otherwise round it down to an integer.
Let this number be n1.45 Test if P(n1) is true. If it is false, then we focus on the
interval [0, n1] because we know that there is an x < n1 such that P(x) is true and
P(x + 1) is false. Otherwise we focus on [n1, n] and search such an x between n1

and n. Then we divide the interval again into two approximately equal parts, and so
on, until the interval has length 2, in which case we are done. In each step the length
of the interval decreases approximately by a factor of 2. Hence we need to do this
approximately log2 n-times. Checking whether P(x) is true or false takes time m.
We know that m and log2 n are in Lphys. Since, by Axiom 1, Lphys is closed under
multiplication, we have m · log2 n ∈ Lphys. Hence we have enough time and space
to run this algorithm and find and x such that P(x) and not P(x + 1).

What this argument actually shows is that induction for N follows from induction
for L (a well-known fact in proof complexity). Induction for L is justified by the fact
that we have enough time to test every number below n if n is in L.

Axiom 3 raises the natural question whether it is possible to use more efficient
ways of computation to make the induction axiom a stronger. What comes imme-
diately to mind are probabilistic and quantum algorithms. Theories that formalize
probabilistic polynomial time computations have been studied; formalizing quan-
tum computations is more difficult and to date we do not have theories associated
with polynomial time quantum computations. After all, it is too early to think about
generalizations—first we should test this simpler theory.

The theory TPhN certainly reminds one of Vopěnka’s Alternative Set Theory. In
that theory there are also two types of natural numbers: N and a proper initial seg-
ment FN called the ‘finite numbers’. There is, however, a huge difference between
the properties of our numbers and Vopěnka’s numbers. For example, both FN and
N are closed under very fast growing functions. Since, in particular, FN is closed
under exponentiation, we cannot interpret FN as Lphys and N as Nphys. It would be
more in the spirit of Vopěnka’s philosophy to interpret FN as the physical natural
numbers and N as the mathematical natural numbers.

The Inconsistency of Ultrafinitistic Systems

Should the theory TPhN describe the physical natural numbers, the number ν

in Axiom 4 must be a concrete number that we can physically represent. How
big this number is should be established by observation. It could be only a little
larger than the size of the observable universe (1062 in Planck lengths), it could be
Archimedes’s number 108·1016

, or it could be much larger.

45n1 can also be defined as n with the last binary digit deleted.

7.3 Finitism and Physical Reality 653

If we view it from the higher perspective of pure mathematics, the theory TPhN
is consistent, but as soon as we postulate Axiom 4 for a concrete number ν, it is
inconsistent.46

Let ν be a fixed concrete number and let us first look at a simple proof of incon-
sistency (essentially, the argument already considered above). Axiom 4 says that ν
is not in L, but according to Axiom 1, L is closed under the successor function. Thus
we can gradually prove that 0,1,2, . . . are in L, so eventually we prove that ν is in
L, which is a contradiction. But notice that this proof is very long; it is has length
at least ν. Since ν is not in Lphys, this proof is not physically representable and we
can ignore it. Unfortunately there are much shorter proofs of inconsistency—proofs
whose lengths are in Lphys. I will sketch two such inconsistency proofs.

1. For the sake of simplicity, assume that ν is a power of 2, say ν = 2k . Recall
that L(x) is the formula saying that 2x exists. So we have L(k). Let λ(x) be defined
by

λ(x)≡ L
(
2x
)
.

We have λ(0) and

∀x (λ(x)→ λ(x + 1)
)
.

This is because if L(2x) then also L(2x+1), since 2x+1 = 2x + 2x and L is closed
under addition. We cannot use induction to prove that λ(k). Instead we take all
instances of the above formula up to k− 1:

λ(0)→ λ(1), λ(1)→ λ(2), λ(2)→ λ(3), . . . λ(k − 2)→ λ(k − 1),

λ(k − 1)→ λ(k).

Using λ(0) and these formulas, we derive λ(k) by applying modus ponens k-times.
From the definitions of formulas λ and L we get that L(2k), which is L(ν), and then
∃y (y = 2ν). This is a contradiction because we assumed that 2ν does not exist.

2. (Suggested by S. Buss.) Suppose that the language of the theory contains a
symbol for the squaring function, say x2. I will again assume that ν = 2k . Then the
term (

. . .
(((

2 2)2)2)2
. . .
)2

︸ ︷︷ ︸
k

has value 22k
. In fact, one can prove it using a proof of length polynomial in k and

formalize it in our TPhN. Hence 2ν exists.

So our theory TPhN describes an inconsistent world. This is bad, but as we noted
above, one can cope with inconsistencies. One can argue that although the proofs

46This can also be explained by pointing to the fact that the theory TPhN is not ω-consistent.

654 7 Consistency, Truth and Existence

are physically representable, they are not valid because they use concepts that have
no physical meaning.

The first proof uses the formula λ(x). As we noted above, we cannot test whether
a number n satisfies λ(x) because for a number n that does not satisfy λ(x), we
would need an infinite number of steps. Therefore, it is natural to disallow the use
of λ(x) and similar formulas.

The second proof uses the assumption that if we can write down a closed arith-
metical term, then the number equal to the value of the term must exist. This is a
rather dubious assumption. I can write ‘unicorn’, but this does not imply that uni-
corns exist. So, again, it is natural to restrict the use of terms and disallow terms that
would define very large numbers.

A natural way to avoid such proofs of inconsistency is to consider a proof system
for first order logic in which

1. only direct proofs are allowed (for example, cut-free sequent calculus), and
2. the language does not allow constructions of terms that define large numbers (for

example, we can use + and ×, but not a symbol for the unary function x2).

This will ensure that no proofs of inconsistency in such a proof system will be
physically representable.

Since I have been rather vague, one may get the impression that these are only
intuitive arguments. But there is also mathematical content behind them. Let us
consider TPhN where ν is not a concrete number. This theory is consistent, but
proves its own inconsistency. Specifically, it proves that in the usual proof systems
for first order logic there exists a proof of contradiction whose length is in L. If we,
however, restrict the proof system as explained above, then TPhN does not prove
the existence of a proof of contradiction whose length is in L.

From the point of view of a finitist, the interesting sentences are only those that
speak about finite structures. In number theory we can represent these statements
as sentences about numbers less than some given number n and a polynomial time
computable predicate P(x). Natural calculi for these sentences are polynomially
verifiable proofs and Extended Frege proofs. The soundness of such proofs is prov-
able in ΘP, hence also in TPhN. Therefore, we can safely use polynomially verifi-
able proofs and Extended Frege proofs in TPhN.

The Axiom of Solvability and Alternative Arithmetics

The big advantage of using ΘP instead of stronger theories is that it enables us to
model interesting situations, which would be impossible if we used stronger theo-
ries. But to do this, we still have to assume some unproven hypotheses even for ΘP.
These constructions are possible due to the flexibility of models of ΘP with respect
to removing and adding elements, which can be used to change NP properties in the
models. However, changing NP properties is only possible if the model is not closed
under exponentiation (and certain hypotheses are true). So the interesting models of
ΘP are those that satisfy Axiom 4.

7.3 Finitism and Physical Reality 655

Let M be a nonstandard model of ΘP. Suppose a nonstandard number f ∈M

encodes a propositional formula φ(p1, . . . , pk) that is unsatisfiable in M . To make
φ satisfiable in an extension N , we must add a satisfying assignment (a1, . . . , ak)

to N . Such an assignment is a string shorter than φ, hence in natural encoding it is
coded by a number m< f . Since satisfiability of Boolean formulas is NP-complete,
we can represent any NP property as satisfiability of a Boolean formula.

Since ΘP proves that Extended Frege systems are sound, we can only make such
a change if there is no Extended Frege proof of ¬φ(p1, . . . , pk). Surprisingly, this
is also a sufficient condition for the existence of such an extension. We believe
that Extended Frege systems are not polynomially bounded, which means that there
are tautologies that do not have Extended Frege proofs of polynomial length, hence
there are models which can be extended in this way. Note that for this to be possible,
it is essential that the model is not closed under exponentiation (Axiom 4) because
every tautology has an Extended Frege proof of at most exponential length.

Using this characterization we can construct a chain of extension in which we
satisfy more and more NP properties. The limit of this process is a model in which
all tautologies without an Extended Frege are turned to non-tautologies. Put other-
wise, every tautology in the model has an Extended Frege proof in the model. Thus
we may consistently extend TPhN by the following axiom.

Axiom 5 (Solvability) Every NP predicate P(x) is either satisfiable, or there exists
a feasibly constructive proof that it is not satisfiable.

Here ‘feasibly constructive’ is just a fancy name for ‘Extended Frege’. I have sev-
eral reasons for using this rather vague term. First, I am presenting the theory TPhN
in an informal way and do not want to specify a particular proof system. Second,
the reason for using ‘feasibly’ is to stress that in the theory with Axiom 5 proofs of
long tautologies have subexponential length. We know that Extended Frege system
is complete, which means that every tautology has a proof. But, in general, we only
know that they have exponentially long proofs. In TPhN the set of lengths is not
closed under exponentiation. Hence in TPhN + Axiom 5, if m is in L and 2m is
not, then every tautology whose length is at least m has a proof of subexponential
length. In plain words, I imagine L as “feasible numbers”, in contrast to those that
are not in L; so the lengths of proofs in the theory are feasible numbers.

I borrowed the name ‘Axiom of Solvability’ from Hilbert because Axiom 5 can
be loosely rephrased as: for every finite problem, either there is a solution or a proof
that the solution does not exist.

The most interesting fact is that, assuming a certain plausible conjecture in com-
plexity theory, there are models of ΘP, and also of TPhN, that can be extended in
two mutually incompatible ways. Specifically, we can construct a model M of TPhN
and two NP predicates P0(x) and P1(x) such that there are two extensions of M ,
one in which P0(x) is satisfied and another in which P1(x) is satisfied, but there is
no extension in which both are satisfied. Furthermore, there seems to be no reason
to prefer one extension to the other.

656 7 Consistency, Truth and Existence

Knowing this fact and accepting Axiom 5, we can speculate how NP predicates
are satisfied in the physical natural numbers. One can imagine a scenario in which
the natural numbers originated as a very basic structure and then evolved, by a ran-
dom process, to a structure satisfying Axiom 5. In this scenario our physical natural
numbers would be just one randomly chosen structure from an infinite set of possi-
ble structures.

Such a scenario can be used to explain the phenomenon of pseudorandomness. In
number theory there are various sets and sequences that are defined by simple condi-
tions or algorithms, but nevertheless look like random objects. A prime example of
such a function is the Möbius function. Since the Möbius function has three values,
it is better to consider a closely related Liouville function, which has only values 1
and −1. It has been conjectured that this function behaves, in a certain sense, like a
random sequence of 1 s and −1 s. Slightly more precisely, the conjecture says that
there is no simple test that can distinguish the Liouville sequence from a random
sequence.47 If we believe that our natural numbers are just one randomly chosen
structure from many possible ones, we should also expect that the randomness will
manifest itself in our natural numbers. The apparently random behavior of the Li-
ouville function could be a trace of a random process by which the natural numbers
originated.

Accepting the possibility of alternative arithmetics, one can also speculate that
there are intrinsically unsolvable problems. Here is the argument. We can only see
a finite part of the natural numbers. If there are alternative structures, we cannot
deduce all properties of the natural numbers because what we see may be part of
many possible structures and different structures satisfy different properties. On the
positive side, we might be able to apply the standard assumption of statistics that we
live in a random world. For example, if the values of the Liouville function resulted
from a random process, they must look random because our world is most likely not
a special one.

It will surely be difficult to lift such speculations to the level of a scientific dis-
course. I do have a result that may be the beginning of such a research program, but
it is too early to talk about it [229]. Instead, let us turn to the question of whether it
is conceivable that there are alternative arithmetics.

Intuitively the existence of alternative arithmetics seems impossible. The struc-
ture of the natural numbers is determined by some basic arithmetical laws and logic.
To allow different structures, we would have to reject either the basic arithmetical
laws or logic. A world in which logic or the basic arithmetical laws are different
would be so alien to us that we would not consider it as an alternative to ours.

This argument, however, ignores an important issue. There may be a world with
the same arithmetical laws and the same logic, but with different proofs. Proofs are
just finite structures that can be coded by numbers; so if we can alter the arithmetical

47In [108] B. Green mentions the Möbius Randomness Principle proposed by P. Sarnak. This
conjecture was not stated exactly because it did not specify the complexity of the tests. Natural
formalizations of this conjecture are equivalent to the corresponding conjectures for the Liouville
function.

7.3 Finitism and Physical Reality 657

structure we can also alter the structure of proofs. This is exactly what happens in
nonstandard models of arithmetic. There is a model of Peano Arithmetic in which
Peano Arithmetic is consistent and there is another model in which Peano Arith-
metic is inconsistent. Both models satisfy the axioms of Peano Arithmetic and for-
malize logic in the same way. But in the second model there is a proof (a proof of
a contradiction from the axioms of Peano Arithmetic) that is not present in the first
model.

Can we imagine an arithmetic different from ours? It is certainly difficult to imag-
ine a world in which 91 is a prime, but a world in which RSA-129 is a prime does
not look so impossible.

Undetermined Mathematics

As I was about to start writing this chapter I received as a present a book of science-
fiction stories by Greg Egan. In two loosely connected stories in the book, Luminous
and Dark Integers, the plot is based on mathematics.48 The idea is that there are
inconsistencies derivable from the basic principles governing natural numbers. The
inconsistencies manifest themselves only for very large numbers; so they have not
been noticed by mathematicians, but can be produced by computers. It turns out
that these inconsistencies form a border between our universe and an alien universe.
Furthermore, it is possible to move the border by doing calculations with numbers at
the border. As typical in Egan’s stories, the talk about fictitious science is interleaved
with scenes in which the two worlds fight to extend their territories of consistency.

What I find most interesting in these two stories is the idea that mathematics
changes as we are doing it, which Egan called “malleable mathematics”. The idea
that mathematics depends on mathematicians’ activities is not new. Recall that one
of the basic tenets of intuitionism is that we should not claim that ‘A or B is true’
before we either establish A or establish B . Hence only at the moment when we
prove one of the two propositions can we assert that ‘A or B’ is true. Intuitionism
views mathematics as a mental activity and this principle is in accord with this. So
the truth of a disjunction is subjective—it depends on whether a particular mathe-
matician has already got a proof of one of the disjuncts. Egan’s view is different in
these stories. Mathematical facts can be changed not only by people, but by any-
thing, for example, by a computer that performs the computations, and the facts that
are changed become objective reality.

I had secretly entertained a related idea already before I read the stories, but
had not developed any theory of such mathematics. The fact that a similar idea has
appeared in print, although only in the form of science fiction, encourages me to
mention it in this book.

The first step is to accept the possibility of worlds with different arithmetics.
Above I have presented a theory that allows such a possibility. This theory has a

48Greg Egan, Dark integers and other stories, Subterranean Press, 2008.

658 7 Consistency, Truth and Existence

serious problem, inconsistency, which may be solved in a way I sketched. But there
may be better ways to model alternative arithmetics.

The second step is to admit that arithmetic in such worlds does not have to be
completely fixed from the very beginning, in other words, that the multiverse splits
only gradually into universes with different arithmetics. Namely, the difference be-
tween worlds increases as time passes.

The third step is to consider what can cause the splittings. Since we are talking
about information, observers should play a role in the process. For example, we
can view testing a large number for primality as an experiment. It is conceivable
that for some very large numbers, the property of primality is undetermined and the
primality of such numbers will only be fixed after an experiment (primality testing)
produces an answer.

The crucial question is whether such a theory can predict anything experimen-
tally testable. I think that this is not totally excluded. But if there are such experi-
ments, then very likely we will not be able to do them with the currently available
means. The reason is that the properties of the numbers that we can handle with our
limited means must already be fixed.

Towards Unified Foundations of All Science

All science can in principle be reduced to physics and mathematics. So it seems
that when we find good foundations for each of these two sciences, we will have a
foundation for science as a whole. But I think we can hardly have a good foundation
for all science if we do not find unified foundations for mathematics and physics.
Presently we are not happy with the current foundations of either of the two, so it
seems premature to think about the unified foundations. But searching for unified
foundations may be a cure for foundational problems in both fields.

Before considering such a project we should fully understand the difference be-
tween physics and mathematics. In simple examples it is clear: The quadratic func-
tion

y = ax2

occurs frequently in both mathematics and physics. We can view it as a “univer-
sal tool” that is useful in many situations. In mathematics we only study how this
tool works together with other tools. In physics, however, we associate it with very
concrete situations. For example, a physicist, using different letters

v = gt2,

may interpret it as the dependence of the velocity on time; say, as the velocity of a
stone falling from the Leaning Tower of Pisa. Thus some aspect of reality is closely
connected with this equation, although the real event that is described by it is not ac-
tually identified with the equation. The stone consists of atoms which have nothing
to do with the equation.

7.3 Finitism and Physical Reality 659

As theoretical physics develops, reality recedes and mathematics advances. In
our example, the stone was just a stone at the time of Galileo; but now we also have
a theory that explains atoms. Thus, for example, we can write down equations for
a free-falling hydrogen atom. We still believe that a free-falling hydrogen atom is
a real thing because we have personal experience with free fall and we know that
hydrogen is one of the two constituents of water. We imagine a hydrogen atom to
be two particles, one orbiting the other, but what the equations actually describe
is a rather sophisticated mathematics: they describe how the wave functions of an
electron and proton develop in time; there are no particles looking like points or
balls. We can go on and describe the particles themselves as special solutions of
equations in a more general theory, and so on. The further we go, the more these
models are like mathematics and the less like the reality we are used to.

This does not mean that theoretical physics and mathematics will eventually be-
come one science. Mathematics will aways use structures that are not physically
representable. But if space is infinite, then one can, in principle, represent any finite
mathematical structure by a physical object. Hence a theorem about finite mathe-
matical structures is also a physical law. So at least in the realm of finite structures
these two sciences coincide.49

In a lecture given in 2002, Stephen Hawking argued that physical theories must
be incomplete because mathematics is a part of physical reality and hence must
also be described by physical theories. Since mathematical theories are incomplete
because of Gödel’s Theorem, some physical theories must be incomplete as well.

“So if there are mathematical results that can not be proved, there are physical problems
that can not be predicted. One example might be the Goldbach conjecture. Given an even
number of wood blocks, can you always divide them into two piles, each of which can not
be arranged in a rectangle? That is, it contains a prime number of blocks.”50

Thus the foundations of physics have to cope with the same problem as mathe-
matics—incompleteness.

One feature that distinguishes physics from mathematics is that in physics we
need experiments to verify theories. But let us look at this putative difference more
closely. What is in physics a theory and an experiment testing the theory is in math-
ematics a conjecture and a computation of specific instances of the conjecture. It
seems that in a mathematical experiment it does not matter what physical device
one uses to do the computation, whereas a physical experiment is always depen-
dent on a particular form of matter or field. But consider the experiments that test
quantum theory, such as the two slit experiment. In this experiment a particle is shot
through a pair of narrow slits in a board onto a screen. After shooting many particles,
in spite of sending at most one particle at a time, one can observe an interference
pattern on the screen with alternating brighter and darker bands. This experiment
does not depend on the type of particle and the materials of which the board and the

49Here I am assuming the Natural Number Thesis that identifies the mathematical natural numbers
with the physical ones.
50S. Hawking, Gödel and the end of physics, a public lecture held in 2002, [116].

660 7 Consistency, Truth and Existence

screen are made. All that matters are the widths of slits, the distance between them
and the energy of the particle. In other words, the experiment does not test matter,
it only tests a principle of quantum theory.

In the two slit experiment we still feel that it is physics, not mathematics, that is
being tested. But now suppose that we had a quantum computer and used it to factor
a large number whose factors we do not know. Would this be a mathematical, or a
physical experiment?

The Hilbert-Pólya approach to the Riemann Hypothesis is based on the con-
jecture that the imaginary parts of the nontrivial zeros of the zeta function are the
eigenvalues of a Hermitian operator. In quantum mechanics, measurable quantities
are defined as the eigenvalues of Hermitian operators. Thus, in a sense, the Pólya-
Hilbert approach rests upon trying to establish a physical interpretation of the Rie-
mann Hypothesis. The conjecture that there is such an interpretation is supported by
a number of results, most notably the theorem called Selberg’s trace formula. Ac-
cording to A. Odlyzko, the Hilbert-Pólya conjecture “is often regarded as the most
promising way to prove the Riemann Hypothesis”.51

Further results suggest a connection with the eigenvalues of random Hermitian
matrices, which are used to study the distributions of the energy levels of systems of
atoms. It would be a great achievement if the suggested connections were confirmed.
But it would be even more interesting if, for example, one could explain why the
distribution of the nontrivial zeros of the zeta function is similar to the distributions
of the energy levels of systems of atoms. To this end one would not have to design
common foundations for all science; it would only suffice to find deeper connections
between the foundations of physics and mathematics.

One could go on and give more examples of connections between physics and
mathematics, but this would not be very interesting; we know that there are many.
In contrast, it is surprising how few connections we know between the foundations
of these two sciences. One reason for the lack of such connections is the amount
and the complexity of results in these fields. Because of this, for somebody inter-
ested in foundations, it is very difficult just to learn the facts that could be relevant
for foundational studies in mathematics and physics, let alone to find connections.
I hope this book will help those who want to start thinking about foundations.

Concluding Remark

In spite of the progress that has been made, the most fundamental problems in the
foundations of mathematics and complexity theory are still open. Obviously, we
would like to live to see these problems solved, but it seems that only a few, if
any, will be solved in the near future. But rather than being frustrated, we should
view this positively. The greatness of science lies in the fact that, however much
we achieve in the quest to understand the world around us, there will still remain
mysteries that will occupy future generations of scientists.

51See http://www.dtc.umn.edu/~odlyzko/polya/index.html.

http://www.dtc.umn.edu/~odlyzko/polya/index.html

7.3 Finitism and Physical Reality 661

Notes

1. The strength of the theory of the physical natural numbers. One problem is that
the theory TPhN, formalized by ΘP + Axiom 4, is rather weak. But it is not as
weak as it appears. The reason is that physical quantities are bounded by numbers
in Lphys and the arithmetic of Lphys is in some sense stronger than the arithmetic
of Nphys. Most proofs in finite combinatorics and number theory only need to
assume that for a given number n, 2n also exists, which condition is satisfied
by numbers in Lphys. Furthermore, we can add more axioms to make the theory
stronger.

In any case, some standard mathematical facts will have to be revised. Con-
sider, for example, the harmonic series. In TPhN we have

∑
1≤m∈L

1

m
≤

∑
1≤m≤n

1

m
≤ lnn+C,

where n is an arbitrary number n ∈ L. Thus the sum over all numbers in L is
bounded by a number in L. Unfortunately, we cannot consistently assume that
the sum is a real number. Still, it is conceivable that in TPhN there may be new
ways to cope with divergent series, which is a problem in some physical theories.

I introduced the theory TPhN only as a way to describe the physical natural
numbers. In order to use this theory to formalize physical theories, one would
have to extend it so that higher order concepts (real numbers, functions, etc.)
could be formalized in it.

2. Second order theories for ΘP. In this book I only considered theories for com-
plexity classes whose elements are numbers. In the Notes to the previous section
I mentioned some subsystems of Second-Order Arithmetic. Similar, but much
weaker subsystems can also be used to define theories corresponding to com-
plexity classes. Sometimes this is very useful, in particular for classes below P.
Such second order systems for P were introduced by S. Buss (the theory V 1

1) and
S. Cook and P. Nguyen (the theory V 1), [34, 50]. In the context of TPhN it would
also be natural to use such theories because the two physical representations of
numbers would then correspond to two different kinds of objects: L would be
the numbers in such a theory, and N would be the finite sets of numbers in the
theory. (Finite sets of numbers can be identified with 0–1 strings.)

3. Changing NP properties in extensions of nonstandard models of ΘP. Let P(x) be
an NP property. Such a property is defined by a binary relation R(x, y) decidable
in polynomial time and a polynomial p: P(x)≡ ∃y (|y| ≤ p(|x|)∧R(x, y)). For
the sake of simplicity, let us assume that the bound on the length of y is implicit
in R. Given a model M and a nonstandard element a ∈M , we would like to
change the property P of a from being true to being false and vice versa.

The first idea that comes to mind is that if M |� ¬P(a), then we can change
it to P(a) by adding a b to M such that R(a, b). This task looks very similar to
what is done in algebra when one needs to add roots of polynomials to a field.
Similarly in set theory, given a model of ZFC, one can extend it to a model of

662 7 Consistency, Truth and Existence

ZFC by adding a generic set G and all sets definable from G. In this way one
can change properties of models of set theory, in particular, one can change the
arithmetic of infinite cardinals, but forcing, as used in set theory, cannot change
the arithmetic of natural numbers. There are some techniques for constructing
models of arithmetic based on the idea of forcing, but so far they have rather
limited reach [163].

Adding b to M means, more precisely, the following. Given a model M of a
theory T and an element a ∈M , we want to find an extension N ⊇M and b ∈N

such that N |�R(a, b) and N is still a model of T . An obstacle to this may be an
element d ∈M that is a proof of the sentence ∀y¬R(a, y). This is because d is
an element of any extension of M and, assuming T proves the soundness of the
proof d , no extension can tolerate a b that would make R(a, b) false. As we noted
above, this is the only obstacle. I will state this result only for the theory ΘP.

Theorem 68 Given a model M |�ΘP, an element a ∈M and an NP property
P(x), it is possible to extend M to a model N |�ΘP such that N |� P(a) if and
only if in M there is no Extended Frege proof of the propositional translation of
the sentence ∀y¬R(a, y).

Recall that Extended Frege proof systems are naturally associated with ΘP
by being the strongest proof systems whose soundness ΘP proves (Theorem 52,
page 552).

The first thing we observe is that if ΘP proves NP = coNP, then we cannot
make P(a) true in an extension of M , unless it already holds true in M . This is
because the condition that ΘP proves NP = coNP implies that ΘP proves that
Extended Frege proof systems are complete. If the latter is true, then the propo-
sitional translation of the sentence ∀y¬R(a, y) has an Extended Frege proof in
the model whenever it is true in the model.

This observation suggests a way to prove that NP = coNP is not provable
in ΘP: it suffices to find M ⊆ N models of ΘP such that M |� ¬P(a) and
N |� P(a), for some NP property. Therefore researchers in proof complexity
believe that when they succeed in finding a technique for constructing models of
arithmetic as powerful as forcing is in set theory, they will obtain the indepen-
dence results they are looking for.

4. NP-full models. Using Theorem 68 we can construct an interesting model of ΘP.

Theorem 69 There exists a nonstandard model N of ΘP with a nonstandard
element a such that

1. in N every tautology has an Extended Frege proof ;
2. for every element c ∈N , there exists a standard number k such that |c| ≤ |a|k .

To construct this model, one starts with a countable nonstandard model satis-
fying condition 2. and applies repeatedly Theorem 68 to make every unprovable
tautology false.

7.3 Finitism and Physical Reality 663

We call models satisfying condition 1. above NP-full, because such models
cannot be extended to models in which an NP false property of a number is
changed to a true property. One can obtain an NP-full model from any model
by extending it cofinally. In the informal presentation above I used Axiom 5 to
define this property.

5. Is ΘP consistent with NP= coNP? The model in the theorem above shows the
consistency of ΘP with NP = coNP in a rather weak sense: every tautology
has an Extended Frege proof whose length is |a|k , for some standard k, which,
unfortunately, depends on the tautology. The problem of showing the consistency
of ΘP with NP= coNP in the natural formalization is still open.

6. Mutually inconsistent extensions of ΘP. Assuming that factoring integers is not
computable in polynomial time, we can construct a model of ΘP that has two
incompatible extensions.

Theorem 70 Suppose that factoring integers is not computable in polynomial
time. Then there exists a model M |�ΘP, an element a ∈M , two NP predicates
P1 and P2 and two cofinal extensions N1 and N2 of M to models of ΘP such
that

a. M |� ¬P1(a)∧¬P2(a);
b. N1 |� P1(a) and N2 |� P2(a);
c. there exists no extension N |�ΘP such that N |� P1(a)∧ P2(a).

The proof of this theorem uses a formalization of a bit commitment schema
(see page 520).

7. The Möbius Randomness Principle. This principle, proposed by Peter Sarnak,
asserts that:

the Möbius function μ is asymptotically orthogonal to any low-complexity
function F :N→[−1,1].
Asymptotic orthogonality means that

∑n
i=1 μ(i)F (i)/n tends to 0 as n goes

to infinity. The ‘low-complexity’ property is not quite specified; according to
what we know, the principle could be valid for all polynomial time computable
functions F . The principle for the special case of the constant function F(x)= 1
follows from the Prime Number Theorem (and, in a certain sense, is equivalent
to it). Some special cases of the principle were recently proved by B. Green [108]
and J. Bourgain [33].

Suppose we interpret the low-complexity property as meaning computable
in polynomial time. Then we obtain a property of μ which is a kind of pseu-
dorandomness property, similar to those used in cryptography. We can use the
assumption that functions with this property exist to construct incompatible ex-
tensions of a model of ΘP. In fact, one can prove more. One can construct a set
of extensions with a probability distribution that reflects the pseudorandomness
of these functions [229].

8. Injecting inconsistencies into models of arithmetic. As we have observed, for
stronger theories (theories that prove that exponentiation is total) we cannot use

664 7 Consistency, Truth and Existence

extensions to change an NP property of an element. So instead a different ques-
tion has been studied: how large an initial segment can we preserve when chang-
ing an NP property? In the paper [281] whose title I have used for this note R.
Solovay studied the special case where the property is the existence of a contra-
diction in the given theory. His bounds were improved by several authors; I will
only state the best known bound [165]. Recall that ConT (x) denotes a formula
expressing that there is no proof of contradiction of length≤ x in T . (ConT (x) is
an NEXP property; if one wants to talk about an NP property, one should replace
it by ConT (|x|).)

Theorem 71 Let T be a consistent theory axiomatized by an NP set of axioms
and suppose T is sufficiently strong. Let M be a nonstandard countable model
of T and let a, c ∈M be nonstandard elements. Then there exists a model K of
T such that

a. [0, a] ⊆M ∩K (the models M and K agree at least on the initial segment
[0, a]);

b. K |� ¬ConT (a
c).

The theorem talks about all models of T , but the interesting case is when in
M there is no proof of contradiction in T . The intended application is that for
every nonstandard a, we can take arbitrarily small nonstandard c and construct a
model K with the properties above.

This theorem was proved using bounds on the lengths of the proofs of
ConT (n) in T , (Theorem 58, page 565).

Main Points of the Chapter

• Mathematical realism, often called platonism, assumes that mathematical entities
are as real as physical entities.
• Intuitionists view mathematics as a science studying mental constructions. They

think that no formalism is able to present mathematics precisely.
• Logicism is the view that mathematics and logic are the same: every mathematical

theorem follows from principles of logic.
• According to formalism, only formal systems based on axioms and logic enable

us to achieve mathematical rigour.
• The arguments claiming that Gödel’s incompleteness theorem implies that mind

is superior to machines are based on logical errors.
• One can strengthen a theory by iteratively adding consistency statements, but

other simple axioms make theories substantially stronger.
• Axioms postulating the existence of large cardinal numbers (higher infinities)

help us to cope with the incompleteness of axiomatic set theory, at least at low
levels of the hierarchy of sets.

Main Points of the Chapter 665

• Higher infinities, whether stated as large-cardinal axioms, or fast growing func-
tions, or large constructive ordinals, enable us to prove more arithmetical sen-
tences. It is an open problem whether there are arithmetical sentences that need a
different kind of axiom.
• The mathematical and the physical natural numbers could have different struc-

tures.

Bibliographical Remarks

The literature relevant to the topics treated in this book is vast and it would be an
immense task to give a survey of it. Therefore here I only list sources that I used
more extensively, the articles explicitly mentioned in the text and a few books that I
either consider classical or find useful as further reading. In most cases I refer to the
original publications, but the interested reader may find many old papers reprinted
(and translated to English) in anthologies. The literature is commented in the main
text and the notes after sections, so the purpose of the notes below is only to provide
some additional information and suggest further reading.

Chapter 1

The approach to the foundations of mathematics based on mathematical structures
is explained in the first volume of the Bourbaki series of monographs [32]. The stan-
dard reference for Ramsey theory is [107]. Cantor’s most important paper about set
theory is [36]. Paradoxes are treated at length in Fraenkel, Bar-Hillel and Levy [75],
which is a classics in the literature about the foundations of set theory. Bertrand
Russell wrote about the discovery of his paradox in [253]; Zermelo’s discovery of
this paradox is described in his biography written by Ebbinghaus [65].

To mention a few more classics in the foundations of mathematics, the two vol-
umes of Hilbert and Bernays [128, 129] present Hilbert’s proof-theoretical approach
to the foundations, Beth [24] treats the foundations from a historical and philosoph-
ical standpoint, Kleene [154] focuses on computability and Feferman’s book [72] is
a more recent presentation of foundations from the position of a predicativist.

Chapter 2

There are many books devoted to formal language theory. The concept of a context-
free grammar can be found in most textbooks about theoretical computer science.

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7,
© Springer International Publishing Switzerland 2013

667

http://dx.doi.org/10.1007/978-3-319-00119-7

668 Bibliographical Remarks

Essentially the same concerns other concepts treated in this chapter: proofs, models
and computations. Thus I only mention a few that are among the most popular ones.
Shoenfield [267] and Manin [190] are general introductions to logic and set the-
ory. Grzegorczyk [110] is a readable introduction to logic. For further reading about
proof theory, I recommend Takeuti [288], and the book by Troelstra and Schwicht-
enberg [291].

The history of first-order logic is treated in Moore’s article [199]. The main part
of Gödel’s paper [96] is a proof of the First Incompleteness Theorem. The last sec-
tion contains a sketch of a proof of the Second Incompleteness Theorem. Gödel
intended to publish another paper on the subject with a detailed proof (with num-
ber II). That paper has not been written, probably because the sketch of the proof in
the published paper turned out to be sufficiently clear. Three Brouwer’s papers about
intuitionism are reprinted in the anthology [118], which also contains other classical
papers in the foundations of mathematics. The Church-Turing Thesis appeared for
the fist time as Thesis I. in Kleene’s book [154, page 300]. A classical monograph
on the λ-calculus is Barendregt [13]. For a brief presentation of Churches type the-
ory, see Andrews [4]. Many mathematicians discovered parts of the Curry-Howard
Isomorphism and often these ideas were published much later (see the history of the
λ-calculus, including the Curry-Howard Isomorphism, described in [130]). The key
publications are Curry and Feys [55] and Howard [133].

Chapter 3

The standard reference for set theory is Jech [138]. Kanamori [148] is a survey of
the history of set theory. Part II of Boolos’s book [30] contains 13 essays about
Frege’s work and some proposals how to fix his system in order to be consistent.
For a brief presentation of Type Theory, see Coquand [52]. I am grateful to Ilan
Vardi for drawing my attention to his paper Archimedes, The Sand Reckoner [296].
The theory of large cardinals is treated in Kanamori [147]. For a survey on large
cardinals and algebra, see Dehornoy [62].

Chapter 4

My presentation of the Galois theory is inspired by the readable introduction to
this theory by Stewart [285]. The sketch of the unsolubility of a concrete quin-
tic equation is based on Stewart’s elementary approach. An excellent exposition of
Matyasevich’s Theorem and related results in logical investigations of arithmetic is
Smoryński [276]. In Table 4.1 the number 3 · 2402653211 − 2 is from [152]; I have
just computed the sequence a few steps back to obtain some more values. The col-
lection of articles about the Collatz problem, edited by Lagarias [177], is a useful
overview of this area. It contains an article by Collatz describing the history of the
problem; Conway’s article [47] is reprinted there too. Kunen [173] is an outstanding
introduction to the independence proofs in set theory.

Chapter 5 669

Chapter 5

Two monographs on computational complexity have appeared recently: Arora and
Barak [8] and Goldreich [101]. There are a number of books that cover special top-
ics in computational complexity such as circuit complexity, algebraic complexity,
randomized computations and cryptography, but somebody with little background
in complexity theory should rather start with general introductions such as the two
above. Some of the standard reference monographs are Bürgisser, Clausen, and
Shokrollahi [31] in algebraic complexity, Goldreich [102, 103] in cryptography,
Nielsen and Chuang [205] in quantum computing, and Li and Vitanyi [185] in Kol-
mogorov complexity.

Chapter 6

I have already mentioned some books about proof theory in the notes for Chap. 2.
The standard reference for ordinal analysis is Pohlers’s monograph [219] and I also
recommend a more readable survey of Rathjen [237]. The first book about Bounded
Arithmetic was Buss [34]. Krajíček’s monograph [161] covers all main subjects in
proof complexity. A more recent monograph of Cook and Nguyen [50] focuses on
theories associated with complexity classes.

Conjecture 2 of Sect. 6.3 first appeared in print in [223]; Conjectures 1 and 4 and
Conjectures 3 and 5 appeared in [227] and [164] respectively.

Chapter 7

The 26 chapters of The Oxford Handbook of Philosophy of Mathematics and
Logic [265], edited by Shapiro, cover all main positions in the philosophy of math-
ematics and several other topics. An on-line source that I find very useful is The
Stanford Encyclopedia of Philosophy [316], which contains many articles about the
philosophy of mathematics and history of logic. For a survey on reflection prin-
ciples, see Smoryński [273]. Readable surveys about the axioms providing invari-
ance with respect to forcing and other results on the Continuum Hypothesis are
Woodin [310, 311] and Dehornoy [61].

References

1. Ajtai, M.: Σ1
1 formulae on finite structures. Ann. Pure Appl. Log. 24, 1–48 (1983)

2. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793 (2004)
3. Alekhnovich, M.: Mutilated chessboard problem is exponentially hard for resolution. Theor.

Comput. Sci. 310(1–3), 513–525 (2004)
4. Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) Stanford Encyclopedia of

Philosophy, Spring 2009 edn. (2009). http://plato.stanford.edu/archives/spr2009/entries/
type-theory-church

5. Appel, K., Haken, W.: Every planar map is four colorable. Part I. Discharging. Ill. J. Math.
21, 429–490 (1977)

6. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II. Reducibility.
Ill. J. Math. 21, 491–567 (1977)

7. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hard-
ness of approximation problems. J. ACM 45(3), 501–555 (1998)

8. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, Cambridge (2009)

9. Arora, S., Safra, S.: Probabilistic checking of proofs: A new characterization of NP. J. ACM
45(1), 70–122 (1998)

10. Avigad, J., Sommer, R.: A model-theoretical approach to ordinal analysis. Bull. Symb. Log.
3, 17–59 (1997)

11. Babai, L.: Trading group theory for randomness. In: Proc. 17th ACM Symp. on Theory of
Computing, pp. 421–429 (1985)

12. Banach, S., Tarski, A.: Sur la décomposition des ensembles de points en parties respective-
ment congruentes. Fundam. Math. 6, 244–277 (1924)

13. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-Holland, Amster-
dam (1984)

14. Barwise, J.: Admissible Sets and Structures: An Approach to Definability Theory. Springer,
Berlin (1975)

15. Bernstein, A., Robinson, A.: Solution of an invariant subspace problem of K.T. Smith and
P.R. Halmos. Pac. J. Math. 16(3), 421–431 (1966)

16. Bachmann, H.: Die Normalfunktionen und das Problem der ausgezeichneten Folgen von
Ordnungszahlen. Vierteljschr. Naturforsch. Ges. Zürich 95, 115–147 (1950)

17. Baker, T.P., Gill, J., Solovay, R.: Relativizations of the P = ? NP question. SIAM J. Comput.
4(4), 431–442 (1975)

18. Beklemishev, L.D.: A proof-theoretic analysis of collection. Arch. Math. Log. 34(4–5), 216–
238 (1998)

19. Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17(6), 525–532 (1973)

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7,
© Springer International Publishing Switzerland 2013

671

http://plato.stanford.edu/archives/spr2009/entries/type-theory-church
http://plato.stanford.edu/archives/spr2009/entries/type-theory-church
http://dx.doi.org/10.1007/978-3-319-00119-7

672 References

20. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on
Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

21. Berger, R.: The undecidability of the domino problem. Mem. Am. Math. Soc. 66 (1966)
22. Bernays, P.: Sur le platonism dans les mathematiques. Enseign. Math. 34, 52–69 (1935)
23. Bernays, P.: A system of axiomatic set theory I. J. Symb. Log. 2, 65–77 (1937)
24. Beth, E.W.: The Foundations of Mathematics. A Study in the Philosophy of Science. North-

Holland, Amsterdam (1959)
25. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real

numbers: NP-completeness, recursive functions and universal machines. Bull. Am. Math.
Soc. 21, 1–46 (1989)

26. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer,
Berlin (1997)

27. Blum, N.: A boolean function requiring 3n network size. Theor. Comput. Sci. 28, 337–345
(1984)

28. Bolzano, B.: Paradoxien des Unendlichen. C.H. Reclam, Leipzig (1951)
29. Bonet, M.L., Pitassi, T., Raz, R.: On interpolation and automatization for Frege systems.

SIAM J. Comput. 29(6), 1939–1967 (2000)
30. Boolos, G.: Logic, Logic, and Logic. Harvard University Press, Cambridge (1998)
31. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory. Springer,

Berlin (1997)
32. Bourbaki, N.: Theory of Sets. Elements of Mathematics, vol. 1. Addison-Wesley, Reading

(1974)
33. Bourgain, J.: On the Fourier-Walsh spectreum of the Moebius function (2011). http://arxiv.

org/pdf/1112.1423.pdf, arXiv:1112.1423
34. Buss, S.R.: Bounded Arithmetic. Bibliopolis, Naples (1986)
35. Buss, S.R., Krajíček, J.: An application of boolean complexity to separation problems in

bounded arithmetic. Proc. Lond. Math. Soc. 69(3), 1–21 (1994)
36. Cantor, G.: Grundlagen einer allgemeinen Mannichfaltigkeitslehre. Ein mathematisch-

philosophischer Versuch in der Lehre des Unendlichen. Teubner, Leipzig (1882)
37. Cantor, G.: Über eine elementare Frage der Mannigfaltigkeitslehre. Jahresbericht der

Deutsch. Math. Vereing. I, 75–78 (1890/91)
38. Carnap, R.: Logische Syntax der Sprache. Springer, Berlin (1934)
39. Chaitin, G.J.: On the simplicity and speed of programs for computing infinite sets of natural

numbers. J. ACM 16(3), 407–422 (1969)
40. Cheng, Q.: Straight-line programs and torsion points on elliptic curves. Comput. Complex.

12(1), 150–161 (2003)
41. Cheyne, C.: Knowledge, Cause, and Abstract Objects: Causal Objections to Platonism.

Kluwer Academic, Dordrecht (2001)
42. Church, A.: A set of postulates for the foundation of logic (1). Ann. Math. 33, 346–366

(1932)
43. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345–363

(1936)
44. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5, 56–68 (1940)
45. Chvátal, V.: Edmonds polytops and a hierarchy of combinatorial problems. Discrete Math. 4,

305–337 (1973)
46. Cohen, P.: Set Theory and the Continuum Hypothesis, Benjamin, New York (1963)
47. Conway J.H: Unpredictable iterations. In: Proc. 1972 Number Th. Conf, pp. 49–52. Univer-

sity Press of Colorado, Boulder (1972)
48. Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd Annual ACM

Symposium on Theory of Computing, pp. 151–158 (1971)
49. Cook, S.A.: Feasibly constructive proofs and the propositional calculus. In: Proc. Seventh

Annual ACM Symposium on Theory of Computing, pp. 83–97. ACM, New York (1975)
50. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. ASL Perspectives in Logic.

Cambridge University Press, Cambridge (2010)

http://arxiv.org/pdf/1112.1423.pdf
http://arxiv.org/pdf/1112.1423.pdf
http://arxiv.org/abs/arXiv:1112.1423

References 673

51. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb.
Log. 44(1), 36–50 (1979)

52. Coquand, T.: Type theory. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy, Spring
2010 edn. (2010). http://plato.stanford.edu/archives/spr2010/entries/type-theory/

53. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof
theory. J. Symb. Log. 22(3), 269–285 (1957)

54. Curry, H.B.: Outlines of a Formalist Philosophy of Mathematics. Studies in Logic and Foun-
dations of Mathematics. North-Holland, Amsterdam (1951)

55. Curry, H.B., Feys, R.: Combinatory Logic. Vol. I. North-Holland, Amsterdam (1958)
56. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–

215 (1960)
57. Davis, M., Putnam, H., Robinson, J.: The decision problem for exponential Diophantine

equations. Ann. Math. (2) 74(3), 425–436 (1961)
58. Dawson, J.W. Jr.: The reception of Gödel’s incompleteness theorems. In: Drucker, T. (ed.)

Perspectives on the History of Mathematical Logic, pp. 84–100. Birkhäuser, Boston (1991)
59. Dedekind, R.: Was sind und was sollen die Zahlen? 1. Auflage. Vieweg, Braunschweig

(1888)
60. Dehornoy, P.: Braid groups and left distributive operations. Trans. Am. Math. Soc. 345(1),

115–150 (1994)
61. Dehornoy, P.: Recent progress about the Continuum Hypothesis (after Woodin). Séminaire

Bourbaki, exposé 915, mars 2003 (2003)
62. Dehornoy, P.: Elementary embeddings and algebra. In: Foreman, M., Kanamori, A. (eds.)

Handbook of Set Theory. Springer, Berlin (2010)
63. Detlefsen, M.: Formalism. In: Shapiro, S. (ed.) The Oxford Handbook of Philosophy of

Mathematics and Logic, pp. 236–317. Oxford University Press, London (2005)
64. Dummett, M.: Realism. In: Truth and Other Enigmas, pp. 145–165. Harvard University Press,

Cambridge (1978)
65. Ebbinghaus, H.-D., Peckhaus, V.: Ernst Zermelo: An Approach to His Life and Work.

Springer, Berlin (2007)
66. Elitzur, A.C., Vaidman, L.: Quantum mechanical interaction-free measurements. Found.

Phys. 23, 987–997 (1993)
67. Erdős, P.: Some remarks on the theory of graphs. Bull. Am. Math. Soc. 53, 292–294 (1947)
68. Erdős, P.: On a new method in elementary number theory which leads to an elementary proof

of the prime number theorem. Proc. Natl. Acad. Sci. USA 35, 374–384 (1949)
69. Erdős, P., Szekerés, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470

(1935)
70. Feferman, S.: Transfinite recursive progressions of axiomatic theories. J. Symb. Log. 27(3),

259–315 (1962)
71. Feferman, S.: Systems of predicative analysis. J. Symb. Log. 29(1), 1–30 (1964)
72. Feferman, S.: In the Light of Logic. Oxford University Press, London (1998)
73. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467 (1982)
74. Fraenkel, A.A.: Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Math. Ann. 86,

230–237 (1922)
75. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory. North-Holland, Amster-

dam (1973)
76. Franzén, T.: Inexhaustibility: A Non-exhaustive Treatment. Lecture Notes in Logic, vol. 16.

Association for Symbolic Logic, AK Peters, Wellesley (2004)
77. Frege, G.: Begriffsschrift: eine der arithmetischen nachgebildete Formelsprache des reinen

Denkens. Halle (1879)
78. Frege, G.: Grundgesetze der Arithmetik I. Hermann Pohle, Jena (1893)
79. Frege, G.: Grundgesetze der Arithmetik II. Hermann Pohle, Jena (1903)
80. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of unsolvability.

Proc. Natl. Acad. Sci. USA 43, 236–238 (1957)

http://plato.stanford.edu/archives/spr2010/entries/type-theory/

674 References

81. Friedman, H.: On the consistency, completeness and correctness. Unpublished typescript
(1979)

82. Friedman, H.: Finite functions and the necessary use of large cardinals. Ann. Math. 148,
803–893 (1998)

83. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math.
Syst. Theory 17(1), 13–27 (1984)

84. Gaifman, H.: Ontology and conceptual framework part I. Erkenntnis 9, 329–353 (1975)
85. Gaifman, H.: Ontology and conceptual framework part II. Erkenntnis 10, 21–85 (1976)
86. Gaifman, H.: Ontology and realism in mathematics. Rev. Symb. Log. 5(3), 480–512 (2012)
87. Gál, A., Hansen, K.A., Koucký, M., Pudlák, P., Viola, E.: Tight bounds on computing

error-correcting codes by bounded-depth circuits with arbitrary gates. In: Proc. STOC 2012,
pp. 479–494 (2012)

88. Galilei, G.: Discorsi e dimostrazioni matematiche intorno a due nuove scienze attinenti la
mecanica e i movimenti locali. Elzevir, Leiden (1638)

89. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39(2), 176–210 (1934)
90. Gentzen, G.: Untersuchungen über das logische Schließen II. Math. Z. 39(3), 405–431

(1935)
91. Gentzen, G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Math. Ann. 112, 493–565

(1936)
92. Gentzen, G.: Neue fassung des widerspruchsfreiheitsbeweises für die reine Zahlentheorie.

Forsch. Logik Grundlegung exakten Wiss. 4, 19–44 (1938)
93. Girard, J.-Y.: Proof Theory and Logical Complexity. Bibliopolis, Naples (1987)
94. Glaßer, C., Selman A, A., Sengupta, S., Zhang, L.: Disjoint NP-pairs. SIAM J. Comput.

33(6), 1369–1416 (2004)
95. Gödel, K.: Die Vollständigkeit der Axiome des logischen Funktionenkalküls. Monatshefte

Math. Phys. 37, 349–360 (1930)
96. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme, I. Monatshefte Math. Phys. 38, 173–198 (1931)
97. Gödel, K.: The Consistency of the Axiom of Choice and of the Generalized Continuum Hy-

pothesis with the Axioms of Set Theory. Annals of Mathematical Studies, vol. 3. Princeton
University Press, Princeton (1940)

98. Gödel, K.: What is Cantor’s continuum problem? Am. Math. Mon. 54(9), 515–525 (1947)
99. Gödel, K.: Collected Works: Volume III. Unpublished Essays and Lectures. Feferman, S.,

Dawson, J.W., Goldfarb, W., Parsons, C., Sieg, W. (eds.). Oxford University Press, London
(1995)

100. Gödel, K. (ed.): Collected Works: Volume V. Correspondence, H.-Z. Feferman, S., Daw-
son, J.W., Goldfarb, W., Parsons, C., Sieg, W. (eds.). Oxford University Press, London
(2003)

101. Goldreich, O.: Computational Complexity, a Conceptual Perspective. Cambridge University
Press, London (2008)

102. Goldreich, O.: The Foundations of Cryptography, Volume 1. Cambridge University Press,
London (2001)

103. Goldreich, O.: The Foundations of Cryptography, Volume 2. Cambridge University Press,
London (2004)

104. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am.
Math. Soc. 64, 275–278 (1958)

105. Goodstein, R.L.: On the restricted ordinal theorem. J. Symb. Log. 9, 33–41 (1944)
106. Gonthier, G.: Formal proof–the four-color theorem. Not. Am. Math. Soc. 55(11), 1382–1393

(2008)
107. Graham, R.L., Rothschild, B.L., Spencer, J.H: Ramsey Theory. Wiley, New York (1990)
108. Green, B.: On (not) computing the Möbius functions using bounded depth circuits. Comb.

Probab. Comput. 21(6), 942–951 (2012)
109. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th An-

nual ACM Symposium on the Theory of Computing, pp. 212–218 (1996)

References 675

110. Grzegorczyk, A.: An Outline of Mathematical Logic: Fundamental Results and Notions Ex-
plained with all Details. Reidel, Dordrecht (1974)

111. Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. ASL Perspectives in Logic.
Springer, Berlin (1993)

112. Hales, T.C.: A proof of the Kepler conjecture. Ann. Math. (2) 162(3), 1065–1185 (2005)
113. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations.

Phys. Rev. Lett. 103, 150502 (2009)
114. Hartmanis, J., Stearns, R.E.: On the computational complexity of algorithms. Trans. Am.

Math. Soc. 117, 285–306 (1965)
115. Håstad, J.: Almost optimal lower bounds for small depth circuits. In: Micali, S. (ed.) Ran-

domness and Computation, Advances in Computing Research, vol. 5, pp. 143–170. JAI Press,
London (1989)

116. Hawking, S.: Godel and the end of physics. A public lecture held in 2002. http://www.
hawking.org.uk/godel-and-the-end-of-physics.html

117. Heath, T.L.: The Thirteen Books of Euclid’s Elements. Cambridge University Press, Cam-
bridge (1908)

118. van Heijenoort, J.: A Source Book in Mathematical Logic, 1879–1931. Harvard University
Press, Cambridge (1976)

119. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras I. North-Holland, Amsterdam (1975)
120. Henkin, L., Monk, J.D., Tarski, A.: Cylindric Algebras II. North-Holland, Amsterdam

(1985)
121. Herbrand, J.: Recherches sur la theorie de la demonstration. Travaux de la Societe des Sci-

ences et des Lettres de Varsovie, Class III, Sciences Mathematiques et Physiques 33, 33–160
(1930)

122. Heyting, A.: Intuitionism: An introduction. Studies in Logic and the Foundations of Mathe-
matics, vol. 16. North-Holland, Amsterdam (1971)

123. Hilbert, D.: Über die Endlichkeit des Invariantensystems für binären Grundformen. Math.
Ann. 33, 223–226 (1889)

124. Hilbert, D.: Grundlagen der Geometrie. Teubner, Berlin (1899)
125. Hilbert, D.: Mathematical problems. Bull. Am. Math. Soc. 8, 437–479 (1902)
126. Hilbert, D.: On the infinite. In: van Heijenoort, J. (ed.) From Frege to Gödel: A Source

Book in Mathematical Logic, 1879–1931, pp. 367–392. Harvard University Press, Cam-
bridge (1967)

127. Hilbert, D.: Die Grundlagen der Mathematik (a lecture given in Hamburg in 1927). English
translation “The foundations of mathematics”. In: van Heijenoort, J. (ed.) From Frege to
Gödel: A Source Book in Mathematical Logic, 1879–1931, pp. 464–479. Harvard University
Press, Cambridge (1967)

128. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. I. Die Grundlehren der mathematis-
chen Wissenschaften, vol. 40. Springer, Berlin (1934)

129. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. II. Die Grundlehren der mathematis-
chen Wissenschaften, vol. 50. Springer, Berlin (1939)

130. Hindley, J.R., Cardone, F.: History of λ-calculus and combinatory logic. In: Gabbay, D.M.,
Woods, J. (eds.) Handbook of the History of Logic. Elsevier, Amsterdam (2006)

131. Hirschfeld, J.: The nonstandard treatment of Hilbert’s fifth problem. Trans. Am. Math. Soc.
321(1), 379–400 (1990)

132. Hopcroft, J., Paul, W.J., Valiant, L.G.: On time vs. space. J. ACM 24(2), 332–337 (1977)
133. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R.

(eds.) To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pp. 479–490. Academic Press, Boston (1980)

134. Hrubeš, P.: A lower bound for intuitionistic logic. Ann. Pure Appl. Log. 146, 72–90 (2007)
135. Impagliazzo, R.: A personal view of average-case complexity. In: 10th Annual Structure in

Complexity Theory Conference (SCT’95), pp. 134–147 (1995)
136. Impagliazzo, R., Wigderson, A.: P = BPP unless E has subexponential circuits: Derandom-

izing the XOR lemma. In: Proc. 29th STOC, pp. 220–229 (1997)

http://www.hawking.org.uk/godel-and-the-end-of-physics.html
http://www.hawking.org.uk/godel-and-the-end-of-physics.html

676 References

137. Jech, T.: OTTER experiments in a system of combinatory logic. J. Autom. Reason. 14(3),
413–426 (1995)

138. Jech, T.: Set Theory, the Third Millennium Edition. Springer, Berlin (2003)
139. Jensen, R.B.: On the consistency of a slight(?) modification of Quine’s NF. Synthese 19,

250–263 (1969)
140. Jeřábek, E.: The strength of sharply bounded induction. Math. Log. Q. 52(6), 613–624

(2006)
141. Jockusch, C.G., Jr.: Ramsey’s theorem and recursion theory. J. Symb. Log. 37, 268–280

(1972)
142. Jockusch, C.G., Soare, R.I.: Π0

1 classes and degrees of theories. Trans. Am. Math. Soc. 173,
33–56 (1972)

143. Jones, J.P.: Universal Diophantine equation. J. Symb. Log. 47, 549–571 (1982)
144. Johnson, D., Papadimitriou, C., Yannakakis, M.: How easy is local search? J. Comput. Syst.

Sci. 37, 79–100 (1988)
145. Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving cir-

cuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)
146. Kahr, A.S., Moore, E.F., Wang, H.: Entscheidungsproblem reduced to the AEA case. Proc.

Natl. Acad. Sci. USA 48(3), 365–377 (1962)
147. Kanamori, A.: The Higher Infinite, Large Cardinals in Set Theory from Their Beginnings.

Springer, Berlin (1994)
148. Kanamori, A.: The mathematical development of set theory from Cantor to Cohen. Bull.

Symb. Log. 2, 1–71 (1996)
149. Kanamori, A., McAloon, K.: On Gödel incompleteness and finite combinatorics. Ann. Pure

Appl. Log. 33(1), 23–41 (1987)
150. Katz, V.J.: A History of Mathematics – an Introduction. Harper Collins, New York (1993)
151. Ketonen, J., Solovay, R.: Rapidly growing Ramsey functions. Ann. Math. 113, 267–314

(1981)
152. Kirby, L., Paris, J.: Accessible independence results for Peano arithmetic. Bull. Lond. Math.

Soc. 14, 285–293 (1982)
153. Kleene, S.C.: General recursive functions of natural numbers. Math. Ann. 112, 727–742

(1936)
154. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
155. Kleene, S.C.: Extension of an effectively generated class of functions by enumeration. Col-

loq. Math. 6(1), 67–78 (1958)
156. Koblitz, N.: A Course in Number Theory and Cryptography. Springer, New York (1987)
157. Koellner, P., Woodin, W.H.: Incompatible Omega-complete theories. J. Symb. Log. 74(4),

1155–1170 (2009)
158. Kohlenbach, U.: Applied Proof Theory: Proof Interpretations and Their Use in Mathematics.

Springer, Berlin (2008)
159. Kollár, J., Rónyai, L., Szabó, T.: Norm-graphs and bipartite Turán numbers. Combinatorica

16(3), 399–406 (1996)
160. Kolmogorov, A.: On tables of random numbers. Sankhya, Ser. A 25, 369–375 (1963)
161. Krajíček, J.: Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclope-

dia of Mathematics and Its Applications, vol. 60. Cambridge University Press, Cambridge
(1995)

162. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence re-
sults for bounded arithmetic. J. Symb. Log. 62(2), 457–486 (1997)

163. Krajíček, J.: Forcing with Random Variables. London Math. Soc. Lecture Note Series,
vol. 382. Cambridge University Press, Cambridge (2011)

164. Krajíček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories
and the complexity of computations. J. Symb. Log. 54(3), 1063–1079 (1989)

165. Krajíček, J., Pudlák, P.: On the structure of initial segments of models of arithmetic. Arch.
Math. Log. 28, 91–98 (1989)

References 677

166. Krajíček, J., Pudlák, P.: Some consequences of cryptographical conjectures for S1
2 and EF .

In: Leivant, D. (ed.) Logic and Computational Complexity, (Proceedings of Meeting Held in
Indianapolis 1994). LNCS, vol. 960, pp. 210–220. Springer, Berlin (1995)

167. Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and polynomial hierarchy. Ann.
Pure Appl. Log. 52, 143–154 (1991)

168. Kreisel, G.: Ordinal logics and the characterization of informal concepts of proof. In: Proc. of
the 8th International Congress of Mathematicians, pp. 289–299. Edinburgh University Press,
Edinburgh (1958). 1960

169. Kreisel, G., Levy, A.: Reflection principles and their use for establishing the complexity of
axiomatic systems. Z. Math. Log. Grundl. Math. 14, 97–142 (1968)

170. Kripke, S.A.: A completeness theorem in modal logic. J. Symb. Log. 24(1), 1–14 (1959)
171. Kruskal, J.B.: Well-quasi-ordering, the tree theorem, and Vázsonyi’s conjecture. Trans. Am.

Math. Soc. 95, 210–225 (1960)
172. Kunen, K.: Combinatorics. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-

Holland, Amsterdam (1977)
173. Kunen, K.: Set Theory: An Introduction to Independence Proofs. North-Holland, Amsterdam

(1980)
174. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup

problem. SIAM J. Comput. 35(1), 170–188 (2005)
175. Laczkovich, M.: Conjecture and Proof. TypoTeX, Budapest (1998)
176. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22, 155–171 (1975)
177. Lagarias, G. (ed.): The Ultimate Challenge: The 3x+1 Problem. Am. Math. Soc., Providence

(2010)
178. Lakatos, I.: Proofs and Refutations. Cambridge University Press, Cambridge (1976)
179. Laver, R.: The left-distributive law and the freeness of an algebra of elementary embeddings.

Adv. Math. 91, 209–231 (1992)
180. Laver, R.: On the algebra of elementary embeddings of a rank into itself. Adv. Math. 110,

334–346 (1995)
181. Lawvere, F.W.: An elementary theory of the category of sets. Proc. Natl. Acad. Sci. USA 52,

1506–1511 (1964)
182. Levin, L.: Universal’nye perebornye zadachi. Probl. Inf. Transm. 9(3), 265–266 (1973).

(Russian)
183. Levy, A., Solovay, R.M.: Measurable cardinals and the continuum hypothesis. Isr. J. Math.

5, 234–248 (1967)
184. Linnebo, Ø.: Platonism in the philosophy of mathematics. In: Zalta, E.N. (ed.) Stanford En-

cyclopedia of Philosophy (2011). http://plato.stanford.edu/entries/platonism-mathematics/
185. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and Its Applications.

Springer, Berlin (2008)
186. Löwenheim, L.: Über Möglichkeiten im Relativkalkül. Math. Ann. 76(4), 447–470 (1915)
187. Luckhardt, H.: Herbrand-Analysen Zweier Beweise Des Satzes von Roth: Polynomiale An-

zahlschranken. J. Symb. Log. 54(1) (1989)
188. Luminet, J.-P., Weeks, J., Riazuelo, A., Lehoucq, R., Uzan, J.-P.: Dodecahedral space topol-

ogy as an explanation for weak wide-angle temperature correlations in the cosmic microwave
background. Nature 425(9), 593–595 (2003)

189. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction to Topos
Theory. Springer, New York (1992)

190. Manin, Yu.I.: A Course in Mathematical Logic for Mathematicians. Springer, New York
(2010)

191. Margulis, G.A.: Explicit constructions of expanders. Probl. Pereda. Inf. 9(4), 71–80 (1973)
192. Martin, D.A., Solovay, R.M.: Internal Cohen extensions. Ann. Math. Log. 2(2), 143–178

(1970)
193. Matiyasevich Yu, V.: Enumerable sets are Diophantine. Dokl. Akad. Nauk SSSR 191(2),

279–282 (1970). (In Russian; English translation: Sov. Math. Dokl. 11(2), 354–358)

http://plato.stanford.edu/entries/platonism-mathematics/

678 References

194. Matoušek, J.: A combinatorial proof of Kneser’s conjecture. Combinatorica 2(1), 163–170
(2004)

195. McCarthy, J.: A tough nut for proof procedures. Stanford Artificial Intelligence Project,
Memo No. 16 (1964)

196. McCarthy, C.: What does it take to prove Fermat’s Last Theorem? Grothendieck and the
logic of number theory. Bull. Symb. Log. 16(3), 359–377 (2010)

197. McCune, W.: Solution of the Robbins problem. J. Autom. Reason. 19(3), 263–276 (1997)
198. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13(3), 300–

317 (1976)
199. Moore, G.H.: The emergence of first-order logic. In: Aspray, W., Kitcher, P. (eds.) Minnesota

Studies of the Philosophy of Science, XI: History and Philosophy of Modern Mathematics,
pp. 95–135. University of Minnesota Press, Minneapolis (1988)

200. Mostowski, A.: Sentences Undecidable in Formalized Arithmetic: An Exposition of the The-
ory of Kurt Gödel. Studies in Logic. North-Holland, Amsterdam (1952)

201. Mostowski, A.: A generalization of the incompleteness theorem. Fundam. Math. 49, 205–
232 (1961)

202. Muchnik, A.A.: On the unsolvability of the problem of reducibility in the theory of algo-
rithms. Dokl. Akad. Nauk SSSR 108, 194–197 (1956) (Russian)

203. Mulmuley, K., Sohoni, M.: Geometric complexity theory I: An approach to the P vs. NP and
related problems. SIAM J. Comput. 31(2), 496–526 (2001)

204. Mycielski, J., Steinhaus, H.: A mathematical axiom contradicting the axiom of choice. Bull.
Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 10, 1–3 (1962)

205. Nielsen, M.A., Chunag, I.L.: Quantum Computation and Quantum Information: 10th An-
niversary Edition. Cambridge University Press, Cambridge (2010)

206. Németi, I., Dávid, Gy.: Relativistic computers and the Turing barrier. Appl. Math. Comput.
178, 118–142 (2006)

207. von Neumann, J.: Eine Axiomatisierung der Mengenlehre. J. Reine Angew. Math. 154, 219–
240 (1925)

208. Newton, I.: Universal Arithmetick: Or, a Treatise of Arithmetical Composition and Resolu-
tion. J. Senex, London (1720)

209. Nisan, N., Wigderson, A.: Hardness vs. randomness. J. Comput. Syst. Sci. 49(2), 149–167
(1994)

210. Odlyzko, A.M., te Riele, H.J.J.: Disproof of the Mertens conjecture. J. Reine Angew. Math.
357, 138–160 (1985)

211. Parikh, R.: Existence and feasibility in arithmetic. J. Symb. Log. 36(3), 494–508 (1971)
212. Paris, J.B.: Some independence results for Peano arithmetic. J. Symb. Log. 43(4), 725–731

(1978)
213. Paris, J.B.: A hierarchy of cuts in models of arithmetic. In: Model Theory of Algebra and

Arithmetic, Karpacz, 1979. Springer Lecture Notes in Math., vol. 834, pp. 312–337 (1980)
214. Paris, J., Harrington, L.: A mathematical incompleteness in Peano arithmetic. In: Barwise, J.

(ed.) Handbook of Mathematical Logic, pp. 1133–1142. North-Holland, Amsterdam (1977)
215. Paris, J., Wilkie, A.: Δ0 sets and induction. In: Proc. Jadswin Logic Conference (Poland),

pp. 237–248. Leeds University Press, Leeds (1981)
216. Peano, G.: Arithmetices Principia, Nova Methodo Exposita. Fratres Bocca, Torino (1889)
217. Peano, G., Cassina, U.: Formulario Matematico. Fratres Bocca, Torino (1908)
218. Planck, M.: Where Is Science Going? Norton, New York (1932)
219. Pohlers, W.: Proof Theory. The First Step to Impredicativity. Springer, Berlin (1989)
220. Poincaré, H.: The Foundations of Science. The Science Press, New York (1908)
221. Post, E.: Finite combinatory processes—formulation 1. J. Symb. Log. 1(3), 103–105 (1936)
222. Pudlák, P.: Cuts, consistency statements and interpretations. J. Symb. Log. 50(2), 423–441

(1985)
223. Pudlák, P.: On the length of proofs of finitistic consistency statements in first order theories.

In: Logic Colloquium, vol. 84, pp. 165–196. North-Holland, Amsterdam (1986)

References 679

224. Pudlák, P.: Improved bounds to the length of proofs of finitistic consistency statements.
In: Contemporary Mathematics, vol. 65, pp. 309–331. Am. Math. Soc., Providence (1987)

225. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computa-
tions. J. Symb. Log. 62(3), 981–998 (1997)

226. Pudlák, P.: Complexity theory and genetics: The computational power of crossing over. Inf.
Comput. 171, 201–223 (2001)

227. Pudlák, P.: Gödel and computations. SIGACT News 37(4), 13–21 (2006)
228. Pudlák, P.: Quantum deduction rules. Ann. Pure Appl. Log. 157, 16–29 (2009)
229. Pudlák, P.: Randomness, pseudorandomness and models of arithmetic. arXiv:1210.4692
230. Pudlák, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks and communication complexity.

SIAM J. Comput. 26(3), 605–633 (1997)
231. Quine, W.V.: New foundations for mathematical logic. Am. Math. Mon. 44, 70–80 (1937)
232. Quine, W.V.: From a Logical Point of View: Nine Logico-Philosophical Essays, 2nd edn.

Harvard University Press, Cambridge (2003)
233. Quine, W.V.: Mathematical Logic. Norton, New York (1940)
234. Rabin, M.O.: Digital signatures and public-key functions as intractable as factorization. MIT

Laboratory of Computer Science Technical Report 212, (1979).
235. Ramsey, F.P.: On a problem of formal logic. Proc. Lond. Math. Soc. 30(1), 264–286 (1930)
236. Rathjen, M.: The higher infinite in proof theory. In: Makowsky, J., Ravve, E. (eds.) Logic

Colloquium ’95. Springer Lecture Notes in Logic, vol. 11, pp. 275–304 (1998)
237. Rathjen, M.: The realm of ordinal analysis. In: Cooper, S.B., Truss, J.K. (eds.) Sets and

Proofs, pp. 219–279. Cambridge University Press, Cambridge (1999)
238. Razborov, A.: Lower bounds for the monotone complexity of some boolean functions. Dokl.

Akad. Nauk SSSR 281(4), 798–801 (1985). (In Russian; English translation in: Sov. Math.
Dokl. 31, 354–357 (1985))

239. Razborov, A.: Lower bounds on the size of bounded-depth networks over a complete basis
with logical addition. Mat. Zametki 41(4), 598–607 (1987). (In Russian; English translation
in: Math. Notes Acad. Sci. USSR 41(4), 333–338 (1987))

240. Razborov, A.: On the method of approximation. In: Proc. of the 21st ACM STOC, pp. 169–
176 (1989)

241. Razborov, A.: Unprovability of lower bounds on the circuit size in certain fragments of
bounded arithmetic. Izv. Math. 59(1), 201–224 (1995)

242. Razborov, A.: Bounded arithmetic and lower bounds in Boolean complexity. In: Clote, P.,
Remmel, J. (eds.) Feasible Mathematics II, pp. 344–386. Birkhauser, Basel (1995)

243. Razborov, A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)
244. Reisch, S.: Hex ist PSPACE-vollstn̈dig (Hex is PSPACE-complete). Acta Inform. 15, 167–

191 (1981)
245. Rissanen, J.: Modeling by the shortest data description. Automatica 14, 465–471 (1978)
246. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-

key cryptosystems. Commun. ACM 21(2), 120–126 (1978)
247. Robinson, A.: Non-standard Analysis. North-Holland, Amsterdam (1966)
248. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1),

23–41 (1965)
249. Rosser, J.B.: Extensions of some theorems of Gödel and Church. J. Symb. Log. 1, 87–91

(1936)
250. Rosser, J.B.: Logic for Mathematicians. McGraw-Hill, New York (1953)
251. Russell, B.: The Principles of Mathematics. Cambridge University Press, Cambridge (1903)
252. Russell, B.: Mathematical logic as based on the theory of types. Am. J. Math. 30, 222–262

(1908)
253. Russell, B.: My Philosophical Development. Allen & Unwin, London (1959)
254. Russell, B.: The Autobiography of Bertrand Russell, vol. 1. Allen & Unwin, London (1967)
255. Savitch, W.J., Stimson, M.J.: Time bounded random access machines with parallel process-

ing. J. ACM 26(1), 103–118 (1979)

http://arxiv.org/abs/arXiv:1210.4692

680 References

256. Schmerl, U.R.: A fine structure generated by reflection formulas over primitive recursive
arithmetic. In: Boffa, M., van Dalen, D., McAloon, K. (eds.) Proc. Logic Colloquium’78,
pp. 335–350. North-Holland, Amsterdam (1979)

257. Schönhage, A., Strassen V, V.: Schnelle multiplikation grosser Zahlen. Computing 7, 281–
292 (1971)

258. Schütte, K.: Bewiestheorie. Springer, Berlin (1960)
259. Schwartz, J.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM

27, 701–717 (1980)
260. Scott, D.: Measurable cardinals and constructible sets. Bull. Acad. Pol. Sci. 9, 521–524

(1961)
261. Scott, D.: Continuous Lattices. Oxford Univ. Computing Lab. Technical Monograph PRG-7

(1971)
262. Scott, D., Solovay, R.: Boolean-Valued Models for Set Theory. Proc. AMS Summer Institute

on Set Theory, Los Angeles. University of California, Berkeley (1967)
263. Selberg, A.: An elementary proof of the prime-number theorem. Ann. Math. (2) 50, 305–313

(1949)
264. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Syst. Tech. J. 28, 59–

98 (1949)
265. Shapiro, S. (ed.): The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford

University Press, London (2005)
266. Shelah, S.: Can you take Solovay’s inaccessible away? Isr. J. Math. 48(1), 1–47 (1984)
267. Shoenfield, J.R.: Mathematical Logic. Addison-Wesley, Reading (1967)
268. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
269. Simpson, S.G.: Nonprovability of certain combinatorial properties of finite trees. In: Har-

rington, L.A., et al. (eds.) Harvey’s Friedman Research on the Foundations of Mathematics,
pp. 87–117. North-Holland, Amsterdam (1985)

270. Skolem, T.: Logisch-kombinatorische Untersuchungen über die Erfüllbarkeit oder Beweis-
barkeit mathematischer Sätze nebst einem Theoreme über dichte Mengen. Videnskapssel-
skapet Skrifter, I. Mat.-Naturvidensk. Kl. 6, 1–36 (1920)

271. Skolem, T.: Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre. In: Fün-
ften Kongress der Skandinavischen Mathematiker in Helsingfors 1922. Helsingfors, pp. 217–
232 (1923)

272. Smith, R.L.: The consistency strengths of some finite forms of the Higman and Kruskal
theorems. In: Harrington, L.A., et al. (eds.) Harvey’s Friedman Research on the Foundations
of Mathematics, pp. 119–136. North-Holland, Amsterdam (1985)

273. Smoryński, C.: The incompleteness theorems. In: Barwise, J. (ed.) Handbook of Mathemat-
ical Logic, pp. 821–865. North-Holland, Amsterdam (1977)

274. Smoryński, C.: The varieties of arboreal experience. Math. Intell. 4, 182–188 (1982)
275. Smoryński, C.: Nonstandard models and related developments. In: Harrington, L.A., et al.

(eds.) Harvey’s Friedman Research on the Foundations of Mathematics, pp. 179–229. North-
Holland, Amsterdam (1985)

276. Smoryński, C.: Logical Number Theory I, an Introduction. Springer, Berlin (1991)
277. Solomonoff, R.: A Preliminary Report on a General Theory of Inductive Inference. Report

V-131, Cambridge, Ma., Zator Co. (1960)
278. Solovay, R.M.: A model of set-theory in which every set of reals is Lebesgue measurable.

Ann. Math. 92(1), 1–56 (1970)
279. Solovay, R.M.: Real valued measurable cardinals. In: Scott, D.S. (ed.) Axiomatic Set Theory.

Proc. Sym. in Pure Math. XIII, vol. 1, pp. 387–428 (1971)
280. Solovay, R.M.: Provability interpretations of modal logic. Isr. J. Math. 25, 287–304 (1976)
281. Solovay, R.: Injecting inconsistencies into models of PA. Ann. Pure Appl. Log. 44(1–2),

101–132 (1989)
282. Solovay, R.M., Strassen, V.: A fast Monte-Carlo test for primality. SIAM J. Comput. 6(1),

84–85 (1977)

References 681

283. Specker, E.P.: Dualität. Dialectica 12, 451–465 (1958)
284. Statman, R.: Proof-search and speed-up in the predicate calculus. Ann. Math. Log. 15, 225–

287 (1978)
285. Stewart, I.: Galois Theory. Chapman and Hall, New York (1998)
286. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
287. Struik, D.J.: A Concise History of Mathematics. Dover, New York (1948)
288. Takeuti, G.: Proof Theory, 2nd. edn. North-Holland, Amsterdam (1987)
289. Tao, T.: Every odd number greater than 1 is the sum of at most five primes. Math. Comput.

(to appear)
290. Tarski, A.: Der Wahrheitsbegriff in den formalisierten Sprachen. Stud. Philos. 1, 261–405

(1936)
291. Troelstra, A., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge University Press,

Cambridge (2000)
292. Tsfasman, M.A., Vlăduţ, S.G., Zink T, T.: Modular curves, Shimura curves and Goppa codes,

better than Varshamov-Gilbert bound. Math. Nachr. 104, 13–28 (1982)
293. Turing, A.M.: On computable numbers, with an application to the Entscheidungsproblem.

Proc. Lond. Math. Soc. (2) 42, 230–265 2(1937)
294. Turing, A.M.: Systems of logic based on ordinals. Proc. Lond. Math. Soc. s2-45(1), 161–228

(1939)
295. Uhlig, D.: On the synthesis of self-correcting schemes from functional elements with a small

number of reliable elements. Mat. Zametki 15(6), 937–944 (1974)
296. Vardi, I.: Archimedes, the Sand Reckoner. http://www.lix.polytechnique.fr/Labo/Ilan.Vardi/

sand_reckoner.ps
297. Valiant, L.: The complexity of computing permanent. Theor. Comput. Sci. 8, 189–201 (1979)
298. Vaught, R.L.: Axiomatizability by a schema. J. Symb. Log. 32(4), 473–479 (1967)
299. Vinogradov, I.M.: Representation of an odd number as a sum of three primes. C. R. Acad.

Sci. USSR 15, 191–249 (1937)
300. Vopěnka, P.: On ∇-model of set theory. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys.

13, 267–272 (1965)
301. Vopěnka, P.: Mathematics in the Alternative Set Theory. Teubner, Leipzig (1979)
302. Wang, H.: The formalization of mathematics. J. Symb. Log. 19, 241–266 (1954)
303. Wang, H.: Toward mechanical mathematics. IBM J. Res. Dev. 4(1), 2–22 (1960)
304. Wang, H.: Proving theorems by pattern recognition–II. Bell Syst. Tech. J. 40(1), 1–41 (1961)
305. Wang, H.: A Survey of Mathematical Logic. Science Press, Peking (1962)
306. Wang, H.: Some facts about Kurt Gödel. J. Symb. Log. 46(3), 653–659 (1981)
307. Weyl, H.: Das Kontinuum. Kritische Untersuchungen über die Grundlagen der Analysis.

Veit, Leipzig (1918)
308. Weyl, H.: Mathematics and logic. A brief survey serving as a preface to a review of “The

philosophy of Bertrand Russell”. Am. Math. Mon. 53, 2–13 (1946)
309. Woodin, W.H.: The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal.

de Gruyter, Berlin (1999)
310. Woodin, W.H.: The continuum hypothesis, I. Not. Am. Math. Soc. 48(6), 567–576 (2001)
311. Woodin, W.H.: The continuum hypothesis, II. Not. Am. Math. Soc. 48(7), 681–690 (2001)
312. Woodin, W.H.: The Continuum Hypothesis and the Ω-Conjecture. Coxeter Lectures, Fields

Institute, Toronto (2002)
313. Whitehead, A.N., Russell, B.: Principia Mathematica, I. Cambridge University Press, Cam-

bridge (1910)
314. Whitehead, A.N., Russell, B.: Principia Mathematica, II. Cambridge University Press, Cam-

bridge (1912)
315. Whitehead, A.N., Russell, B.: Principia Mathematica, III. Cambridge University Press, Cam-

bridge (1913)
316. Zalta, E.N., Principal (eds.): The Stanford Encyclopedia of Philosophy. The Metaphysics Re-

search Lab Center for the Study of Language and Information, Stanford University, Stanford.
http://plato.stanford.edu/

http://www.lix.polytechnique.fr/Labo/Ilan.Vardi/sand_reckoner.ps
http://www.lix.polytechnique.fr/Labo/Ilan.Vardi/sand_reckoner.ps
http://plato.stanford.edu/

682 References

317. Zermelo, E.: Beweis, dass jede Menge wohlgeordnet werden kann. Math. Ann. 59(4), 514–
516 (1904)

318. Zermelo, E.: Untersuchungen über die Grundlagen der Mengenlehre. I. Math. Ann. 65, 261–
281 (1908)

319. Zermelo, E.: Über Grenzzahlen und Mengenbereiche. Fundam. Math. 16, 29–47 (1930)
320. Zippel, R.E.: Probabilistic algorithms for sparse polynomials. In: Proc. EUROSAM’79.

Springer Lecture Notes in Computer Science, vol. 72, pp. 216–226 (1979)

Name Index

A
Abel, N.H., 263
Adleman, L., 430, 437
Al-Khwarizmi, 124
Alekhnovich, M., 61
Appel, K., 13
Archimedes, 187
Aristarchus, 187
Aristotle, 44, 93, 177
Avigad, J., 120

B
Babai, L., 416
Bachmann, H., 209
Baker, T., 386
Banach, S., 218
Baranyi, I., 522
Beltrami, E., 86
Bennett, C.H., 462, 471
Berger, R., 303
Bernays, P., 101, 166, 586
Bernstein, A.R., 247
Blum, L., 408
Bolyai, J., 85
Bolzano, B., 39, 177
Boole, G., 111
Bourbaki, N., 2
Bourgain, J., 663
Brouwer, L.E.J., 108, 591
de Bruijn, N.G., 119
Buss, S.R., 523, 532, 539,

653

C
Cantor, G., 25, 157, 258
Cauchy, A.-L., 33
Chaitin, G.J., 480, 487

Church, A., 132, 146, 596
Chvátal, V., 558
Cohen, P.J., 183, 341
Collatz, L., 325
Conway, J., 327
Cook, S.A., 375, 523, 540, 552
Coquand, T., 120
Craig, W., 559
Curry, H.B., 146, 600

D
Davis, M., 119, 305
Dedekind, R., 30
Descartes, R., 11
Dummett, M., 589

E
Egan, G., 657
Erdős, P., 15, 61, 392
Euclid, 44, 178, 585
Euler, L., 62
Everet, H., 477

F
Feferman, S., 299, 620, 644
Fejes Tóth, L., 15
Ferguson, S.P., 15
de Fermat, P., 57
Feynman, R., 449
Fraenkel, A.A., 47
Franco, A.C., 299
Frege, G., 31, 93, 157, 586, 596
Freudenthal, H., 80
Friedberg, R.M., 311
Friedman, H., 299, 331, 339,499,

565

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7,
© Springer International Publishing Switzerland 2013

683

http://dx.doi.org/10.1007/978-3-319-00119-7

684 Name Index

G
Gaifman, H., 589
Galileo Galilei, 176
Galois, É., 9, 263
Gauss, C.F., 85
Gentzen, G., 118, 501
Gill, J., 386
Gilmore, P.C., 119
Girard, J.-Y., 110
Gödel, K., 99, 166, 183, 219, 276, 341, 342,

375, 590, 591, 626, 630
Gomory, R.E., 558
Gonthier, G., 120
Goodstein, R.L., 321
Goppa, V.D., 407
Gordan, P., 392
Green, B., 663
Grover, L.K., 450
Guthrie, F., 13

H
Hadamard, J., 61
Haken, W., 13
Hales, T.C., 15
Halmos, P.R., 237
Harrington, L., 328
Harrow, A.W., 471
Hartmanis, J., 377
Hassidim, A., 471
Håstad, J., 540
Hausdorff, F., 200
Hawking, S., 659
Herbrand, J., 500
Hermite, C., 258
Heyting, A., 592
Hilbert, D., 25, 44, 104, 183, 304, 392,

600–604
Hirschfeld, J., 237
Hogarth, M.L., 145
Huet, G., 120

I
Impagliazzo, R., 426

J
Jaśkowski, S., 114
Jensen, R., 242
Jeřábek, E., 535
Jockusch, C.G., 310
Johnson, D.S., 532
Jones, J.P., 305

K
Kahr, A.S., 312

Ketonen, J., 337
Kirby, L., 323, 324
Kleene, S.C., 133
Klein, F., 90
Knuth, D., 96
Kohlenbach, U., 110
Kolmogorov, A.N., 480
Krajíček, J., 530, 559, 561
Kreisel, G., 110, 617, 620
Kripke, S.A., 121
Kruskal, J., 330
Kummer, E., 603
Kuratowski, K., 14

L
Lakatos, I., 95
Lambert, J.H., 258
Laver, R., 205
Lebesgue, H., 201
Leibniz, G.W., 93, 111
Levin, L., 375
Levy, A., 617, 634
von Lindemann, F., 258
Liouville, J., 258, 266
Lloid, S., 471
Lobachevsky, N.I., 85
Lovász, L., 522
Löwenheim, L., 86
Lucas, J., 621
Luckhardt, H., 110, 501

M
Mahlo, P., 200
Malament, D., 145
Markov, A.A. Jr., 108
Martin, D.A., 364
Matiyasevich, Y., 305
Matoušek, J., 522
McCune, W., 119
Miller, G.L., 429
Mirimanoff, D., 41
Moore, E.F., 312
Mostowski, A., 286, 497
Mučnik, A.A., 311
Mulmuley, K., 409
Mycielski, J., 223

N
Németi, I., 145
von Neumann, J., 104, 165
Newton, I., 585
Nisan, N., 433

O
Odlyzko, A.M., 64, 660

Name Index 685

P
Papadimitriou, C.H., 532
Parikh, R., 497, 505, 523
Paris, J.B., 320, 323, 324, 328, 523
Peano, G., 30, 39, 93, 96
Penrose, R., 303, 623
Pierce, C.S., 111
Pitowski, I., 145
Planck, M., 284
Poincaré, H., 108
Popper, K., 95
Post, E.L., 125
Putnam, H., 119, 305
Pythagoreans, 584

Q
Quine, W.V.O., 41, 232, 604, 605

R
Ramsey, F.P., 15
Razborov, A.A., 386, 389
te Riele, H.J.J., 64
Riemann, B., 62
Rissanen, J., 488
Rivest, R.I., 430, 437
Robinson, A., 237, 247
Robinson, J.A., 60, 119
Robinson, J.H.B., 305
Robinson, R.M., 303
Rosser, J.B., 233, 292
Rudich, S., 389
Ruffini, P., 263
Russell, B., 43, 93, 157, 159, 596

S
Sarnak, P., 663
Savitch, W.J., 446
Schmerl, U.R., 619, 621
Schönfinkel, M.I., 146
Schröder, E., 111
Schütte, K., 512
Scott, D., 154, 215, 359
Selberg, A., 61
Shamir, A., 430, 437
Shannon, C., 382, 394
Shechtman, D., 304
Shelah, S., 224
Shor, P., 450
Shub, M., 408
Skolem, T., 86

Smale, S., 408
Smith, K.T., 237
Solomonoff, R.J., 480, 490
Solovay, R.M., 202, 224, 229, 337, 359, 364,

386, 428, 634, 664
Specker, E., 233, 242
Stearns, R.E., 377
Steinhaus, H., 223
Stimson, M.J., 446
Strassen, V., 396, 428
Szekerés, G., 15

T
Takeuti, G., 530
Tao, T., 15
Tarski, A., 81, 111, 218, 282
Thomae, J., 600
Thue, A., 392
Tsfasman, M.A., 407
Turing, A.M., 125, 132, 300, 618

V
Valiant, L., 409
de la Vallée-Poussin, C., 61
Vaught, R.L., 49
Vinogradov, I.M., 14
Visser, A., 299
Vitali, G., 201
Vlăduţ, S.G., 407
Vopěnka, P., 204, 237, 359

W
Wang, H., 94, 119, 243, 312
Weierstrass, K.T.W., 39
Werner, B., 120
Weyl, H., 591
Whitehead, A.N., 93
Wiesner, S.J., 471
Wigderson, A., 390, 426, 433
Wiles, A., 57
Wilkie, A., 523
Woodin, W.H., 214, 223, 633

Y
Yannakakis, M., 532

Z
Žák, S., 41
Zermelo, E., 37, 163, 165, 219
Zink, T., 407

Subject Index

A
Algebra

Boolean, 21, 111
complete, 360

combinatory, 148
cylindric, 111
free, 91

Algorithm, 123
probabilistic, 413
quantum, 463–467
Shore’s, 464–467

Antinomy, 37
Burali-Forti’s, 42

Arithmetic
Arithmetical Comprehension Axiom,

ACA0, 643
Arithmetical Transfinite Recursion, ATR0,

643
Cook’s PV , 540
Dedekind-Peano Arithmetic, 30, 146
Elementary Arithmetic, EA, 617
Peano Arithmetic, PA, 31, 60
Peano Arithmetic, PA, 87, 505, 507, 510,

511, 524, 588, 614, 617, 619
axioms, 116
consistency of, 118

Robinson Arithmetic, 116, 283, 294
Second-Order Arithmetic, Z2, 295, 643
True Arithmetic, 88

Arithmetic of infinite cardinals, 180
Arithmetization

in Peano Arithmetic, 293
of syntax, 276

Arity, 4
Artificial intelligence, 55
Automated theorem proving, 119
Autonomous progression, 620, 644

Axiom, 44
forcing, 634
higher axiom of infinity, 197
independent, 50
induction, 295
large-cardinal, 197, 588, 629
logical, 93
Martin’s, 363
of choice, 173, 215–219

independence of, 352, 358
of dependent choices, 224
of determinacy, 219–221, 223

consistency, 230
of feasible computations, 651
of global choice, 175
of infinity, 164, 173
of limited universe, 651
of projective determinacy, 633
of solvability, 602, 655
Tarski’s, 208
the strongest ever proposed, 214

Axiom schema, 48
induction, 116
replacement, 165
restricted comprehension, 163
typed comprehension, 159

B
Basis, see Connective, complete set of
Brute-force search, 368

C
Calculus

functional, 74
λ-calculus, see Lambda calculus
propositional, 153

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7,
© Springer International Publishing Switzerland 2013

687

http://dx.doi.org/10.1007/978-3-319-00119-7

688 Subject Index

Calculus (cont.)
Resolution, 60
sequent, 501, 516

Cardinal, 30, 178
inaccessible, 199
large, 197–215, 223, 339, 631–635
Mahlo, 200
measurable, 202, 634
Ramsey, 208
Vopěnka, 204, 214
weakly compact, 203
Woodin, 224, 229, 633

Cardinality, 178
Categorical foundations, 241
Category, 13, 22
Circuit

algebraic, 408
Boolean, 144, 380–385
quantum, 457, 468
randomized, 429
threshold, 440, 447
uniform, 384

Class, 166
nonelementary, 52
proper, 166
universal, 166

Clause, 60
Compactness, 115
Completeness, 50

relative, 50
Complexity

algebraic, 395–397
algorithmic, see Kolmogorov’s
average case, 367
communication, 405
descriptional, 479
Kolmogorov’s, 480–487
nondeterministic space, 402
of factoring, 398
of matrix multiplication, 396
of multiplication, 398
of primality, 374, 398, 428
of proof search, 371, 375
quantifier, 79
space, 378
time, 375
worst case, 367

Complexity class
algebraic, 408
bounded error probabilistic polynomial

time BPP, 421
bounded error quantum polynomial time

BQP, 470

co-nondeterministic polynomial time
coNP, 376

nondeterministic polynomial time NP, 373
nonuniform, 384
polynomial local search PLS, 532
polynomial space PSPACE, 378
polynomial time P, 372
probabilistic, 421
quantum polynomial time QP, 470
relativized, 386
syntactical vs. semantical, 575
total polynomial search TPS, 530–534

Computability theory, 310
Computation

algebraic, 395
in the brain, 439–443
matrix model of, 137, 144, 383
parallel, 437–446
quantum, 448–479
relativistic, 145
reversible, 461–463
semantics of, 136
syntax of, 136

Conjecture
3x + 1, 325
Ω-conjecture, 635, 645
Goldbach, 14
Kepler, 15
PRG, 388, 435
Robbins’, 119

Connective, 67, 68, 75
complete set of, 78, 382

Consistency, 49, 84, 103, 600
inner, 587
ω-consistency, 642
relative, 91

Consistency strength, 206, 612, 613
Constant, 69
Constructivism, 108
Cryptography, 418–421

public key, 430
quantum, 476

Curry-Howard isomorphism, 152, 598
Cut

Dedekind’s, 34
in a model, 333

Cut-elimination, 501–504, 517
Cutting planes, see Proof system,

cutting-planes

D
Definition

impredicative, 161
predicative, 161, 166

Subject Index 689

Derandomization, 425
Diagonal argument, 41, 181
Discrete logarithm, 427

E
Echelon construction, 16
Elementary embedding, 204, 212
Elements, 44, 93, 585
Elitzur-Vaidman bomb test, 453
Equality, 73
Equation

algebraic, 262
Diophantine, 56, 304–308
quintic, 271

Equinumerous, 31
Error correcting code, 407
Ex falso quodlibet, 36
Excluded middle, 93

F
Feasible interpolation, see Method, lower

bound, feasible interpolation
Field, 20

number field, 267
splitting, 268

Field extension, 263
Galois, 268
radical, 269

Finite automaton, 21
Finitism, 600

objective, 650
Forcing, 341–354, 631–635
Forcing condition, 356
Formal system, 49
Formalism, 600–604

game, 600
Formalized ω-rule, 642
Formula, 72

atomic, 73
bounded arithmetical, 534
flexible, 286

Frege’s logical system, 170
Function, 4

Ackermann, 336
Boolean, 21, 399
busy beaver, 129
collapsing, 209
computable, 142, 310
explicitly defined, 390
fast growing, 514
Möbius, 62
noncomputable, 128
one-way, 418
partial recursive, 141, 311

propositional, 74, 150
provably total, 514
recursive, 133, 310

definition of, 142
successor, 30
threshold, 440
time constructible, 377, 397
Veblen, 195

Functional, 17

G
Galois correspondence, 268
Game, 219, 221, 379
Geometric complexity theory, 409
Geometry, 44, 584

Euclidean, 51
hyperbolic, 85

Gödel’s dichotomy, 626
Gödel’s Program, see Large-Cardinal

Program
Graph, 6

expander, 394
planar, 14, 18
Ramsey, 393
random, 393

Grothendieck universe, 207
Group, 7, 10, 18

abelian, 265
braid, 205
commutative, 265
simple, 9, 19
soluble, 270

H
Halting problem, 128
Hierarchy

arithmetical, 141
bounded arithmetic, 539
constructible, 343
cumulative, 168
of functions, 336
polynomial, 401

Hilbert’s Program, 100, 101, 118
Holism, 604
Human mind, 621–626
Hypothesis

continuum, 183, 229, 341–344, 348,
635

extended Riemann’s, 413, 429
generalized continuum, 183, 214
Mertens, 64
Riemann’s, 62

Hilbert-Pólya’s approach to, 660

690 Subject Index

I
Ignorabimus, 602
Incompressibility, 482

instead of randomness, 492
Independence of P =NP, 639
Induction

mathematical, 30
on notation, 543
transfinite, 192, 510

Inductive reasoning, 490
Infinity

actual, 178
potential, 177, 592

Input length, 367
Intuition, 606
Intuitionism, 108, 591–595
Isomorphism, 13

K
Kripke semantics, 121

L
Lambda calculus, 146–152, 162

model of, 154
type-free, 147
typed, 150, 598

Language, 592
context-free, 76
higher-order, 78
logical, 72
metalanguage, 82
natural, 71
object, 82
of first-order logic, 76
of propositional logic, 75
programming, 73, 82, 127

Large-Cardinal Program, 629–631
Laver table, 215
Lemma, 499

diagonal, 289, 291
König’s, 24

Logic
Ω-logic, 645
classical, 70
combinatory, 146, 152
first-order, 51, 74

undecidability of, 132
higher-order, 102
intuitionistic, 120, 151, 592
modal, 120
propositional, 78, 111, 545
provability, 297
second-order, 145
symbolic, 72

Logic gates, 381
Logic of relations, 111
Logicism, 66, 595–599

M
Mach-Zehnder interferometer, 451, 468
Machine

parallel, 446
parallel random access, 446
random access, 377
Turing’s, see Turing machine

Mathematical realism, see Platonism
Measure, 201

probability, 491
Metalanguage, 82
Method

feasible interpolation, 559
lower bound, 403–406
of ideal elements, 602
probabilistic, 392

Modality, 68
Model, 47, 82, 84

Beltrami-Klein, 90
Boolean valued, 359–362
inner, 354
nonstandard, 87, 91, 236
of set theory, 342–354
Solovay’s, 229
standard, 88, 614

Model theory, 82
Modus ponens, 94

N
Neural network, 448
New Foundations, see Set theory
Nonstandard analysis, 235, 244–250
Normal subgroup, 268
Normalization, 598
NP-completeness, 400
Number

algebraic, 56, 257
cardinal, see Cardinal
irrational, 256–259
large cardinal, 197
natural, 30, 584, 592
nonstandard, 88
ordinal, see Ordinal
physical, 646
Ramsey, 16, 392, 406
real, 5, 33, 35
RSA-129, 368, 437
standard, 88
transcendental, 56, 266

Subject Index 691

O
Operation, 4
Ordinal, 26, 184–187

Bachmann–Howard, 210
Cantor normal form, 193
constructive, 193, 209, 619
Feferman-Schütte, 194
proof-theoretic, 521

definition of, 510
Ordinal analysis, 510–514

P
Pair, 34
Pairs of disjoint NP sets, 576
Paradox, 37, 592

Banach-Tarski’s, 218, 225–229
Berry’s, 38, 161, 486
Cantor’s, 41
Epimenides, 38
Hilbert’s, 42
liar’s, 38
Russell’s, 37, 40, 157
semantic, 38, 283

Platonism, 586–591
degree of, 589

Polynomially simulates, 551
Positivism, 27
Postulate, 44

Euclid’s fifth, 51, 85
Power set, 12
Predicate, 4
Predicativism, 644
Principle

comprehension, 28, 158
existence from consistency, 602, 611
extensionality, 26, 28
minimal changes, 605
minimum description length, 488, 605
Möbius randomness, 663
pigeonhole, 546
power and usefulness, 591
reflection, 296, 335, 498, 615, 642

in set theory, 645
Vopěnka’s, 204, 214

Problem
algorithmically undecidable, 301–309
Collatz’s, 325–328
decision, 300
Entscheidungsproblem, 132, 306
feasible consistency, 564–566
graph isomorphism, 415
halting, 300
Hamiltonian cycle, 371
hidden subgroup, 475

Hilbert’s fifth, 237
Hilbert’s tenth, 304
identity testing, 413
integer factoring, 368
integer linear programming, 557
linear programming, 533
Mutilated Chess-Board, 55
NP versus coNP, 376, 408, 409, 551, 580
P versus NP, 370–376, 566, 580
promise, 577
search, 530
ΘP versus ΘNP, 526
total-measure, 201

Product of sets, 11
Program, 124

unpredictable, 287
Proof, 92

direct, 499
feasibly constructive, 540–545
holographic, 414, 429
interactive, 415
natural, 389
nonconstructive, 109, 382, 391–395
nonelementary, 522
probabilistic, 393, 406
purely existential, see Nonconstructive
quantum, 478
speed-up, 496–499, 515
zero-knowledge, 417

Proof checking, 94
Proof mining, 110, 501
Proof system

complete, 550
cutting-planes, 558
extended Frege, 552
Frege, 551
Hilbert style, 113
length-optimal, 568, 580
natural deduction, 97, 113
optimal, 571, 580
polynomially bounded, 551
propositional, 548–559

definition of, 550
sound, 550

Proof theory, 101
Pseudorandom generator, 423

Nisan-Wigderson’s, 433

Q
Quantifier, 67, 68, 74

alternating, 74, 140
axioms and rules, 113

Quantum bit, 453

692 Subject Index

R
Radical, 262
Realism, 586
Recursion, 32

on notation, 542
Recursion theory, 310
Relation, 4
RSA, 430

S
Satisfaction, 81, 82

definition of, 88
Self-distributive system, 205
Self-reference, 41, 273–275, 486
Semiset, 238
Sentence, 74

combinatorial, 339
empirically testable, 609
Gödel’s, 279, 308
logically valid, 83
Paris-Harrington’s, 333
Π1, 609
Rosser’s, 292
universal finite, 609
universal-finite, see Sentence, Π1
universal-P, 528, 541, 609
unprovable in ΘP, 560

Sequence
Cauchy, 33, 35
Goodstein, 321–324, 327

Set, 25
constructible, 343, 355
decidable, 310
finite, 190
generic, 346, 356
nonmeasurable, 212
ordered, 17
random generic, 363
recursive, 310
recursively enumerable, 311

Set theory
Alternative Set Theory, 238

axioms of, 250
Finite Set Theory, ZFfin, 117
Finite Set Theory, ZFf in, 323
Gödel-Bernays Set Theory, 166

axioms of, 174
Kelly-Morse Set Theory, 174
Kripke-Platek Set Theory, 195
New Foundations, 232

axioms of, 241
von Neumann-Bernays Set Theory, see

Gödel-Bernays Set Theory
Zermelo Set Theory, 163

Zermelo-Fraenkel Set Theory, ZFC, 47,
165, 613

axioms of, 173
Zermelo-Fraenkel Set Theory without

Axiom of Choice, ZF, 223
Σ -completeness, 290
Soundness, 98, 613

arithmetical, 614
Structure, 82

algebraic, 10
first-order, 10
mathematical, 2
second order, 10
universe of, 4

Syllogisms, 44, 93

T
Tautology, 83
Term, 73
Theorem

Buss’s, 532
Cantor’s, 182
Church-Rosser’s, 152
completeness, 99, 114
Craig’s interpolation, 559
Fermat’s last, 208
finite Ramsey’s, 328
first incompleteness, 101, 102

proof of, 278
fixed point, 149, 289
four color, 13, 120
Gödel-Tarski’s, 283
Herbrand’s, 500, 501, 504, 518
incompleteness, 273, 486
infinite Ramsey’s, 25
Kruskal’s, 330, 337
Löb’s, 616
Łos’s, 252
Löwenheim–Skolem’s, 89
Matiyasevich’s, 315–319
Nullstellensatz, 549
Paris-Harrington’s, 328
prime number, 61
Ramsey’s, 15, 203, 242, 309, 319, 339

proof of, 23
Roth’s, 501
second incompleteness, 103, 567

proof of, 279
space hierarchy, 378
Thue-Siegel-Roth’s, 392
time hierarchy, 377

Theorem provers, 94
Theory, 47, 84

arithmetical, 87

Subject Index 693

Theory (cont.)
arithmetically sound, 614
elementary, 48
empirical, 488
equational, 79
for a complexity class, 529
formal, 49
Galois, 263–266, 268–271
nonelementary, 48
relativized, 540
sound, 613–615
true, 613
useful inconsistent, 504

Theory for a class C, 525
Theory for NP, ΘNP, 536
Theory for P, ΘP, 535
Theory of Types, 159

Ramified Class Calculus, 162
Simple Type Theory, 159, 242

axioms of, 171
Thesis

Church-Turing’s, 134, 448
feasible incompleteness, 562
logicist, 595
natural number, 649
parallel computation, 446
physical Church-Turing’s, 136
quantum computing, 460

Tiling, 302, 312
aperiodic, 314

Transfinite progressions of theories, 618–621
definition of, 642

Tree, 24, 520
Truth, 80

undefinability of, 281
Turing machine, 125

definition of, 143
multitape, 377
nondeterministic, 375
probabilistic, 421, 429
universal, 131

Type, 17, 150, 159
Boolean, 150

U
Ultrafilter, 208, 252
Ultrafinitism, 506, 650, 652
Ultrapower, 213, 251

V
Variable, 69

bound, 74
free, 74

W
Wang’s system Σ , 243
Well-ordering, 191
World

Impagliazzo’s, 579
inconsistent, 507

Symbols and Abbreviations

2ℵα , 182
ACA0, 643
ATR0, 643
Con(T), 612
ConT , 280
ConT (n), 564
EA, 617
FN, 239
L, 214
PA, 116
PD, 633
PHPn, 546
PV , 523
PrT (φ), 497
S(x), 30
T Con
α , 618

T RFN
α , 621

V , 166
Vα , 169
X× Y , 11
ZF, 223
ZFC, 165
ZFfin, 117
Z2, 643
Γ0, 194
Π1, 140
ΠP, 528
Σ0

1 ,Π
0
1 ,Σ

0
2 ,Π

0
2 , . . ., 141

Σ1, 140
ΘNP, 526
ΘP, 526
ΘC , 525
ℵα , 178
FP, 532
PLS, 532
TPS, 530

∅, 31
ε0, 193
≡, 75
∃, 74
∀, 74
γT , 278
Lphys , 647
N, 10
Nphys , 647
R, 5, 10
¬, 75
ω, 185
ωCK

1 , 195
ψ(εΩ+1), 211
→, 75
∨, 75
∧, 75
{a1, a2, . . . , an}, 29
f :X→ Y , 12
P(A), 12
BPP, 421
BQP, 470
EF, 552
EXPTIME, 378
NC1, 547
NP, 373
NP ∩ coNP, 402
PSPACE, 378
P, 372
QP, 470
coNP, 376
nonuniformP, 384
TPhN, 650
RFN(T), 617
Rfn(T), 615

P. Pudlák, Logical Foundations of Mathematics and Computational Complexity,
Springer Monographs in Mathematics, DOI 10.1007/978-3-319-00119-7,
© Springer International Publishing Switzerland 2013

695

http://dx.doi.org/10.1007/978-3-319-00119-7

	Logical Foundations of Mathematics and Computational Complexity
	Preface
	Acknowledgements
	Contents

	Chapter 1: Mathematician's World
	1.1 Mathematical Structures
	Ordered Sets
	Graphs
	Groups
	Types of Structures
	Structures of Structures
	The Four Color Theorem
	Ramsey's Theorem
	Notes

	1.2 Everything Is a Set
	The Natural Numbers
	The Real Numbers
	Notes

	1.3 Antinomies of Set Theory
	Paradoxes in Mathematics
	Notes

	1.4 The Axiomatic Method
	Axiomatic Theories
	Properties of Theories
	Notes

	1.5 The Necessity of Using Abstract Concepts
	A Tough Nut for Computers
	Transcendental Numbers
	Diophantine Equations
	The Reasons why Abstract Concepts Are Needed
	Logical Classiﬁcation of Concepts
	Notes

	Main Points of the Chapter

	Chapter 2: Language, Logic and Computations
	2.1 The Language of Mathematics
	Why Is the Language of Mathematics so Restricted?
	Is Logic Simply a Part of Natural Language?
	The Language of Mathematical Logic
	Notes

	2.2 Truth and Models
	The Deﬁnition of Truth and Satisfaction
	Logically Valid Sentences
	Proving Consistency and Independence by Constructing Models
	Models Are not Uniquely Determined by Theories
	A Nonstandard Model of Arithmetic
	Notes

	2.3 Proofs
	Can All Mathematical Proofs Be Turned into Formal Proofs?
	Is the Concept of Logically Derivable Sentences Uniquely Determined?
	The First Incompleteness Theorem
	Higher Order Logics and Theories
	The Second Incompleteness Theorem
	Misconceptions About the Incompleteness Theorems
	On the Proof of the Completeness Theorem
	Constructive Mathematics-Proofs Instead of Structures
	Notes

	2.4 Programs and Computations
	Turing Machines
	Programming Languages
	Noncomputable Functions
	Universal Machines
	The Undecidability of First-Order Logic
	Recursive Functions
	The Church-Turing Thesis
	The Syntax and the Semantics of Computations
	The Matrix Model of Computations
	Beyond Computability-Complexity Hierarchies
	Notes

	2.5 The Lambda Calculus
	Combinatory Algebras
	The lambda-Calculus as Logic
	Formulas as Types
	Notes

	Main Points of the Chapter

	Chapter 3: Set Theory
	3.1 The Axioms of Set Theory
	The Theory of Types
	Impredicative Deﬁnitions, Semantical Antinomies and the Hierarchy of Languages
	Zermelo Set Theory
	Zermelo-Fraenkel Set Theory
	Set Theories with Classes
	Zermelo's Universe
	Zermelo-Fraenkel's Universe
	Cleaning Up the Universe
	Notes

	3.2 The Arithmetic of Inﬁnity
	What Is Inﬁnity?
	Counting Inﬁnite Sets
	Some Simple Arithmetic
	How to Get a Larger Cardinal Number-Cantor's Diagonal Argument
	The Continuum Hypothesis
	Ordinal Numbers
	Interlude-Archimedes and Ordinals
	Notes

	3.3 What Is the Largest Number?
	The Inaccessible Cardinal
	The Measurable Cardinal and the Measure Problem
	New Types of Inﬁnity
	Cardinals and Braids
	The Remarkable Linearity of Large Cardinals
	Notes

	3.4 Controversial Axioms
	The Axiom of Choice
	The Axiom of Determinacy
	Formulas and Games
	Determinacy and Large Cardinals
	Solovay's Model
	Notes

	3.5 Alternative Set-Theoretical Foundations
	Quine's New Foundations
	Robinson's Nonstandard Analysis and Vopenka's Alternative Set Theory
	Notes

	Main Points of the Chapter

	Chapter 4: Proofs of Impossibility
	4.1 Impossibility Proofs in Geometry and Algebra
	Irrational Numbers
	Constructions with a Ruler and a Compass
	Solutions of Equations by Radicals
	Galois Theory
	Notes

	4.2 The Incompleteness Theorems
	Self-reference
	Arithmetization of Syntax
	The Proof of the First Incompleteness Theorem
	The Proof of the Second Incompleteness Theorem
	The Undeﬁnability of Truth
	Interlude-Free Will and the Hierarchy of Observers
	Some Peculiarities of Incompleteness
	Flexible Formulas and Unpredictable Programs
	Notes

	4.3 Algorithmically Unsolvable Problems
	The Halting Problem
	Tilings of the Plane
	Algorithmically Unsolvable Problems in Number Theory
	Unprovability from Undecidability
	The Complexity of Ramsey's Theorem
	Notes

	4.4 Concrete Independence
	Fast Growing Functions
	Interlude-Hercules and Hydra
	The Collatz Problem
	An Unprovable Version of the Finite Ramsey Theorem
	Independence Beyond Finite Set Theory
	Unprovable Sentences that Are not Associated with Fast Growing Functions
	Notes

	4.5 The Independent Sentences of Set Theory
	The Consistency of the Continuum Hypothesis
	How to Enlarge a Model of Set Theory
	A Model in Which the Continuum Hypothesis Fails
	Forcing
	The Independence of the Axiom of Choice
	Notes

	Main Points of the Chapter

	Chapter 5: The Complexity of Computations
	5.1 What Is Complexity?
	The Three Types of Numbers
	A Field Full of Open Problems
	The P Versus NP Problem
	Polynomial Time and Nondeterministic Polynomial Time
	Complements of NP Sets
	Time Versus Space
	Circuits
	How to Prove that P<>NP?
	The Problem of Proving Lower Bounds
	Existence and Construction
	The Complexity of Algebraic Computations
	Notes

	5.2 Randomness, Interaction and Cryptography
	How Can Randomness Be Helpful?
	Holographic Proofs
	Interactive Proofs
	Proofs that Convey no Information
	Cryptography
	One-Way Functions
	A Complexity Class Deﬁned Using Randomness
	Pseudorandomness-Imitation of Randomness
	Derandomization and Proving Lower Bounds
	Two Important Functions
	Notes

	5.3 Parallel Computations
	The Ideal Parallel Computer
	Interlude 1-Parallel Computations in the Brain
	Interlude 2-Computation and Life
	Notes

	5.4 Quantum Computations
	A Brief Visit in the Quantum World
	The Quantum Bit
	Quantum Circuits
	The Quantum Computing Thesis
	Reversible Computations
	Quantum Algorithms
	Notes

	5.5 Descriptional Complexity
	The Algorithmic Complexity of Strings
	Incompressibility and Randomness
	Noncomputability of the Kolmogorov Complexity
	Notes

	Main Points of the Chapter

	Chapter 6: Proof Complexity
	6.1 Proof Theory
	How to Speed-Up Proofs
	Direct and Indirect Proofs
	Sequent Calculus and Cut-Elimination
	Useful Inconsistent Theories
	Interlude-Life in an Inconsistent World
	Ordinal Analysis of Theories
	Notes

	6.2 Theories and Complexity Classes
	Theories Corresponding to Complexity Classes
	Several Reasons why Studying Weak Theories Is Important
	Universal-P Sentences and Formalization of Complexity Classes
	Some Relations Between Theories and Complexity Classes
	Search Problems
	Notes

	6.3 Propositional Proofs
	Feasibly Constructive Proofs
	Down to Propositional Logic
	Propositional Proof Systems
	Theories and Proof Systems
	Proof Complexity and Computational Complexity
	Notes

	6.4 Feasible Incompleteness
	The Feasible Consistency Problem
	The Relation to the P Versus NP Problem
	Can Computational Complexity Cause Incompleteness?
	A Connection Between the Two Parts of the Thesis
	Notes

	Main Points of the Chapter

	Chapter 7: Consistency, Truth and Existence
	7.1 Consistency and Existence
	Geometrical Foundations
	A Platonist's View of Mathematics
	Intuitionistic Mathematics
	Logicism
	Formalism and Hilbert's Philosophy of Mathematics
	Quine's Web of Belief and Consistency
	Psychological Reasons for Accepting Certain Beliefs
	Notes

	7.2 The Attributes of Reality
	The Importance of Universal-Finite Sentences
	The Consistency Strength
	Sound Theories
	Reﬂection Principles
	Transﬁnite Iterations of Consistency and Reﬂection Principles
	Interlude-Incompleteness and the Human Mind
	What Do We Actually Mean when We Accept Some Axioms?
	The Large-Cardinal Program
	Large Cardinals and Forcing
	Do We Need Axioms of an Essentially New Kind?
	Notes

	7.3 Finitism and Physical Reality
	Mathematical and Physical Natural Numbers
	The Natural Numbers in a Finite Universe
	The Natural Numbers in an Inﬁnite Universe
	A Theory of the Physical Natural Numbers
	The Inconsistency of Ultraﬁnitistic Systems
	The Axiom of Solvability and Alternative Arithmetics
	Undetermined Mathematics
	Towards Uniﬁed Foundations of All Science
	Concluding Remark
	Notes

	Main Points of the Chapter

	Bibliographical Remarks
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	References
	Name Index
	Subject Index
	Symbols and Abbreviations

