Introduction to risk modeling, measuring and managing

Martin Branda

Charles University
Faculty of Mathematics and Physics
Department of Probability and Mathematical Statistics

Risk Theory – exercises

Contents

- Introduction
- Risk and deviation measures axiomatic definitions
- 3 Value at Risk
- Conditional Value at Risk
- Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (*)

Contents

- Introduction
- 2 Risk and deviation measures axiomatic definitions
- Value at Risk
- 4 Conditional Value at Risk
- Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

Assumption

Probability distribution is known precisely or we have its good estimate:

- 1. Parametric distribution (multivariate normal, skewed t, ...)
- 2. Empirical distribution (historical data)
- 3. (Quasi-)Monte Carlo sample, bootstrap
- 4. Time series, e.g. garch, VAR
- 5. ...
- 2., 3., 4. lead to a discrete distribution.

Markowitz

Markowitz (1952):

min Risk & max Expected return s.t. portfolio composition constraints

Contents

- Introduction
- 2 Risk and deviation measures axiomatic definitions
- Value at Risk
- 4 Conditional Value at Risk
- Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

General deviation measures

Rockafellar et al. (2006A, 2006B): an extension of standard deviation which need not to be symmetric with respect to upside $X - \mathbb{E}[X]$ and downside $\mathbb{E}[X] - X$ of a random variable X.

General deviation measures

Any functional $\mathcal{D}:\mathcal{L}_2(\Omega)\to [0,\infty]$ is called a **general deviation** measure if it satisfies

- (D1) shift invariance: $\mathcal{D}(X+C) = \mathcal{D}(X)$ for all X and constants C,
- (D2) positive homogeneity: $\mathcal{D}(0) = 0$, and $\mathcal{D}(\lambda X) = \lambda \mathcal{D}(X)$ for all X and all $\lambda > 0$,
- (D3) subadditivity: $\mathcal{D}(X + Y) \leq \mathcal{D}(X) + \mathcal{D}(Y)$ for all X and Y,
- (D4) nonegativity: $\mathcal{D}(X) \geq 0$ for all X, with $\mathcal{D}(X) > 0$ for nonconstant X.
- (D2) & (D3) \Rightarrow convexity

General Deviation Measures

Standard deviation

$$\mathcal{SD}(X) = \sigma(X) = \sqrt{\mathbb{E} \|X - \mathbb{E}[X]\|_2}$$

Mean absolute deviation

$$\mathcal{MAD}(X) = \mathbb{E}[|X - \mathbb{E}[X]|].$$

Mean absolute lower and upper semideviation

$$\mathcal{LSD}_{-}(X) = \mathbb{E}[|X - \mathbb{E}[X]|_{-}], \ \mathcal{USD}_{+}(X) = \mathbb{E}[|X - \mathbb{E}[X]|_{+}].$$

• **CVaR deviation** for $\alpha \in (0,1)$:

$$\mathcal{D}_{\alpha}(X) = \min_{\xi \in \mathbb{R}} \frac{1}{1 - \alpha} \mathbb{E}[\max\{(1 - \alpha)(X - \xi), \alpha(\xi - X)\}].$$

Coherent risk and return measures

- Artzner et al. (1999): $\mathcal{R}:\mathcal{L}_2(\Omega)\to(-\infty,\infty]$ that satisfies
 - (R1) shift equivariance: $\mathcal{R}(X+C) = \mathcal{R}(X) C$ for all X and constants C,
 - (R2) positive homogeneity: $\mathcal{R}(0) = 0$, and $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ for all X and all $\lambda > 0$,
 - (R3) subadditivity: $\mathcal{R}(X + Y) \leq \mathcal{R}(X) + \mathcal{R}(Y)$ for all X and Y,
 - (R4) monotonicity: $\mathcal{R}(X) \leq \mathcal{R}(Y)$ when $X \geq Y$ a.s..

Coherent risk measures

CVaR for $\alpha \in (0,1)$:

$$CVaR_{\alpha}(X) = \min_{\xi \in \mathbb{R}} \xi + \frac{1}{1-\alpha} \mathbb{E}[\max\{(-X-\xi), 0\}]$$

Monotonicity (R4)

$$X \ge Y \text{ a.s. } \Rightarrow \mathcal{R}(X) \le \mathcal{R}(Y).$$

"Higher gain (almost sure), lower risk."

Subadditivity (R3), (D3)

$$\mathcal{R}(X+Y) \leq \mathcal{R}(X) + \mathcal{R}(Y).$$

"Holding two assets together is never more risky than holding them separately \leftrightarrow diversification."

Positive homogeneity (R2), (D2)

For all X and all $\lambda > 0$

$$\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X).$$

"Increasing our position λ -times increases the risk proportionally."

Convexity

The axioms

- (R2) positive homogeneity: $\mathcal{R}(0) = 0$, and $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ for all X and all $\lambda > 0$,
- (R3) subadditivity: $\mathcal{R}(X+Y) \leq \mathcal{R}(X) + \mathcal{R}(Y)$ for all X and Y, imply **convexity**: for arbitrary $\lambda \in (0,1)$ and X,Y

$$\mathcal{R}(\lambda X + (1-\lambda)Y) \leq \mathcal{R}(\lambda X) + \mathcal{R}((1-\lambda)Y) \leq \lambda \mathcal{R}(X) + (1-\lambda)\mathcal{R}(Y).$$

Translation invariance vs. equivariance

For a constant C

- Shift invariance: $\mathcal{R}(X+C) = \mathcal{R}(X) C$
- Shift equivariance: $\mathcal{D}(X + C) = \mathcal{D}(X)$

"Sure gain decreases risk OR leaves it unchanged."

Additional properties

We say that general deviation measure $\mathcal D$ is

- (LSC) **lower semicontinuous** (lsc) if all the subsets of $\mathcal{L}_2(\Omega)$ having the form $\{X:\ \mathcal{D}(X)\leq c\}$ for $c\in\mathbb{R}$ (level sets) are closed;
- (D5) lower range dominated if $\mathcal{D}(X) \leq EX \inf_{\omega \in \Omega} X(\omega)$ for all X.

Strictly expectation bounded risk measures satisfy (R1), (R2), (R3), and

(R5) $\mathcal{R}(X) > \mathbb{E}[-X]$ for all nonconstant X, whereas $\mathcal{R}(X) = \mathbb{E}[-X]$ for constant X.

Strictly expectation bounded risk measures

Theorem 2 in Rockafellar et al (2006 A):

Theorem

Deviation measures correspond one-to-one with strictly expectation bounded risk measures under the relations

- $\mathcal{D}(X) = \mathcal{R}(X \mathbb{E}[X])$
- $\mathcal{R}(X) = \mathbb{E}[-X] + \mathcal{D}(X)$

In this correspondence, $\mathcal R$ is coherent if and only if $\mathcal D$ is lower range dominated.

Mean absolute deviation from $(1 - \alpha)$ -th quantile CVaR deviation

For any $\alpha \in (0,1)$ a finite, continuous, lower range dominated deviation measure

$$\mathcal{D}_{\alpha}(X) = CVaR_{\alpha}(X - \mathbb{E}[X]). \tag{1}$$

The deviation is also called **weighted mean absolute deviation from** the $(1-\alpha)$ -th **quantile**, see Ogryczak, Ruszczynski (2002), because it can be expressed as

$$\mathcal{D}_{\alpha}(X) = \min_{\xi \in \mathbb{R}} \frac{1}{1 - \alpha} \mathbb{E}[\max\{(1 - \alpha)(X - \xi), \alpha(\xi - X)\}]$$
 (2)

with the minimum attained at any $(1-\alpha)$ -th quantile. In relation with CVaR minimization formula, see Pflug (2000), Rockafellar and Uryasev (2000, 2002).

General deviation measures

If $\mathcal{D}_0, \mathcal{D}_1, \dots, \mathcal{D}_K$ are general deviation measures, then

- $\mathcal{D} = \lambda \mathcal{D}_0$ for $\lambda > 0$,
- $\mathcal{D} = \max\{\mathcal{D}_1, \dots, \mathcal{D}_K\}$,
- $\mathcal{D} = \lambda_1 \mathcal{D}_1 + \dots + \lambda_K \mathcal{D}_K$, for $\lambda_k > 0$ and $\sum_{k=1}^K \lambda_k = 1$.

are general deviation measures too.

Proposition 4, Rockafellar et al (2006 A):

Martin Branda 21/59

Example – Variance

- Variance is not coherent risk measure, nor general deviation measure.
- Standard deviation is a general deviation measure.

•

$$SD(X) - \mathbb{E}[X]$$

is a coherent risk measure.

Contents

- Introduction
- 2 Risk and deviation measures axiomatic definitions
- Value at Risk
- 4 Conditional Value at Risk
- Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

Value at Risk, Conditional Value at Risk

Value at Risk the losses lower or equal to VaR appear with a high probability α and the losses higher than VaR apper with low probability $1-\alpha$.

Conditional Value at Risk the expected value of $(1-\alpha)*100\%$ worst losses (not always the same as the expected value of the losses higher than/higher or equal to Value at Risk)

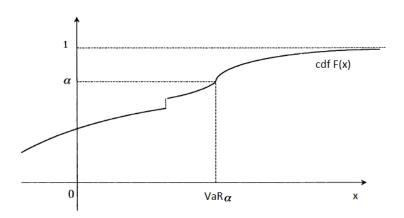
Value at Risk (VaR)

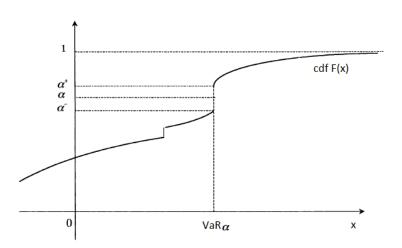
Value at Risk (VaR) for a general **loss random variable** Z defined on probability space (Ω, \mathcal{A}, P) , level $\alpha \in (0, 1)$, usually 0.95, 0.99, 0.995:

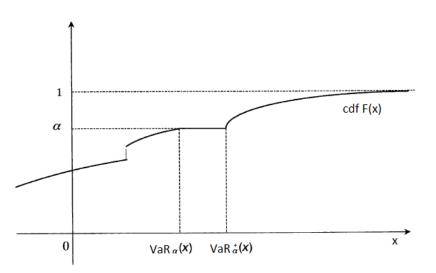
$$VaR_{\alpha}(Z) = \min_{z} z \text{ s.t. } P(Z \leq z) \geq \alpha.$$

Upper Value at Risk (upper-VaR)

$$VaR^+_{\alpha}(Z) = \inf_{z} z \text{ s.t. } P(Z \leq z) > \alpha.$$







VaR under discrete distribution

Let Z be concentrated in finitely many points $z^{[1]} < z^{[2]} < \cdots < z^{[N]}$ with probabilities $P(Z=z^{[k]}) = p^{[k]} > 0$, $\sum_{k=1}^N p^{[k]} = 1$. Find index k_α such that

$$\sum_{k=1}^{k_{\alpha}-1} p^{[k]} < \alpha \leq \sum_{k=1}^{k_{\alpha}} p^{[k]}.$$

Then we have

$$VaR_{\alpha}(x) = z^{[k_{\alpha}]}. \tag{3}$$

Value at Risk – axioms

Value at Risk fulfills

- (R1) shift equivariance: $\mathcal{R}(X+C) = \mathcal{R}(X) C$ for all X and constants C,
- (R2) positive homogeneity: $\mathcal{R}(0) = 0$, and $\mathcal{R}(\lambda X) = \lambda \mathcal{R}(X)$ for all X and all $\lambda > 0$,
- (R4) monotonicity: $\mathcal{R}(X) \leq \mathcal{R}(Y)$ when $X \geq Y$.

However, in general, it does not fulfill

(R3) subadditivity: $\mathcal{R}(X+Y) \leq \mathcal{R}(X) + \mathcal{R}(Y)$ for all X and Y.

Example

Two independent one-year bonds with nominal value 1 CZK and the same parameters $\,$

- No loss with probability 96%, loss 0.7 with probability 4%, thus Value at Risk on the level 95% is equal to 0.
- If you buy both bonds, then we have the following losses and probabilities
 - 0 with probability 92.16% (= 0.96 * 0.96)
 - 0.7 with prob. 7.68% (= 2 * 0.96 * 0.04)
 - 1.4 with prob. 0.16% (=0.04 * 0.04)

Thus Value at Risk of $Z_1 + Z_2$ is 0.7, i.e.

$$VaR_{0.95}(Z_1 + Z_2) > VaR_{0.95}(Z_1) + VaR_{0.95}(Z_2).$$

Example - consequences

Value at Risk is not subadditive

$$VaR_{0.95}(Z_1 + Z_2) > VaR_{0.95}(Z_1) + VaR_{0.95}(Z_2).$$

• Even for independent losses (risks) it holds

$$VaR_{0.95}(Z_1 + Z_2) \neq VaR_{0.95}(Z_1) + VaR_{0.95}(Z_2).$$

Contents

- Introduction
- 2 Risk and deviation measures axiomatic definitions
- Value at Risk
- Conditional Value at Risk
- 6 Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

Conditional Value at Risk (CVaR)

For $Z \in \mathcal{L}_1(\Omega)$, **Conditional Value at Risk** (CVaR) is defined as the mean of losses in the α -tail distribution with the distribution function:

$$F_{\alpha}(\eta) = \begin{cases} \frac{F(\eta) - \alpha}{1 - \alpha}, & \text{if } \eta \geq \text{VaR}_{\alpha}(Z), \\ 0, & \text{otherwise,} \end{cases}$$

where $F(\eta) = P(Z \le \eta)$.

Example

Two independent one-year bonds with nominal value 1 CZK and the same parameters

- No loss with probability 96%,
- loss 0.7 with probability 4%,

thus Value at Risk on the level 95% is equal to 0.

$$\begin{aligned} \mathrm{CVaR}_{0.95}^{+}(Z_1) &=& \mathbb{E}[Z_1|Z_1 > \mathrm{VaR}_{0.95}(Z_1)] \\ &=& \frac{1}{0.04}(0.04 \cdot 0.7) = 0.7 \\ \mathrm{CVaR}_{0.95}^{-}(Z_1) &=& \mathbb{E}[Z_1|Z_1 \geq \mathrm{VaR}_{0.95}(Z_1)] \\ &=& \frac{1}{0.96 + 0.04}(0.96 \cdot 0 + 0.04 \cdot 0.7) = 0.028 \end{aligned}$$

Let Z be concentrated in finitely many points $z^{[1]} < z^{[2]} < \cdots < z^{[N]}$ with probabilities $P(Z=z^{[k]}) = p^{[k]} > 0$, $\sum_{k=1}^N p^{[k]} = 1$. Find index k_α such that

$$\sum_{k=1}^{k_{\alpha}-1} p^{[k]} < \alpha \le \sum_{k=1}^{k_{\alpha}} p^{[k]}.$$

Then we have

$$VaR_{\alpha}(x) = z^{[k_{\alpha}]} \tag{4}$$

and if $\alpha > 1 - p^{[N]}$, then

$$VaR_{\alpha}(x) = CVaR_{\alpha}(x) = z^{[N]},$$
 (5)

else

$$CVaR_{\alpha}(x) = \frac{1}{1-\alpha} \left[\left(\sum_{k=1}^{k_{\alpha}} p^{[k]} - \alpha \right) z^{[k_{\alpha}]} + \sum_{k=k_{\alpha}+1}^{N} p^{[k]} z^{[k]} \right]. \tag{6}$$

Example

$$\begin{aligned} \mathrm{CVaR}_{0.95}^{+}(Z_1) &=& \mathbb{E}[Z_1|Z_1 > \mathrm{VaR}_{0.95}(Z_1)] \\ &=& \frac{1}{0.04}(0.04 \cdot 0.7) = 0.7 \\ \mathrm{CVaR}_{0.95}^{-}(Z_1) &=& \mathbb{E}[Z_1|Z_1 \geq \mathrm{VaR}_{0.95}(Z_1)] \\ &=& \frac{1}{0.96 + 0.04}(0.96 \cdot 0 + 0.04 \cdot 0.7) = 0.028 \end{aligned}$$

$$CVaR_{0.95}(Z_1) = \frac{1}{1 - 0.95} \left((0.96 - 0.95) \cdot 0 + 0.04 \cdot 0.7 \right) = 0.56$$

Obviously

$$\text{CVaR}_{0.95}^{-}(Z_1) < \text{CVaR}_{0.95}(Z_1) < \text{CVaR}_{0.95}^{+}(Z_1).$$

Martin Branda

VaR & CVaR

CVaR can be expressed using the following minimization formula:

$$CVaR_{\alpha}(Z) = \min_{\xi \in \mathbb{R}} \left[\xi + \frac{1}{1 - \alpha} \mathbb{E} \left[\max\{Z - \xi, 0\} \right] \right]$$
 (7)

with the minimum attained at any $(1-\alpha)$ -th quantile.

CVaR - coherence

CVaR is a coherent risk measure.

VaR and CVaR under normal distribution

Let $Z \sim N(\mu, \sigma^2)$, then

$$VaR_{\alpha}(Z) = \mu + z_{\alpha}\sigma, \qquad (8)$$

$$CVaR_{\alpha}(Z) = \mu + \eta_{\alpha}\sigma, \qquad (9)$$

where $z_{\alpha} = \Phi^{-1}(\alpha)$ is a quantile of a standard normal distribution (with pdf ϕ and cdf Φ) and

$$\eta_{\alpha} = \frac{\int_{\Phi^{-1}(\alpha)}^{\infty} t\phi(t) dt}{1 - \alpha}.$$

Coherent risk measures.

VaR under normal distribution

Let $Z \sim N(\mu, \sigma^2)$, then

$$VaR_{\alpha}(Z) = \mu + z_{\alpha}\sigma, \qquad (10)$$

$$P(Z \le VaR_{\alpha}) = P\left(\frac{Z - \mu}{\sigma} \le \frac{VaR_{\alpha} - \mu}{\sigma}\right) = \Phi\left(\frac{VaR_{\alpha} - \mu}{\sigma}\right) = \alpha$$

Martin Branda

VaR under normal distribution

Let $Z \sim N(\mu, \sigma^2)$, then

$$CVaR_{\alpha}(Z) = \mu + \eta_{\alpha}\sigma, \qquad (11)$$

$$\text{CVaR}_{\alpha}(Z) = \frac{1}{1-\alpha} \int_{\mu+\Phi^{-1}(\alpha)\sigma}^{\infty} \frac{z}{\sigma} \phi\left(\frac{z-\mu}{\sigma}\right) dz
 = \frac{1}{1-\alpha} \int_{\Phi^{-1}(\alpha)}^{\infty} \frac{\mu+t\sigma}{\sigma} \phi(t) \sigma dt
 = \frac{1}{1-\alpha} \left(\mu \int_{\Phi^{-1}(\alpha)}^{\infty} \phi(t) dt + \sigma \int_{\Phi^{-1}(\alpha)}^{\infty} t\phi(t) dt\right)$$

Martin Branda

Portfolio VaR and CVaR under normal distribution

For a portfolio $R^{\top}x$ with random vector of returns $R \sim N_n(\mu, Q)$

$$VaR_{\alpha}(-R^{\top}x) = -\mu^{\top}x + \zeta_{\alpha}\sqrt{x^{\top}Qx}, \qquad (12)$$

$$CVaR_{\alpha}(-R^{\top}x) = -\mu^{\top}x + \eta_{\alpha}\sqrt{x^{\top}Qx}.$$
 (13)

Table: Quantiles and generalized quantiles

	$c_{eta} \diagdown eta$	0.9	0.95	0.99
VaR	ζ_{eta}	1.2816	1.6449	2.3263
CVaR	η_{eta}	1.7550	2.0627	2.6652

Contents

- Introduction
- 2 Risk and deviation measures axiomatic definitions
- Value at Risk
- 4 Conditional Value at Risk
- 6 Portfolio optimization
 - Portfolio optimization with VaR
 - Portfolio optimization with CVaR

Portfolio weights

$$\mathcal{X} = \{x: \sum_{i=1}^{x} x_i = 1, x_i \ge 0\}.$$

Multiobjective optimization

Denote by

- $\mathbb{E}(x)$ portfolio expected return,
- $\mathcal{R}(x)$ portfolio risk.

$$\min \mathcal{R}(x) \& \max \mathbb{E}(x)$$

s.t. $x \in \mathcal{X}$.

OR

$$\min \mathcal{R}(x) \& \min -\mathbb{E}(x)$$

s.t. $x \in \mathcal{X}$.

Multiobjective optimization – efficient solutions

We say that portfolio $x \in \mathcal{X}$ is efficient if there is no other portfolio $\tilde{x} \in \mathcal{X}$ such that $\mathbb{E}(x) \leq \mathbb{E}(\tilde{x})$ and $\mathcal{R}(x) \geq \mathcal{R}(\tilde{x})$ with at least one inequality strict.

Multiobjective optimization – efficient solutions

Two basic approaches:

• Aggregate function approach:

min
$$\mathcal{R}(x) - \lambda \mathbb{E}(x)$$

s.t. $x \in \mathcal{X}$.

for some $\lambda > 0$.

• ε —constrained approach:

min
$$\mathcal{R}(x)$$

s.t. $\mathbb{E}(x) \ge \varepsilon_{\mathcal{E}}$, $x \in \mathcal{X}$,

OR

max
$$\mathbb{E}(x)$$

s.t. $\mathcal{R}(x) \leq \varepsilon_R$, $x \in \mathcal{X}$.

Portfolio random loss

Consider n assets with random rate of return R_i

$$Z(x) = -\sum_{i=1}^{n} x_i R_i$$

Investment problem with VaR

Solve a simple investment problem

$$\min_{x_i} \operatorname{VaR}_{\alpha} \left(-\sum_{i=1}^{n} x_i R_i \right)$$
s.t.
$$\mathbb{E} \left[\sum_{i=1}^{n} x_i R_i \right] \ge r_0,$$

$$\sum_{i=1}^{n} x_i = 1, \ x_i \ge 0.$$

The first constraint ensures minimal expected return r_0 , x_i are (nonnegative) portfolio weights which sum to one.

Chance constrained problems – single random constraint

Let $f, g(\cdot, \xi) : \mathbb{R}^n \to \mathbb{R}$ be real functions, $X \subseteq \mathbb{R}^n$, ξ be a real random vector, $\varepsilon \in (0,1)$ small:

$$\min_{x \in X} f(x)$$

s.t. $P(g(x, \xi) \le 0) \ge 1 - \varepsilon$.

INTERPRETATION: for a given $x \in X$, the probability of ξ for which the random constraint is fulfilled must be at least $1 - \varepsilon$:

$$P(g(x,\xi) \le 0) = P(\{\xi : g(x,\xi) \le 0\}).$$

◆ロト→御ト→重ト→重ト ● かくぐ

Chance constrained problems – single random constraint

Let ξ have a finite discrete distribution with realizations ξ^1, \ldots, ξ^S and probabilities $p_s > 0$, $\sum_{s=1}^S p_s = 1$:

$$\min_{x,y} f(x)
s.t.
\sum_{s=1}^{S} p_s y_s \geq 1 - \varepsilon,
g(x, \xi_s) \leq M(1 - y_s), \ s = 1, \dots, S
y_s \in \{0, 1\}, \ s = 1, \dots, S,
x \in X,$$
(14)

where $M \ge \max_{s=1,...,S} \sup_{x \in X} g(x, \xi_s)$.

53 / 59

Value at Risk (VaR)

Portfolio optimization problem:

$$P\left(-\sum_{i=1}^{n} R_{i} x_{i} \leq z\right) \geq \alpha,$$

$$\sum_{i=1}^{n} \mathbb{E}[R_{i}] \cdot x_{i} \geq r_{min},$$

$$\sum_{i=1}^{n} x_{i} = 1, x_{i} \geq 0,$$

where R_i is random rate of return of i—th asset and minimal expected return r_{min} is selected in such way that the problem is feasible.

シャク モー・モト・モト・ ロト・ロト

Homework 2

- Rewrite the VaR minimization problem under a finite discrete distribution as a mixed-integer LP problem.
- ② Use the same dataset as for the CVaR homework, i.e. at least 6 assets, but the number of scenarios is limited to 50 (if you have free GAMS, otherwise you can use all 100 returns).
- **3** Consider $\alpha = 0.95$ and run the problem for different 11 values $r_0 \in \{\min_i \overline{R}_i, \dots, \max_i \overline{R}_i\}$.
- **Q** Plot the optimal values VaR_{α} against the corresponding values of \emph{r}_{0} .

If the distribution of R_i is discrete with realizations r_{is} and probabilities $p_s = 1/S$, then we can use **linear programming** reformulation

$$\min_{\xi, x_{i}, y_{s}} \xi$$
s.t.
$$\frac{1}{S} \sum_{s=1}^{S} y_{s} \ge \alpha,$$

$$- \sum_{i=1}^{n} x_{i} r_{is} - \xi \le M(1 - y_{s}), \ s = 1, \dots, S,$$

$$\sum_{i=1}^{n} x_{i} \overline{R}_{i} \ge r_{0},$$

$$\sum_{i=1}^{n} x_{i} = 1, \ x_{i} \ge 0,$$

$$\xi \in \mathbb{R}, \ y_{s} \in \{0, 1\}.$$

where $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$.

◆ロト ◆問 → ◆意 ト ◆意 ト 意 め へ ○

Investment problem with CVaR

Solve a simple investment problem

$$\min_{x_i} \text{CVaR}_{\alpha} \left(-\sum_{i=1}^n x_i R_i \right)$$
s.t.
$$\mathbb{E} \left[\sum_{i=1}^n x_i R_i \right] \ge r_0,$$

$$\sum_{i=1}^n x_i = 1, \ x_i \ge 0.$$

The first constraint ensures minimal expected return r_0 , x_i are (nonnegative) portfolio weights which sum to one.

<ロ > ← 回 > ← □ > ← □ > ← □ > ← □

If the distribution of R_i is discrete with realizations r_{is} and probabilities $p_s = 1/S$, then we can use **linear programming** reformulation

$$\min_{\xi, x_{i}, u_{s}} \xi + \frac{1}{(1 - \alpha)S} \sum_{s=1}^{S} u_{s},$$
s.t. $u_{s} \ge -\sum_{i=1}^{n} x_{i} r_{is} - \xi, \ s = 1, \dots, S,$

$$\sum_{i=1}^{n} x_{i} \overline{R}_{i} \ge r_{0},$$

$$\sum_{i=1}^{n} x_{i} = 1, \ x_{i} \ge 0,$$

$$\xi \in \mathbb{R}, \ u_{s} \ge 0,$$

where $\overline{R}_i = 1/S \sum_{s=1}^{S} r_{is}$.

4 D > 4 D > 4 E > 4 E > E 900

- Artzner, P., Delbaen, F., Eber, J.-M., Heath, D. (1999). Coherent measures of risk. Mathematical Finance 9, 203-228.
- Follmer, H., Schied, A.: Stochastic Finance: An Introduction In Discrete Time. Walter de Gruyter, Berlin, 2002.
- Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance 7, No. 1, 77-91.
- Rockafellar, R.T., Uryasev, S. (2000). Optimization of Conditional Value-at-Risk. Journal of Risk, 2, 21–41.
- Rockafellar, R.T., Uryasev, S. (2002). Conditional Value-at-Risk for General Loss Distributions, Journal of Banking and Finance 26, 1443–1471.
- Rockafellar, R.T., Uryasev, S., Zabarankin M. (2006). Generalized Deviations in Risk Analysis. Finance and Stochastics 10, 51–74.
- Rockafellar, R.T., Uryasev, S., Zabarankin M. (2006B). Optimality Conditions in Portfolio Analysis with General Deviation Measures. Mathematical Programming 108. No. 2-3. 515-540.