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Introduction

Assumption

Probability distribution is known precisely or we have its good estimate:
1. Parametric distribution (multivariate normal, skewed t, ...)
2. Empirical distribution (historical data)
3. (Quasi-)Monte Carlo sample, bootstrap
4. Time series, e.g. garch, VAR
5. ..
2., 3., 4. lead to a discrete distribution.
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Introduction

Markowitz

Markowitz (1952):

min Risk & max Expected return

s.t. portfolio composition constraints
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Risk and deviation measures — axiomatic definitions
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Risk and deviation measures — axiomatic definitions

General deviation measures

Rockafellar et al. (2006A, 2006B): an extension of standard deviation
which need not to be symmetric with respect to upside X — E[X] and
downside E[X] — X of a random variable X.

oV



Risk and deviation measures — axiomatic definitions

General deviation measures

Any functional D : £5(2) — [0, o¢] is called a general deviation
measure if it satisfies

(D1) shift invariance: D(X+ C) = D(X) for all X and constants C,

(D2) positive homogeneity: D(0) = 0, and D(AX) = AD(X) for all
X and all A >0,

(D3) subadditivity: D(X+ Y) < D(X) + D(Y) for all X and Y,

(D4) nonegativity: D(X) > 0 for all X, with D(X) > 0 for
nonconstant X.

(D2) & (D3) = convexity
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Risk and deviation measures — axiomatic definitions

General Deviation Measures

@ Standard deviation

SD(X) = o(X) = E[X-E[X],

@ Mean absolute deviation
MAD(X) = E[|X — E[X]|].
@ Mean absolute lower and upper semideviation
£SD_(X) = E[|X ~ E[X]|], USD(X) = E[|X ~ E[X]|].

e CVaR deviation for a € (0, 1):

E[max{(1 — a)(X - &), a(¢ = X)}].

T



Risk and deviation measures — axiomatic definitions

Coherent risk and return measures

Artzner et al. (1999): R : L2(Q2) — (—o0, o0] that satisfies

(R1) shift equivariance: R(X+ C) = R(X) — C for all X and
constants C,

(R2) positive homogeneity: R(0) = 0, and R(AX) = AR(X) for
all X and all A >0,

(R3) subadditivity: R(X+ Y) < R(X) + R(Y) for all X and Y,

(R4) monotonicity: R(X) < R(Y) when X> Yaus..
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Risk and deviation measures — axiomatic definitions

Coherent risk measures

CVaR for o € (0,1):

CVaRa(X) = min€ + ﬁE[max{(—x —6),0}]
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Risk and deviation measures — axiomatic definitions

Monotonicity (R4)

X>Yas. = R(X) <R(Y).

“Higher gain (almost sure), lower risk.”
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Risk and deviation measures — axiomatic definitions

Subadditivity (R3), (D3)

R(X+ Y) < R(X) + R(Y).

“Holding two assets together is never more risky than holding them
separately <> diversification.”
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Risk and deviation measures — axiomatic definitions

Positive homogeneity (R2), (D2)

For all X and all A >0
R(AX) = AR(X).

“Increasing our position A—times increases the risk proportionally.”
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Risk and deviation measures — axiomatic definitions

Convexity

The axioms
(R2) positive homogeneity: R(0) = 0, and R(AX) = AR(X) for
all X and all A > 0,
(R3) subadditivity: R(X+ Y) < R(X) + R(Y) for all Xand Y,
imply convexity: for arbitrary A € (0,1) and X, Y

ROX+ (1= N)Y) < ROX) +R((1 = N)Y) < AR(X) + (1 — M)R(Y).
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Risk and deviation measures — axiomatic definitions

Translation invariance vs. equivariance

For a constant C
e Shift invariance: R(X+ C) = R(X) — C
e Shift equivariance: D(X+ C) = D(X)

“Sure gain decreases risk OR leaves it unchanged.”
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Risk and deviation measures — axiomatic definitions

Additional properties

We say that general deviation measure D is
(LSC) lower semicontinuous (Isc) if all the subsets of £2(2)
having the form {X: D(X) < ¢} for c € R (level sets) are
closed;

(D5) lower range dominated if D(X) < EX — inf,cq X(w) for all
X.

Strictly expectation bounded risk measures satisfy (R1), (R2), (R3),
and

(R5) R(X) > E[—X] for all nonconstant X, whereas
R(X) = E[—X] for constant X.
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Risk and deviation measures — axiomatic definitions

Strictly expectation bounded risk measures

Theorem 2 in Rockafellar et al (2006 A):

Theorem

Deviation measures correspond one-to-one with strictly expectation
bounded risk measures under the relations

o D(X) = R(X — E[X])
o R(X) = E[-X] + D(X)

In this correspondence, R is coherent if and only if D is lower range
dominated.
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Risk and deviation measures — axiomatic definitions

Mean absolute deviation from (1 — a)-th quantile
CVaR deviation

For any a € (0, 1) a finite, continuous, lower range dominated deviation
measure

Do(X) = CVaRo(X — E[X]). (1)

The deviation is also called weighted mean absolute deviation from
the (1 — a)-th quantile, see Ogryczak, Ruszczynski (2002), because it can
be expressed as

Da(X) = min E[max{(1 — a)(X = &), (£ — X)}] (2)

teR 1 — «

with the minimum attained at any (1 — a)-th quantile. In relation with
CVaR minimization formula, see Pflug (2000), Rockafellar and Uryasev
(2000, 2002).
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Risk and deviation measures — axiomatic definitions

General deviation measures

If Do, D1, ..., Dk are general deviation measures, then
@ D = ADg for A >0,
e D =max{Dy,..., Dk},
® D =MD+ -+ ADx, for Ay >0and S5 A\ =1.

are general deviation measures too.

Proposition 4, Rockafellar et al (2006 A):
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Risk and deviation measures — axiomatic definitions

Example — Variance

@ Variance is not coherent risk measure, nor general deviation measure.
@ Standard deviation is a general deviation measure.
°

SD(X) — E[X]

is a coherent risk measure.
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Value at Risk, Conditional Value at Risk

Value at Risk the losses lower or equal to VaR appear with a high

probability « and the losses higher than VaR apper with low probability
1—a.

Conditional Value at Risk the expected value of (1 — «)*100% worst

losses (not always the same as the expected value of the losses higher
than/higher or equal to Value at Risk)
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Value at Risk (VaR)

Value at Risk (VaR) for a general loss random variable Z defined on
probability space (2, A, P), level a € (0,1), usually 0.95, 0.99, 0.995:

VaR,(Z2) = minzs.t. P(Z< z) > a.
z

Upper Value at Risk (upper-VaR)
VaR!(Z) = infzs.t. P(Z< 2) > a.
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Value at Risk

cdf F(x)

0 VaRg X
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Value at Risk

cdf F(x)

] ]R,

0 VaRg X
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Value at Risk

l ....... e ——

ﬂ{x}
a — {

\

Y

0 VaRe(X) VaRz(x)
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Value at Risk

VaR under discrete distribution

Let Z be concentrated in finitely many points 21 < 22 < ... < ZAM with
probabilities P(Z: z[k]) = pldl >0, Z,’:’Zl pld = 1.
Find index k., such that

ka—1 ka
Z p[k] <a< Zp[k].
k=1 k=1
Then we have
VaR,(x) = Zkel, (3)

sayEy



Value at Risk

Value at Risk — axioms

Value at Risk fulfills

(R1) shift equivariance: R(X+ C) = R(X) — C for all X and
constants C,

(R2) positive homogeneity: R(0) = 0, and R(AX) = AR(X) for
all X and all A >0,
(R4) monotonicity: R(X) < R(Y) when X>Y.
However, in general, it does not fulfill
(R3) subadditivity: R(X+ Y) < R(X) + R(Y) for all X and Y.
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Value at Risk

Example

Two independent one-year bonds with nominal value 1 CZK and the same
parameters
@ No loss with probability 96%, loss 0.7 with probability 4%, thus Value
at Risk on the level 95% is equal to 0.
@ If you buy both bonds, then we have the following losses and
probabilities
o 0 with probability 92.16% (= 0.96 * 0.96)

e 0.7 with prob. 7.68% (= 2 * 0.96 * 0.04)
e 1.4 with prob. 0.16% (=0.04 * 0.04)

Thus Value at Risk of Z1 + 25 is 0.7, i.e.

VaRo,95(Zl + Zz) > VaRo.95(Zl) + VaR0,95(22).
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Value at Risk

Example — consequences

@ Value at Risk is not subadditive
VaRo_g5(Zl + Zz) > VaR0,95(Zl) + VaRovgg,(Zz).
@ Even for independent losses (risks) it holds

VaRo.05(Z1 + Z2) # VaRo.05(Z1) + VaRg.95(22).
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Conditional Value at Risk
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Conditional Value at Risk (CVaR)

For Z € £1(Q2), Conditional Value at Risk (CVaR) is defined as the

mean of losses in the a-tail distribution with the distribution function:

{ A= " if 1) > VaR,(2),

0, otherwise,
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Conditional Value at Risk

Example

Two independent one-year bonds with nominal value 1 CZK and the same
parameters

@ No loss with probability 96%,
@ loss 0.7 with probability 4%,
thus Value at Risk on the level 95% is equal to 0.

CVaR{gs(Z1) = E[Z1|Z1 > VaRo.os(Z1))

1

= —(0.04-0.7)=0.

504(0:04:0.7) =07

CVaRggs(Z1) = E[Z1|Z1 > VaRo.95(Z1)]
1

= ——(0.96- .04-0.7) = 0.02
006 - 0.07(0:960+0.04-0.7) = 0.028

EpE



Conditional Value at Risk

Let Z be concentrated in finitely many points 21 < 22 < ... < AM with
probabilities P(Z: z[k]) = plH >0, ZLVZI pld = 1.
Find index k., such that

ko—1 ke
k=1 k=1
Then we have
VaR,(x) = zkel (4)
and if @ > 1 — plM, then
VaR.(x) = CVaR,(x) = 2M, (5)
else
1 ke N
CVaR,(x) = T [(Z plk — a)z[ka] + Z p[k]Z[k]] . (6)
k=1 k=ko+1

ST



Example

CV&RE)'_,QS(Zl) = IE[ZﬂZl > VaR0,95(Zl)]
1
= ——(0.04-0.7)=0.7
0.04( )
CVaR&QS(Zl) = IE[ZﬂZl 2 VaR0.95(Zl)]
1

= —(0.96-0+40.04-0.7) = 0.028
0.96 + 0.04( * )

1

CVaRO.gf, (Zl) = m

((0.96 —0.95)-0+0.04 - O.7> = 0.56
Obviously
CVaRa%(Zl) < CVaRo,95(Zl) < CVaRargS(Zl).
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VaR & CVaR

CVaR can be expressed using the following minimization formula:
1
o(2) = mi —F 7€,
CVaR,(2) rggﬂrg §+ T [max{Z — ¢, 0}] (7)

with the minimum attained at any (1 — «)-th quantile.
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Conditional Value at Risk

CVaR - coherence

CVaR is a coherent risk measure.
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VaR and CVaR under normal distribution

Let Z ~ N(u,0?), then

VaR.(2) = p+ z40, (8)
CVaR,(2) = p+nq0, (9)

where z, = ®~1(a) is a quantile of a standard normal distribution (with
pdf ¢ and cdf ®) and

_ qu‘il(a) to (t) dt

* l—«o

Coherent risk measures.
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Conditional Value at Risk

VaR under normal distribution

Let Z~ N(u,0?), then

VaR.(2) = p+ z40, (10)

Z—u _ VaR, - VaR, —
P(ZgVaRa):P< Ho 22 “):¢<3“>:a

o g o
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VaR under normal distribution

Let Z~ N(u,0?), then

CVaR4(2) = p+nao, (11)

CVaRo(2) = — / Z¢<2_“> dz
1-—aJui0-1(a)s O o

= L /OO K taqb(t)adt

l—«o 4>*1(a) g

1 oo o0
- = <M/¢_1(a)¢(t) dt+0/¢—1(a) to (t) dt)
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Portfolio VaR and CVaR under normal distribution

For a portfolio R" x with random vector of returns R ~ N,(u, Q)

VaRo(—R'x) = —pu'x+CaVxTQx, (12)
CVaR,(—R'x) = —u'x+n.Vx"Qx. (13)
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Conditional Value at Risk

Table: Quantiles and generalized quantiles

cp\B| 09 | 095 | 0.99
VaR (5 |[1.2816 | 1.6449 | 2.3263
CVaR  ng | 1.7550 | 2.0627 | 2.6652
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Portfolio optimization
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Portfolio weights

X ={x: Zx,—zl, x; > 0}.
i=1
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Portfolio optimization

Multiobjective optimization

Denote by
o [E(x) portfolio expected return,
e R(x) portfolio risk.

min R(x) & max[E(x)
st.xe X.

OR

min R(x) & min —E(x)
st. xe X.

wE



Portfolio optimization

Multiobjective optimization — efficient solutions

We say that portfolio x € X is efficient if there is no other portfolio X € X
such that E(x) < E(X) and R(x) > R(X) with at least one inequality strict.
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Portfolio optimization

Multiobjective optimization — efficient solutions

Two basic approaches:

o Aggregate function approach:

min
s.t.

for some A > 0.
@ c—constrained approach:

min
s.t.

OR

max
s.t.

R(x) — AE(x)
xe X.

R(x)
E(X) > €F,
xe X,

E(x)
R(x) < er,
xe X.
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Portfolio optimization

Portfolio random loss

Consider n assets with random rate of return R;

Z(X) = — inR,'
i=1

S



Portfolio optimization Portfolio optimization with VaR

Investment problem with VaR

Solve a simple investment problem
n
min VaR,, (— Zx;R;)
% i~1
n
ZX/'R:‘
i=1
n
ZX,‘ = ].7 Xj > 0.
i=1

The first constraint ensures minimal expected return ry, x; are
(nonnegative) portfolio weights which sum to one.

s.t. E > ro,
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Portfolio optimization Portfolio optimization with VaR

Chance constrained problems — single random constraint

Let £, g(-,&) : R” — R be real functions, X C R" , £ be a real random
vector, € € (0,1) small:

minyex f{x)
s.t. P(g(x,£) <0)>1—c¢.

INTERPRETATION: for a given x € X, the probability of £ for which the
random constraint is fulfilled must be at least 1 — &:

P(g(x€) <0)=P{¢: &(x§) <0}).
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Portfolio optimization Portfolio optimization with VaR

Chance constrained problems — single random constraint

Let ¢ have a finite discrete distribution with realizations ¢!, ... ¢

probabilities ps > 0, Ele ps = 1:

miny, f(x)
s.t.

S
25:1 Ps)’s
g(X7 gs)

Ys
X

m m IA IV

1—¢,

M(1—-ys), s=1,...,S
{0,1}, s=1,...,S,

X,

where M > maxg—1 __ssup,cx&(x, &s).

S and

(14)
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Portfolc optimization with VaR
Value at Risk (VaR)

Portfolio optimization problem:

min z
z,X

n
Pl - Z R,'X,' S V4
=1
n
ZE[RI] “Xi 2 Imin,
=1

n
ZXI' = 17 Xi Z 07
i=1

where R; is random rate of return of /—th asset and minimal expected
return rp;, is selected in such way that the problem is feasible.

v
L
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Portfolio optimization Portfolio optimization with VaR

Homework 2

@ Rewrite the VaR minimization problem under a finite discrete
distribution as a mixed-integer LP problem.

@ Use the same dataset as for the CVaR homework, i.e. at least 6
assets, but the number of scenarios is limited to 50 (if you have free
GAMS, otherwise you can use all 100 returns).

© Consider o = 0.95 and run the problem for different 11 values
ro € {min; R;, ..., max; R;}.

@ Plot the optimal values VaR,, against the corresponding values of ry.
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Portfolio optimization Portfolio optimization with VaR

If the distribution of R; is discrete with realizations r;s and probabilities
ps = 1/S, then we can use linear programming reformulation

min £
&,Xi,Ys

1 S
s.t. S;ysza,

—Zx,-r,-s—§§ M1—-ys), s=1,...,5,
i=1

n
Z xiRi > ro,
i—1

ZXI' = 17 Xi 2 05
i=1
5 6 Ra _yS e {071}7

where R; = 1/525:1 lis.
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Investment problem with CVaR

Solve a simple investment problem
n
min CVaR,, (- ZX,'R,')
% i—1
n
ZXiRi] > ro,
i=1
n
ZX,‘ = 1, Xj > 0.
i=1

The first constraint ensures minimal expected return ry, x; are
(nonnegative) portfolio weights which sum to one.

s.t. E
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Portfolio optimization Portfolio optimization with CVaR

If the distribution of R; is discrete with realizations r;s and probabilities
ps = 1/S, then we can use linear programming reformulation

&, Xi,Us

S
) 1
min £+MS;US,

s.t. us > —Zx,-r,-s—f, s=1,...,5,
i=1

n
ZX,'R/ > 1o,
i=1
n
ZX:' =1, x; >0,
i—1

EER, us >0,
where R; = 1/52;9:1 tis.
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ation Portfolio optimization with CVaR
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