
System development life-cycle
Testing

Petr Svarny, 2020

From just programming
to good programming.

Analysis,
Design,
Tests,
Style.

Testing

● Code that verifies the functionality of our main code
● Usually automated
● Can be used for development (Test Driven Development)

○ Test defines what behaviour I expect

● Various focuses:
○ Unit testing
○ Integration
○ User
○ … (see for example here)

https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

Importance of multiple testing

https://twitter.com/d3veducation/status/813056723271450624

https://twitter.com/d3veducation/status/813056723271450624

Python basic tests

See for example Real Python or python-guide

assert sum([1, 2, 3]) == 6, "Should be 6"

def test_sum():

 assert sum([1, 2, 3]) == 6, "Should be 6"

Usually written as procedures:

https://realpython.com/python-testing/
https://docs.python-guide.org/writing/tests/

Test runner example - unittest

import unittest

class TestSum(unittest.TestCase):

 def test_sum(self):

 self.assertEqual(sum([1, 2, 3]), 6, "Should be 6")

 def test_sum_tuple(self):

 self.assertEqual(sum((1, 2, 2)), 6, "Should be 6")

if __name__ == '__main__':

 unittest.main()

python test_sum_unittest.py

● Part of Python

Test runner example - pytest

● Separate package
● Runs all test_ files in the project

def test_answer():

 assert func(3) == 5

py.test

More advanced tools

Hypothesis - allows various parametrizations of the inputs, i.e. test more at once

Mock - helps class testing by allowing mock classes

https://docs.python-guide.org/writing/tests/#hypothesis
https://docs.python-guide.org/writing/tests/#mock

Exercise

Using unittest, write tests for the following method:
def positive_sum(in_list):

 """Adds together the members of a list.

 Args:

 in_list (list): List of positive numbers.

 Returns:

 int, float: Depending on the input numbers, returns the sum of them.

 Raises:

 TypeError: In case the in_list is not a list.

 ValueError: In case the any number in the list is negative.

 """

 if not type(in_list) == list:

 raise TypeError("The input is supposed to be list.")

 if any([x < 0 for x in in_list]):

 raise ValueError("The list members are supposed to be non-negative.")

 return sum(in_list)

