
System development life-cycle
Design

Petr Svarny, 2020

From just programming
to good programming.

Analysis,
Design,
Tests,
Style.

Analysis to design

Same modeling tools used for analysis can describe the design.

However, what design is good design?

● Computational efficiency
○ Time complexity
○ Space complexity

● Reliable solution
● Comprehensible code and program logic

https://en.wikipedia.org/wiki/Computational_complexity_theory

Study in Design: Max of Three

● An algorithm to find the largest of three numbers.

● Taken from John Zelle’s lectures:

Study in Design: Max of Three

def main():

 x_1, x_2, x_3 = eval(input("Please enter three values: "))

 # missing code sets max to the value of the largest

 print("The largest value is", max_val)

6

Strategy 1: Compare Each to All
● This looks like a three-way decision, where we need to execute one of the

following:
max_val = x_1
max_val = x_2
max_val = x_3

● All we need to do now is preface each one of these with the right condition!

Strategy 1: Compare Each to All
● Let’s look at the case where x_1 is the largest.

● if x_1 >= x_2 >= x_3:
 max_val = x_1

● Is this syntactically correct?
○ Many languages would not allow this compound condition

○ Python does allow it, though. It’s equivalent to
x_1 ≥ x_2 ≥ x_3.

Strategy 1: Compare Each to All
● Whenever you write a decision, there are two crucial questions:

1. When the condition is true, is executing the body of the decision the right action to take?

■ x_1 is at least as large as x_2 and x_3, so assigning max_val to x_1 is OK.

■ Always pay attention to borderline values!
2. Are we certain that this condition is true in all cases where x_1 is the max?
■ Suppose the values are 5, 2, and 4.
■ Clearly, x_1 is the largest, but does x_1 ≥ x_2 ≥ x_3 hold?
■ We don’t really care about the relative ordering of x_2 and x_3, so we can make two separate

tests: x_1 >= x_2 and x_1 >= x_3.

Strategy 1: Compare Each to All
We can separate these conditions with and!

if x_1 >= x_2 and x_1 >= x_3:

 max_val = x_1

elif x_2 >= x_1 and x_2 >= x_3:

 max_val = x_2

else:

 max_val = x_3

We’re comparing each possible value against all the others to determine which one is largest.

Strategy 1: Compare Each to All
● What would happen if we were trying to find the max of five values?

● We would need four Boolean expressions, each consisting of four conditions anded together.

● Yuck!

Python Programming, 3/e 11

Strategy 2: Decision Tree
● We can avoid the redundant tests of the previous algorithm using a decision tree approach.
● Suppose we start with x_1 >= x_2. This knocks either x_1 or x_2 out.
● If the condition is true, we need to see which is larger, x_1 or x_3.

Strategy 2: Decision Tree
if x_1 >= x_2:
 if x_1 >= x_3:
 max_val = x_1
 else:
 max_val = x_3
else:
 if x_2 >= x_3:
 max_val = x_2
 else
 max_val = x_3

Strategy 2: Decision Tree

Strategy 2: Decision Tree
● This approach makes exactly two comparisons, regardless of the ordering of the original

three variables.

● However, this approach is more complicated than the first. To find the max of four values
you’d need if-elses nested three levels deep with eight assignment statements!

Strategy 3: Sequential Processing

● You could probably look at three numbers and just know which is the largest.
But what if you were given a list of a hundred numbers?

● One strategy is to scan through the list looking for a big number. When one is
found, mark it, and continue looking. If you find a larger value, mark it, erase the
previous mark, and continue looking.

Strategy 3: Sequential Processing

Strategy 3: Sequential Processing
● This idea can easily be translated into Python.

max_val = x_1

if x_2 > max_val:

 max_val = x_2

if x_3 > max_val:

 max_val = x_3

Strategy 3: Sequential Programming
● This process is repetitive and lends itself to using a loop.

● We prompt the user for a number, we compare it to our current max, if it is
larger, we update the max value, repeat.

Strategy 3: Sequential Programming
program: maxn.py
Finds the maximum of a series of numbers

def main():
 n = int(input("How many numbers are there? "))

 # Set max to be the first value
 max_val = float(input("Enter a number >> "))

 # Now compare the n-1 successive values
 for i in range(n-1):
 x = float(input("Enter a number >> "))
 if x > max_val:
 max_val = x
 print("The largest value is", max_val)

Strategy 4: Use Python
● Python has a built-in function called max that returns the largest of its

parameters.

● def main():
 x_1, x_2, x_3 = eval(input("Please enter three values: "))
 print("The largest value is", max(x_1, x_2, x_3))

Some Lessons
● Don’t reinvent the wheel.
● Generality is good.
● Be the computer (try to solve it yourself).
● There’s usually more than one way to solve a problem.

○ Decide which suits best your need and don’t get stuck with the first one.
● Keep it simple and stupid (KISS).

Design process (bottom-up)

● Express the algorithm as a series of smaller problems.
● Develop an interface for each of the small problems.
● Detail the algorithm by expressing it in terms of its interfaces with the smaller

problems.
● Repeat the process for each smaller problem.

Favourite (toy) problems

● Search
● Sorting

(in practice often already implemented by someone)

Search: linear vs binary search

https://algorithms.tutorialhorizon.com/linear-search-vs-binary-search/
https://towardsdatascience.com/a-guide-to-linear-search-and-binary-search-on-arrays-data-structures-algorithms-2c23a74af28a

https://algorithms.tutorialhorizon.com/linear-search-vs-binary-search/
https://towardsdatascience.com/a-guide-to-linear-search-and-binary-search-on-arrays-data-structures-algorithms-2c23a74af28a

Exercise

● Implement a linear and binary search algorithm in Python
● It should have as an input a sorted list of numbers (e.g. [1, 5, 9]) and it tries to

identify the numbers location or return that the number is not in the list
● IMPLEMENT the search, do not just use `in` or similar Python shortcuts ;)

Sort

● Search is most effective on sorted data (can use assumptions)
thus sorting is an important tool

● Similar as search, can have many implementations

Sorting

● Sorting algorithm demonstrations
● Should be chosen based on the data and data structures (e.g., binary trees)

https://www.toptal.com/developers/sorting-algorithms

