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From just programming 
to good programming.

Analysis,
Design,
Tests,
Style.



Analysis to design

Same modeling tools used for analysis can describe the design.

However, what design is good design?

● Computational efficiency
○ Time complexity 
○ Space complexity

● Reliable solution
● Comprehensible code and program logic

https://en.wikipedia.org/wiki/Computational_complexity_theory


Study in Design: Max of Three

● An algorithm to find the largest of three numbers.

● Taken from John Zelle’s lectures:



Study in Design: Max of Three

def main():

    x_1, x_2, x_3 = eval(input("Please enter three values: "))

    # missing code sets max to the value of the largest

    print("The largest value is", max_val)



6

Strategy 1: Compare Each to All
● This looks like a three-way decision, where we need to execute one of the 

following:
max_val = x_1
max_val = x_2
max_val = x_3

● All we need to do now is preface each one of these with the right condition!



Strategy 1: Compare Each to All
● Let’s look at the case where x_1 is the largest.

● if x_1 >= x_2 >= x_3:
    max_val = x_1

● Is this syntactically correct?
○ Many languages would not allow this compound condition

○ Python does allow it, though. It’s equivalent to
x_1 ≥ x_2 ≥ x_3.



Strategy 1: Compare Each to All
● Whenever you write a decision, there are two crucial questions:

1. When the condition is true, is executing the body of the decision the right action to take?

■ x_1 is at least as large as x_2 and x_3, so assigning max_val to x_1 is OK.

■ Always pay attention to borderline values!
2. Are we certain that this condition is true in all cases where x_1 is the max?
■ Suppose the values are 5, 2, and 4.
■ Clearly, x_1 is the largest, but does x_1 ≥ x_2 ≥ x_3 hold?
■ We don’t really care about the relative ordering of x_2 and x_3, so we can make two separate 

tests: x_1 >= x_2 and x_1 >= x_3.



Strategy 1: Compare Each to All
We can separate these conditions with and!

if x_1 >= x_2 and x_1 >= x_3:

    max_val = x_1

elif x_2 >= x_1 and x_2 >= x_3:

    max_val = x_2

else:

    max_val = x_3

We’re comparing each possible value against all the others to determine which one is largest.



Strategy 1: Compare Each to All
● What would happen if we were trying to find the max of five values?

● We would need four Boolean expressions, each consisting of four conditions anded together.

● Yuck!
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Strategy 2: Decision Tree
● We can avoid the redundant tests of the previous algorithm using a decision tree approach.
● Suppose we start with x_1 >= x_2. This knocks either x_1 or x_2 out.
● If the condition is true, we need to see which is larger, x_1 or x_3.



Strategy 2: Decision Tree
if x_1 >= x_2:
   if x_1 >= x_3:
      max_val = x_1
   else:
      max_val = x_3
else:
   if x_2 >= x_3:
      max_val = x_2
   else
      max_val = x_3



Strategy 2: Decision Tree



Strategy 2: Decision Tree
● This approach makes exactly two comparisons, regardless of the ordering of the original 

three variables.

● However, this approach is more complicated than the first. To find the max of four values 
you’d need if-elses nested three levels deep with eight assignment statements!



Strategy 3: Sequential Processing

● You could probably look at three numbers and just know which is the largest. 
But what if you were given a list of a hundred numbers?

● One strategy is to scan through the list looking for a big number. When one is 
found, mark it, and continue looking. If you find a larger value, mark it, erase the 
previous mark, and continue looking.



Strategy 3: Sequential Processing



Strategy 3: Sequential Processing
● This idea can easily be translated into Python.

max_val = x_1

if x_2 > max_val:

    max_val = x_2

if x_3 > max_val:

    max_val = x_3



Strategy 3: Sequential Programming
● This process is repetitive and lends itself to using a loop.

● We prompt the user for a number, we compare it to our current max, if it is 
larger, we update the max value, repeat.



Strategy 3: Sequential Programming
# program: maxn.py
#   Finds the maximum of a series of numbers

def main():
    n = int(input("How many numbers are there? "))
    
    # Set max to be the first value
    max_val = float(input("Enter a number >> "))
    
    # Now compare the n-1 successive values
    for i in range(n-1): 
        x = float(input("Enter a number >> "))
        if x > max_val:
            max_val = x
    print("The largest value is", max_val)



Strategy 4: Use Python
● Python has a built-in function called max that returns the largest of its 

parameters.

● def main():
    x_1, x_2, x_3 = eval(input("Please enter three values: "))
    print("The largest value is", max(x_1, x_2, x_3))



Some Lessons
● Don’t reinvent the wheel.
● Generality is good.
● Be the computer (try to solve it yourself).
● There’s usually more than one way to solve a problem.

○ Decide which suits best your need and don’t get stuck with the first one.
● Keep it simple and stupid (KISS).



Design process (bottom-up)

● Express the algorithm as a series of smaller problems.
● Develop an interface for each of the small problems.
● Detail the algorithm by expressing it in terms of its interfaces with the smaller 

problems.
● Repeat the process for each smaller problem.



Favourite (toy) problems

● Search
● Sorting

(in practice often already implemented by someone)



Search: linear vs binary search

https://algorithms.tutorialhorizon.com/linear-search-vs-binary-search/ 
https://towardsdatascience.com/a-guide-to-linear-search-and-binary-search-on-arrays-data-structures-algorithms-2c23a74af28a 

https://algorithms.tutorialhorizon.com/linear-search-vs-binary-search/
https://towardsdatascience.com/a-guide-to-linear-search-and-binary-search-on-arrays-data-structures-algorithms-2c23a74af28a


Exercise

● Implement a linear and binary search algorithm in Python
● It should have as an input a sorted list of numbers (e.g. [1, 5, 9]) and it tries to 

identify the numbers location or return that the number is not in the list
● IMPLEMENT the search, do not just use `in` or similar Python shortcuts ;)



Sort

● Search is most effective on sorted data (can use assumptions) 
thus sorting is an important tool

● Similar as search, can have many implementations



Sorting

● Sorting algorithm demonstrations
● Should be chosen based on the data and data structures (e.g., binary trees)

https://www.toptal.com/developers/sorting-algorithms

