4
N

Python Paradigms

Petr Svarny, 2020

How do you code?

OB 2 REP IS
A 882082 18 (LC
A 882083 FB SED

A 882084 A3 34 12 LDA #1234
A 882007 B9 2143 ADC 434321

A 882007 BF B3 7F B1 STA $917FA3
A B8200E D CLD

A B8200F SEP #$30
A 882011 BRK
A 20812

r

PB PC NUmxDIZC .A .X .Y SP DP DB

; 0 EB12 90110900 ARG MGBA BAA2 CFFF ARGA @D
g 20008

BREAK

PBPC NUmxDIZC .A X .Y SP DP DB

; B0 2013 @9110096 5555 @96 08A2 CFFF @AG6 @
n 7183 7103

aaama 55 55 00 00 00 00 060 60 60 @0 AP 60 60 60 60 60 : GGG

https://commons.wikimedia.org/wiki/File:WW65C816S_Machine_Code_Monitor.jpeg#/media/File:\WW65C816S_Machine_Code_Monitor.jpeg

https://commons.wikimedia.org/wiki/File:W65C816S_Machine_Code_Monitor.jpeg#/media/File:W65C816S_Machine_Code_Monitor.jpeg

MONITOR FOR 6802 1.4 9-14-80 TSC ASSEMBLER PAGE 2

Cc000 ORG ROM+$0000 BEGIN MONITOR
C000 8E 00 70 START LDS #STACK

* FUNCTION: INITA - Initialize ACIA
* INPUT: none

*

*

*

OUTPUT: none
CALLS: none
DESTROYS: acc A

0013 RESETA EQU $00010011
0011 CTLREG EQU $00010001
€003 86 13 INITA LDA A #RESETA RESET ACIA
C005 B7 80 04 STA A ACIA
. €008 86 11 LDA A #CTLREG SET 8 BITS AND 2 STOP
ry O u . COOA B7 80 04 STA A ACIA
JMP

CO0D 7E CO F1 SIGNON GO TO START OF MONITOR

FUNCTION: INCH - Input character

Tutorialspoint Foct e

DESTROYS: acc A
CALLS: none
DESCRIPTION: Gets 1 character from terminal

C010 B6 80 04 INCH LDA A ACIA GET STATUS

c013 47 ASR A SHIFT RDRF FLAG INTO CARRY
- C014 24 FA BCC INCH RECIEVE NOT READY
S — C016 B6 80 05 LDA A ACIA+1 GET CHAR
Cc019 84 TF AND A #$7F MASK PARITY
CO01B 7E CO 79 JMP OUTCH ECHO & RTS
* FUNCTION: INHEX - INPUT HEX DIGIT
* INPUT: none
* OUTPUT: Digit in acc A
* CALLS: INCH
* DESTROYS: acc A
* Returns to monitor if not HEX input
COlE 8D FO INHEX BSR INCH GET A CHAR
€020 81 30 CMP A #'0 ZERO
€022 2B 11 BMI HEXERR NOT HEX
€024 81 39 CMP A #'9 NINE
C026 2F OA BLE HEXRTS GOOD HEX
€028 81 41 CMP A #'A
C02A 2B 09 BMI HEXERR NOT HEX
C02C 81 46 CMP A #'F
CO2E 2E 05 BGT HEXERR
€030 80 07 SUB A #7 FIX A-F
C032 84 OF HEXRTS AND A #$0F CONVERT ASCII TO DIGIT
€034 39 RTS

CTRL

RETURN TO CONTROL LOOP

https://commons.wikimedia.org/wiki/File:Motorola_6800_Assembly_Language.png#/media/File:Motorola_6800_Assembly_Language.png
https://www.tutorialspoint.com/compile_assembly_online.php
http://www.zachtronics.com/tis-100/

Paradigms a.k.a. the paths of programming

Imperative

e procedural (group into procedures, e.g. C) &
e object-oriented (OOP, group into objects, e.g. C++) &

Declarative

functional (given by functions, e.g. Haskell) &

logic (rule system, e.g. Prolog)

mathematical (mathematical optimization problem, e.g.)
symbolic, ...

Imperative Python

e Step by step instructions In_list = [1, 2]
out list = []

for num in in list:

out list = out list + [num + 3]

print (out list)

Procedural Python

e Step by step instructions det add_thfeeﬂ[?_list%
out list =

e Wrapped into procedures o mem i o Lo

e Can cause (undesired) print (out_list)

out list = out list + [num + 3]

side-effects
(see global variables)

return (out list)

print (add three([1, 21))

Functional Python

What was a functional example in Python?

Functional Python

e Link a series of functions print (List(nsp (fambda e x & 5 Lh, 2100
e |Lambda or general functions in

Python and their chaining
e Helps to prevent side-effects

as data are passed directly

between functions / What Python immutable object do you know?
e Often immutable objects

e See functools package

https://en.wikipedia.org/wiki/Immutable_object
https://www.geeksforgeeks.org/mutable-vs-immutable-objects-in-python/

Object-oriented Python

What classes did you already encounter in Python?

class Adder:
def init (self, in list):
. ° self. string = ‘hello’
Object-oriented Python SR i S e gl
self.out list = []

e Separate procedures (methods) and data def add_three(self):

(attributes) into classes

for num in self. in list:

self.out list = self.out list + [num + 3]

e Allows for reuse (see inheritance)

e Initialize a member of the class (i.e. object) adder object = Adder([1, 2])
e Private and public (given by dunders __ in Python) adder object.add_three ()

e Special are _x__, “‘magqgic” methods

e Accessing and changing of private methods print (adder_object.out list)

usually through “getter” and “setter” methods f
. 3 >< print (adder object. in list) ><
e Useful in Python even just for own types (e.g. own , - -
print (adder object. Adder in list)

style of dicts) /

mangling

(

print (adder object. string)
(
(

https://www.w3schools.com/python/python_inheritance.asp
https://www.geeksforgeeks.org/private-methods-in-python/
https://www.geeksforgeeks.org/dunder-magic-methods-python/

Exercise

e Create a general class Animal

o With a private attribute ‘'name’ set at initialization
o With a method ‘get_name’ that returns the animals name

e Create a class that inherits from the Animal class (see guide)

e Letthe Cat class have:

o A private variable "purr_sound' that is a string for the sound of the cat’s purring
o A public method "purr’ that prints out the “purr_sound

e Show the initialization of a Cat object, print its name and make it purr.

https://www.w3schools.com/python/python_inheritance.asp

Object-oriented principles

Encapsulation

Bundle data and methods that work on them, isolate them
Objects as actors who “know” and “do” stuff

Separate what x how
What - what does the object do (i.e. interface of the object)
How - actual implementation of the object

Polymorphism

e What an object does depends on the type or class of the object,
i.e. we can call the same method but get different results. (Remember + ?)

Inheritance

e Hierarchy and reuse of classes and properties by the subclass (child) from the superclass

(parent)
e Easier design and conceptualization of the problem

Symbolic Python

>>> sym.simplify((x + x * y) / X)
y + 1

e Not native in Python(Sympy)

e Symbol manipulation based on an
internal engine
(i.e. not by the instructions of the
programmer per se)

e For precise solutions (e.g., ¥, 1)

e Other symbolic tools are for example
Mathematica or Maple

https://docs.sympy.org/latest/tutorial/index.html

Logical Python

e Programmer provides only data

e The program = inference engine is fixed in
advance

e Not native Python
Sympy, Kanren

>>> from kanren import Relation,
>>> x = var ()

>>> parent = Relation ()

>>> facts (parent, ("Homer", "Bart

("Homer", "Lisa

("Abe", "Homer"

>>> run(l, x, parent(x, "Bart"))

("Homer',)

>>> run (2, x, parent ("Homer", x))

("Lisa', 'Bart')

facts, run,

"),
")
))

var

https://docs.sympy.org/latest/tutorial/index.html
https://github.com/brandonwillard/kanren

What other big distinction in programming
languages do you remember?

BN

Compiled Interpreted

C, C++, Nim... Java Python Clojure

le1e1elllieleceelslelelelale

) Why is he giving me
N\ Just one line at a time?

~1010101010101010210101010111

1012121010191012310101918111
010101010 00001010910111 7

<>

THE INTERPRETER

https://medium.com/young-coder/the-difference-between-compiled-and-interpreted-languages-d54f66aa71f0

NI

e Syntax similar to Python
e Compiled language
e Many advanced features we did not cover in Python (e.g., references)

https://nim-lang.org/

Note on references and side-effects in Python

pass by reference pass by value

fillCup() - fillCup()

www.penjee.com

https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

Note on references and side-effects in Python

def addInterest (balance, rate):
balance = balance * (1 + rate)

return balance

def test():
amount = 1000
rate = 0.05
addInterest (amount, rate)

print (amount)

test ()
>>> 1000

Python passes values

Value of mutable objects contains data that can be changed (e.g., lists)
Can lead to undesired “side-effects”, i.e. unintended changes
Other languages can have explicit reference or value passing

def addInterest (balances, rate):

for 1 in range(len(balances)):

balances[i] = balances[i] * (l+rate)
def test():
amounts = [1000, 2200, 800, 360]

rate = 0.05
addInterest (amounts, 0.05)
print (amounts)

test ()

>>> [1050.0, 2310.0, 840.0, 378.0]

https://nim-lang.org/docs/tut1.html#advanced-types-reference-and-pointer-types
https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

