
Python Paradigms

Petr Svarny, 2020

How do you code?

https://commons.wikimedia.org/wiki/File:W65C816S_Machine_Code_Monitor.jpeg#/media/File:W65C816S_Machine_Code_Monitor.jpeg

https://commons.wikimedia.org/wiki/File:W65C816S_Machine_Code_Monitor.jpeg#/media/File:W65C816S_Machine_Code_Monitor.jpeg

https://commons.wikimedia.org/wiki/File:Motorola_6800_Assembly_Language.png#/media/File:Motorola_6800_Assembly_Language.png

Assembler

Try out:

Tutorialspoint

TIS-100

https://commons.wikimedia.org/wiki/File:Motorola_6800_Assembly_Language.png#/media/File:Motorola_6800_Assembly_Language.png
https://www.tutorialspoint.com/compile_assembly_online.php
http://www.zachtronics.com/tis-100/

Paradigms a.k.a. the paths of programming

Imperative

● procedural (group into procedures, e.g. C) 🐍
● object-oriented (OOP, group into objects, e.g. C++) 🐍

Declarative

● functional (given by functions, e.g. Haskell) 🐍
● logic (rule system, e.g. Prolog)
● mathematical (mathematical optimization problem, e.g.)
● symbolic, ...

Imperative Python
● Step by step instructions In_list = [1, 2]

out_list = []

for num in in_list:

 out_list = out_list + [num + 3]

print(out_list)

Procedural Python
● Step by step instructions
● Wrapped into procedures
● Can cause (undesired)

side-effects
(see global variables)

def add_three(in_list):

 out_list = []

 for num in in_list:

 print(out_list)

 out_list = out_list + [num + 3]

 return(out_list)

print(add_three([1, 2]))

Functional Python

What was a functional example in Python?

Functional Python
● Link a series of functions
● Lambda or general functions in

Python and their chaining
● Helps to prevent side-effects

as data are passed directly
between functions

● Often immutable objects
● See functools package

print(list(map(lambda x: x + 3, [1, 2])))

What Python immutable object do you know?

https://en.wikipedia.org/wiki/Immutable_object
https://www.geeksforgeeks.org/mutable-vs-immutable-objects-in-python/

Object-oriented Python

What classes did you already encounter in Python?

Object-oriented Python
● Separate procedures (methods) and data

(attributes) into classes
● Allows for reuse (see inheritance)
● Initialize a member of the class (i.e. object)
● Private and public (given by dunders __ in Python)
● Special are __x__, “magic” methods
● Accessing and changing of private methods

usually through “getter” and “setter” methods
● Useful in Python even just for own types (e.g. own

style of dicts)

class Adder:

 def __init__(self, in_list):

 self._string = ‘hello’

 self.__in_list = in_list

 self.out_list = []

 def add_three(self):

 for num in self.__in_list:

 self.out_list = self.out_list + [num + 3]

adder_object = Adder([1, 2])

adder_object.add_three()

print(adder_object.out_list)

print(adder_object._string)

print(adder_object.__in_list)

print(adder_object._Adder__in_list)

mangling

❌❌

✅✅

✅✅
✅✅

https://www.w3schools.com/python/python_inheritance.asp
https://www.geeksforgeeks.org/private-methods-in-python/
https://www.geeksforgeeks.org/dunder-magic-methods-python/

Exercise

● Create a general class Animal
○ With a private attribute `name` set at initialization
○ With a method `get_name` that returns the animals name

● Create a class that inherits from the Animal class (see guide)
● Let the Cat class have:

○ A private variable `purr_sound` that is a string for the sound of the cat’s purring
○ A public method `purr` that prints out the `purr_sound`

● Show the initialization of a Cat object, print its name and make it purr.

https://www.w3schools.com/python/python_inheritance.asp

Object-oriented principles
Encapsulation

● Bundle data and methods that work on them, isolate them
● Objects as actors who “know” and “do” stuff
● Separate what x how

What - what does the object do (i.e. interface of the object)
How - actual implementation of the object

Polymorphism

● What an object does depends on the type or class of the object,
i.e. we can call the same method but get different results. (Remember + ?)

Inheritance

● Hierarchy and reuse of classes and properties by the subclass (child) from the superclass
(parent)

● Easier design and conceptualization of the problem

Symbolic Python

● Not native in Python(Sympy)
● Symbol manipulation based on an

internal engine
(i.e. not by the instructions of the
programmer per se)

● For precise solutions (e.g., ⅓, π)
● Other symbolic tools are for example

Mathematica or Maple

>>> sym.simplify((x + x * y) / x)
y + 1

https://docs.sympy.org/latest/tutorial/index.html

Logical Python

● Programmer provides only data
● The program = inference engine is fixed in

advance
● Not native Python

Sympy, Kanren

>>> from kanren import Relation, facts, run, var
>>> x = var()
>>> parent = Relation()
>>> facts(parent, ("Homer", "Bart"),
... ("Homer", "Lisa"),
... ("Abe", "Homer"))

>>> run(1, x, parent(x, "Bart"))
('Homer',)

>>> run(2, x, parent("Homer", x))
('Lisa', 'Bart')

https://docs.sympy.org/latest/tutorial/index.html
https://github.com/brandonwillard/kanren

What other big distinction in programming
languages do you remember?

Compiled

https://medium.com/young-coder/the-difference-between-compiled-and-interpreted-languages-d54f66aa71f0

Interpreted
C, C++, Nim... Python ClojureJava

vs

https://medium.com/young-coder/the-difference-between-compiled-and-interpreted-languages-d54f66aa71f0

Nim

● Syntax similar to Python
● Compiled language
● Many advanced features we did not cover in Python (e.g., references)

https://nim-lang.org/

Note on references and side-effects in Python

See: https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

Note on references and side-effects in Python

● Python passes values
● Value of mutable objects contains data that can be changed (e.g., lists)
● Can lead to undesired “side-effects”, i.e. unintended changes
● Other languages can have explicit reference or value passing

See: https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

def addInterest(balance, rate):

 balance = balance * (1 + rate)

 return balance

def test():

 amount = 1000

 rate = 0.05

 addInterest(amount, rate)

 print(amount)

test()

>>> 1000

vs

def addInterest(balances, rate):

 for i in range(len(balances)):

 balances[i] = balances[i] * (1+rate)

def test():

 amounts = [1000, 2200, 800, 360]

 rate = 0.05

 addInterest(amounts, 0.05)

 print(amounts)

test()

>>> [1050.0, 2310.0, 840.0, 378.0]

https://nim-lang.org/docs/tut1.html#advanced-types-reference-and-pointer-types
https://blog.penjee.com/passing-by-value-vs-by-reference-java-graphical/

