
Python Loops

Petr Svarny, 2020

Mutable versus immutable data types

● str, float, int and tuple are immutable data type
● Immutable data types are hashable - it has a hash value which never changes during its

lifetime
● list, dict and set are mutable data types

>>> x = 'a'
>>> id(x)
...608
>>> x = x + 'b'
>>> id(x)
...888

>>> y = ['a', 'b']
>>> id(y)
...424
>>> y = y + ['c']
>>> id(y)
...320
>>> y.append('d')
>>> id(y)
...320

Conditions Stir butter, milk and
sugar

Pour into the pan

Brown
stripes?

Black
stripes?

Lower
heat

Throw
saucepan
to garbage

Yes

Yes

No

No

Conditions
● Multiple if blocks are possible
● elif and else blocks are optional
● else block can be only one and must be last

if condition:
block body
block body

elif condition:
block body

elif condition:
block body

else:
block body

Indentation
● Is used in python to create code blocks
● Indent by spaces or tabs

○ Depends on code editor
○ Replace tab by spaces
○ DO NOT MIX

 if(condition) {
 block body
} else {
 block body

}

if condition:
block body

else:

block body

Python C ++

Indentation

>>> x = 1
>>> if x > 2:
... print('x is more than 2')
... print('I have no idea what value does x have')
I have no idea what value does x have

>>> if x > 2:
... print('x is more than 2')
... print('I have no idea what value does x have')
... print('seriously, I don't know')
seriously, I don't know

Indentation
>>> if 4 < 5:
... print(‘It is smaller’)
File "<ipython-input-37-38507da79ee2>", line 2
print(‘It is smaller’)
^
IndentationError: expected an indented block

Conditions
x = int(input('Type number: ')) # input function reads a line from
input (keyboard) and converts the line into a string

int function converts number to integer

>>> if x % 2 == 0:
... print(x, 'is even')
... else:
... print(x, 'is odd')

Type number: 5
5 is odd

Conditions
>>> x = int(input("Type number: "))
... if x > 5:
... print('x is more than 5!')
... if x == 2:
... print('hmm, x is 2')
... if x < 5:
... print('x is less than 5!')

Type number: 2
hmm, x is 2
x is less than 5!

Conditions
>>> x = int(input("Type number: "))
... if x > 5:
... print('x is more than 5!')
... if x == 2:
... print('hmm, x is 2')
... elif x < 5:
... print('x is less than 5!')

Type number: 2
hmm, x is 2

Conditions
>>> x = int(input("Type number: "))
... if x > 5:
... print('x is more than 5!')
... if x == 2:
... print('hmm, x is 2')
... if x < 5:
... print('x is less than 5!')

Type number: 2
hmm, x is 2
x is less than 5!

Exercise
● You have list of top 20 names in Czech Republic
● names_list = ['Jiri', 'Jan', 'Marie', 'Petr', 'Jana', 'Josef',

'Pavel', 'Martin', 'Jaroslav', 'Tomas', 'Eva', 'Miroslav',
'Hana', 'Anna', 'Zdenek', 'Frantisek', 'Vaclav', 'Michal',
'Lenka', 'Katerina']

● Write code that
○ Ask user for its name (reminder use: input(‘Your name’))
○ Check if name is in the list (reminder use: in)

■ If name is in the list then it prints reply
■ If name is not in the list then it prints another reply

Range
● range function returns an immutable sequence object of numbers

that can be used for loops
○ range(stop) or range([start], stop[, step])
○ Default settings: range(0, stop, 1)

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0,10,1))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(0,10,2))
[0, 2, 4, 6, 8]

Loops - for
● Is used for repeated steps
● For statement iterates over the items of any sequence

(a list or a string), in the order that they appear in the
sequence

for i in iterated_object:
 block body
 block body

https://www.tutorialspoint.com/python/python_for_loop.htm

Loops - for
>>> word = 'python'
>>> for letter in word:
... print(letter)

p
y
t
h
o
n

Loops - for
>>> fruits = ['apples', 'pears', 'apricots', 'peaches', 'oranges']

>>> for fruit in fruits:
... print('I like ' + fruit)
I like apples
I like pears
I like apricots
I like peaches
I like oranges

Loops - for
>>> fruits = ['apples', 'pears', 'apricots', 'peaches', 'oranges']

>>> for i in range(len(fruits)):
... print('I like ' + fruits[i])
I like apples
I like pears
I like apricots
I like peaches
I like oranges

Loops - enumerate
>>> fruits = ['apples', 'pears', 'apricots', 'peaches', 'oranges']

>>> for i, fruit in enumerate(fruits)):
... print('I like ' + fruit)
... print('I like ' + fruits[i])
I like apples
I like apples
I like pears
I like pears
I like apricots
I like apricots
I like peaches
I like peaches
I like oranges...

Dictionary iteration
>>> kids = {'Sedlak': 'David', 'Iohanescu': 'Julie'}

>>> for key, value in kids.items():
... print(value, key)
David Sedlák
Julie Iohanescu

Exercise

● You have international spelling alphabet
○ d = {'a':'alfa', 'b':'bravo', 'c':'charlie', 'd':'delta',

'e':'echo', 'f':'foxtrot', 'g':'golf', 'h':'hotel', 'i':'india',
'j':'juliett', 'k':'kilo', 'l':'lima', 'm':'mike',
'n':'november', 'o':'oscar', 'p':'papa', 'q':'quebec',
'r':'romeo', 's':'sierra', 't':'tango', 'u':'uniform',
'v':'victor', 'w':'whiskey', 'x':'x-ray', 'y':'yankee',
'z':'zulu'}

● Write code that will
○ Ask user name
○ Spell user's name

Exercise
● Transpose following list using both nested loops and list comprehensions

a = [[1,2,3],
 [4,5,6],
 [7,8,9]]

To this list

b = [[1,4,7],
 [2,5,8],
 [3,6,9]]

Break, continue, pass

● break terminates the loop containing it
● continue continues with the next

iteration of the loop
● pass does nothing

○ Is used as a placeholder when you
are working on new code, allowing
you to keep thinking at a more
abstract level

https://www.programiz.com/python-programming/break-continue

Break
for letter in 'Python':
... if letter == 'h':
... break
... print('Current letter is ', letter)

Current letter is P
Current letter is y
Current letter is t

Continue

for letter in 'Python':
... if letter == 'h':
... continue
... print('Current letter is ', letter)

Current letter is P
Current letter is y
Current letter is t
Current letter is o
Current letter is n

Exercise
● Create shopping list
● Using for and break write code that

○ Will ask for new item
○ Go through the list
○ If item is found then

■ Print item
■ Stop searching

○ If item is not found
■ Append item to the list

Loops - while

● Is needed for executing repeated actions
● Be careful of infinite loops!

○ Evaluate if condition in while is False or True
○ If True, run block and return to step 1
○ If False, exit while loop and continue in code

>>> while n > 0:
... print(n)
... n = n-1
... print('COOL')

Loops - list comprehensions

● Create lists from another lists based on various conditions

>>> all_numbers = list(range(15))
>>> all_numbers
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

>>> odd_numbers = [x for x in all_numbers if x % 2 == 1]
>>> odd_numbers
[1, 3, 5, 7, 9, 11, 13]

Exercise

● Create list containing 5 numbers
○ Using list comprehensions create list where:

■ Each element is multiplied by itself
● E.g. 5 → 25

■ 'is my favorite number!' is added to each element of the
list'
● E.g. '5 is my favorite number!'

● Print both lists

Exercise
● Using list comprehensions write code that

○ Takes string as an input, e.g. seq = 'ACTGCTCAAG'
○ Creates list with positions where 'A' is occurring, e.g. pos

= [0, 7, 8]
○ Prints created list
○ Hint: use enumerate()

● BONUS task: come up with the second solution

Dictionary comprehensions

● Create dictionaries from another sequences based on various
conditions

>>> fruits = ['apple', 'mango', 'banana','cherry']
>>> {f:len(f) for f in fruits}
{'cherry': 6, 'mango': 5, 'apple': 5, 'banana': 6}

Exercise
● You have dictionary of points in competition

○ scores = {'John' : 10, 'Emily' : 35, 'Matthew' : 50}
○ Using dictionary comprehensions, create dictionary, where everyone gets triple

amount of points

