
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Formalization of Basic Combinatorics on Words
Anonymous Author(s)∗

Abstract
Combinatorics on Words is a rather young domain encom-
passing the study of words and formal languages. An ar-
chetypal example of a task in Combinatorics on Words is
to solve the equation 𝑥 · 𝑦 = 𝑦 · 𝑥 , i.e., to describe words
that commute. The choice of the multiplication · for the con-
catenation operation suggests that we tend to see the set of
words as an algebraic structure, namely a monoid.

This paper provides a sample of our project devoted to
formalization of Combinatorics on Words, starting from ba-
sic facts, and focusing mainly on equations over words (and
therefore on finite words). Our work is set up on existing
tools in Isabelle/HOL, namely on the ubiquitous and well-
developed datatype of lists. From the point of view of equa-
tions, nevertheless, the standard library does not reach much
beyond the solution of the above mentioned commutation.
This contribution contains formalization of two moder-

ately advanced topics, namely i) the solution of the famous
equation 𝑥𝑎 · 𝑦𝑏 = 𝑧𝑐 with 2 ≤ 𝑎, 𝑏, 𝑐 , known as the Lyndon-
Schützenberger Equation (LSE); and ii) an important result
known as the Graph Lemma (GL), which is closely related to
the Defect Theorem (DT), namely, it yields a generic upper
bound on the rank of a solution of a system of equations.

The LSE represents the more combinatorial aspect of the
field, and uses the (weak version) of the basic result about
periods, the Periodicity Lemma (also known as the Fine and
Wilf theorem). On the other hand, GL has a more algebraic
flavour and uses the concept of the free hull of a given set of
words as the main ingredient.

Finally, the submission is accompanied by an evolving
toolkit of several hundreds auxiliary results which provide
for a relatively smooth reasoning within more complex tasks.

1 Introduction
Combinatorics on Words usually dates its beginning (cf.
[2]) back to the works of Axel Thue on repetitions in in-
finite words published more than hundred years ago [19, 20].
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Nevertheless, the first monograph on the subject was pub-
lished only in 1983 [11], and it is listed in the Mathematics
Subject Classification since 2009 (as 68R15). In this paper,
we are interested in the part of the field dealing with finite
(rather than infinite) words, which in particular includes
solving word equations. Solving general word equations is a
difficult algorithmic task. Once believed to be undecidable,
the first algorithm was described by Makanin in 1977 [14]
(see [12] for a survey). Currently, the approach of recom-
pression introduced by Arthur Jeż [9] is the most efficient
one with PSPACE complexity. While the problem is NP hard,
it remains a challenging open question whether it is NP
complete.

We believe that combinatorics of (finite) words is an area
where computer assisted formalization may be very helpful.
Proofs of even fairly simple results tend to be tedious and
repetitive, featuring complicated analysis of cases, which
makes them hard (both for referees and readers) to verify.
Moreover, despite the short history of the field, basic aux-
iliary results are sometimes forgotten and rediscovered, or
simply repeatedly proven in many papers. Some easily stated
problems, like the solution of equations in three unknowns
[15], or the characterization of binary equality languages [8],
are vast classification tasks resembling much more promi-
nent projects like the classification of finite groups [4], four-
colour problem [16] or Kepler’s conjecture [6].

In this paper, we present two moderately advanced results,
which together reveal main features of the general project
of formalization of word equations. The first result is the
solution of the equation 𝑥𝑎 · 𝑦𝑏 = 𝑧𝑐 with 2 ≤ 𝑎, 𝑏, 𝑐 , namely,
a proof of the fact that this equation admits trivial solutions
only, that is, solutions where all three unknown words are
powers of a common root. This was first proven by Lyndon
and Schützenberger [13] in a more general setting of free
groups, and represents a historically first nontrivial result
for equations with three unknowns. The proof is not obvious
even in free monoids, and we present here its formalization
in Isabelle/HOL.

The solution of the Lyndon-Schützenberger Equation (LSE)
is mainly combinatorial. One of its main ingredients is the
Periodicity Lemma (PL), also known as the theorem of Fine
and Wilf [5]. Although neither the PL is trivial, it shares the
status of an auxiliary result with several hundreds other re-
sults of our formalization, providing a background for more
advanced results.

The need to deal with equations like the LSE in an ad hoc
manner is tightly related to the fact that word equations
are rather immune against the so called defect effect. To
understand what this means, consider linear equations. Each
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new independent linear equation decreases the degree of
freedom of a solution of the corresponding system, so that
𝑛 independent equations over 𝑛 unknowns admit only the
trivial solution. In contrast, there is no known upper bound
on the size of an independent systems of word equations
over 𝑛 ≥ 4 unknowns.
The best general form of the Defect Theorem (DT) for

word equations is provided by the Graph Lemma (GL), which
is the second main result presented and formalized in this
paper. We adopt the approach to GL which exploits the alge-
braic concept of the free hull of a solution, and of its rank,
that is, of the cardinality of its basis. The corresponding back-
ground theory represents the second, algebraic pillar of our
development, which deals with sets of words closed under
concatenation, that is, with submonoids of the underlying
free monoid of words. It is immediate that (unlike in the free
group case) submonoids of the free monoid are not always
free. Nevertheless, each submonoid𝑀 has a free hull ⟨𝑀⟩F,
the unique smallest free submonoid containing𝑀 . If we see
a solution of a given system of word equations as a basis of a
monoid𝑀 , then GL limits the size of the basis of ⟨𝑀⟩F, which
is in particular always less than the number of unknowns (if
the system is nontrivial).
Our formalization of the above mentioned results in Isa-

belle/HOL is based on the fundamental and well developed
datatype of lists. Nevertheless, from the point of view of word
equations, the main library contains only the solution of the
easiest nontrivial word equation, namely 𝑥 ·𝑦 = 𝑦 ·𝑥 , showing
that commutingwords 𝑥 and𝑦 are always powers of the same
(shorter) word. Note, in this respect, that GL in particular
implies that all nontrivial equations over two unknowns
have this property. In fact, the main library does not provide
any support for seeing lists as a free monoid. From this point
of view the corresponding algebraic approach has to be built
from scratch. On the other hand, we note that the “algebraic”
point of view remains sufficiently close to the “combinatorial”
one so that the interplay is fairly smooth. This is one of the
facts illustrated by this paper.

2 Presented results
2.1 Preliminaries
We shall assume that all words are over some fixed alphabet
Σ. The concatenation of 𝑢 and 𝑣 is denoted as 𝑢 · 𝑣 , or simply
as 𝑢𝑣 . The length of a word 𝑤 is |𝑤 |. Let 𝑤 [𝑖], 0 < 𝑖 < |𝑤 |,
be the (𝑖 + 1)th letter of𝑤 . That is,

𝑤 = 𝑤 [0] ·𝑤 [1] · · ·𝑤 [𝑛 − 1],

where 𝑛 = |𝑤 |.
A word𝑤 has a period 1 ≤ 𝑝 if𝑤 [𝑖] = 𝑤 [𝑖 + 𝑝] for each

0 ≤ 𝑖 < |𝑤 | −𝑝 . We allow (trivial) periods 𝑝 ≥ |𝑤 |. It is useful
to note that 𝑤 has a period 𝑝 if and only if 𝑤 is a prefix of
𝑢 ·𝑤 , where 𝑢 is a word of length 𝑝 , called a period root of𝑤 .

Which, in turn, is equivalent to𝑤 being a prefix of 𝑢𝜔 with
𝑢𝜔 = 𝑢𝑢𝑢 . . . .

The Periodicity Lemma (PL) claims that if a word 𝑤 of
length at least 𝑝 + 𝑞 − gcd(𝑝, 𝑞) has periods 𝑝 and 𝑞, then it
also has a period gcd(𝑝, 𝑞). It is an exercise to see that the
PL holds if the length of 𝑤 is at least 𝑝 + 𝑞, which is often
sufficient in applications.

The very first result in the basic course of Combinatorics
od Words is the Commutation Lemma which says, that 𝑥𝑦 =

𝑦𝑥 implies the existence of a word 𝑡 such that 𝑥 ∈ 𝑡∗ and
𝑦 ∈ 𝑡∗. Here 𝑡∗ denotes the set {𝑡𝑛 | 0 ≤ 𝑛}, as is common
in regular expressions. The Commutation Lemma is easy
to prove directly, but it can be also noted that the word
𝑤 = 𝑢𝑣 = 𝑣𝑢 has periods |𝑢 | and |𝑣 |, and the claim follows
from the PL.
The Kleene star used in the expression 𝑡∗ is commonly

used even for sets as, for example, in {𝑢, 𝑣}∗. However, this
allows a certain confusion. If 𝐺 is a set of words over Σ,
then 𝐺∗ should denote all words over Σ generated by 𝐺 . On
the other hand, Σ∗ denotes all words over the alphabet Σ,
and the difference between the alphabet Σ and the set of
words 𝐺 has to be kept in mind. Strictly speaking, Σ∗ is not
generated by the alphabet Σ, but rather by the set of single-
tons, that is, words of length one. While the subtle difference
between letters and singletons is typically ignored in the
literature without any significant harm, for the formaliza-
tion, the difference between a letter 𝑎, and the list [𝑎] must
obviously be kept in mind. We therefore prefer to denote
⟨𝐺⟩ the submonoid of Σ∗ generated by a set𝐺 ⊂ Σ∗. We also
call it the hull of 𝐺 . The expression 𝑡∗ above is therefore an
abbreviation for ⟨{𝑡}⟩.

2.2 The theorem of Lyndon and Schützenberger
We present a concise proof of the theorem of Lyndon and
Schützenberger. Our proof is similar to the one given in [11,
Section 9.2], however, the core case 𝑐 = 3 is significantly
simplified. The proof is rather dense, and relies on intuition
at several places. A proof of this kind is standard in the liter-
ature, and should be easily comprehensible for a reader with
some experience in Combinatorics on Words. At the same
time, the proof should document that a verified formalization
is desirable already on this level.

Theorem 2.1. If 𝑥𝑎𝑦𝑏 = 𝑧𝑐 and 𝑎, 𝑏, 𝑐 ≥ 2, then the words 𝑥 ,
𝑦 a 𝑧 commute.

Proof. By symmetry, assume |𝑥𝑎 | ≥ |𝑦𝑏 |.
The word 𝑥𝑎 has periods |𝑥 | a |𝑧 |. If |𝑥𝑎 | ≥ |𝑧 | + |𝑥 |, then

the Periodicity lemma implies that 𝑥 and 𝑧 have a period
dividing |𝑥 | a |𝑧 |, which easily yields that they commute.
Similarly if |𝑦𝑏 | ≥ |𝑧 | + |𝑦 |.
Therefore, suppose that 𝑥𝑛−1 is a proper prefix of 𝑧 and

𝑦𝑚−1 a proper suffix of 𝑧. Then |𝑥𝑎 | < 2|𝑧 | and |𝑦𝑏 | < 2|𝑧 |,
hence 𝑐 < 4.
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Let 𝑐 = 3. If 𝑎 ≥ 3, then |𝑥2 | < |𝑧 | implies |𝑥3 | < 3
2 |𝑧 |,

contradicting the assumption |𝑥𝑎 | ≥ |𝑦𝑏 |. Therefore 𝑎 = 2
and |𝑥 | ≥ |𝑦 |. There are words𝑢, 𝑣,𝑤 such that 𝑥 = 𝑢𝑤 = 𝑤𝑣 ,
𝑧 = 𝑥𝑢 = 𝑤𝑣𝑢 and 𝑦𝑏 = 𝑣𝑢𝑤𝑣𝑢. From 𝑢𝑤 = 𝑤𝑣 we deduce
that 𝑢𝑤𝑣 has a period |𝑢 |. Moreover, 𝑢𝑤𝑣 is a factor of 𝑦𝑏
which implies that it has a period |𝑦 |. Since |𝑦 | + |𝑢 | ≤ |𝑢𝑤𝑣 |,
the PL implies that 𝑑 = gcd( |𝑢 | , |𝑦 |) is a period of 𝑢𝑤𝑣 . It
is easy to see that 𝑑 divides also |𝑣 | and |𝑤 |, which implies
that words 𝑢, 𝑣 and 𝑤 commute. Therefore also 𝑥 , 𝑦 and 𝑧

commute.
The case 𝑐 = 2 remains. We have 𝑧 = 𝑥𝑎−1𝑢 = 𝑤𝑦𝑏 , where

𝑢𝑤 = 𝑥 . Then𝑤𝑧 = (𝑤𝑢)𝑎 = 𝑤2𝑦𝑏 , where𝑤𝑢 is shorter than
𝑧. The proof is completed by induction. □

2.3 Graph lemma
The DT for word equations states that any solution of a non-
trivial equation has rank less than the number of unknowns.
It was probably for the first time proved in the legendary
hand-written book by Lentin [10]:
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which is, admittedly, not a fully formalized format by today
standards. The GL is a stronger version of the claim, gen-
eralized for systems of equations. It owes its name to the
formulation in [7], where the rank is described using con-
nected components of a graph related to a system of equa-
tions. The connected components are in fact equivalence
classes of unknowns which must share the first element in
the decomposition into the free basis as explained below. The
crucial fact yielding the GL has a nice proof given already in
[3], which is the one we formalize.
Every submonoid of Σ∗ has a unique smallest generat-

ing set, called basis. It is simply the set of indecomposable
nonempty elements, that is, elements that cannot be non-
trivially factorized. The basis exists since any factorization
decreases length. For example, the set {𝑎, 𝑎𝑏, 𝑏𝑎} is the basis
of themonoid ⟨{𝑎, 𝑎𝑏, 𝑏𝑎}⟩. However, the latter monoid is not
free, since 𝑎𝑏𝑎 has two distinct factorizations into elements
of the basis 𝑎 · 𝑏𝑎 = 𝑎𝑏 · 𝑎.

As already mentioned in the Introduction, for any set 𝑋 ⊆
Σ∗, there is a unique smallest (with respect to the inclusion)
free monoid ⟨𝑋 ⟩F containing𝑋 as a subset. This follows from
the fact that a monoid𝑀 is free if it is equidivisible, that is, if
𝑥 ·𝑦 = 𝑢 ·𝑣 , where𝑥,𝑦,𝑢, 𝑣 ∈ 𝑀 and𝑢 is shorter than𝑥 , implies
that 𝑢−1𝑣 is also in𝑀 . This is easily seen to be equivalent to
the usual “unique factorization” or “no nontrivial relation”

definition of freeness. Another formulation of the same fact
is the stability condition:

𝑝, 𝑝𝑤,𝑤𝑞, 𝑞 ∈ 𝑀 =⇒ 𝑤 ∈ 𝑀 .

Note that the link to the equidivisibility is given by 𝑝 ·𝑤𝑞 =

𝑝𝑤 ·𝑞. Since the stability condition is obviously closed under
intersection, we obtain

⟨𝑋 ⟩F =
⋂
{𝑀 | 𝑋 ⊂ 𝑀, 𝑀 free}.

The basis BF (𝑋 ) of ⟨𝑋 ⟩F is the free basis of 𝑋 , and its
cardinality is the free rank of 𝑋 . The DT states that the free
rank of 𝑋 is at most the cardinality of 𝑋 , and it is strictly
smaller unless 𝑋 is its own free basis, that is, unless it is a
code. Note that the free basis has a smaller cardinality than
the (ordinary) basis, although the monoid it generates is
larger.
Very little can be said in general about the actual degree

of the defect, that is, about the actual value of the free rank
for a set that is not a code, and the GL is the best general
bound available. Note that any element of ⟨𝑋 ⟩F has a unique
factorization into elements of BF (𝑋 ). For 𝑥 ∈ BF (𝑋 ), let
hdF (𝑥) denote the head, that is, the first factor, of such a
decomposition. The crucial fact mentioned above yielding
the GL is the following one (see [3]):

Theorem 2.2. BF (𝑋 ) = {hdF (𝑥) | 𝑥 ∈ 𝑋 }.

The nontrivial inclusion is to show that each element of
BF (𝑋 ) must be a head of some element from 𝑋 . The proof
is based on the following simple observation:

Lemma 2.3. Let 𝐶 be a code, and let 𝑏 ∈ 𝐶 . Then
𝐶 ′ = {𝑧𝑏𝑘 | 𝑘 ≥ 0, 𝑧 ∈ 𝐶, 𝑧 ≠ 𝑏}

is also a code.

Now, if 𝑏 ∈ BF (𝑋 ) is not a head, then 𝑋 is contained in
⟨𝐶 ′⟩ where 𝐶 ′ is as in the lemma for 𝐶 = BF (𝑋 ). Since ⟨𝐶 ′⟩
does not contain 𝑏, we have ⟨𝐶 ′⟩ ⊊ ⟨𝑋 ⟩F, a contradiction
with the minimality of ⟨𝑋 ⟩F.

3 Remarks on the formalization in
Isabelle/HOL

Formalization described in this paper consists of four theo-
ries. Two background theories
• CoWBasic: defines basic concepts, and contains about
three hundred auxiliary lemmas (not all of themneeded
for the two main presented results).
• CoWSubmonoids: defines submonoids, and contains
fundamental properties of bases, codes and free hulls.

and two main results:
• CoWLyndonSchutzenberger: of Theorem 2.1we prove
only that 𝑥 and 𝑦 commute. Commutation of 𝑧 follows
easily, the only reason for this choice is that there is
no elegant formulation of the claim that three words
commute.
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• CoWGraphLemma: proves Lemma 2.3 and Theorem
2.2.

We highlight some details from these theories.

3.1 Lists
The choice of the datatype of lists to represent words is
an obvious one. The underlying alphabet is an unspecified
datatype represented by the type variable ′a. We use the
abbreviation · for the Isabelle’s concatenation symbol , and
𝜀 for the empty list (Nil or [] in Isabelle). We also introduce
notation |w| for length w, and ∈n for an nonempty element.
Moreover, the set 𝐺 \ {𝜀} can be written as 𝐺+.
NB: Whenever we speak about Isabelle, we have in mind the
Main library of Isabelle/HOL.

3.2 Monoids and powers
The choice of the symbol · for concatenation underscores
the importance of the fact that lists form a monoid. This is a
trivial fact (associativity is the most natural, almost invisible
property of concatenation) which would deserve no discus-
sion, if not for the need of using the power. Since Isabelle
does not instantiate the class power to lists, we do not have
a direct approach to such basic facts as 𝑥𝑎+𝑏 = 𝑥𝑎 · 𝑥𝑏 . There
are several options how to solve this: we could instantiate
the class power ourselves, or we could interpret lists as a
sublocale of monoid_mult. None of these solutions being
optimal, we define list_power

primrec list-power :: ′a list⇒ nat⇒ ′a list (infixr @)
where
power-zero: u@0 = 𝜀 |
power-Suc-list: u@ (Suc n) = u · u@n

and prove corresponding lemmas afresh. The overhead is
minimal. Since we then cannot use the usual 𝑢^𝑛, we write
𝑢@𝑛, as a kind of tribute to the original notation for concate-
nation.

3.3 Elementary equations on words
As mentioned above, the solution of the most elementary
non-trivial equation on words 𝑥 · 𝑦 = 𝑦 · 𝑥 is provided by
Main’s theory List as comm-append-are-replicate:
lemma comm-append-are-replicate:
[[ xs ≠ []; ys ≠ []; xs @ ys = ys @ xs ]]
=⇒ ∃m n zs. concat (replicate m zs) = xs ∧ concat
(replicate n zs) = ys

We can see here the original Isabelle’s notation, and also the
way how it deals with the power: 𝑧𝑠𝑚 is obtained as concat
(replicate m zs). More significantly, the claim is unnecessar-
ily weak, since the conclusion holds even for empty lists. We
can therefore straightforwardly generalize to:

theorem comm: x · y = y · x =⇒ ∃ t m k. x = t@k ∧
y = t@m

or even to
corollary comm-root: x · y = y · x ←→ (∃ t. x ∈ t∗
∧ y ∈ t∗)

A slightly more elaborate equation 𝑥 ·𝑧 = 𝑧 ·𝑦, which is in
fact the relation of 𝑥 and 𝑦 being conjugated by the word 𝑧,
is, expectedly, not treated in the Isabelle’s Main library. The
solution of this equation is as follows:
theorem conjug: assumes x·z = z·y and x ≠ 𝜀

shows ∃ u v k. x = u · v ∧ y = v · u ∧ z = (u · v)@k · u

It is interesting to remark that, in light of our formalization,
it is more natural to see the equality 𝑥 · 𝑧 = 𝑧 · 𝑦 not as a
property of 𝑥 and 𝑦 (namely of their being conjugated) but
rather as a property of 𝑧, namely of its having a period root
𝑥 , written as 𝑧 ≤p 𝑥𝜔 , where ≤p is the prefix relation:
definition period-root :: ′a list⇒ ′a list⇒ bool (- ≤𝑝 -𝜔 )
where period-root z x = (z ≤𝑝 x · z ∧ x ≠ 𝜀)

3.4 The theorem of Lyndon and Schützenberger
We have seen above that the solution of the LSE naturally
splits into several cases. Two of them are proven separately
in a locale:
locale LS =
fixes x a y b z c
assumes a: 2 ≤ a and b: 2 ≤ b and c: 2 ≤ c and eq:

x@a · y@b = z@c

Namely, the cased solved by the PL,
lemma per-lemma-case:
assumes |z| + |x| ≤ |x@a| and x ≠ 𝜀

shows x·y=y·x

and the core case 𝑐 = 3.
lemma core-case:
assumes
c = 3 and
b∗|y| ≤ a∗|x| and x ≠ 𝜀 and y ≠ 𝜀 and
lenx: a∗|x| < |z| + |x| and
leny: b∗|y| < |z| + |y|

shows x·y = y·x

It would seem natural to solve even the remaining case
𝑐 = 2 separately, and then simply put the three cases together.
However, this is not possible, since the induction, abruptly
announced on the last line of the human proof, actually
governs the whole proof since it covers the first two cases as
well. (This is one of the typical backtracking moments of the
development.) Themain proof of the Theorem of Lyndon and
Schützenberger, Theorem 2.1, therefore has the following
structure.
theorem Lyndon-Schutzenberger:
[[ x@a·y@b = z@c; 2 ≤ a; 2 ≤ b; 2 ≤ c ]]

4
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=⇒ x·y = y·x
proof (induction |z| + b∗|y| arbitrary: x y z a b c rule:
nat-less-induct)
qed

Note that the induction is on |𝑧 | +𝑏 |𝑦 |. This curious choice
avoids (in a hopefully elegant way), another typical pitfall of
the formalization, namely the humanly generous “by sym-
metry” from the first line of the proof (which, by the way,
is still more precise than frequent and even more generous
“wlog”). The point is that the introduced locale LS allows two
interpretations (within the proof), one for each of the two
symmetric situations (the first interpretation needs no name,
the second one is called LSrev):
interpret LS x a y b z c
interpret LSrev: LS rev y b rev x a rev z c

Now, if |𝑥𝑎 | <
��𝑦𝑏 ��, then the symmetric case is solved imme-

diately by induction.

3.5 Submonoids, free hull and decompositions
The set ⟨𝐺⟩ can be seen (and defined) in two different ways:
• it is the smallest set closed under concatenation con-
taining 𝐺 ; and/or
• it is the set of all words that can be obtained by con-
catenation of lists of words from 𝐺 (note that we deal
with lists of lists here).

We use the first definition:
inductive-set hull :: ′a list set⇒ ′a list set (⟨-⟩)
for G where
𝜀 ∈ ⟨G⟩
| gen-in: w ∈ G =⇒ w ∈ ⟨G⟩
| w1 ∈ ⟨G⟩ =⇒ w2 ∈ ⟨G⟩ =⇒ w1 · w2 ∈ ⟨G⟩

and prove its equivalence to the latter:

lemma hull-concat-lists: ⟨G⟩ = concat ‘ lists G

The term Dec𝐺 𝑢 represents SOME decomposition of the
word 𝑢 into elements of G. It returns a list of words, i.e., of
type ′a list list.

fun decompose :: ′a list set ⇒ ′a list⇒ ′a list list (Dec
- - ) where
decompose G u = (SOME us. us ∈ lists G+ ∧ u = concat
us)

The output of the function makes no good sense if the second
argument is not in ⟨𝐺⟩. Nevertheless, even for elements
of ⟨𝐺⟩ the list is an unspecified choice among all possible
factorizations. For example, if 𝐺 = {𝑎, 𝑎𝑏, 𝑏𝑎} and 𝑢 = 𝑎𝑏𝑎,
then Dec𝐺 𝑢 is either [𝑎, 𝑏𝑎] or [𝑏𝑎, 𝑎]. This in particular
implies that we cannot prove Dec𝐺 (𝑢 ·𝑣) = Dec𝐺 𝑢 ·Dec𝐺 𝑣 .

These difficulties disappear in the free hull, where the de-
composition is unique. In particular, the term DecBF (𝑋 ) 𝑥 ,
which plays the crucial role in the GL, has a definite meaning.

The definition of the free hull is a natural extension of
the inductive definition of the (ordinary) hull by the stability
condition:
inductive-set free-hull :: ′a list set⇒ ′a list set (⟨-⟩𝐹 )
for G where
𝜀 ∈ ⟨G⟩𝐹
| free-gen-in: w ∈ G =⇒ w ∈ ⟨G⟩𝐹
| w1 ∈ ⟨G⟩𝐹 =⇒ w2 ∈ ⟨G⟩𝐹 =⇒ w1 · w2 ∈ ⟨G⟩𝐹
| p ∈ ⟨G⟩𝐹 =⇒ q ∈ ⟨G⟩𝐹 =⇒ p · w ∈ ⟨G⟩𝐹 =⇒ w · q ∈
⟨G⟩𝐹 =⇒ w ∈ ⟨G⟩𝐹

3.6 The Graph Lemma
The theory behind the proof of the GL relies on two inductive
sets. The first one is the set 𝐶 ′ of Lemma 2.3:
inductive-set no-head-gen :: ′a list set⇒ ′a list⇒ ′a
list set
for C b where
u ∈ C =⇒ u ≠ b =⇒ u ∈ no-head-gen C b
| u ∈ no-head-gen C b =⇒ u · b ∈ no-head-gen C b

The second one is the set of all elements in ⟨𝐶⟩ whose
factorization into elements of 𝐶 does not start with 𝑏.
inductive-set no-head :: ′a list set⇒ ′a list⇒ ′a list
set
for C b where
𝜀 ∈ no-head C b
| u ∈ C =⇒ u ≠ b =⇒ u ∈ no-head C b
| u ∈n no-head C b =⇒ v ∈ ⟨C⟩ =⇒ u · v ∈ no-headC b

The core of the proof is to show that no-head-gen C b gen-
erates no-head C b, and, most importantly, that no-head-gen
C b is a code:
theorem no-head-gen-code:
assumes code C and b ∈ C
shows code {z · b@k | z k. z ∈ C ∧ z ≠ b}

With those ingredients, the proof of Theorem 2.2:
theorem graph-lemma: 𝔅𝐹 X = {hd (Dec (𝔅𝐹 X) x) |
x. x ∈n X}

is not difficult.

4 Conclusion
The aim of this paper to introduce an ongoing formalization
of Combinatorics on Words. The next step after the Lyndon-
Schützenberger theorem is its natural extension obtained
independently by J.-P. Spehner [18], and by E. Barbin-Le
Rest, M. Le Rest [1] which claims that 𝑥𝑖𝑦 is the only non-
trivial way (up to symmetry and conjugation) how two non-
commuting words can form an imprimitive word (like 𝑧𝑐 ).
The history of this result is another good motivation for
our formalization project. The result, while very natural
and important, has been almost forgotten (it was cited only
six times before 2015). A weaker form of this result was
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even rediscovered in 1994 [17], and started to be referenced.
One reason for this is that already this relatively simple
result is very technical and difficult to read. Moreover, the
paper contains several minor inaccuracies whichmay further
discourage the reader. This is by no means an exceptional
situation in Combinatorics on words, which testifies for a
strong need of formally verified proofs in the field.
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