Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Algorithms and datastructures I Lecture 9: RB-trees and hashing

Jan Hubička

Department of Applied Mathematics Charles University Prague

March 24 2020

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
● ○ ○	0000	00	0	000	00

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universe. We expect that elements of the universum in set can be assigned and compared in O(1).

INSERT(v): Insert v to the set.

DELETE(v): Delete v from the set.

FIND(v): Find v in the set.

MIN: Return minimum.

MAX: Return maximum.

SUCC(v): Find successor.

PRED(v): Find predecessor.

	Basic	implementations	
--	-------	-----------------	--

	INSERT	DELETE	Find	MIN/MAX	SUCC/PRED
Linked list	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>) or <i>O</i> (1)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
Array	O(n) or $O(1)$	O(n) or $O(1)$	O(n)	O(n)	O(n)
Sorted array	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)	$O(\log n)$	<i>O</i> (1)	$O(\log n)$ or $O(1)$
binary search trees	O(n)	O(n)	O (<i>n</i>)	O(n)	O(n)
AVL-trees	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$
(<i>r</i> , <i>b</i>)-trees	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$	$O(\log n)$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

(a, b)-trees (Bayer, McCreight)

Rudolf Bayer

Edward M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two types of vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has keys $x_1 < \cdots < x_k$ then it has k + 1 sons s_0, \ldots, s_k . Keys separate values in sons, so:

$$T(s_0) < x_1 < T(s_1) < x_2 < \cdots < x_{k-1} < T(s_{k-1}) < x_k < T(s_k)$$

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given $a \ge 2$, $b \ge 2a - 1$ is a generalised search tree such that:

- 1. Root has 2 to b sons.
- 2. Other internal vertices have a to b sons.
- 3. All external vertices are in the level.

Lemma

Every (a, b)-tree with n keys has depth $\Theta(\log n)$.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Insert to (*a*, *b*)-tree

lnsert(v,x)

Let *u* be the last internal vertex visited by Find(v,x).

- 1. If *u* contains *x* return.
- 2. Otherwise add x into u and insert new external vertex
- 3. If *u* has more than *b* sons, split it possibly recursing to father.

It is possible to split preventively if $b \ge 2a$. We will use it today.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	•000	00	0	000	00

We can represent (2, 4)-trees using binary search trees with colored edges.

Leonidas J. Guibas

Robert Sedgewick

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

We can represent (2, 4)-trees using binary search trees with colored edges.

Leonidas J. Guibas

Robert Sedgewick

Definition (Left leaning red-back tree)

LLRB-tree is binary search tree with external vertices and edges colored either red or black. It satisfies:

- 1. There are no two red edges adjacent to each other.
- 2. If there is only one red edge from a vertex then it is left.
- 3. Edges to leaves are always black.
- 4. Every path from root to leaf goes through the same number of black edges.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	●000	00	0	000	00

We can represent (2, 4)-trees using binary search trees with colored edges.

Definition (Left leaning red-back tree)

LLRB-tree is binary search tree with external vertices and edges colored either red or black. It satisfies:

- 1. There are no two red edges adjacent to each other.
- 2. If there is only one red edge from a vertex then it is left.
- 3. Edges to leaves are always black.
- 4. Every path from root to leaf goes through the same number of black edges.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

We can represent (2, 4)-trees using binary search trees with colored edges.

Definition (Left leaning red-back tree)

LLRB-tree is binary search tree with external vertices and edges colored either red or black. It satisfies:

- 1. There are no two red edges adjacent to each other.
- 2. If there is only one red edge from a vertex then it is left.
- 3. Edges to leaves are always black.
- 4. Every path from root to leaf goes through the same number of black edges.

Optimization: Color of edge may be stored in its destination vertex.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Depth of LLRB-trees

Lemma

Every LLRB-tree with *n* keys has depth $\Theta(\log n)$.

Proof.

We know that every LLRB-tree tree corresponds to an (2, 4)-tree of height $h = \Theta(\log n)$. The height h' of LLRB tree is $h \le h' \le 2h$.

Recall: (<i>a</i>, <i>b</i>) -trees	Red-black trees	Tries and Radix trees	Amortised complexity O	Hashing 000	Universal hashing			
Operations on LLPR trees								

Operations on LLRB-trees

Observation

Operations FIND, MIN, MAX, SUCC and PRED run in $\Theta(\log n)$.

Recall: (<i>a</i> , <i>b</i>)-trees	Red-black trees	Tries and Radix trees	Amortised complexity O	Hashing 000	Universal hashing

Operations on LLRB-trees

Observation

Operations FIND, MIN, MAX, SUCC and PRED run in $\Theta(\log n)$.

Operations INSERT and DELETE can be derived from ones on (2, 4)-trees.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key *x*.
- 2. If x = k(v): Return v.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key *x*.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).

000 000 0 00 0 00 00 00 00	Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
	000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.

00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).

00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).
- 7. If l(v) and l(l(v)) are red: rotate edge (v, l(v)) and put to v original l(v).

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).
- 7. If l(v) and l(l(v)) are red: rotate edge (v, l(v)) and put to v original l(v).
- 8. Return v.

000 000 0 00 0 00 00 00 00	Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
	000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

Insert(v,x)

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).
- 7. If l(v) and l(l(v)) are red: rotate edge (v, l(v)) and put to v original l(v).

8. Return v.

Exchanging steps 3 and 7 leads to representation of (2, 3)-trees.

000 000 0 00 0 00 00 00 00	Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
	000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

Insert(v,x)

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).
- 7. If l(v) and l(l(v)) are red: rotate edge (v, l(v)) and put to v original l(v).

8. Return v.

Exchanging steps 3 and 7 leads to representation of (2, 3)-trees. Fact: DELETE can also be implemented in $\Theta(\log n)$ time.

000 000 0 00 0 00 00 00 00	Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
	000	0000	00	0	000	00

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

Insert(v,x)

- 1. If $v = \emptyset$: return newly created red vertex with key x.
- 2. If x = k(v): Return v.
- 3. If l(v) and r(v) are red: change color of v, l(v) and r(v).
- 4. If x < k(v): $l(v) \leftarrow \text{Insert}(l(v), x)$.
- 5. If x > k(v): $r(v) \leftarrow \text{Insert}(r(v), x)$.
- 6. If I(v) is black and r(v) red: rotate edge (v, r(v)) and put to v original r(v).
- 7. If l(v) and l(l(v)) are red: rotate edge (v, l(v)) and put to v original l(v).

8. Return v.

Exchanging steps 3 and 7 leads to representation of (2, 3)-trees. Fact: DELETE can also be implemented in $\Theta(\log n)$ time.

Theorem

Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on LLRB-tree runs in $\Theta(\log n)$ time.

Recall: (<i>a</i> , <i>b</i>)-trees	Red-black trees	Tries and Radix trees	Amortised complexity O	Hashing 000	Universal hashing
Tries					

Let Σ be a fixed alphabet. Let $S \subseteq \Sigma^*$ be a set of words over alphabet Σ .

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

- 1. vertices are all prefixes of words $W \in X$, and
- 2. W' is a son of word W if W' is created from W by extending it by one letter.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	0.	0	000	00
Tries					

Let Σ be a fixed alphabet. Let $S \subseteq \Sigma^*$ be a set of words over alphabet Σ .

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

- 1. vertices are all prefixes of words $W \in X$, and
- 2. W' is a son of word W if W' is created from W by extending it by one letter.

Theorem

FIND, INSERT and DELETE for word X can all be implemented in O(|X|).

Recall: (<i>a</i> , <i>b</i>)-trees	Red-black trees	Tries and Radix trees ○●	Amortised complexity O	Hashing 000	Universal hashing
Tries					

Let Σ be a fixed alphabet. Let $S \subseteq \Sigma^*$ be a set of words over alphabet Σ .

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

- 1. vertices are all prefixes of words $W \in X$, and
- 2. W' is a son of word W if W' is created from W by extending it by one letter.

Theorem

FIND, INSERT and DELETE for word X can all be implemented in O(|X|).

To store sets of integers one can see integers as words in some fixed base. Result is known as a radix tree.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	•	000	00

Amortised complexity

Insertion to a (dynamically allocated) growing array.

Insert((A, s, n),x) insert element x to array A of size s containing n elements

1. if *n* = *s*:

- 2. Allocate array A' of size 2s.
- 3. For $i = 0, 1, \ldots, n-1$: $A'[i] \leftarrow A[i]$.
- 4. Free *A*.
- 5. $A \leftarrow A', s \leftarrow 2s$
- 6. $A[n] \leftarrow x, n \leftarrow n+1$
- 7. Return (*A*, *s*, *n*).

Worst case complexity of INSERT is O(n).

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	•	000	00

Amortised complexity

Insertion to a (dynamically allocated) growing array.

Insert((A, s, n),x) insert element x to array A of size s containing n elements

1. if *n* = *s*:

- 2. Allocate array A' of size 2s.
- 3. For $i = 0, 1, \ldots, n-1$: $A'[i] \leftarrow A[i]$.
- 4. Free *A*.
- 5. $A \leftarrow A', s \leftarrow 2s$
- 6. $A[n] \leftarrow x, n \leftarrow n+1$
- 7. Return (*A*, *s*, *n*).

Worst case complexity of INSERT is O(n).

Theorem

Performing *n* operations INSERT starting from the empty array will run in time $\Theta(n)$.

Proof.

To insert 2^i elements one needs $2^0 + 2^1 + 2^2 + 2^3 + \cdots + 2^{i-1} = 2^i - 1$ copy operations.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Hash function is a function *h* from universe \mathcal{U} to set $\mathcal{P} = \{0, 1, \dots, p-1\}$ (of hashes).

Hash table with separate chaining for set $S \subseteq U$ with hash function $h: U \to \mathcal{P}$.

Hash table is an array H of linked lists indexed by \mathcal{P} . List H[i] contains all elements e of set S such that h(e) = i.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Hash function is a function *h* from universe \mathcal{U} to set $\mathcal{P} = \{0, 1, \dots, p-1\}$ (of hashes).

Hash table with separate chaining for set $S \subseteq U$ with hash function $h: U \to \mathcal{P}$.

Hash table is an array H of linked lists indexed by \mathcal{P} . List H[i] contains all elements e of set S such that h(e) = i.

Assumptions

- 1. h(x) can be computed in O(1).
- 2. h(x) "behaves randomly".

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Hash function is a function *h* from universe \mathcal{U} to set $\mathcal{P} = \{0, 1, \dots, p-1\}$ (of hashes).

Hash table with separate chaining for set $S \subseteq U$ with hash function $h: U \to \mathcal{P}$.

Hash table is an array H of linked lists indexed by \mathcal{P} . List H[i] contains all elements e of set S such that h(e) = i.

Assumptions

- 1. h(x) can be computed in O(1).
- 2. h(x) "behaves randomly".

Observation

Every entry of the hash table will contain approximately $\frac{|S|}{p}$ elements.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Hash function is a function *h* from universe \mathcal{U} to set $\mathcal{P} = \{0, 1, \dots, p-1\}$ (of hashes).

Hash table with separate chaining for set $S \subseteq U$ with hash function $h: U \to \mathcal{P}$.

Hash table is an array H of linked lists indexed by \mathcal{P} . List H[i] contains all elements e of set S such that h(e) = i.

Assumptions

- 1. h(x) can be computed in O(1).
- 2. h(x) "behaves randomly".

Observation

Every entry of the hash table will contain approximately $\frac{|S|}{p}$ elements.

Corollary

Operations FIND, INSERT and DELETE will run in O(|S|) however expected (average) runtime is only $O(\frac{|S|}{n})$.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Hash function is a function *h* from universe \mathcal{U} to set $\mathcal{P} = \{0, 1, \dots, p-1\}$ (of hashes).

Hash table with separate chaining for set $S \subseteq U$ with hash function $h: U \to \mathcal{P}$.

Hash table is an array H of linked lists indexed by \mathcal{P} . List H[i] contains all elements e of set S such that h(e) = i.

Assumptions

- 1. h(x) can be computed in O(1).
- 2. h(x) "behaves randomly".

Observation

Every entry of the hash table will contain approximately $\frac{|S|}{p}$ elements.

Corollary

Operations FIND, INSERT and DELETE will run in O(|S|) however expected (average) runtime is only $O(\frac{|S|}{n})$.

Corollary

Putting $p \sim |S|$ we get FIND, INSERT and DELETE is running on average approximately in O(1).

Recall: (a , b)-trees 000	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing O●O	Universal hashing
The state of the second second					

Example (Integers: $h: \mathbb{N} \to \{0, 1, \dots, p-1\}$)

 $h(x) = ax \mod p$

where *a*, *p* are prime numbers.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Example (Integers: $h: \mathbb{N} \to \{0, 1, \dots, p-1\}$)

 $h(x) = ax \mod p$

where *a*, *p* are prime numbers.

Example (Strings: $h: \mathbb{N}^* \to \{0, 1, \dots, p-1\}$)

$$h(x) = \left(\sum_{i=1}^{|x|} x_i a^{|x|-i} \mod p\right).$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Example (Integers: $h: \mathbb{N} \to \{0, 1, \dots, p-1\}$)

 $h(x) = ax \mod p$

where *a*, *p* are prime numbers.

Example (Strings: $h: \mathbb{N}^* \to \{0, 1, \dots, p-1\}$)

$$h(x) = \left(\sum_{i=1}^{|x|} x_i a^{|x|-i} \mod p\right).$$

Can be effectively computed as (Horner's method):

$$\begin{array}{rcl} h_1 & = & x_1 \\ h_2 & = & (h_1 a + x_2) \mod p \\ h_3 & = & (h_2 a + x_3) \mod p \\ \cdots & \cdots & \cdots \\ h_{|x|} & = & (h_{|x|-1} a + x_{|x|}) \mod , \end{array}$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Open addressing

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0,, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

Open addressing

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0,, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

We can not remove values from the table, just mark them as removed.
Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)	
1. For $i = 0,, p - 1$:	1. For $i = 0, \dots, p - 1$:	
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$	
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .	
4. Report that table is full.	4. Return Ø.	

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

Let p_i be probability that we will search at least *i* entries.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

Let p_i be probability that we will search at least *i* entries. $p_1 = 1$,

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

Let p_i be probability that we will search at least *i* entries. $p_1 = 1, p_2 = \frac{n}{m} = \alpha$,

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

$$S = \sum_{i \ge 1} i(p_i - p_{i+1})$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

$$S = \sum_{i \ge 1} i(p_i - p_{i+1}) = \sum_{i \ge 1} (i - (i-1))p_i$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

$$S = \sum_{i \ge 1} i(p_i - p_{i+1}) = \sum_{i \ge 1} (i - (i-1))p_i = \sum_{i \ge 1} p_i \le \sum_{i \ge 1} \alpha^{i-1}$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Proof.

$$S = \sum_{i \ge 1} i(p_i - p_{i+1}) = \sum_{i \ge 1} (i - (i-1))p_i = \sum_{i \ge 1} p_i \le \sum_{i \ge 1} \alpha^{i-1} = \sum_{i \ge 0} \alpha^{i-1}$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Linear addressing: $h(x, i) = f(x) + i \mod p$.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Linear addressing: $h(x, i) = f(x) + i \mod p$.

Not a random permutation: expected number of visited entries increases to: $\frac{1}{(1-\alpha)^2}$.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00

An alternative way of solving collisions is to use hash function h(x, i) such that for every $x \in U$ sequence $h(x, 0), h(x, 1), \ldots, h(x, p - 1)$ is a permutation of $(0, 1, \ldots, p - 1)$.

Insert(x)	Find(x)
1. For $i = 0, \dots, p - 1$:	1. For $i = 0,, p - 1$:
2. $j \leftarrow h(x, i)$	2. $j \leftarrow h(x, i)$
3. If $H[j] = \emptyset$: put $H[j] \leftarrow x$ and return.	3. If $H[j] = x$: return <i>j</i> .
4. Report that table is full.	4. Return Ø.

Theorem

Assuming that the hash function is giving random permutations, the average number of visited entries during unsuccessful find is $\frac{1}{(1-\alpha)}$ for $\alpha = \frac{n}{m}$.

Linear addressing: $h(x, i) = f(x) + i \mod p$.

Not a random permutation: expected number of visited entries increases to: $\frac{1}{(1-\alpha)^2}$.

Double hashing: $h(x, i) = (f(x) + i(g(x) + 1)) \mod m$ for f and g being two different hash functions.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	•0

Definition (c-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq \frac{c}{p}.$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	•0

Definition (c-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq \frac{c}{p}.$$

Lemma

Let S be c-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

Recall: (<i>a</i> , <i>b</i>)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	●O

Definition (c-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq rac{c}{p}.$$

Lemma

Let S be c-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

The lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	•O

Definition (*c*-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq rac{c}{p}.$$

Lemma

Let S be c-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

he lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Proof.

We define indicators I_1, I_2, \ldots, I_n :

$$l_i = \begin{cases} 0 & \text{if } h(x_i) \neq h(y) \\ 1 & \text{if } h(x_i) = h(y) \end{cases}$$

Recall: (<i>a</i> , <i>b</i>)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	●O

Definition (*c*-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq rac{c}{p}.$$

Lemma

Let S be c-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

he lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Proof.

We define indicators I_1, I_2, \ldots, I_n :

$$\mathbb{E}[I_i] = \Pr[I_i = 1] \leq \frac{c}{p}$$
. (by universality)

$$l_i = \begin{cases} 0 & \text{if } h(x_i) \neq h(y) \\ 1 & \text{if } h(x_i) = h(y) \end{cases}$$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	•O

Definition (*c*-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq rac{c}{p}.$$

Lemma

Let *S* be *c*-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

he lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Proof.

We define indicators I_1, I_2, \ldots, I_n :

$$l_i = \begin{cases} 0 & \text{if } h(x_i) \neq h(y) \\ 1 & \text{if } h(x_i) = h(y). \end{cases}$$

 $\mathbb{E}[l_i] = \Pr[l_i = 1] \le \frac{c}{p}. \text{ (by universality)}$ $\mathbb{E}_{h \in S}[\#i: h(x_i) = h(y)] = \sum_{1 \le i \le n} \mathbb{E}[l_i].$

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	● O

Definition (c-universal system of hash functions)

System S of hash functions from universe U to $\{0, 1, ..., p-1\}$ is c-universal for given $c \ge 1$ if for every $x, y \in U, x \neq y$

$$\Pr_{h\in\mathcal{S}}[h(x)=h(y)]\leq rac{c}{p}.$$

Lemma

Let *S* be *c*-universal system of hash functions $U \to \{0, 1, ..., p\}$. Let $x_1, x_2, ..., x_n, y$ be pairwise different elements of U. Then

$$\mathbb{E}_{h\in\mathcal{S}}[\#i\colon h(x_i)=h(y)]\leq \frac{cn}{p}$$

he lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Proof.

We define indicators I_1, I_2, \ldots, I_n :

$$l_i = \begin{cases} 0 & \text{if } h(x_i) \neq h(y) \\ 1 & \text{if } h(x_i) = h(y). \end{cases}$$

$$\begin{split} \mathbb{E}[l_i] &= \Pr[l_i = 1] \leq \frac{c}{p}. \text{ (by universality)} \\ \mathbb{E}_{h \in \mathcal{S}}[\#i: h(x_i) = h(y)] &= \sum_{1 \leq i \leq n} \mathbb{E}[l_i]. \\ \mathbb{E}_{h \in \mathcal{S}}[\#i: h(x_i) = h(y)] &= \sum_{1 \leq i \leq n} \Pr[l_i = 1] \leq \frac{cn}{p}. \end{split}$$

Recall: (<i>a</i>, <i>b</i>) -trees	Red-black trees	Tries and Radix trees	Amortised complexity O	Hashing 000	Universal hashing
1. universal er	(atom				

1-universal system

System of functions $S: \mathbb{Z}_p^d \to \{0, 1, \dots, p-1\}$

Let *p* be a prime number, $\mathcal{P} = \mathbb{Z}_p$ (ring modulo *p*), $\mathcal{U} = \mathbb{Z}_p^d$ (vectors of length *d* in \mathbb{Z}_p). $\mathcal{S} = \{h_{\vec{a}} : \vec{a} \in \mathbb{Z}_p^d, \vec{a} \neq 0\}$ where $h_{\vec{a}}(x) = \vec{a}\vec{x} = \sum_{i=1}^d a_i x_i \mod p$. ($a_i x_i$ is the scalar product).

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00
1-universal sy	/stem				

System of functions $S: \mathbb{Z}_{p}^{d} \to \{0, 1, \dots, p-1\}$

Let *p* be a prime number, $\mathcal{P} = \mathbb{Z}_p$ (ring modulo *p*), $\mathcal{U} = \mathbb{Z}_p^d$ (vectors of length *d* in \mathbb{Z}_p). $\mathcal{S} = \{h_{\vec{a}} : \vec{a} \in \mathbb{Z}_p^d, \vec{a} \neq 0\}$ where $h_{\vec{a}}(x) = \vec{a}\vec{x} = \sum_{i=1}^d a_i x_i \mod p$. ($a_i x_i$ is the scalar product).

Theorem

S is 1-universal.

Recall: (a, b)-trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing	Universal hashing
000	0000	00	0	000	00
1-universal sy	/stem				

System of functions $S: \mathbb{Z}_n^d \to \{0, 1, \dots, p-1\}$

Let p be a prime number, $\mathcal{P} = \mathbb{Z}_p$ (ring modulo p), $\mathcal{U} = \mathbb{Z}_p^d$ (vectors of length d in \mathbb{Z}_p).

$$\mathcal{S} = \{h_{\vec{a}} \colon \vec{a} \in \mathbb{Z}_p^d, \vec{a} \neq 0\} \text{ where } h_{\vec{a}}(x) = \vec{a}\vec{x} = \sum_{i=1}^r a_i x_i \mod p. \ (a_i x_i \text{ is the scalar product})$$

Theorem

S is 1-universal.

Proof.

Set $\vec{x} \neq \vec{y} \in \mathbb{Z}_p^d$. WLOG $x_d \neq y_d$. What is $\Pr_{\vec{a} \in \mathbb{Z}_p^d}[\vec{a}\vec{x} = \vec{a}\vec{y} \mod p]$?

Recall: (<i>a</i>, <i>b</i>) -trees	Red-black trees	Tries and Radix trees	Amortised complexity	Hashing 000	Universal hashing
A contraction of the	and a second				

1-universal system

System of functions $S \colon \mathbb{Z}_p^d \to \{0, 1, \dots, p-1\}$

Let p be a prime number, $\mathcal{P} = \mathbb{Z}_p$ (ring modulo p), $\mathcal{U} = \mathbb{Z}_p^d$ (vectors of length d in \mathbb{Z}_p).

$$\mathcal{S} = \{h_{\vec{a}} \colon \vec{a} \in \mathbb{Z}_p^d, \vec{a} \neq 0\} \text{ where } h_{\vec{a}}(x) = \vec{a}\vec{x} = \sum_{i=1}^{n} a_i x_i \mod p. \ (a_i x_i \text{ is the scalar product})$$

Theorem

S is 1-universal.

Proof.

Set $\vec{x} \neq \vec{y} \in \mathbb{Z}_p^d$. WLOG $x_d \neq y_d$. What is $\Pr_{\vec{a} \in \mathbb{Z}_p^d} [\vec{a}\vec{x} = \vec{a}\vec{y} \mod p]$? Put $\vec{z} = \vec{x} - \vec{y}$. $(\vec{a}\vec{x} \equiv \vec{a}\vec{y} \mod \vec{a}\vec{x} = \vec{a}\vec{y} \mod p)$

$$\mathsf{Pr}_{\vec{a}\in\mathbb{Z}_p^d}\left[\vec{a}\vec{x}\equiv\vec{a}\vec{y}\right]=\mathsf{Pr}_{\vec{a}\in\mathbb{Z}_p^d}\left[\sum_{i=1}^da_iz_i\equiv0\right]=\mathsf{Pr}_{\vec{a}\in\mathbb{Z}_p^d}\left[\sum_{i=1}^{d-1}a_iz_i+a_dz_d\equiv0\right].$$

Recall: (<i>a</i>, <i>b</i>) -trees	Red-black trees	Tries and Radix trees	Amortised complexity O	Hashing 000	Universal hashing
A construction of the	and a second				

1-universal system

System of functions $S \colon \mathbb{Z}_p^d \to \{0, 1, \dots, p-1\}$

Let p be a prime number, $\mathcal{P} = \mathbb{Z}_p$ (ring modulo p), $\mathcal{U} = \mathbb{Z}_p^d$ (vectors of length d in \mathbb{Z}_p).

$$\mathcal{S} = \{h_{\vec{a}} \colon \vec{a} \in \mathbb{Z}_p^d, \vec{a} \neq 0\} \text{ where } h_{\vec{a}}(x) = \vec{a}\vec{x} = \sum_{i=1}^{n} a_i x_i \mod p. \ (a_i x_i \text{ is the scalar product})$$

Theorem

S is 1-universal.

Proof.

Set $\vec{x} \neq \vec{y} \in \mathbb{Z}_p^d$. WLOG $x_d \neq y_d$. What is $\Pr_{\vec{a} \in \mathbb{Z}_p^d} [\vec{a}\vec{x} = \vec{a}\vec{y} \mod p]$? Put $\vec{z} = \vec{x} - \vec{y}$. $(\vec{a}\vec{x} \equiv \vec{a}\vec{y} \mod \vec{a}\vec{x} = \vec{a}\vec{y} \mod p)$

$$\mathsf{Pr}_{\vec{a} \in \mathbb{Z}_p^d} \left[\vec{a} \vec{x} \equiv \vec{a} \vec{y} \right] = \mathsf{Pr}_{\vec{a} \in \mathbb{Z}_p^d} \left[\sum_{i=1}^d a_i z_i \equiv 0 \right] = \mathsf{Pr}_{\vec{a} \in \mathbb{Z}_p^d} \left[\sum_{i=1}^{d-1} a_i z_i + a_d z_d \equiv 0 \right].$$

 $\sum_{i=1}^{d-1} a_i z_i + a_d z_d \equiv 0$ happens only if $\sum_{i=1}^{d-1} a_i z_i \equiv -a_d z_d$. This has probability $\frac{1}{p}$.