
Recall: (a, b)-trees Red-black trees Tries and Radix trees Amortised complexity Hashing Universal hashing

Algorithms and datastructures I
Lecture 9: RB-trees and hashing

Jan Hubička
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Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universe.
We expect that elements of the universum in set can be assigned and compared in O(1).

INSERT(v ): Insert v to the set.

DELETE(v ): Delete v from the set.

FIND(v ): Find v in the set.

MIN: Return minimum.

MAX: Return maximum.

SUCC(v ): Find successor.

PRED(v ): Find predecessor.

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)
binary search trees O(n) O(n) O(n) O(n) O(n)
AVL-trees O(log n) O(log n) O(log n) O(log n) O(log n)
(r , b)-trees O(log n) O(log n) O(log n) O(log n) O(log n)
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(a,b)-trees (Bayer, McCreight)

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types of vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xk then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.

Lemma
Every (a, b)-tree with n keys has depth Θ(log n).



Recall: (a, b)-trees Red-black trees Tries and Radix trees Amortised complexity Hashing Universal hashing

Insert to (a,b)-tree

Insert(v ,x)

Let u be the last internal vertex visited by Find(v ,x).

1. If u contains x return.

2. Otherwise add x into u and insert new external vertex

3. If u has more than b sons, split it possibly recursing to father.

It is possible to split preventively if b ≥ 2a. We will use it today.
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Red-black trees (Bayer 1972; Guibas, Sedgewick 1978; Anderson 1993; Sedgewick 2008)

We can represent (2, 4)-trees using binary search trees with colored edges.

Leonidas J. Guibas Robert Sedgewick

Definition (Left leaning red-back tree)

LLRB-tree is binary search tree with external vertices and edges colored either red or black. It satisfies:

1. There are no two red edges adjacent to each other.

2. If there is only one red edge from a vertex then it is left.

3. Edges to leaves are always black.

4. Every path from root to leaf goes through the same number of black edges.

Optimization: Color of edge may be stored in its destination vertex.
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Depth of LLRB-trees

Lemma
Every LLRB-tree with n keys has depth Θ(log n).

Proof.
We know that every LLRB-tree tree corresponds to an (2, 4)-tree of height h = Θ(log n).
The height h′ of LLRB tree is h ≤ h′ ≤ 2h.
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Operations on LLRB-trees

Observation
Operations FIND, MIN, MAX, SUCC and PRED run in Θ(log n).

Operations INSERT and DELETE can be derived from ones on (2, 4)-trees.
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INSERT to an LLRB-tree

Lets see how insertion to (2, 4)-tree with preventive splitting translates to RB-tree.

Insert(v ,x)

1. If v = ∅: return newly created red vertex with key x .

2. If x = k(v): Return v .

3. If l(v) and r(v) are red: change color of v , l(v) and r(v).

4. If x < k(v): l(v)← Insert(l(v), x).

5. If x > k(v): r(v)← Insert(r(v), x).

6. If l(v) is black and r(v) red: rotate edge (v , r(v)) and put to v original r(v).

7. If l(v) and l(l(v)) are red: rotate edge (v , l(v)) and put to v original l(v).

8. Return v .

Exchanging steps 3 and 7 leads to representation of (2, 3)-trees.
Fact: DELETE can also be implemented in Θ(log n) time.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on LLRB-tree runs in Θ(log n) time.
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Tries

Let Σ be a fixed alphabet. Let S ⊆ Σ∗ be a set of words over alphabet Σ.

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

1. vertices are all prefixes of words W ∈ X , and

2. W ′ is a son of word W if W ′ is created from W by extending it by one letter.

Theorem
FIND, INSERT and DELETE for word X can all be implemented in O(|X |).

To store sets of integers one can see integers as words in some fixed base. Result is known as a radix tree.



Recall: (a, b)-trees Red-black trees Tries and Radix trees Amortised complexity Hashing Universal hashing

Tries

Let Σ be a fixed alphabet. Let S ⊆ Σ∗ be a set of words over alphabet Σ.

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

1. vertices are all prefixes of words W ∈ X , and

2. W ′ is a son of word W if W ′ is created from W by extending it by one letter.

Theorem
FIND, INSERT and DELETE for word X can all be implemented in O(|X |).

To store sets of integers one can see integers as words in some fixed base. Result is known as a radix tree.



Recall: (a, b)-trees Red-black trees Tries and Radix trees Amortised complexity Hashing Universal hashing

Tries

Let Σ be a fixed alphabet. Let S ⊆ Σ∗ be a set of words over alphabet Σ.

Definition (Trie: middle of retrieval, invented by René de la Briandais in 1959; named by Edward Frenklin)

Trie for some set of words S is a rooted tree where

1. vertices are all prefixes of words W ∈ X , and

2. W ′ is a son of word W if W ′ is created from W by extending it by one letter.

Theorem
FIND, INSERT and DELETE for word X can all be implemented in O(|X |).

To store sets of integers one can see integers as words in some fixed base. Result is known as a radix tree.



Recall: (a, b)-trees Red-black trees Tries and Radix trees Amortised complexity Hashing Universal hashing

Amortised complexity

Insertion to a (dynamically allocated) growing array.

Insert((A, s, n),x) insert element x to array A of size s containing n elements

1. if n = s:

2. Allocate array A′ of size 2s.

3. For i = 0, 1, . . . , n − 1: A′[i]← A[i].

4. Free A.

5. A← A′, s ← 2s

6. A[n]← x , n← n + 1

7. Return (A, s, n).

Worst case complexity of INSERT is O(n).

Theorem
Performing n operations INSERT starting from the empty array will run in time Θ(n).

Proof.
To insert 2i elements one needs 20 + 21 + 22 + 23 + · · ·+ 2i−1 = 2i − 1 copy operations.
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Hash functions

Hash function is a function h from universe U to set P = {0, 1, . . . , p − 1} (of hashes).

Hash table with separate chaining for set S ⊆ U with hash function h : U → P .

Hash table is an array H of linked lists indexed by P. List H[i] contains all elements e of set S such that h(e) = i .

Assumptions

1. h(x) can be computed in O(1).

2. h(x) “behaves randomly”.

Observation
Every entry of the hash table will contain approximately |S|p elements.

Corollary

Operations FIND, INSERT and DELETE will run in O(|S|) however expected (average) runtime is only O( |S|p ).

Corollary

Putting p ∼ |S| we get FIND, INSERT and DELETE is running on average approximately in O(1).
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Hash functions

Example (Integers: h : N→ {0, 1, . . . , p − 1})

h(x) = ax mod p

where a, p are prime numbers.

Example (Strings: h : N∗ → {0, 1, . . . , p − 1})

h(x) =

 |x|∑
i=1

xi a|x|−i mod p

 .

Can be effectively computed as (Horner’s method):

h1 = x1

h2 = (h1a + x2) mod p

h3 = (h2a + x3) mod p

. . . . . .

h|x| = (h|x|−1a + x|x|) mod p
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Open addressing

An alternative way of solving collisions is to use hash function h(x , i) such that for every x ∈ U sequence
h(x , 0), h(x , 1), . . . , h(x , p − 1) is a permutation of (0, 1, . . . , p − 1).
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3. If H[j] = x : return j .

4. Return ∅.

Theorem
Assuming that the hash function is giving random permutations, the average number of visited entries during
unsuccessful find is 1

(1−α)
for α = n

m .

Proof.
Let pi be probability that we will search at least i entries. p1 = 1, p2 = n

m = α, p3 = α n−1
m−1 ≤ α

2, . . ..

S =
∑
i≥1

i(pi − pi+1) =
∑
i≥1

(i − (i − 1))pi =
∑
i≥1

pi ≤
∑
i≥1

αi−1 =
∑
i≥0

αi =
1

(1− α)
.

Linear addressing: h(x , i) = f (x) + i mod p.
Not a random permutation: expected number of visited entries increases to: 1

(1−α)2 .
Double hashing: h(x , i) = (f (x) + i(g(x) + 1)) mod m for f and g being two different hash functions.
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Universal hashing

Definition (c-universal system of hash functions)

System S of hash functions from universe U to {0, 1, . . . , p − 1} is c-universal for given c ≥ 1 if
for every x , y ∈ U , x 6= y

Prh∈S [h(x) = h(y)] ≤
c
p
.

Lemma
Let S be c-universal system of hash functions U → {0, 1, . . . , p}. Let x1, x2, . . . , xn, y be pairwise different
elements of U . Then

Eh∈S [#i : h(xi ) = h(y)] ≤
cn
p
.

he lemma shows expected runtime of INSERT, FIND and DELETE with separate chaining.

Proof.

We define indicators I1, I2, . . . , In:

Ii =

{
0 if h(xi ) 6= h(y)

1 if h(xi ) = h(y).

E[Ii ] = Pr [Ii = 1] ≤ c
p . (by universality)

Eh∈S [#i : h(xi ) = h(y)] =
∑

1≤i≤n E[Ii ].
Eh∈S [#i : h(xi ) = h(y)] =

∑
1≤i≤n Pr [Ii = 1] ≤ cn

p .

10cm
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1-universal system

System of functions S : Zd
p → {0, 1, . . . , p − 1}

Let p be a prime number, P = Zp (ring modulo p), U = Zd
p (vectors of length d in Zp).

S = {h~a : ~a ∈ Zd
p ,~a 6= 0} where h~a(x) = ~a~x =

d∑
i=1

ai xi mod p. (ai xi is the scalar product).

Theorem
S is 1-universal.

Proof.
Set ~x 6= ~y ∈ Zd

p . WLOG xd 6= yd . What is Pr~a∈Zd
p

[~a~x = ~a~y mod p]?

Put ~z = ~x − ~y . (~a~x ≡ ~a~y means ~a~x = ~a~y mod p)

Pr~a∈Zd
p

[
~a~x ≡ ~a~y

]
= Pr~a∈Zd

p

[ d∑
i=1

ai zi ≡ 0

]
= Pr~a∈Zd

p

d−1∑
i=1

ai zi + ad zd ≡ 0

 .
∑d−1

i=1 ai zi + ad zd ≡ 0 happens only if
∑d−1

i=1 ai zi ≡ −ad zd . This has probability 1
p .
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