
Recall AVL-tree insert AVL-tree delete (a, b)-trees

Algorithms and datastructures I
Lecture 8: self balancing trees

Jan Hubička

Department of Applied Mathematics
Charles University

Prague

March 24 2020



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Set datastructure

We would like to represent a set (or a dictionary) of some elements from an universum.
We expect that elements of the universum in set can be assigned and compared in O(1)

INSERT(v ): Insert v to the set

DELETE(v ): Delete v from the set

FIND(v ): Find v in the set

MIN: Return minimum

MAX: Return maximum

SUCC(v ): Find successor

PRED(v ): Find predecessor

Basic implementations
INSERT DELETE FIND MIN/MAX SUCC/PRED

Linked list O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Array O(n) or O(1) O(n) or O(1) O(n) O(n) O(n)
Sorted array O(n) O(n) O(log n) O(1) O(log n) or O(1)



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : k(x) < k(v) and

2. ∀y∈R(v) : k(y) > k(v).



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : k(x) < k(v) and

2. ∀y∈R(v) : k(y) > k(v).



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : k(x) < k(v) and

2. ∀y∈R(v) : k(y) > k(v).



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Binary search trees

Definition (Binary tree)

Binary tree is:

1. a rooted tree where

2. every vertex has at most 2 sons and

3. we where distinguish left and right son of every vertex

Notation: for a vertex v in a binary tree we denote by
l(v) and r(v) the left and right son of v ,
p(v) the parent of v .
T (v) the subtree rooted in v ,
L(v) and R(v) the subtree rooted in left and right son of v ,
h(v) the height of T (v).

Definition (Binary search tree)

Binary search tree is a binary tree where every vertex v has unique key k(v) and for every vertex v it holds:

1. ∀x∈L(v) : k(x) < k(v) and

2. ∀y∈R(v) : k(y) > k(v).



Recall AVL-tree insert AVL-tree delete (a, b)-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has height Θ(log n)



Recall AVL-tree insert AVL-tree delete (a, b)-trees

AVL-trees (1962)

Georgy Adelson-Velsky Evgenii Landis

Definition (AVL tree)

Binary search tree is height balanced (or AVL-tree) if

∀v :
∣∣h(l(v))− h(r(v))

∣∣ ≤ 1.

Lemma
Every AVL-tree with n vertices has height Θ(log n)



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):

Put δ(x) = 0. We are finished: result is AVL-tree again.
2. δ(x) = 0 (both subtrees are having same height):

Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).
3. δ(x) = − (left subtree is higher):

Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):
Put δ(x) = 0. We are finished: result is AVL-tree again.

2. δ(x) = 0 (both subtrees are having same height):
Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).

3. δ(x) = − (left subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):
Put δ(x) = 0. We are finished: result is AVL-tree again.

2. δ(x) = 0 (both subtrees are having same height):

Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).
3. δ(x) = − (left subtree is higher):

Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):
Put δ(x) = 0. We are finished: result is AVL-tree again.

2. δ(x) = 0 (both subtrees are having same height):
Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).

3. δ(x) = − (left subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):
Put δ(x) = 0. We are finished: result is AVL-tree again.

2. δ(x) = 0 (both subtrees are having same height):
Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).

3. δ(x) = − (left subtree is higher):

Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Insert operation

Remember for every vertex a sign δ(v) = h(r(v))− h(l(v))

Insert(v ,x)

1. Insert element to a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s increase height by 1. Assume that y is a left son
(for right son the situation is symmetric). Consider three cases:

1. δ(x) = + (right subtree is higher):
Put δ(x) = 0. We are finished: result is AVL-tree again.

2. δ(x) = 0 (both subtrees are having same height):
Put δ(x) = + and recursively rebalance in p(x) (subtree of x just got higher).

3. δ(x) = − (left subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.

Look at δ(y) and consider individual cases:



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = −

x −2

y −

C

hA

h+1

B

h

h+2

y

x
A

h+1 B

h

C

h

h+1

0
0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = −

x −2

y −

C

hA

h+1

B

h

h+2

y

x
A

h+1 B

h

C

h

h+1

0
0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = +

x −2

y

z
D

h
A

h B

h−
C

h−

h+2

h+1

z

y x

A

h

B

h−
C

h−
D

h

h+1 h+1

+



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = +

x −2

y

z
D

h
A

h B

h−
C

h−

h+2

h+1

z

y x

A

h

B

h−
C

h−
D

h

h+1 h+1

+



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = 0

This case never happens. We only propagate up from vertex with sign + or −.

Lemma
Operation INSERT on AVL-tree can be implemented in Θ(log n) time.

Proof.
We know that the height of AVL-tree is Θ(log n).
INSERT to binary search tree is done in Θ(log n).
Re-balancing may recurse to a father, but number of changes is again limited by the height of tree.

See, for example, https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af.

Good advice: when implementing AVL-tree write also a verifier that all invariants are maintained correctly.

https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af


Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = 0

This case never happens. We only propagate up from vertex with sign + or −.

Lemma
Operation INSERT on AVL-tree can be implemented in Θ(log n) time.

Proof.
We know that the height of AVL-tree is Θ(log n).
INSERT to binary search tree is done in Θ(log n).
Re-balancing may recurse to a father, but number of changes is again limited by the height of tree.

See, for example, https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af.

Good advice: when implementing AVL-tree write also a verifier that all invariants are maintained correctly.

https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af


Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = − and δ(y) = 0

This case never happens. We only propagate up from vertex with sign + or −.

Lemma
Operation INSERT on AVL-tree can be implemented in Θ(log n) time.

Proof.
We know that the height of AVL-tree is Θ(log n).
INSERT to binary search tree is done in Θ(log n).
Re-balancing may recurse to a father, but number of changes is again limited by the height of tree.

See, for example, https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af.

Good advice: when implementing AVL-tree write also a verifier that all invariants are maintained correctly.

https://gist.github.com/Twoody/de8d079842e0dd20cf20d870c73168af


Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):

Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):

Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):

Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete operation

Delete(v ,x)

1. Delete element from a binary search tree

2. Re-balance the tree

Given vertex x we need to to solve the situation where its son s decreases height by 1. Assume that y is a left
son (for right son the situation is symmetric). Consider three cases:

1. δ(x) = − (left subtree is higher):
Put δ(x) = 0 and recursively rebalance in p(x) (subtree of x just decreased height)

2. δ(x) = 0 (both subtrees are having same heigh):
Put δ(x) = +. We are finished.

3. δ(x) = + (right subtree is higher):
Subtree of x is not height balanced anymore. We need to use rotations to fix it.
Look at δ(y) and consider individual cases



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = + and δ(y) = +

x

y
A

h B

h

C

h+1

h+2

y

x
C

h+1A

h

B

h

h+1

+2

+

0

0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = + and δ(y) = +

x

y
A

h B

h

C

h+1

h+2

y

x
C

h+1A

h

B

h

h+1

+2

+

0

0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = + and δ(y) = 0

x

y
A

h B

h+1

C

h+1

h+2

y−

x
C

h+1A

h

B

h+1

h+2

+2

0 +



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = + and δ(y) = −

x

y
−

z
A

h
D

hB

h−
C

h−

h+2

h+1

z

x y

A

h

B

h−
C

h−
D

h

h+1 h+1

+2 0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Rebalancing for δ(x) = + and δ(y) = −

x

y
−

z
A

h
D

hB

h−
C

h−

h+2

h+1

z

x y

A

h

B

h−
C

h−
D

h

h+1 h+1

+2 0



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC, PRED, on AVL-trees can all be implemented
in Θ(log n) time.

For INSERT, DELETE, FIND this is best possible.

Theorem
Every datastructure for set which only use comparison on the elements of the universum must implement FIND in
Ω(log n) time.

Proof.
Assume that set contains n elements. Operation FIND(x) has n + 1 possible answers. Every comparison has
only 3 possible answers.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC, PRED, on AVL-trees can all be implemented
in Θ(log n) time.

For INSERT, DELETE, FIND this is best possible.

Theorem
Every datastructure for set which only use comparison on the elements of the universum must implement FIND in
Ω(log n) time.

Proof.
Assume that set contains n elements. Operation FIND(x) has n + 1 possible answers. Every comparison has
only 3 possible answers.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC, PRED, on AVL-trees can all be implemented
in Θ(log n) time.

For INSERT, DELETE, FIND this is best possible.

Theorem
Every datastructure for set which only use comparison on the elements of the universum must implement FIND in
Ω(log n) time.

Proof.
Assume that set contains n elements. Operation FIND(x) has n + 1 possible answers. Every comparison has
only 3 possible answers.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC, PRED, on AVL-trees can all be implemented
in Θ(log n) time.

For INSERT, DELETE, FIND this is best possible.

Theorem
Every datastructure for set which only use comparison on the elements of the universum must implement FIND in
Ω(log n) time.

Proof.
Assume that set contains n elements. Operation FIND(x) has n + 1 possible answers. Every comparison has
only 3 possible answers.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

(a,b)-trees (Bayer, McCreight)

AVL-trees do few compares, but use a lot of memory.

Sorted arrays use less memory, but the INSERT and DELETE operations are slow.
Can we combine both?

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types od vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xn then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

(a,b)-trees (Bayer, McCreight)

AVL-trees do few compares, but use a lot of memory.
Sorted arrays use less memory, but the INSERT and DELETE operations are slow.

Can we combine both?

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types od vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xn then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

(a,b)-trees (Bayer, McCreight)

AVL-trees do few compares, but use a lot of memory.
Sorted arrays use less memory, but the INSERT and DELETE operations are slow.
Can we combine both?

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types od vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xn then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

(a,b)-trees (Bayer, McCreight)

AVL-trees do few compares, but use a lot of memory.
Sorted arrays use less memory, but the INSERT and DELETE operations are slow.
Can we combine both?

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types od vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xn then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

(a,b)-trees (Bayer, McCreight)

AVL-trees do few compares, but use a lot of memory.
Sorted arrays use less memory, but the INSERT and DELETE operations are slow.
Can we combine both?

Rudolf Bayer Edward
M. McCreight

Definition (Generalized search tree)

Generalised search tree is a rooted tree with specified order of sons and two
types od vertices:

1. Internal vertices contains non-zero number of keys. If internal vertex has
keys x1 < · · · < xn then it has k + 1 sons s0, . . . , sk . Keys separate values
in sons, so:
T (s0) < x1 < T (s1) < x2 < · · · < xk−1 < T (sk−1) < xk < T (sk )

2. External vertices contain no keys and are leaf.

Definition ((a, b)-tree)

(a, b)-tree for a given a ≥ 2, b ≥ 2a− 1 is a generalised search tree such that:

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons.

3. All external vertices are in the level.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Height of (a,b)-trees

Definition ((a, b)-tree)

(a, b)-tree for given a ≥ 2, b ≥ 2a− 1 is generalised search tree such that

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons

3. All external vertices are in the same height

Lemma
Every (a, b)-tree with n keys has depth Θ(log n).

Proof.
Analyse the minimum number of vertices (a, b)-tree of height h can have. Level 0 has one vertex (root) with at
least 2 keys. Level l has at least a times as many keys as level l − 1. This grows exponentially fast.

Analogously we can analyse maximum number of vertices.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Height of (a,b)-trees

Definition ((a, b)-tree)

(a, b)-tree for given a ≥ 2, b ≥ 2a− 1 is generalised search tree such that

1. Root has 2 to b sons.

2. Other internal vertices have a to b sons

3. All external vertices are in the same height

Lemma
Every (a, b)-tree with n keys has depth Θ(log n).

Proof.
Analyse the minimum number of vertices (a, b)-tree of height h can have. Level 0 has one vertex (root) with at
least 2 keys. Level l has at least a times as many keys as level l − 1. This grows exponentially fast.

Analogously we can analyse maximum number of vertices.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Find and insert to (a,b)-tree

Find(v ,x)

Find operation can be implemented similarly to one on binary search tree.

1. If v is external vertex return ∅.
2. Look into keys in v if x is found then return it.

3. If it is not found chose right subtree to recurse into.

Insert(v ,x)

Let u be the last internal vertex visited by Find(v ,x).

1. If u contains x return.

2. Otherwise add x into u and insert new external vertex

3. If u has more than b sons, split it.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Find and insert to (a,b)-tree

Find(v ,x)

Find operation can be implemented similarly to one on binary search tree.

1. If v is external vertex return ∅.
2. Look into keys in v if x is found then return it.

3. If it is not found chose right subtree to recurse into.

Insert(v ,x)

Let u be the last internal vertex visited by Find(v ,x).

1. If u contains x return.

2. Otherwise add x into u and insert new external vertex

3. If u has more than b sons, split it.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Splitting of a vertex

Preventive splitting

Useful simplification: If b ≥ 2a then we can preventively split every vertex with b sons during the descent to the
tree.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Splitting of a vertex

Preventive splitting

Useful simplification: If b ≥ 2a then we can preventively split every vertex with b sons during the descent to the
tree.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete from a (a,b)-tree

Delete(v ,x)

1. u ← Find(v ,x)

2. If u = ∅ return

3. If u is not in the lowest level of the tree:

4. s ← Succ(u,x)

5. Replace x in u by s

6. u ← vertex which contains key s.

7. Remove x from u.

8. If u has fewer than a suns see if we can borrow a key from left or right sibling.

9. If not merge u with sibling.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on (a, b)-tree runs in Θ(log n) time.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete from a (a,b)-tree

Delete(v ,x)

1. u ← Find(v ,x)

2. If u = ∅ return

3. If u is not in the lowest level of the tree:

4. s ← Succ(u,x)

5. Replace x in u by s

6. u ← vertex which contains key s.

7. Remove x from u.

8. If u has fewer than a suns see if we can borrow a key from left or right sibling.

9. If not merge u with sibling.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on (a, b)-tree runs in Θ(log n) time.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete from a (a,b)-tree

Delete(v ,x)

1. u ← Find(v ,x)

2. If u = ∅ return

3. If u is not in the lowest level of the tree:

4. s ← Succ(u,x)

5. Replace x in u by s

6. u ← vertex which contains key s.

7. Remove x from u.

8. If u has fewer than a suns see if we can borrow a key from left or right sibling.

9. If not merge u with sibling.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on (a, b)-tree runs in Θ(log n) time.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete from a (a,b)-tree

Delete(v ,x)

1. u ← Find(v ,x)

2. If u = ∅ return

3. If u is not in the lowest level of the tree:

4. s ← Succ(u,x)

5. Replace x in u by s

6. u ← vertex which contains key s.

7. Remove x from u.

8. If u has fewer than a suns see if we can borrow a key from left or right sibling.

9. If not merge u with sibling.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on (a, b)-tree runs in Θ(log n) time.



Recall AVL-tree insert AVL-tree delete (a, b)-trees

Delete from a (a,b)-tree

Delete(v ,x)

1. u ← Find(v ,x)

2. If u = ∅ return

3. If u is not in the lowest level of the tree:

4. s ← Succ(u,x)

5. Replace x in u by s

6. u ← vertex which contains key s.

7. Remove x from u.

8. If u has fewer than a suns see if we can borrow a key from left or right sibling.

9. If not merge u with sibling.

Theorem
Operations INSERT, DELETE, FIND, MIN, MAX, SUCC and PRED on (a, b)-tree runs in Θ(log n) time.


	Recall
	AVL-tree insert
	AVL-tree delete
	(a,b)-trees

