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Structuralism and the identity of indiscernibles

JEFFREY KETLAND

1. Mathematical structuralism and the Burgess-Kerdnen objection

According to mathematical structuralism, mathematics is the science of
pattern and structure.! A structure, as the notion is understood in con-
temporary mathematics, is a set (or possibly a proper class) with distin-

1 See Hellman 1989, Shapiro 1997 and Resnik 1997 for defences of versions of
structuralism.
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guished relations (which may be operations). Examples are orderings,
rings, groups, fields, lattices, Boolean algebras, trees, etc.

To introduce a central motivation for structuralism, consider the repre-
sentation of the system N of natural numbers within set theory. Suppose
we define 0 as . Then we may define the successor of x to be x U {x} or
to be {x}. If we then take the smallest set containing 0 and closed under
successor, then both definitions — and indeed countless others — yield
isomorphic @-sequences. But none of these representations seems any
more basic or privileged than any other. Questions of the form ‘is 2 an
element of 42’ strike us as pseudo-questions. The conclusion is that what-
ever natural numbers are, they cannot be sets. This line of argument, with
structuralism as one resolution, was developed by Paul Benacerraf (19635).
The argument concludes that if there is such an entity as the natural
number structure N, it must be thought of as a structure in some more
abstract sense, where isomorphic ‘systems’ count as ‘instances’ of the same
structure. And the conclusion may be generalized to a variety of mathe-
matical structures (e.g. groups, rings, fields, manifolds, etc.).

Stewart Shapiro (1997: 89) has introduced the phrase ‘ante rem struc-
ture’ to refer to such abstract structures. Shapiro likens such abstract
structures to universals or types, while the ‘systems’ that exemplify them
are likened to instances or tokens. While the domain of a system may
consist of ordinary objects (in some sense), the domain of an ante rem
structure comprises ‘positions’.” These positions are understood to be
individuated solely by their intra-structural relations to each other: ‘there
is no more to the individual numbers “in themselves” than the relations
they bear to each another’ (Shapiro 1997: 73).

A recent objection to mathematical structuralism has been given by
John Burgess (1999) and Jukka Kerdnen (2001). The objection concerns
the conception of identity for the ‘positions’ of ante rem structures. If
positions are to be individuated by the ‘relations they bear to each other’,
then it seems plausible that the identity of a position should be fixed by
its structural role. If this thought is right, then structurally indiscernible
positions should be identical. This corresponds to the following indiscern-
ibility principle:

(I) For any structure M, if a, b € dom(M) are structurally indiscern-
ible, then a = b.

2 One might argue that a specific abstract structure (e.g. the group SU(3), etc.) should
be regarded as the isomorphism type of all of its instances. But does an isomorphism
type have a domain? John Burgess notes (1999: 287) that ‘an isomorphism type is
no more a special kind of system than a direction is a special kind of line’. But while
mathematicians do not think of directions as lines, they do treat each group, field,
etc., as having a specific domain, and distinguished relations and operations.
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Intuitively, elements of a structure are structurally indiscernible if some
symmetry transformation relates them. The symmetries of a structure are
called its automorphisms.® The definition we obtain is this: @, b € dom(M)
are structurally indiscernible just in case there is an automorphism 7 of
M such that b = 7(a).* In geometrical parlance, we say that b lies in the
orbit of a. The orbits form a partition of the domain into equivalence
classes, and structurally indiscernible elements are those which lie in the
same orbit.

Consider the complex field C = (C, 0, 1, +, X). The automorphisms of
C are the identity mapping and conjugation, which maps any complex
number a +ib to its conjugate a —ib. So, any complex number and its
complex conjugate are structurally indiscernible. The Burgess-Kerianen
objection may then be formulated as a reductio ad absurdum. In C, i and
—i are structurally indiscernible. So, by (I), we infer that i=—i. This is
absurd. More generally, (I) implies that all elements of the same orbit are
identical, which is absurd for non-rigid structures. This is by no means
an isolated phenomenon, as non-rigid structures abound in mathematics.’

An immediate response to this might be to insist that mathematical
structuralism is not, despite initial appearances, committed to the indis-
cernibility principle (I). But, even so, there still remains a more general
philosophical problem, concerning the analysis of the notion of identity
for the positions of an abstract structure. Must the identity relation on
positions be defined in terms of the other distinguished relations? Or might
the identity relation for positions be taken as primitive? For my part, I see
no compelling reason why the identity relation, in general, should not be
thought of as primitive. The reasons sometimes given for not taking
identity as primitive seem to me to be anti-realist, reductionist or verifi-
cationist in spirit. The contrary view, that identity is primitive and inde-
finable, was advocated by Gottlob Frege, in his 1891 review of Edmund
Husserl’s Philosophie der Arithmetik: ‘since any definition is an identity,

3 An automorphism of a structure is an isomorphism from the structure to itself. The
group of automorphisms of M is denoted Aut(M). The identity mapping on the
domain is always an automorphism. If the identity mapping is the only automor-
phism of M, then M is called rigid. The w-sequence (N, <) of natural numbers is
rigid, as in fact is any ordinal. In contrast, the integers with their natural order,
(Z, <), is non-rigid, since any integer shift is an automorphism.

The existence of structures with non-trivial automorphisms generates a separate
puzzle concerning the referential indeterminacy in ‘picking out’ the structurally
indiscernible elements (e.g., the roots i and —i in C). This is discussed in Brandom
1996, and further in Field 1998 (in the 2001 reprint, 271-72).

Indeed there are highly symmetric structures where the orbit of any (and thus every)
element is the whole domain. For example, any Euclidean space. We say that the
automorphism group Aut(M) ‘acts transitively’ on the structure M.
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identity itself cannot be defined’ (see Geach and Black 1980: 80). In an
illuminating article, Elias Savellos has similarly argued that ‘identity must
be viewed as an indefinable, primitive notion’ because ‘any attempt to
define identity is bound to be circular, since the intelligible understanding
of the notion of identity must make recourse to the intelligible understand-
ing of identity itself’ (1990: 476).

In the present context, one might reply that while such an indefinabilist
view might be admissible for objects ordinarily (‘non-structurally’) con-
ceived, such a view cannot be admitted on a structuralist conception of
‘positions’, whose identity must be constituted by ‘intra-structural rela-
tions’. Something like this is indeed what Kerdnen (2001: 327-28) argues.
But aside from my remarks in the previous paragraph, I shall avoid this
issue entirely below, and instead turn to some of the logical issues sur-
rounding notions of indiscernibility and the definability of identity.

2. Notions of indiscernibility

For the discussion below, we need to consider several notions of indis-
cernibility.®

Suppose that L is a first-order language, without function symbols and
with finitely many primitive predicate symbols; suppose that M is an L-
structure and that a, b € dom(M). Say that @ and b are monadically
indiscernible just in case, for any L-formula @(x), with just x free, M = ¢(a)
iff M = @(b). Say that a and b are polyadically indiscernible just in case,
for any L-formula ¢(x, y), M Vy(@(a, y) <> @b, y)), where y is a
sequence of variables. In 1976, Quine introduced the following notion: a
and b are weakly discernible in M just in case there is an irreflexive
relation R definable in M such that Rab.” If elements are not weakly
discernible, we shall say that they are strongly indiscernible.

Finally, first-order indiscernibility.® For each n-place symbol P, let s be
a sequence (X, 21, ..., Zu—1) of 7 distinct variables, and let Ps be the resulting
atomic formula. Let y be a new variable, and let Ps(x/y) be the result of
substituting y for the occurrence of x in Ps. Next, let s” be the sequence
(215 Xy «evy Zn1), let s” be (21, 22, X, ..., 2,-1) and so on. Let x =p y be the

¢ Several notions of indiscernibility are also studied in model theory. In contrast with
the discussion here, one does not define a binary relation of indiscernibility. Rather,
one defines the notions of a set of indiscernibles and a set of order-indiscernibles
(see Hodges 1997: 152-53).

7 Quine uses the phrase ‘weakly discriminable’. See Quine 1981: 132. Quine adds
that the formulation given here was suggested by Ivan Fox, whereas the original
version was slightly different.

8 See Quine 1960: 230 and Quine 1970: 63-64. The idea goes back to Hilbert and
Bernays 1934.
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formula Vz1 ... Vz,-1[(Ps <> Ps(x/y)) A (Ps” <> Ps’(x/y)) A ...]. The formula
x =p y is the first-order indiscernibility formula for the predicate symbol
P. Next, let x =y be the conjunction of the indiscernibility formulae
x =p vy, for each primitive relation symbol P. The formula x = y is the firsz-
order indiscernibility formula for L.° For illustration, suppose L has a unary
predicate symbol F and a binary predicate symbol G. Then the indiscern-
ibility formula x =y is (Fx <> Fy) A Vz((Gxz <> Gyz) A (Gzx <> Gzy)).

The indiscernibility formula x = y has those formal properties of iden-
tity expressible in first-order logic: i.e reflexivity and substitutivity. One
can also show that if the identity relation is first-order definable in a
structure at all, then it is defined by the indiscernibility formula.

Write ‘“~m’ for the relation that x =y defines on M. Clearly, =y is an
equivalence relation.'” In general, the relation =y may, or may not, be the
identity relation on the domain of M. Let us say that a structure M is
Quinian'! just in case =M is the identity relation: that is, just in case, for
all a, b € dom(M), if a =pm b, then a = b. Quinian structures are precisely
those in which the identity relation is first-order definable.!?

Monadic indiscernibility is the weakest of these notions; polyadic,
strong and first-order indiscernibility yield the strongest notions express-
ible in first-order logic, and in fact are equivalent. Note that all of these
notions are model/language relative. So, if elements of M are also elements
of M, they might be indiscernible in M, but discernible in M".

3. Ladyman’s proposal: weak discernibility

James Ladyman (2005) has presented a response to the Burgess-Kerdnen
objection. Following Simon Saunders (2003), who applies a similar pro-
posal to the case of physical entities, Ladyman proposes an indiscernibility

9 The formula x = y depends upon the choice of variables z1, ..., z,_1. But, up to
logical equivalence, it doesn’t matter which variables are chosen, so long as they
are distinct from each other and from x and y. If L contains the identity predicate,
x =y becomes ... AVz((x=2¢>y=2) A(z=x¢>2=9)) A ..., which reduces (in
first-order logic with rules for identity) to x =y.

10 Since =y is an equivalence relation, we may consider the quotient structure M/=yy,

which, by construction, is ‘Quinian’ on the definition given below. In general, M
and M/=p are elementarily equivalent.

1 Some authors write ‘Quinean’. But Quine himself adjectivizes his own name only

once in his works, so far as I know; and he uses the term ‘Quinian’. See Quine
1960: 171: ‘... any more than there need be some peculiarly Quinian textural
quality common to the protoplasm of my head and feet’.

12 Quine noted, in effect, that there exist non-Quinian structures. See Quine 1970: 63,

‘it may happen that the objects intended as values of variables of quantification are

>

not completely distinguishable from one another ...".
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principle based on weak discernibility, and suggests that this resolves the
objection given by Burgess and Kerinen:

The structuralist can thereby explain the manifest non-identity within
mathematics of such entities without violating the Identity of Indis-
cernibles, by adopting the version of the weakest form of the Identity
of Indiscernibles which demands only weak, and not strong or relative,
discernibility of numerically distinct individuals. (Ladyman 2005: 220)

The indiscernibility principle that Ladyman has in mind is that ‘numeri-
cally distinct individuals’ should be weakly discernible. Contraposing this
yields:

(I) For any structure M, if a, b € dom(M) are strongly indiscernible
in M, then a=b.
Now strong and first-order indiscernibility are equivalent, so (II) is equiv-
alent to

(I) For any structure M, for all a, b € dom(M), if a=ym b, then
a=b.

Finally, using our definitions, (III) is equivalent to
(IV) All structures are Quinian.

This is a rather strong claim, and we shall see in a moment that there are
counter-examples.

Ladyman considers the case of the complex field, and notes (in effect)
that C is Quinian. Indeed, 7 and —i are weakly discernible in the complex
field C, since —i is the additive inverse of i. And the relation expressed by
‘“x#0 & x is the additive inverse of y’ is irreflexive.'® This is correct.
Indeed, weak discernibility of distinct elements holds for many structures
used in mathematics and mathematical physics (e.g. groups, fields, topo-
logical spaces).

4. A preliminary objection

There is an immediate objection. The question of weak discernibility for
structures like C is entirely trivial. For ‘x is the additive inverse of y’ is
expressed by the formula y + x = 0, and one needn’t be Sherlock Holmes
to observe that this contains the identity predicate. Moreover, in order to
express that x is the additive inverse of y, one needs uniqueness, defined
using the identity predicate. Thus, the fact that i and —i are weakly
discernible in the field C is trivial: they are weakly discerned by x # y.

13 Note that ‘x is the additive inverse of y’ is not irreflexive, since 0 is the additive
inverse of itself. This is a minor quibble, easily fixed by considering the relation
defined by ‘x # 0 and x is the additive inverse of y’.
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More generally, any field is an algebraic structure, for which the identity
relation is assumed as a primitive. The atomic formulae of the language
of any field are equations, of the form ¢ = u, where ¢ and u are terms. In
general, the notion of an algebraic structure is specified using a language
with a primitive identity predicate, along with function symbols (‘+,
o, etc.).* Such structures are specified in terms of functions, thereby
presupposing the notion of identity. In short, the notion of identity is
presupposed in the specification — whether by direct construction or
by axiomatization — of algebraic structures: algebraic structures are Qui-
nian by construction.

If this objection is right, then there is no ‘identity problem’ for struc-
turalism in connection with algebraic structures. For the primitive notion
of identity is presupposed in specifying what a group, field, etc., is. More
generally, there is no ‘identity problem’ for structuralism in connection
with Quinian structures. Since for these, although identity might not be
taken as a primitive distinguished relation, the identity relation is none-
theless definable.

5. A counter-example to Ladyman’s Indiscernibility Principle

On Ladyman’s view, the structuralist should be committed to (II), which
is equivalent to the claim (IV) that all structures are Quinian. But there
are counter-examples to this claim. Consider the two-element ‘dumb-bell’
structure, pictured thus:

This structure has two structurally indiscernible ‘positions’. But these
positions are also not first-order discernible, for the only irreflexive rela-
tion definable in the dumb-bell is the empty relation. According to (II),

14 Kerinen appears to dispute this, and writes, ‘the language of the theory of groups
is just {+, —, 0}’ (2001: 319). But this is not right. The language of the theory of
groups contains the identity predicate as a primitive. A group G, by definition, is
an algebraic structure (D, -) such that - is an associative binary operation, and there
is an element e such that, for any element @, a- e=a =e¢ - a, and for each a, there
is an element b such that a - b =e=0b - a. How could these defining conditions be
expressed without using the notion of identity? If one attempts to define a group
G as a relational structure (D, R) where R is a ternary relation, such that certain
conditions on D and R hold, then one can show that no such conditions can be
given if the notion of identity is disallowed.
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Ladyman’s mathematical structuralist must conclude that the dumb-bell
has one position, which is absurd.!® The structure is non-Quinian.

6. Definability of identity in relational structures

We have seen that there exist non-Quinian structures. How do we find
non-Quinian structures? One way to show that that identity is not defin-
able is to find two distinct positions which are first-order indiscernible.
The dumb-bell structure yields such an example, as does the partial
ordering below:

The two maximal elements are indiscernible. So, identity is not definable
in this structure.

Visualizing a structure is not always a good guide to indiscernibility.
Our perceptual and cognitive mechanisms seem to be good at detecting
symmetries of visually presented diagrams: i.e. automorphisms. But the
fact that elements are related by an automorphism does not mean that
they are indiscernible. An example is the symmetric structure, —«——5 .
Swapping the end-points is an automorphism, but the end-points are
discernible.'®

There is a characterization problem for Quinian structures. Under what
conditions is a structure Quinian?

Theorem: Each of the following conditions is sufficient for M to be
Quinian:

(i) A surjective total function is definable in M.

(i1) A total order on the domain is definable in M.

(iii) M is rigid.
Proof: For (i), suppose a surjective total function f is definable, by ¢(x, y)
say. So, for any elements a, b, we have M = ¢(a, b) iff b = f(a). Then the
formula 3z(@(z, x) A @(z, y)) defines the identity relation. For (ii), suppose

15 Button (2006: 218) presents the same counter-example. Manzano (1996: 55) and
Kerinen (2001: 321) also give examples of a non-Quinian structures.

16 If we call the elements 0 and 1, then the relation R is {(0, 1), (1, 0)}. So, 0 is
discernible from 1, since (0, 1) € R but (1, 1) ¢ R. That is, 0 has the property of
being related to 1, but 1 does not have this property.
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a total order is definable, by ¢(x, y) say. Then the formula —¢(x, y)
A —@(y, x) defines identity. For (iii), suppose the identity relation is not
definable. So, there are distinct a, b such that a =p b. Let my, be the
bijection of the domain which swaps @ and b and leaves all other elements
alone. It can be shown in general that if a =y b, then 7, is an automor-
phism of M. (The converse of this result does not hold in general: the
symmetric structure mentioned above is a counter-example.) So, 7, is an
automorphism. But since @ and b are distinct, 7, is a non-trivial auto-
morphism, and thus M is not rigid.

Condition (i) is also necessary, since identity is a surjective total function.

However, conditions (ii) and (iii) are not necessary.'”

7. Must identity be definable?

It is unclear to me why mathematical structuralism should require that
ante rem structures be Quinian, or that a primitive notion of identity
should be somehow inadmissible. Why should the identity relation on the
domain of a structure be definable from the other distinguished relations?
Identity is a binary relation, although a rather special one.

In any case —and with a certain caveat —abandoning the primitive identity
predicate would have dramatic consequences for even the most elementary
parts of mathematics.'® Without the identity predicate, one cannot specify
the usual kinds of structures that are the bread-and-butter of ordinary
mathematics. Certain mathematical notions presuppose identity: for exam-
ple, the notions of uniqueness, function and finite cardinality.

Consider the usual way to express that a relation is a function. For a
binary relation symbol F we presuppose identity, and set down the axiom
VxVyVz(Fxy A Fxz — y = z). If a structure satisfies this, then the relation
denoted by F must be a function. However, if we drop the identity
predicate, and replace x =y by the indiscernibility formula x = y (namely
Vz(Fxz <> Fyz) A Vz(Fzx <> Fzy)), we get the axiom of ‘pseudo-function-
ality’: VxVyVz(Fxy A Fxz — y = z). However, there are structures which
satisfy this, but where the relation denoted by F is not a function. For

17 For example, the complex field C is Quinian but non-rigid. Moreover, one cannot
define a total order < in C. The proof is this: any relation definable in a structure
is invariant under any automorphism. If a total order < were definable in C, then
we could infer that —i<i iff (—)* <i*, iff i<—i. And thus either —(—i <)
& —(i <—i), or both —i <i & i < —i. Since < is total, the first disjunct implies that
i =—i, which is absurd. Since < is transitive, the second disjunct implies that —i < —,
which is also absurd.

18 The caveat is that mathematical reality ‘as a whole’ might permit the definability

of identity. For example, identity is definable in the cumulative hierarchy V, using
extensionality: VxVy(Vz(ze x <> z€ y) > x=y).
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example, the dumb-bell structure above satisfies pseudo-functionality, but
the primitive relation is not a function.

More generally, if one drops the primitive identity predicate, one cannot
specify that a structure is an algebraic structure (i.e group, a field, etc.).
Similarly, one cannot define the standard model of arithmetic, since one
cannot constrain the successor relation to be a function. Similarly, one
cannot specify that a structure has at most 7 elements, for finite 7. For
example, to express that a structure has at most one element, we use
the axiom VxVy(x =y). However, replacing x=y by x=vy, we get
VxVy(x =vy). But the dumb-bell structure satisfies this formula, even
though it has #wo elements.

Simon Saunders has claimed that the analysis of identity in terms of
first-order indiscernibility is ‘the only analysis of identity that is really
workable from a logical point of view’ (Saunders 2003: 292). To see
why this is incorrect, consider again the dumb-bell structure, whose
theory can be axiomatized by the formulae VxVyFxy and
IxAy(x #y A Vz(z=x v z=7v)). Any model of these is isomorphic to the
dumb-bell.'” The cardinality axiom contains the identity predicate.
Replacing = by = yields the formula IxTIy(—(x =y) A Vz(z=x v z=1y)).
But this is false in the dumb-bell, because IxTy—(x = y) is false.

Indeed, there is no theory T in the first-order language without identity,
with sole binary predicate symbol F, such that the models of T are
precisely those isomorphic to the dumb-bell.?? There is, as we have seen,
such a theory in the language with identity. That is, first-order logic with
identity is more expressive than first-order logic without identity. There is
also a theory in the second-order language without identity, but with
binary predicate symbol F, and whose full models are those required. But
this requires the second-order Principle of Identity of Indiscernibles that
Saunders rejects.

So, for non-Quinian structures, the first-order ‘analysis of identity’
proposed by Saunders is mathematically unworkable. In general, for a
non-Quinian structure, some of its identity facts must be ‘primitive’ iden-
tity facts, in the technical sense that the identity relation cannot be defined
in other terms.

19 Let M be a model of these axioms. By the cardinality axiom, M must contain
exactly two elements, say a and b. Because VxVyFxy is true, @ and b must be related
to themselves and each other. So, the relation that F denotes must be {(a, a), (a, b),
(b, a), (b, b)}. This is an instance of the dumb-bell structure.

20 Suppose T were such a theory. It would contain the formula VxVyFxy. But this
axiom is complete in predicate logic without identity (any two models are elemen-
tarily equivalent). So VxVyFxy would axiomatize T. The structure M with domain
{a} and relation {(a, a)} is a model of T, but it is zot an instance of the dumb-bell.
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8. The weakest form of the Identity of Indiscernibles?

Ladyman says of (II), and thus of its equivalent (III), that it is the ‘weakest
form of the Identity of Indiscernibles’. But this is not quite the case. (III)
is indeed the weakest first-order identity principle. But weaker still is the
second-order Principle of Identity of Indiscernibles:

(PII) VX(Xx — Xy) = x =y.

There is a well-established usage according to which the Principle of
Identity of Indiscernibles really is the above second-order principle.?! And,
as we have seen, any first-order indiscernibility principle will have counter-
examples (i.e non-Quinian structures).

If one is considering abandoning (PII), it should also be stressed that
(PII) is a theorem in any deductive system (for second-order logic) which
includes the comprehension axiom:

(Comp) Vy1 ... Vy,AXVx[Xx & @(x, Y15 v 5 Vi)l
Take the instance
(Haec) VydXVx(Xx < x=1y).

This asserts, for any object a, the existence of the property of being a,
sometimes called the haecceity of a. The extension of this property is the
unit set {a}. So, (Haec) can be read as saying ‘for any object a, the haecceity
of a exists’.

The proof of (PII) using (Haec) is as follows. Suppose (PII) is false, and
there are a, b such that a # b but VX(Xa — Xb). By (Haec), we infer that
IAXVx(Xx <> x = a). Call this property P. So, Px <> x =a. So, Pa <> a=a,
and thus Pa. But Pa — Pb. Thus, Pb; and thus b = a. Thus, by the usual
substitution rule for identity, @ # a. Contradiction.

Any full (standard) second-order structure satisfies (PII), and is thus
Quinian in the second-order sense: the Leibniz-Russell indiscernibility
formula VX (Xx — Xy) defines the identity relation. And we have seen that
any Henkin (or general) structure which satisfies (Haec) also satisfies (PII).

However, one can find counter-models for (PII) if one considers Henkin
structures with ‘missing haecceities’. A Henkin structure for (monadic)
second-order logic is one where the second-order variables may range over
a suitable proper subset S of the power set of the first-order domain. For
example, we can treat the dumb-bell structure M mentioned above as a
Henkin structure, where, for definiteness, we take the first-order domain
to be {0, 1}. Let S be the collection of sets definable in M. Then S = {0, {0,
1}}. So, the unit sets {0} and {1} are not definable. These unit sets are the

21 Gee, e.g., van Dalen 1994: 151-52; Manzano 1996: 2: 53-55; Shapiro 1991: 63;
Boolos, Burgess and Jeffrey 2002: 280.
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‘missing haecceities’. Consider the Henkin structure (M, S). Although 0 and
1 are distinct (ex hypothesi), the formula VX(Xx — Xy) identifies them.
This non-full Henkin structure is thus non-Quinian in a second-order sense.

9. A final thought: ontological rigidity?

Let me conclude with a metaphysical fantasy. Let us assume for the
moment that there is such a thing as ‘the structure’ of reality, and let us
indulge in the fantasy that this structure is a first-order structure (a domain
with some finite collection of privileged relations). Consider the claim that
the structure of reality is rigid. Call this doctrine ontological rigidity. That
is, although ‘fragments’ of reality exhibit symmetries (permutation sym-
metries, gauge symmetries, various symmetries that lead to conservation
laws, etc.), ‘reality as a whole’ has no non-trivial symmetries. I have no
idea whether ontological rigidity is true, or even whether it is coherent.
Perhaps it provides a way of reading Bishop Butler’s anti-reductionist
remark, that ‘every thing is what it is, and not another thing’.?? In any
case, if ontological rigidity holds, we may apply condition (iii) from the
theorem above and infer that the world is Quinian.?

University of Edinburgh, UK
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