Statistical Inference

Statistics can be more than a tool for describing data. In the social sciences we
have hypotheses that move us beyond simple descriptions of populations to
relationships between two or more variables. To analyze these refationships we
often rely in practice on statistical inference. That is, we need to make decisions
based on data collected on a small group (sample) for the larger group that we
want to study (population). In Chapter 4 we introduced the concept of sampling
and provided a description of the three general objectives pertaining to sampling:
representativencss, size, and level of analysis. Here we move to a more focused
explanation of how sampling helps researchers overcome practical limitations and
what implications this has for quantitative analyses.

Sampling

As we noted carlier, when it comes to sampling, larger is generally better, the
aforementioned issucs aside. So why sample at all? Why not collect data on the full
population? In all types of resecarch we find the same two answers: time and
money. Research occurs in the real world and collecting the ideal data is often
limited by how much time and money the researcher can direct to the project. Thus

every research design must take into account the practical circumstances. In doing

so, rescarchers necessarily restrict their investigation into a sample or subset of the
population that they would like to study.

In general, when we make comparisons we would like to talk about more than
just the observations in the sample. We would like to talk about the larger group of

interest in our rescarch, the population. How we do this is the objective of -

statistical inference. More specifically, statistical inference helps researchers pro-
vide statements of confidence in our ability to generalize or infer from the sample
to the population. The ability to offer an estimate of relative precision is another
reason why quantitative empirical research is so useful and popular.

Consider the ANES datasct that we used for the examples in Chapter 18. How

many cases or individuals do we have in our sample? Obviously, the ncarly 6,000
individuals in that sample is not anywhere near the size of the full voting age
population of the United States, yet we would like to use this sample of data to
describe that population. In practice, we rarely study every member of the
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population and instead rely on a sample and statistical inference to generalize to
the population.

Statistical inference depends on knowing that the people in our sample are
representative of the population. If they are representative erough we can general-
ize our conclusion from the sample to the population. This inference depends on
every case in the population being randomly drawn into the sample. In statistics a
random sample means that every case in the population has an equal chance of
being drawn into the sample. Thus random is not any chance in statistics; it has a
precise definition of equal probability.

As an example, consider blindfolded draws of slips of paper from a hat. If every
slip has the same shape, size, and only one name on it, then every name has the
same probability of being chosen. But we would need a huge hat to do this for
several thousand, let alone the millions of people in the US population. In order to
petform random sampling, we typically use a random number generator or table.
In either case the output is a series of numbers having no particular pattern or
order. Drawing a random samplc is a simple three-stage process:

Attain a complete list of the population.

Assign unique identifying numbers to each unit or member of the population.
Draw the members of the sample from a random number generator ot a table
of random numbers,
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This process is our best chance to get a sample to look like a population, provided,
of course, that we have no additional information about the population.

Above we saw how we can use z-scores to assess the relationship between
individual observations and the population they belong to, under a specific set of
assumptions about the population parameters. We now consider a more realistic
scenario that is consistent with an applied research design process where we have
no information about the population g and o. We will take a random sample of
observations from the population in order to make guesses about the population.
Thus, instead of looking at one observation, we now have a sample of multiple
cases. Instead of just having one value, we now have two pieces of information: a
sample mean, X, and a sample standard deviation, .

So why does our sample information not perfectly match the population?
Because of sampling error. That is, because of the process of selection our sample
rarely has the same tnean and standard deviation as our population. This is not an
error that we can fix. Morcover, it prevents us from being exact with our estimates.
Thus all inference involves uncertainty.

An example of this uncertainty around our statistical inferences that should be
familiar to social science students comes from eclection coverage. In election
polling candidates® relative chances are not reported alone but along with an-
estimate of error based on the polling sample. For example, a candidate might
be estimated to have 65% of the vote, with a margin of error of 4 percentage
points. We recognize this margin of crror (discussed in more detail below) as an
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indicator of uncertainty in our point estimate of anticipated vote choice. That ig
the rescarcher is confident that this candidate has within 61% to 69% of the voye.
How do we arrive at this range of values?

Samples and Populations
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So far we have considered three types of distributions: empirical distributions ¢

actual data (e.g., Obama’s fecling thermometer scores), theoretical distributions of
probabilistic processes (c.g., rolling dice), and theoretical statistical distributiong -

(c.g., the normal curve). Now we consider the distribution of sample means as a

pedagogical tool to help envision what certainty means in statistical inference. While
this isa hypothetical scenario that does not represent actual research, it helps explain -

why we are allowed to draw conclusions about populations based on a sample,

The hypothetical we are considering is as follows: We have a population from which

we are repeatedly drawing samples (of any size, all the same). For each sample, we

calculate the mean. We then treat ecach of those means, as data themselves, and

assess their distribution, by calculating the mean and plotting them on a histogram.
We call this distribution the sampling distribution of the sample mean. We can also
treat the standard deviations of those samples as data and assess the distributions,

The key premise of statistical inference is that we can make generalizations from
samples if the sample is representative enough of the population. We can find the
extent to which our sample is representative of the population based on our
understanding of the characteristics of this sampling distribution of sample means,
Foremost, the sampling distribution of means approximates a normal curve.

Secondly, the mean of a sampling distribution of means (the mean of means) gets -

closer to the true population mean as N moves toward infinity. Finally, the
standard deviation of a sampling distribution of means is smaller than the stand
ard deviation of the population.

Repeating the key characteristic, when we take repeated samples from a popu-
lation the mean and standard deviation of those samples are themselves normally
distributed -- even if the population distribution is not. In probability theory, this is
what we call the central limit theorem, which, like the law of large numbers, is a

mathematical result of probability theory. The theorem states that the mecans of a

series of random draws from a population distribution will be approximately

normally distributed provided a sufficiently large number of draws. That is, as
you increase the draws the distribution of sample means looks increasingly similar

to a normal distribution.
To solidify this point, Figure 20.1 shows the results of 10 and {00 draws of

means from each of three familiar distributions. Moving from the distribution in
the left column to 19 mean draws in the middle column and 100 mean draws in the |

right column we see cach of the distributions begins to converge into the normal
distribution. While not shown here, it is important to remember that even for less
familiar or unknown distributions — indeed for any distribution with a well-defined
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mean and standard deviation - this theorem holds, which explains the ubiquity of
the normal distribution.

With this insight we are now in a position to assess any one of our individual
samples. That is, because of the characteristics of the distribution of samplc means
we can use what we know about the normal curve to place indicators of certainty
around our estimates. Because the sampling distribution of means takes the form
of the normal curve, we can say that as a score moves farther from the mean of
means the probability of getting it decreases. Similarly, we know the percentage of
cases falling between standard deviations and the mean.

In applied work, however, we are generally not intercsted in probabilitics
associated with a particular raw score but with samples drawn from a population.
We want to make a statement about how likely our sample would be to occur,
given our population mean and standard deviation. The general procedure is
simifar to the z-score procedure above, but, since we are assessing a sample of size
N this time, we cannot simply use our population standard deviation to create
z-scores. Instead we rely on the standard error of the mean:

Note that we will often calculate (or more often be given by statistical softwarc)
standard errors associated with certain ¢uantities. Generally speaking, these quan-
tities represent our uncertainty about the estimate in question, If the ratio of our
estimate to its standard error is high (e.g., the ratio of X to o), our guess is very
precise. If the ratio is low, we hold less confidence in our estimate,

Returning to our sampling distribution of sample means now with the standard
error of the mean and some population parameters (which we do not typically:
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have in practice but are given here for pedagogical purposes), we can arrive gt
z-scere for the sample means distribution in the same way we arrived at a z-seoy
for any X value above:

(20.2)

This z-score provides us the probability of finding the mean score [rom the
sample in the population. That is, if we then consult Table A.1 for our calculateq
z-score we can find the prebability of randomly choosing this sample (with itg
particular mean and standard deviation) from a population.

Relatedly, we can also find the range of mean values within which our trye
population mean is likely to fall, which brings us to the concept of the confidence
interval (CI). The confidence interval is just our estimate or statistic wrapped in
some range of uncertainty. Here the estimate is the mean, but we will want to
create confidence intervals for the statistics we introduce later in the book as well,
The range of uncertainty around a statistic is conveyed by the margin of error
(MOE), which expresses the amount of sampling error in our results. The larger
the margin of error the less confidence we hold that our observed estimate is close
to that of the population. Thus, the confidence interval is simply an estimate plus
and minus the margin of error:

CI = Statistic - MOE, (20.3)

where the margin of error is & particular chosen value of a standardized score (¢.g.,
7-score) multiplied by the standard erros of the statistic:

MOFE = standardized score X osuuissic- (20.4)

Equivalently, a confidence interval is just an estimate plus and minus a stan-
dardized score times the standard error of estimate.

In the casc of the mean for the normal distribution our confidence interval is
calculated accordingly:

CI =% £ 1.96 x o3 (20.5)

The chosen value of the standardized score, 1.96, corresponds to the level of
confidence we choose to hold in our estimate. That is, here we arrive at the
uncertainty by adding and substracting from the estimate our standard error
multiplied by a particular z-score, 1.96. But where docs 1.96 come from?

Hypothesis Testing
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Throughout the statistics section of the book we have asked you to consider a
number of research questions and how we might answer them. In practice,
however, rescarchers more formally put forward statements of expectation to test
with their data, which we call hypotheses (introduced in Chapter 2). Hypothesis

Hypothesis Testing

testing in statistics follows a specific process. We begin by offering a research
hypothesis, or statement of expectation. For any hypothesis we also proposc a null
hypothesis, or opposing expectation that we will try to reject with our hypothesis
test. The null hypothesis typically holds that the observed results occured by
chance; i.c., sampling error. We next obtain a sample and calculate the relevant
statistic. Finally, we calculate the probability of observing the statistic by chance,
under the assumption that the null hypothesis is true. Based on this probability we
decide whether or not to reject the null hypothesis.

The decision of whether or not to reject the null hypothesis is made casier and
more consistent by accepting a conventional threshold. We refer to the significance
level in terms of @, which equates to one less than our chosen confidence level:

a == | - confidence level. (20.6)

a corresponds to the area of the distribution in the tails. It is simply the prob-
ability of rejecting the null hypothesis if the null hypothesis is true. We might think
of it as an expression of our chosen probabilily of being wrong. Thus we decide to
reject the null hypothesis only when we are really confident, which means that we
should choose as our threshold an a that is very small. But exactly how small is
very small? The standard confidence level in the natural and soctal sciences is 0.95
(or 95%), which corresponds to o of 0.05 (or 5%) and a z-score of -:1.96. The left
graph in Figure 20.2 illustrates that this @ means there is 2.5% in cach of the tails,
We call the z-scores demarcating the confidence level critical values, because we
know that attaining a larger z-score than +1.96 (z < ~1.96 or z > 1.96) conveys
that the result is statistically significant at this confidence level. That is, statistical
significance conveys that we reject the null hypothesis that the observed results
occured by chance, since they are far, by conventional standards, from the null
hypothesis under the assumed distribution. Thus the « value serves as a practical
cutoff point at which the null hypothesis can be rejected in the context of sampling
error. When rejecting the null hypothesis (at the conventional 95% level of confi-
dence) we are conveying that there is less than a 5 in 100 chance that we have denc
so when we should have failed to reject it.

The interpretation of the confidence level is made clearer by reconsidering the
hypothetical example of repeatedly drawing random samples and calculating the

0.5% 9.5%
i

z=~2.58 [ z= :2.58
Figure 20.2 Varying alpha
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mean for each one. If we were to draw 100 samples from the population, 95
the times the confidence interval would cover the true mean. Looking under the
normal curve 95% of the area falls around the mean between the z-scores of -] g
and 1.96; the margin of error for the normal distribution follows accordingly:

MOE = 1.96 X o5. (20.7)

Thus, the interval has a 95% chance of including the true value. The reagoy
for this threshold, however, is purely conventional. We are merely accepting thig
significance level to make scientific work more consistent. For example, 94%, alsq
seems to be a good level of confidence, and 96% even more so. The right graph i
Figure 20.2 shows a tougher test for rejecting the null hypothesis. With a 99v
significance level, corresponding to z-scores of —2.58 and 2.58, there is only 0.5%,
in each of the tails, Why then do we choose 95%?

Importantly, 95% is just a rule of thumb, There is no statistical reason why it is
most commonly used as the cutpoint. It is merely the norm in most scientific
disciplines to hold estimates at this level of certainty. While it is a largely accepted
matter of convention, researchers should therefore be careful in relying strictly on
95% as a cutpoint. In addition, since we have a standard choice of 95% confidence
intervals, scientists have 5% chance of being wrong or a = 0.05. That is, even
though we have a random sample, samples can sometimes be very unrepresen-
tative of the population by chance. We accept that there is always some sampling
error by providing a range of confidence or certainty around each of our estimates,
as with a confidence interval.

We attain statistical significance when the p-value for the statistic is less than a.
In terms of the distribution, the p-value is the area from the z-score (or another
test statistic discussed below) to the tails. It is therefore the exact probability
of observing a sample statistic as or more extreme than the observed one if the
null is true. Thus, if the z-score is within the tails denoted by the critical values,
the p-value will be less than or equal to a, and we reject the null hypothesis. The -
p-vatue associated with the standard 95% confidence level is 0.05, so, in practice,
anytime we arrive at a p-value less than or equal to 0.05 we reject the null,

There are two types of errors in statistical hypothesis testing: Type 1 and Type 2.
Figure 20.3 illustrates these errors in a 2 x 2 table. The columns refer to the two *
possible states of the null hypothesis in reality. The rows refer to the two possible
states as perceived or measured through the statistical tests. Type | errors mean we -
rejected the null when we should have retained it. In other words the error is the
rejection of the null hypothesis when in reality the null hypothesis is true, or a false
positive. Type 2 errors mean we retained the null when we should have rejected it. This
is the failure to reject the null hypothesis when in reality it is false, or a false negative.

It is important to remember that these concepts are intertwined in inferential
statistics. In quantitative analysis -- specifically, when relying on levels of signifi-
cance to reject the null hypothesis — we can provide additional consideration
depending on our concerns over particular errors. If we are worried about Type
1 errors, we can increase the stringency of a; ¢.g., move from a = 0.05 to a == 0.01. -

Estimating Population Parameters

True False

__ Figure 20.3 Hypothesis test results against
g real state of null hypothesis ]
& Type f
e Correct Error
3
‘g‘ EZ’F_J:"’ Correct

The right graph in Figure 20.2 demonstrates that we have shrunk the amount of
arca in our tails by decreasing a. Thus the probability of getting a Type 1 error is
just a. However, if we are more worried about Type 2 errors, we can increase the
size of the sample so that we are more likely to reject the null hypothesis when it
should be rejected. That is, failing to reject a null hypothesis is less likely by
random chance if the sample is larger. The probability of getting a Type 2 error
is thus directly related to our sample size.

Recall that a specifically refers to the size of the tail regions under the curve. It is
the threshold value below which it is considered so small that the null hypothesis can
berejected, and is determined ahcad of time by the researcher who is balancing the
costs of Type | and Type 2 errors. In practice researchers often merely check to see if
the z-score or test statistic exceeds the critical value (e.g., 1.96) associated with our
chosen a (¢.g., 0.95). If so we can say that the results arc statistically significant at the
a level. However, we need to be vigilant about the interpretation of these concepts in
light of their derivation and somewhat arbitrary nature.

Estimating Population Parameters

Returning to our estimation of the population mean, we are still not in a realistic
position from the perspective of practical research. In practice, we only have a
sample mean and sample standard deviation. So how do we use that information
to arrive at an estimate of the population mean? We begin by finding an estimate
of the standard error of the mean. To do so, we simply divide our sample standard
deviation, s, by the square root of N; thus the sample standard error of the mean:

(20.8)
Thus in small samples this correction gives a fair estimate of the variability in

the entire population. Of course, in large samples this correction is trivial and the
sample means tend to be reliable estimates of the population means.
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Though it brings us closer to how we usc sample estimates in actual rescarch,
estimating the standard error of the mean creates a new probiem: thc;: sampling
distribution of means is no longer normal due to using a 1‘§1lld()m varlablg sy in
place of the population parameter o. The extra uncertzu.nty in the.est_lmated
standard crror makes the sampling distribution of means wider. Our distribution
now has greater dispersion than a normal distribution, so we cannot use z-scores,
which refer only to normal distributions. Instead, the ratio follows a t-distribution,
where our standardized score is now:

e (20.9)

SY

The t-distribution is, however, similar in two important ways to the normaf
distribution: it is symmetric and the area under the curve can be characterized by
knowing the mean and standard deviation. We are still interested in stating the
range in which we can be confident that the population mean falls, That is, we will
need to calculate a margin of error for our estimate. However, since we are using
t-ratios instead of z-scores, the appropriate cutpoints are not always 1.96. The
t-ratio, unlike the z-score, depends on degrees of freedom (df), where

df =N - 1. (20.10)

In the calculation of a statistic, the degrees of freedom is the number of values
that remain variable. In other words, it is the namber of observations less the
number of parameters used to estimate the statistic. The greater the df, the larger
the sample size, and thus the closer the t-distribution is to a normal distribution, as
shown in Figure 20.4. So when the sample is large there is no difference between
a z-score and t-ratio, and thus we can rely on the familiar z-score instead of the
t-ratio. When the sample is small we rely on the t-ratios.

Take, for example, the sample variance for X. Because it requires the calcula-
tion of a single parameter, the mean, it has N — | degrees of {reedom. The

rationale is that because the sample standard deviation is smaller than the stand-
ard deviation would be when calculated from the population, we inflate the sample

variance slightly with N — 1 in the denominator instead of N. In other words the
sample mean fits the sample better than the population mean might, and so the
sample standard deviation has a slight bias in that it is a smaller representative o

Figure 20.4 T-distribution at different degrees
of freedom
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the population standard deviation. So we make a quick correction in this by taking
out a bit from the denominator. Accordingly, we arrive at less biased or, as they
are [requently called, unbiased estimates of the population parameter:

N (20.11)

Thus in small samples this correction gives a [air estimate of the variability in
the entire population. Of course, in large samples the sample means tend to be
reliable estimates of the population means. Like before with the normal curve,
we can use a table to inform us of the arca under the t-distribution. When we rely
on the t-ratio table in Appendix Table A.2, we need two picces of information, in
addition to the standardized score, in order to find where our cstimate sits on the
distribution. First, we need the degrees of freedom and, second, we need a confi-
dence level. As we have noted above, the margin of error depends on the sample
size, but we choose the confidence level. For the mean of a small sample, then, we
can get our confidence intervals from:

X +1xop. (20.12)

Again, if our sample size is large enough, the t-ratio is the same as the z-score,
1.96. If the sample size is smaller, that number increases to above 2. For example,
that multiplier is equal to 2.021 for a sample of 40, and 2.228 [or a sample of 10.
Thus the smaller the sample the more uncertainty around our cstimate.

Example: Average Number of Parties in Democracies

Let’s return to the concept of democracy and consider a comparative politics
cxample. Here we would like to know about how many political parties we should
expect to lind in a democratic country. That is, what is the average number of
partics in a democracy? We do not have the time to collect the number of parties
for all democratic countries in the world and instead only collected this data for a
random sample of 60 of them.

Akin to practical rescarch, we do not know the population mean — which would
answer our question - but we can use our sample to make an educated guess. We
begin by calculating the sample mean, X = 3.75, and the standard deviation,
s ==1.05. Because we have a sample, we need to account for sampling error,
therefore we calculate the standard error of the mean:

s

S

RV
..... 1.05 (20.13)

V60
= 0.14,

With our degrees of freedom for the standard error of the mecan, N = 60, we
consult Appendix Table A.2 to find that for alpha = 0.05 our appropriate t-value
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is 2.0. This tells us that for a t-distribution with df = 100, 95% of the arca under the

curve falls between ¢ = --2.00 and ¢ = 2.00. Finally, we plug this into our formuyly
tor the confidence interval:

Cl=X:k1tx 5%
=375+ (2.00 X 0.14)
=375 4 .50
- [3.47,4.03].

We can thus say that the mean number of parties in our population is betweey
about 3.5 and 4.

(20.14)

CONCLUSIONS

In statistical inference we generalize from a sample to a population by making
assumptions about the true distribution of a variable. Reference to a probability
distribution, like the normal curve, helps us understand how likely the results we
have found in our sample arc due to chance. In order to do so, we also need to
ensure that we have a representative sample, which can be accomplished through
random sampling, and can agree on a threshold for statistical confidence.

Bivariate Statistics

KEY TERMS

»  Random sample

» Sampling error :

= Sampling distribution of the sample mean
«- Central limit theorem 't
+. Standard error of the mean
«* Standard errors

+  Contidence intervals

»  Margin of error

« Hypotheses

»  Null hypothesis

+ - Significance level

« Conlfidence level

» Critical values -

*  p-value

« Type 1 error

* Type 2 error

* False positive

= False ncgative

*  t-distribution

<. Degrees of freedom

= Unbiased estimates

Bivariate statistics allow us to test the relationship between two variables, While
simple, they provide great empirical leverage for hypotheses of association and,
with the appropriate research design, causality. We next hone our ability to make
controlled comparisons and introduce inference making about sample means with
the difference of means test. We then proceed to correlation, which moves us
beyond making a simple claim of a relationship or no relationship between two
variables to a measure of both the strength and direction of the relationship.

Revisiting Levels of Measurement

In the previous chapter, we found out some important substantive information
about our population means. Indeed we learned how to estimate a population
mean from the information that we gain in a single sample. However, we are still
not in a position to assess a hypothesis. We do not generally have expectations as
simple as “the mean number of partics in a democracy is x.” Our hypotheses
typically suggest a relationship between an independent and dependent variable,
and we have not made reference to bivariate analyses yet. We will explore a
number of statistical tests for assessing hypotheses. We can divide hypothesis tests
into three types based on the information they provide about the relationship
between the independent and dependent variable:

I Those that simply analyze whether or not there is a relationship between
variables (e.g., Difference of Means).

2 Measures of association, which tell us the direction and strength of the rela-
tionship between two variables. (e.g., Correlation).

3 Measures of average effect, which tell us the amount of change in the depend-
ent variable given a unit change in the independent variable (e.g., Regression).

It is important to note that knowing which test to use requires us to think not
Jjust about the question we would like to answer but also our variables’ levels of
measurement, their population distributions, and the sample size. In addition, all
the tests discussed here demand that the data come from a random sample. In
Chapter 3 we learned about levels of measurement. In quantitative analyses
understanding the level of measurement is essential because it helps us decide
which hypothesis test to use.
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