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is 2.0. This tells us that for a t-distribution with df = 100, 95% of the arca under the

curve falls between ¢ = --2.00 and ¢ = 2.00. Finally, we plug this into our formuyly
tor the confidence interval:

Cl=X:k1tx 5%
=375+ (2.00 X 0.14)
=375 4 .50
- [3.47,4.03].

We can thus say that the mean number of parties in our population is betweey
about 3.5 and 4.

(20.14)

CONCLUSIONS

In statistical inference we generalize from a sample to a population by making
assumptions about the true distribution of a variable. Reference to a probability
distribution, like the normal curve, helps us understand how likely the results we
have found in our sample arc due to chance. In order to do so, we also need to
ensure that we have a representative sample, which can be accomplished through
random sampling, and can agree on a threshold for statistical confidence.

Bivariate Statistics
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Bivariate statistics allow us to test the relationship between two variables, While
simple, they provide great empirical leverage for hypotheses of association and,
with the appropriate research design, causality. We next hone our ability to make
controlled comparisons and introduce inference making about sample means with
the difference of means test. We then proceed to correlation, which moves us
beyond making a simple claim of a relationship or no relationship between two
variables to a measure of both the strength and direction of the relationship.

Revisiting Levels of Measurement

In the previous chapter, we found out some important substantive information
about our population means. Indeed we learned how to estimate a population
mean from the information that we gain in a single sample. However, we are still
not in a position to assess a hypothesis. We do not generally have expectations as
simple as “the mean number of partics in a democracy is x.” Our hypotheses
typically suggest a relationship between an independent and dependent variable,
and we have not made reference to bivariate analyses yet. We will explore a
number of statistical tests for assessing hypotheses. We can divide hypothesis tests
into three types based on the information they provide about the relationship
between the independent and dependent variable:

I Those that simply analyze whether or not there is a relationship between
variables (e.g., Difference of Means).

2 Measures of association, which tell us the direction and strength of the rela-
tionship between two variables. (e.g., Correlation).

3 Measures of average effect, which tell us the amount of change in the depend-
ent variable given a unit change in the independent variable (e.g., Regression).

It is important to note that knowing which test to use requires us to think not
Jjust about the question we would like to answer but also our variables’ levels of
measurement, their population distributions, and the sample size. In addition, all
the tests discussed here demand that the data come from a random sample. In
Chapter 3 we learned about levels of measurement. In quantitative analyses
understanding the level of measurement is essential because it helps us decide
which hypothesis test to use.




Table 21.1 Hypothesis "Itejsté guide -

Dependent Variable

— R
Independent
Variable Discrete Continuous i

. . v B . .\
Discrete Chi-Square, Phi, Logit, Probit, Cramer's V. Difference of Means, ANOVA, Regressigy
Continuous Logit, Probit Regression, Correlation

Table 21.1 lists some of the common and appropriate hypothesis tests - many of
which are beyond the scope of this book -- by the measurement classifications of
the independent and dependent variables. In the table, as is typical in the litera-
ture, we group nominal and categorical levels of measurement in the genery|
header, discrete, and interval and ratio levels under continuous (sce Table 3.4).
For example, i the dependent variable is continuous and so is the independepg
variable, we can use regression or correlation. For discrete dependent and inde-
pendent variables we might use a chi-square or phi test. And with a continuoyg
dependent variable and a discrete indepenent variable we could use difference of
means {est or regression.

Cross-Tabulations
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While a carcful look at the frequency distribution of a single variable should be the
first step in any analysis, social scientists are predominantly concerned with
relationships between two or more variables, not just the distribution of a single
variable. That is, the [ocus of rescarch often turns to testing bivariate and muiii-
variate hypotheses. [n the case of our example above, we can casily think about
relationships that might be more likely to be tested by social scientists, for
example, whether particular backgrounds make individuals more likely to identify
with one party or another. Even in the bivariate case, such as this, frequency.
distributions, appropriately structured, can provide some insight.

Returning to party identification in the 2012 ANES datasct, Table 21.2 presents
two frequency distributions -- one for party identification and onec for gender - in g
single table. The distributions for the values of party identification are noted
vertically down the first column (as in a single frequency distribution) and those
of gender are arranged horizontally across the first row. Thus each cell now contains
information on individuals who fit in a particular category for both variables. The
total values of the table (in columns and in rows) are referred to as the marginals,

Cross-tabulations can include raw counts as well as proportions or percentages.
In the example we provide the distributions as both frequencies (counts) and
percentages. When we do not have the same number of cases in cach group
(as above), the frequencies alone tell us little. Consider, for example, a crosstab

Table 21.2 Crosstab of partisanship by g‘ender‘

Row tota!

Male Female

Democrat 1006 ] 3g5 ‘;3;\ N

Row Percent 42.61% 57.39%

Column Percent 37.08% 47.02%

Total Percent 17.98% 24.22% 42.2%
independent 999 846 1845

Row Percent 54.15% 45.85%

Column Percent 36.82% 29.35%

Total Percent 17.86% 15.12% 32.98%
Republican 708 681 1389

Row Percent 50.97% 49.03%
Column Percent 26.1% 23.63%
Total Percent 12.65% 12.17% 24.83%
Column Total 2713 2882 5595
Row Percent 48.49% 51.51%

with equz}l Calegory percentages in each cell but different frequencies, We would be
tempted. in this case to draw conclusions from the different fi t'cquenc.iee H(:) ¥ -( - L
controlling for the sample size with percentages would show us that £l;c d'FZ-C\"/—Cb
frequencies are not meaningful. ‘ e
' In. the'casc pt'diftbl'ing category sizes, we require a way to standardize frequen

distributions in order to compare them. We often make use of pro .‘ortio?l' : Cz
percentages in this case. The proportion simply compares the numberpof 0'1‘-b 'cm'

given category with the total size of the distribution e

Prop = ~f- R

v (2L1)
p{here J is the frequency of observations and N is the sample size. Even more
1?q1t011t1y, as above, we make use of percentages, which are the frequency of
oceurrence of a category per 100 cascs,

Pet == 100 * Ji—

% (21.2)

( Ijkran Ta.l?le 21.2 what can we gather about the different groups? How does
party identification look for cach gender? We can see, as we have above, that
Democrats werc‘ the largest share of the sample at 2,361, followed by Independ-
ur‘1l§. -In terms of the relationship between the two variables, 1,355 of the Demo-
crats in the survey sample were women. While Republicans appear to split fairly
equally among the sexes at 708 and 681 » 999 Independents were male compared to
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only 846 female Independents. The largest number of res;_)ondents are femalg
Democrats at 1,355. This is the framework for cross-tabulations, or, more collg.
quially, crosstabs. Because they involve two variables and describg some aspects of
the relationship between two variables crosstabs provide a basic bivariate analysis,
Thus, typically, social scientific analysis begins with a crosstab. _

Beyond the counts and marginals, we can get further information from our data

(depending on our interests) from the row and column percents. Perhaps we want

to know more about the Independent males, in which case we could look at them
relative to all Independents by dividing the frequencies in each row by the numbey
of cases in that row,
Pctpyy = 100 * —j—
Row

= 54.15%. (21.3)

Or we could use column percents if we wanted to know the percentage of
females that arc Democrat relative to the entire female sample, for example.
Here we divide the frequencies in each column by the number of cases in that
column,

o f
Petcy = 100 e (21.4)

= 47.02%.

In all, the frequency distribution and its bivariate format, the crosstab, have
the ability to provide a wealth of information. Thus, while somewhat limited —
particularly in terms of multivariate considerations - it is good practice to begin
any statistical analysis here.

Difference of Means
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In social science we are often concerned with differences between groups. For
example, do Republicans differ from Democrats with respect to how religious they
are? The basic process involved in answering a question of this nature -~ where we
are interested in the extent to which two samples resemble each other on some
variable - is simple enough. First, we establish a hypothesis about the population.
Second, we collect a sample. Next, we check to see how likely the sample results
are given our hypotheses about the population. Finally, we reject or fail to reject
the null hypothesis based on our confidence level.

When testing hypotheses, we typically talk about testing the null hypothesis. In
this case, a null hypothesis says that the two samples are drawn from equivalent
populations. That is, any difference between two samples is due to a chance
occurrence or sampling error. In line with our notation, we symbolize it as

y =, 1.5

Difference of Means

where g is the mean of the first population and Hy 18 the mean of the second
population. Thus, in our example the null hypothesis would be that Republicans
and Democrats are equally religious (or that there is no difference between them in
terms of religiosity). Remember this docs not mean that we are denying the
difference in sample means, but that we are instead attributing that difference to
sampling error when we retain the null hypothesis (i.e., we are unable to reject the
null hypothesis).

[f the null is retained our data suggests that there is no relationship between our
variables. Of course, we as social scientists often want to establish relationships,
The process we subscribe to begins with the presumption that relationships do not
exist. That is, establishing differences between groups is often the rationale for
research —even though [ailing to disprove the null is sometimes more in formative, or
more theoretically intriguing, than rejecting the null. If we reject the null, we cannot
rule out the research hypothesis that a true population difference exists. In this case
the two samples appear to have been taken from populations having different
means. Or more precisely stated, the difference between sample means is too large
to be accounted for by sampling error. We symbolize this difference in means as

My # . 21.6)

In the previous chapter we saw how to construct a sampling distribution of
mean scores. In order to understand whether we can expect a difference between
sample means to be due tochance or a true population difference between the two
groups, we now consider the construction of a sampling distribution of differences
between means. This frequency distribution is just like those we have explored
ecarlier, except that the frequency is based on a series of differences between sample
means randomly drawn from a given population.

We want to make a probability statement about the occurrence of different
scores in the sampling distribution of differences between means. In the past we
have relied on known probability distributions, like the normal curve, to make
probability statements. We do so again here. If we can assume that this sampling
distribution of differences of means is distributed normally we can make state-
ments of probability. Assuming normality we know the general characteristics of
our distribution of differences between means.

But does it make sense to think of the sampling distribution of differences
between means as a normal distribution? Instcad of just taking a singular random
sample, think again about what would happen if we took a series of random
samples and made a distribution of differences between means. Consider, for
example, the hypothetical data in Table 21,3 which occurs from repeatedly taking
two samples, calculating the mean for each and then the difference between means.
For the purposes of this example, assume also that we know the population mean.
If the null hypothesis is correct then the two samples should look the same. Any
difference between the population mean and any sample mean should be due
purely to sampling crrotr. Thus a distribution of differences between means would
look approximately normal if we wanted to retain the null hypothesis. That is,
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Table 21:3  Distribution of differences
‘between means s ;

Differences Frequency

5 1
4 2
3 5
2 7
1 10
0 18
- 10
-2 8
-3 5
4 3
-5 1

Figure 21.1 Histogram with polygon of
differences between means N

Freguency

Differences

if there was truly no difference between means due to actual differences in th
population, then the differences that do show up in the samples should fook lik
random fluctuations about the mean with most scores close to the mean and few
scores in the tail. Indeed the difference in means should overestimate and under
estimate the mean in roughly equal numbers. In addition, the mean of th
difference in means should be close to zero as the true central tendency of case
is to have no difference between the sample means. Figure 21.1 plots the histograz
of differences overlayed with a polygon. The polygon shows that after onl
70 draws from cach sample we can alrcady sce a shape that somewhat resemble
the normal curve, which we should expect given the central limit theorem. More-
over, the mean is zero, which suggests the samples are very similar to each other.’
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Again, note that we do not takc many samples from a population in practice.
Given what we know about the population and the normal curve, our reasoning
for rejecting or retaining the null hypothesis can be constructed in terms of the
score’s distance to the mean - in this case the difference between means. If the
difference of means that we found lies so far from the mean of differences between
means for the null hypothesis (i.c., 0) that it only has a small probability of
occurrence in the sampling distribution of differences between means, we reject
the null. Contrarily, if the difference of means falls close to the mean of differences
between means such that the probability of its occurrence in the sampling distri-
bution of differences between means is high, we find ourselves unable to reject
the null.

As we have done in the past, we need to transform our parameter of interest into
a standardized unit to determine where it fails on the distribution. In this case we
are dealing with sample mean differences that we nced to translate into standard-
ized units, so we calculate it accordingly:

(X1 =X5) -0

0%\ X,

z = . 1.7
where X; — X is the difference between the mean of the first sample and the mean
of the second sample. We assume 0 for the mean of the sampling distribution of
differences between means based on our null hypothesis:

My o My == 0. (21.8)

We rarely have knowledge of the standard deviation of the distribution of mean
diffcrences; again, it is too costly to draw enough pairs of sample means from the
population to calculate it. Morcover, in practical rescarch we can rarely assume
that our sample sizes or variances are cqual. Not unlike our problem with the
standard deviation in the sampling distribution of means then, we need an estimate
for the standard deviation that combines information from both samples. That is,
the variance and sample size need to be accounted for to give us an idea of how
different Xy is from X, due to sampling error alone. We therefore calculate an
approximation of it from the two samples that we actually draw. We will call this
our standard error of the difference between means:

©1.9)

With the standard error we can rewrite the test statistic for the difference of
means test in terms ol how it is used in actual research:

XX (21.10)

There arc a few variants on the difterence of means test. One common version
uscs the independent variable to break observations into groups over time. =
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A second variant involves the differences between proportions. The procedures fo
Lompanng scores between the same group tested twice (i.e., panel data) angd 6
comparing proportions involve different assumptions and slightly different formy
fac than that above, where we are testing mean differences in two differey
populations. While we will not cover this material here, you should be aware ¢
the difference. Also note that the formulae above can be simplifed when we ¢y
assume cqual sample sizes or equal variances. We have not made those assumyp
tions with this data, which is mote common in observational data.

Parametric Models
The statistical analysis above (difference of means) as well as some of the others we
introduce below (correlation and regression) assume that the distributions of the
variables being assessed belong to a large collection of known parameterized
familics of probability distributions. A parameter is just a characteristic of a
population that we can use to describe the distribution. FFor example, in the case
of the difference of means, we rely on the normal distribution, with its familiar
parameters of iz and o. Thus, we call all tests of this nature parametric.

While largely beyond the scope of this book, it is important to note that there also
exist nonparametric models. These models similarly employ a mathematical proced-
ure for hypothesis testing, but, unlike parametric statistics, they make no assump-
tions about the underlying distributions of the variables. Here the model structure is
not specified at the onset by assuming a known probability distribution, but, instead,
determined by the data. For example, a histogram is a simple nonparametric esti-
mate of a probability distribution. As such, the term nonparametric is not meant
to imply that such models completely lack paramecters but that the number and
nature of the parameters are flexible and not fixed in advance. There are also
semiparametric models that have both parametric and nonparametric components.

Generally speaking, nonparametric tests have less statistical power than the
appropriate parametric tests (though this depends on the kind of nonparametric
test), but are more robust when the assumptions underlying the parametric test are
not satisfied. Power refers to the probability of rejecting the null hypothesis when it
is truly false. The results of a parametric test for a sample that does not appropri-
ately match the assumed distribution are not meaningful. In these cases we should
rely on nonparametric tests.'®7

Example: Group Membership and Ideology
Let us take an example related to questions of social capital. We have a hypothesis
that liberals will belong to more social groups than conservatives. That is, liberals
are more likely than conservatives to be members in formal groups, like civic
and social groups, professional associations, and political organizations. The nul}

Exampie: Group viembersnip ans |seology

Tabie 214 Summary statistics of group
membersh:p by |deology

Liberals Conservatives

Ny =25 Ny =37
Xy = 60 X; = 49
51 = 8 Sp == 7

hypothesis is thus that the 1.0 = Leomservatives- OUT tesearch hypothesis is that
Hiiberals > Peonservarives- YtOwever, for case of presentation, let us agree that the
opposite result (conservatives are more involved) is also a matter of interest and
good possibility. Thus we are simply testing whether a relationship exists between
ideology and group membership. In this case, our research hypothesis is that
Hiiberats 7£ Heonservatives:

Table 21.4 provides the summary statistics for the data on liberal and conserva-
tive opinions on group membership. Here, the dependent variable is a multi-item
index of engagement in formal group activities ranging from 0 to 100. The
independent variable is a simple liberal (1) or conservative (0) dichotomy. We
are dealing with an independent variable that is nominal and a dependent variable
that is continuous, which, along with the hypothesis, make it appropriate for a
difference of means test.

We begin by calculating the standard error of the difference between means:

XXy =

@L.11)

If we test the hypothesis that there is a difference between liberals and conserva-
tives on group membership we need to use a t-test to see if the samples are truly
different in this case, not a z-score. Recall that z-scores are limited to situations in
which we know the true population standard deviation or we have very large
distributions, which is not the case in this example. Here we are estimating each ¢
from our §; and s,, SO we use t-tests.

Recall the t-ratio (this time with our new standard error):

X -X
Sx1--x,
60~ 51 (21.12)
o197
=4.57.
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Next, we check our t-ratio with the values in Appendix A.2. In this case oy
degrees of freedom involve two samples, so we have:

df = (Ny = 1)+ (Ny — 1)

= Ny A4 Noy— 2
=25 437 2 (21.13)
= 60.

For a df of 60, compare 4.57 to the critical values corresponding to the chosen «;
4.57 is larger than the critical value of 2 for the conventional @ = 0.05 as well as those
for the stricter cutofYs, including a == 0.00{. We believe 0.05 is strict enough for a
hypothesis of this nature (and of any nature in this book), and so we reject the null
hypothesis. According to these results it is very unlikely that liberals and conserva-
tives come from the same population with respect to their group membership activity,

In addition, we can analyze our data by appealing to confidence intervals. We
have an observed difference of 9 (60 — 51), a standard error of 1.97, and degrees of
freedom of 60, so we can state that the population ditference of means should fall
between our confidence interval. Recall, that this is simply the Observed Differ-
ence + Critical Value x Standard Error:

Cl =94:2.00 x 1.97
=9+ 3.94 (21.14)
= {5.06, 12.94).
Notice that this tells us that the population difference must be positive, not zero,
since the range of values does not include zero. Thus, we reject the null that the

population mean difference is zero. Again, we will only reject the null if zero is not

included within our confidence interval.

Correlation
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We began our cxploration of statistical inference by generalizing differences we :
find in samples to differences in populations (see Chapter 20). Using data on -
sample differences, we described differences in populations with a particular level .
of certainty. In this chapter we took a similar approach to consider the difference :
of means on a continuous variable across groups as indicated by a nominal level

variable. Finding a statistically significant refationship (rejecting the null hypoth

esis at a particular level of confidence) indicates that the extent of the difference in -

means is unlikely to be the result of sampling error.

With correlation we move from considering the relationship between an interva
and nominal level variable, as with difference of means, to the relationship between
two interval variables. In this context, correlation provides a measure of the strengtl

of the relationship. Thus, correlation is a measure of association between two ot -
more variables. Fortunately, correlation is conceptually straightfoward as it can be |

thought of as an extension of our data visualization tool, the scatter plot.
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Visually, a scatter plot should give us a good idea whether our null hypothesis
of no correlation can be rejected. Recall that in scatter plots we typically locate the
X variable values along the x-axis (the horizontal base) and the Y variable values
along the y-axis (the vertical base). Correlation consists of two components: strength
and direction. The direction of correlation can be either negative or positive. If
high scores on X correspond to low scores on Y, we have negative correlation.
If high scores on X correspond to high scores on Y, we have positive correlation.
In other words, if most points arc in the bottom left and top right, a positive
correlation is plausible, as in the left pane! in Figure 21.2. If most points arc in the
top left and bottom right, as in the right panel, a negative correlation is plausible.

The strength of correlation can be strong or weak. If the scatter plot looks like a
straight line, as in the left two pancls of Figure 21.3, we are likely to have a strong
correlation. If we get something that looks like a cloud of points, as in the far right
panel, we have a weak correlation. Thus a correlation is strong if for a unit change
in variable X, we can expect a specific change in variable Y in a particular
direction (positive or negative). A correlation is weak if for a unit change in
variable X, we are not sure what the change would be in variable Y. In other
words, for a strong correlation we can look at X and predict the changes in Y; for
a weak correlation we have a harder time doing that. ;

Scatter plots, however, do not allow us to make statistical inferences. Recall
that statistical inference is the process of inferring from a sample to a population.
In order to make statistical inferences, fitst we need to create a test statistic. of:.
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association. The most common statistic of association between two intcrval. l?‘vel
variables and the onc we discuss below is Pearson’s r. Thf:n we ne_cd a stzmstngal
procedure for evaluating the significance of this test statistic. To reiterate, th'e size
of Pecarson’s r does not by itsell allow us 1o draw a conclusion about stzlt1§t1czt1
significance. There are two scparate though related anz‘ﬂyses to conc?uct to 'fw{w(-; at
statistical inference. Thus, although the formulae differ, the logic of statistical
inference here is much the same as in the difference of means test above.

To understand Pearson’s r, we first need to understand how we compute the
covariance between two variables. Covariance is a measure of how much two
variables change together or “covary”:

COV:Z(X WIS Y). (21.15)
N —1

As is cvident from the formula, we use the deviations to measure change in each
variable. By multiplying corresponding deviations we sce that t.he larger the corres-
ponding deviations the larger the covariance. Notice tha.t covariance could be nega-
tive as well. Because we have to add the combined deviations together to get the sense
of how the two variables vary together, we need to account l or the fact that the sum gt
the combined deviations could be large due to the sinple [.act that t?e samplf-: size is
large. Thus we control for sample size and divi.de by N — 1, instead of just N ,“sm(ce t}le
population mean is unknown and we are relying on the sample mean to esl{r.m’ue. it.

While it appears that we can use the covariance as our naeasure of coxnelcltl?n,
using the covariance formula may be misleading at tlmes..W.hat '1f we have a‘lm g(;
amount of deviation in the X variable and not much deviation in the Y variable?
Such will give us a large covariance. Alternatively, if we hzlec a n19deratc a'mounf Qf
deviation in the X variable and a moderate amount of c'ievmuon inY vzmz}ble, this
will give us covariance of a reasonable size. However, thls.does not necessarily mean
that in the first case the variables correlate stronger than in the s.econd case. All this
suggests that our measure of correlation needs to adjust our covariance by the amount

of deviation present in each variable. A good measure of deviationina variable is the
standard deviation. Thus we can gauge the degree of association between the two

variables by dividing covariance by the product of standard d\evmtlons.. .

Given the logic above, we can get a particular measure of correlation sxmp]){ by
dividing the covariance over the combined standard deviations and simplifying.
Thus, Pearson’s r is:

5(X - F)(Y -7)
FOEs ___,_ﬁ =) e
\’Eﬁﬁ& 8 Eﬂ”;/ﬁ @1.16)
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‘ T he formula for Pearson’s r limits the range of values the statistic can take to
falling between —1.00 and 1.00, with larger absolute values representing stronger
correlations. Values of —1.00 or 1.00 represent a perfect linear relationship (i.e.,
you could draw a straight line and every point would fall on it). If the correlation
coefficient 1s negative, then we have a negative correlation. If it is positive, we have
a positive correlation. If the correlation is 0, we have the weakest possible correl-
ation (no correlation, think of a cloud of points). Pearson’s # therefore allows us to
make statements that smaller values indicate weaker relationships. Although there
15 no universally accepted rule of thumb for distinguishing between strong and
weak relationships, the closer to 1 or —1 the stronger, and the closer to 0 the
weaker,

Note that the value of » does not tell us the slope of the best fitting line through
our scatter plot, which we will discuss below with regression. An  of || - called
the absolute value of [; i.c., the non-negative value of 1 - for example, does not
mean that for a unit increase in one variable there is a full unit increase in another.
Instead it conveys that there is no variation between the data points and the line of
best fit. That is, we can have different slopes in the scatter plot with equivalent
values of #.

Of course, we arc typically working with samples, not populations. That is,
using our sample data we would like to say whether or not the variables in the
populations correlate. Here the null hypothesis refers to the situation in which the
population characteristics arc not correlated. Thus the null hypothesis is that
== (), while our alternative hypothesis 1s that # 0. It is worth explicitly restating
our null hypothesis: there is no lincar relationship between X and Y. Statistical
theory tells us that the critical value associated with the test statistic represents the
probability of finding this value of » as or more extreme than what you would get if
no lincar relationship actually exists. As belore, we are willing to reject the null if
this probability (p-value) is less than 0.05; or equivalently, il our test statistic
exceeds the critical value for ¢.

Note that in practice one might provide a correlation coefficient as a summary
statistic of the data without testing whether it is statistically different from zero.
However, hypothesis testing with Pcarson’s » has some basic assumptions. There
should be a straight line (not curvilinear) relationship between two variables. One
may also detect nonlincar relationships between variables with this approach, but
Pearson’s » cannot be used to test these relationships, which would require a
different test statistic. Second, the variables should be measured at the interval
level and normally distributed, though the latter is of less importance in reason-
ably large samples since we can invoke the central limit theorem. Finally, random
sampling is nceded to allow us to generalize from the sample to the population.

In our example below we will present the relationship between two variables,
issuc dimensions and political parties, in terms of an independent and dependent
variable. Correlation, however, does not require the specification of an independ-
ent and dependent variable. Correlation is simply a statement about association,
not about causation. For instance, we might examine the correlation between two:




326

Bivariate Statistics

independent variables. 1f we control for two highly correlated independent vari-
ables at the same time, this causes statistical problems for multivariate regression,
This very high correlation is called collinearity, and complicates estimation, which
we will taik about more in the context of multiple regression.

Correlation can also be a uscful tool in the operationalization process. If we
want to use multiple measures to get at the same concept, there should be some
correlation between the measures. This construct validity suggests that valid meas-
ures should be correlated with related features of the concept. On the other hand, if
correlation is very high, using both measures may be redundant.

Outside of these assumptions, the general process of calculating the correlation
coefficient and testing statistical significance is similar to what we did for the
difference of means. We begin by calculating our means and standard deviations
and plugging them into the (intuitive) formula for r. We next calculate our test
statistic, t-ratio, to gencralize from our sample to the population. In the case of
correlation we use

v s 21.17
= (21.17)
To test the null we also necd to state our level of confidence and calculate the

degrees of freedom. In correlation with two samples the degrees of freedom is
N — 2. As per usual, we then go to the back of the book -- i.c., find the t-ratio at the
appropriate confidence level and degrees of freedom in the Appendix Table A.2 -
to check whether the t-ratio is larger than the critical value for t. Tf it is, we reject
the null of no correlation. If it is not, we fail to reject the null.

In closing, it is worth repeating a tfamiliar statistics mantra: correlation is not
causation. As we noted, there are a number of reasons why we might find a
cortrelation without ever expecting there to be a causal relationship. Liven if we
do expect a causal relationship, we still must have the proper temporal sequence,
and rule out concerns such as antecedent variable and spurious correlation to be
confident in a causal relationship.

Example: Issue Dimensions and Parties
In democratic countries are multiple issuc dimensions associated with a greater
number of parties? That is, should we expect more parties when there are mote
issuc dimensions on which parties can contend tor power? The concept of issue
dimensions suggests that there is more than a single left/right ideological dimen-
sion to politics and instead politics can involve multiple dimensions, including
sociocconomic and sociocultural issucs. A straightforward hypothesis stemming
from these classic questions is the expectation of a positive correlation between
issuc dimensions and parties.

For this exercise we have some hypothetical sample data from a population of
democratic countries that provides us with the two variables necessary to test the
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Table 21.5  Issue dimensions and parties data

Issue dimensions Parties
Switzerland 3.73 4.84
Italy 2.99 4.90
Netherlands 3.25 4.65
France 2.76 4.03
Portugal 232 3.43
Germany 3.24 3.43
Spain 2.11 2.76
United Kingdom 2.75 2.99
Mean 2.89 3.88

Table 21.6 Calculating r for issue dimensions and parties

X Deviation Y Deviation Product X Dev? Y Dev?

Switzerland 0.84 0.96 0.81 0.71 0.92

Italy 0.1 1.02 0.10 0.01 1.04
Netherlands 0.36 0.77 0.28 0.13 0.59
France -0.13 0.15 -0.02 0.02 0.02
Portugal -0.57 ~0.45 0.26 0.32 0.20
Germany 0.35 ~0.45 ~0.16 0.12 0.20

Spain -0.78 -1.12 0.87 0.61 1.25
United Kingdom ~0.14 -0.89 0.12 0.02 0.79

Sum of products SP == 2.26

Sum of squares SSx = 1.94 SSy =5.03

correlation, one that notes the number of issue dimensions and another the
number of parties. In order to test the correlation between thesc two variables,
we first calculate the Pearson’s correlation coeflicient () then the t-ratio to arrive
at a test of statistical significance.

We begin by calculating the distances between the raw values and its mean
value for each variable, which are called the X deviation and Y deviation,
respectively. As shown in Table 21.6, to obtain the X deviation, we simply subtract
X from the X value for that observation. We do the same for Y. Deviations can be
illustrated within a scatter plot that includes a vertical line at the mecan value of X
and a horizontal line at the mean value of Y. Comparing Figure 21.4 to Table 21.6
we see that points or countries in the top right corner will have two positive
deviations, and those in the bottom left corner will have two negative deviations.
Points in the top left corner will have a positive Y deviation and negative X
deviation, and thosc in the bottom right corner will have a negative ¥ deviation
and positive X deviation.
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2 X 4 Figure 21.4 Scaticr plot of parties
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Next, for each observation, we multiply the X deviation by the Y deviation.
If this product is positive, the observation is consistent with a positive relation-
ship; if the product is negative, this observation is consistent with a negative
relationship. Then we sum these values. This is the sum of products (SP), the
numerator of our formula for r. So far, we can note two things. The sum of
products is positive, which means the relationship is positive. All but one of
the individual products is positive, which means that the relationship appears
to be fairly consistent. However, the scale of this output is unrelated to the
values of the variables, so we cannot make a statement about the strength of
association yet,

By calculating the denominator, we succeed in constraining our test statistic to
the range [—1,1]. We can now interpret the strength of the relationship. The
denominator calculates the deviations of each variable in relation to its own mean,
but without respect to the other variabie. In other words, we are calculating
somcthing akin to the variance of cach variable (except that we do not divide by
N), which we call the sum of squares: SSy for X and SSy fer Y.

We now have all the elements we need for our formula:

B SP
2.26 (21.18)

=0.72.

What, then, do we make of this value of 0.72? We know there is a positive
relationship between issue dimensions and number of parties, and that the rela-
tionship is quite strong. In giving a substantive interpretation of correlation, these
arc the two necessary clements: direction and strength.

Key Terms

But is it statistically significant? The same value of r may or may not be
statistically significant depending on the sample size. So, answering this question
Is a two-step process. First, we must translate r into a t-statistic, using a formula
that involves only » and N. To calculate t, we simply need our value of # and our
number of observations

- rVN =2

Vi-072 21.19)

Then we just need to calculate our degrees of freedom to determine the critical
value. The degrees of freedom are simply:

df =N -2
=6. (21.20)

With six degrees of freedom, our critical value for t is 2.45. Thus, with our t-ratio
of 2.54, we can rcject the null.

CONCLUSIONS

Social scientists are typically interested in the relationships between two or more
variables. Above we have introduced two bivariate hypothesis tests for continaous
dependent variables. In quantitative analyses understanding the level of measure-
ment is essential because it helps us decide which hypothesis test to use. The first
test, difference of means, allows researchers to make comparisons of sample
means. The second, correlation, moves us beyond making a simple claim of a
relationship or no relationship between two variables to a measure that conveys
both the strength and direction of the relationship.

KEY TERMS

* Discrete variable

*  Continuous variable

* Marginals

*  Cross-tabulation (crosstab)

*  Sampling distribution of differences between means
* Standard error of the difference between means

¢ Parametric
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