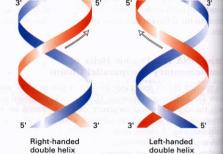
Forensic genetics

An overview for medical students

RNDr. Daniel Vanek, Ph.D

Lecture overview

- Introduction to forensic genetics
- DNA sampling
- Individual vs. group identification
- Factors influencing the results of DNA analysis in forensic genetics



- 1. Relating to, used in, or appropriate for courts of law or for public discussion or argumentation.
- 2. Of, relating to, or used in debate or argument; rhetorical.
- 3. Relating to the use of science or technology in the investigation and establishment of facts or evidence in a court of law
- 4. The word *forensic* comes from the Latin *forēnsis,* meaning "of or before the forum."

Forensic genetics?

"Application of genetics and molecular biology science to solve the questions raised by the legal system"

To link an individual to a crime scene/criminal act To identify victim To exonerate suspect To identify the animal/plany/microorganism To perform kinship analysis "To change history"

The short history of forensic genetics

- 1980 Ray White The first RFLP marker
- •1985 Alec Jeffreys Multilocus VNTR probes
- •1985 Kary Mullis PCR (Nobel prize 1993)
- ●1988 FBI starts with DNA identifications
- ●1995 Forensic Science Service (UK) starts UK DNA database
- ●1998 FBI starts CODIS datbase

The short history of CZE forensic genetics

~ 1990 – DNA analysis used to solve crime in Czechoslovakia (Doc. Ferak, UK Bratislava)

~ 1992 – 1st Police DNA laboratory in Czechoslovakia (Institute of Criminalistics Prague)

~ 1994 – 1st Police DNA laboratory in Slovakia

Basic terminology: Genetics

- DNA Polymorphism ("many forms")
 - Regions of DNA which differ from person to person
- Locus (plural = loci)
 - Site or location on a chromosome
- Allele
 - Different variants which can exist at a locus
- DNA Profile
 - The combination of alleles for an individual

Basic terminology: Technology

- Amplification or PCR (Polymerase Chain Reaction)
 - A technique for 'replicating' DNA in the laboratory ('molecular Xeroxing')
 - Region to be amplified defined by PRIMERS
 - Can be 'color coded'
- Electrophoresis
 - A technique for separating molecules according to their size

Three generations of DNA testing

RFLP AUTORAD Allele = BAND DQ-alpha TEST STRIP Allele = BLUE DOT Automated STR ELECTROPHEROGRAM Allele = PEAK

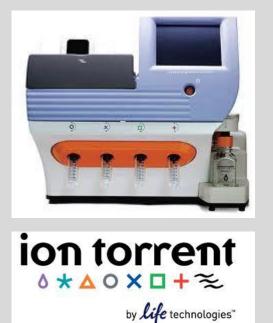
RFLP

- High starting amount of DNA needed
- Very high discrimination power
- Radioactive probes
- Labor intensive

- Non-uniform methodology/systems
- Limited potence for databasing

Dot-blot

- Minimum starting amount of DNA needed (PCR amplification)
- Very poor discrimination power
- Labor intensive but can be automated
- Limited potence for databasing



STR

Short Tandem Repeat

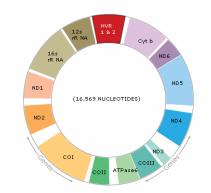
- Good discrimination power
- Suitable for databasing
- Possibility of automation
- Uniform methodology/CODIS systems
- Very low demands on the quantity and quality of DNA

Next generation sequencing

(Next Generation Sequencing) Massively Parallel Sequencing IN SILICO SEKVENCE

Sekvence

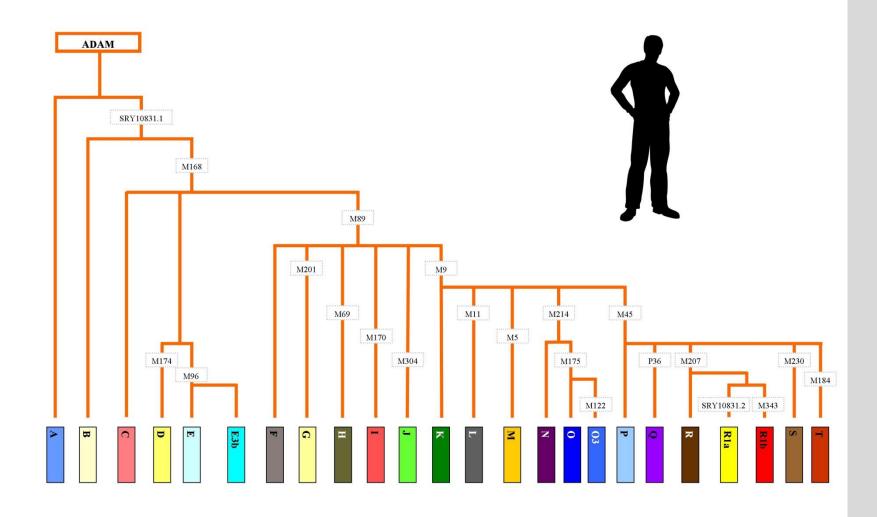
DNA tests for group identification

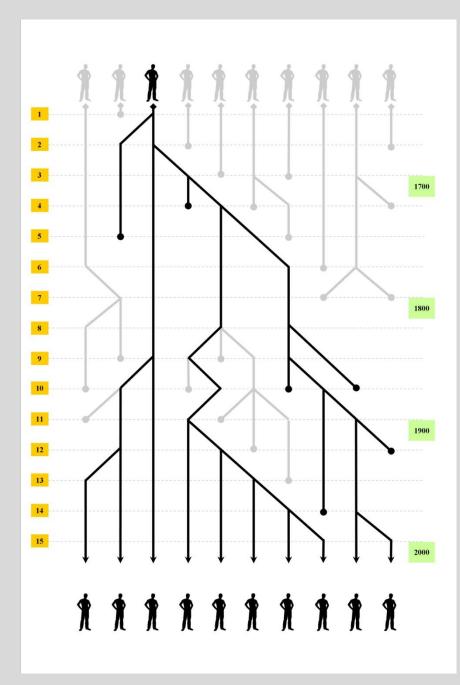

Mitochondrial DNA mtDNA sequence Sensitive but not discriminating

Y-STRs Useful with mixtures Paternally inherited

Mitochondrial DNA sequencing

Hair shafts Severely degraded bodies (HVR1+2)



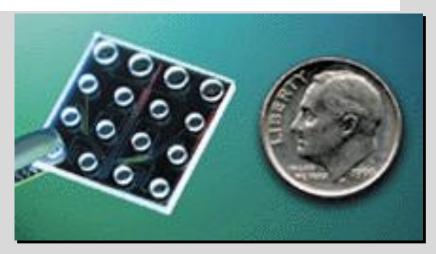


Maternally inherited

ĕ	Ē	1b-N	VIG0	088::	1																																							×
L	1	GGG	G AC	с тс	C AC	ст	AC 1	ICA	CC	C TI	'A C	AG	TAC	AT/	GC	A CI	AT A	AA (SCC	ATT	TA	C CG	T AC	A TA	G C.	AC A	TT	ACA	GTC	AAA	TCC	CTI	сто	GTO	cc	C AT	G GA	T GA	c co	c cc	I CA	G AT	A GGG	;
	115	GTO	c cc	T TG	A CO	CAC	CA 1	rcc	TC	C GI	G A	AA	TCA	ATA	TC	c co	SC A	CA	AGA	GTG	CT	A CT	C TC	сто	G C	TC C	GG (GCC	CAT	AAC	ACT	TGG	GGG	TAG	GCT.	A AA	G TG	A AC	T GT	A TC	C GA	C AT	C TGG	;
2	229	TTC	CT	A CT	T CI	IG G	GC (CAT	AA	A GO	ст	'AA	ATA	GCO	CA	C A	CG T	TC (ccc	TTA	AA'	T AA	G AC	A TO	CA C	GA 1	GG I	ATC	ACA	GGT	CTA	TCA	ccc	TAT	TA	A CC	A CT	C AC	G GG	A GC	I CI	C CA	I GCA	1
1	343	TTI	C GG	T AT	T TI	C G	TC 1	rgg	GG	G GI	T A	GC	ACG	CGI	TA	.G C2	AT T	GC (GAG	ACG	CT	G GA	G CC	G GI	G C.	AC C	CT	ATG	TCG	CAG	TAT	CTO	TCI	TTO	AT	I CC	T GC	сто	A TO	C TA	T TA	T TT	A TCG	;
4	157	CAC	CT	A CG	T TO	CA A	TA 1	TTA	CA	G GC	G A	AC	ATA	CTI	AC	T AJ	AA G	TG	IGT	TAA	TT	A AT	T AA	T GO	T T	GT A	IGG I	ACA	TAA	TAA	TAA	CAA	TTG	AA1	GT	C TG	C AC	A GO	C GC	T TT	C CA	C AC	A GAC	:
5	571	ATC	CAT	A AC	A AZ	A A	AT 1	гтс	CA	C CA	A A	CC	ccc	cco	CT	C CO	c c	CA (CTT	CTG	GC	C AC	A GC	A CI	T A	AA C	AC I	ATC	TCT	GCC	AAA	CCC	CAA	AAA	ACA	A AG	A AC	C CI	A AC	A CC	A GC	C TA	A CCA	ł
(585	GAI	TT 1	C AA	A TI	TT	AT (CTT	TT(G GC	G G	TA	IGC	ACI	TT	TA	IA C	AG :	ICC	CAA	A																							
K	<mark>/</mark> E	1b-N	VIG0	088:	2																																							8
			31	70											38	0										3	90	•									400						•	•
	G	; (2 1	A (С	G	С	G	1	ł	Т	A	G	С	A	1	2	Т	G	С	G	A	G	1	4	С	G	с	Т	G	G	A	G	С	С	G	G	A	G	С	A	с	С	с
Ň	ſ								1	١						,	۸.		Λ			0	ſ	1	1					^	Δ	٨					Α	\uparrow	l				Λ	
١	1	11	1	γI	١.	Λ	Λ	~	1	$\left \right $	Λ	Λ	~	\wedge	1	$\langle $	$\left\{ \right\}$	N.	Π	٨	~	1	$\backslash /$	$\left\{ \right\}$	$\backslash I$	١.	Λ,	Λ.	N.	()	\square	Π	^	Λ	Δ	Δ	11			Δ	Λ	Λ	Λı	Λ
	V	V	V	V	\mathbb{V}	\setminus	$ \langle $	/	V	V		$ \rangle$	Λ		V.	V	V	\setminus	$\left(\right)$	/ \	\int	V.	V	V	Y	V	V	<u> </u>	$ \rangle$	$ \rangle$	$ \rangle$		$\langle \rangle$	/	[V	$\sqrt{-}$	V	\sum	$\int \Lambda$	$\left \right\rangle$	ι \	' V	
	(_		~				~	-	_				<u> </u>	-		~**			····	~~~	~ -	- 1 -		- 1		~ '				~~~		-	-			<u> </u>	0.00		~ •			•

Genetic genealogy

Genetic genealogy


Y-chromosome STRs: Mutation speed Surname "specific" haplotype Geographic origin (SNP)

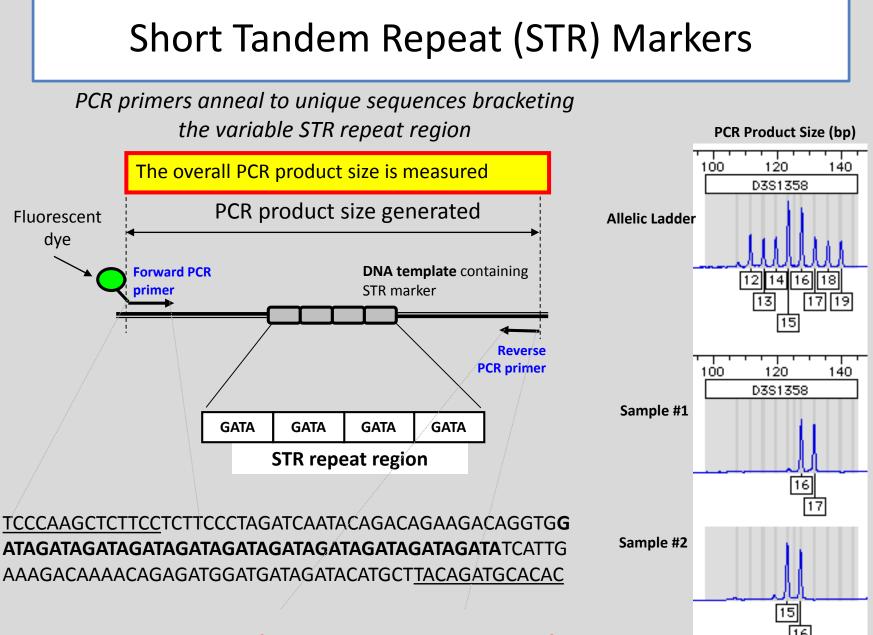
SNP typing

- Geographic origin
 - Sub-Saharan African
 - East-Asian
 - Indo-European
 - Native-American
- Eye color
- Hair color
- Skin color
- Identification
- Family lineages

Lab-on-a-chip/RAPID DNA

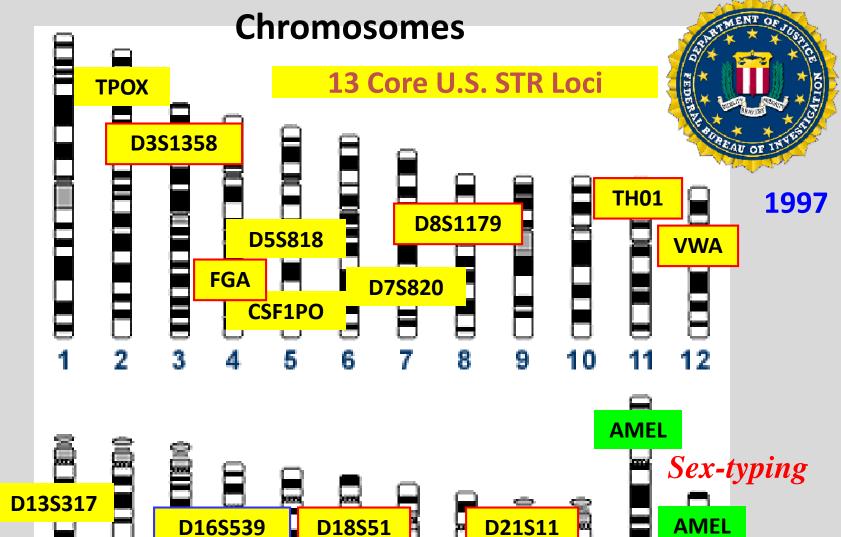
- All-in-one
 - Extract DNA
 - Quantify DNA
 - PCR amplify DNA
 - Capillary electrophoresis

Scope of forensic DNA analysis


- Almost any kind of biological material (plant, animal, human, microbial)
- Identification = comparison of reference sample and unknown sample

STR

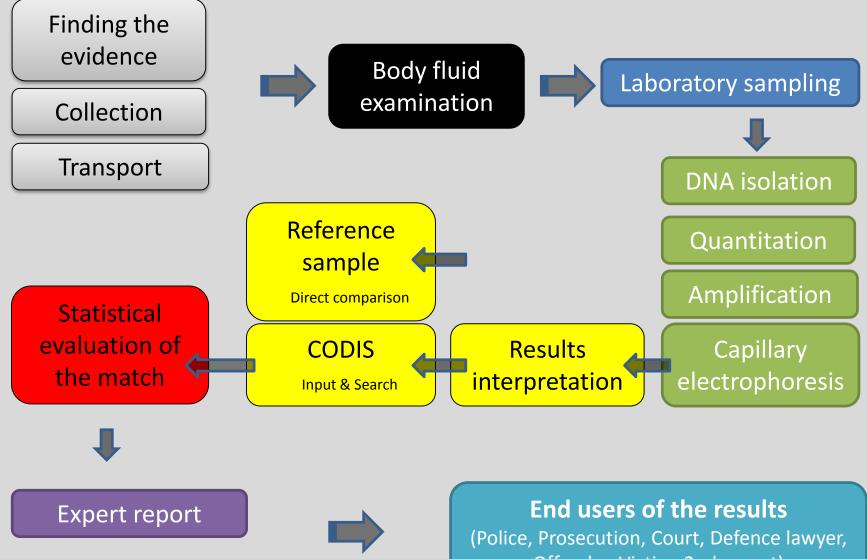
- <u>Short tandem repeat</u>
- Describes a type of DNA polymorphism in which:
 - a DNA sequence repeats
 - over and over again
 - and has a short (usually 4 base pair) repeat unit
- A length polymorphism -- alleles differ in their length


3 repeats: AATG AATG AATG

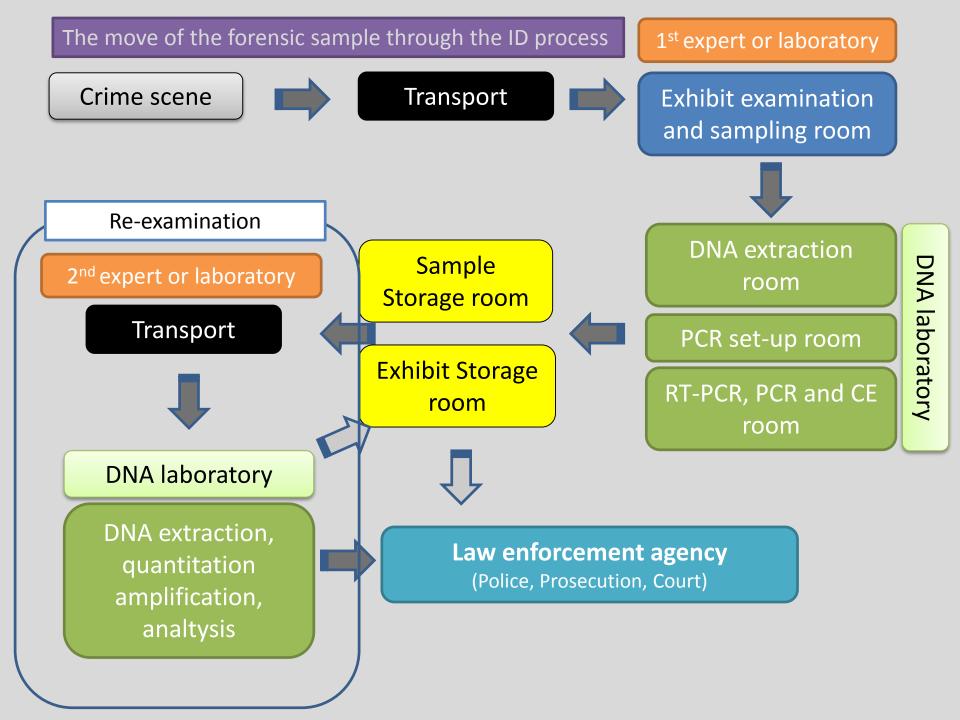
- 4 repeats: AATG AATG AATG AATG
- **5 repeats: AATG AATG AATG AATG AATG**
- 6 repeats: AATG AATG AATG AATG AATG AATG

= 11 GATA repeats ("11" is all that is reported)

Position of Forensic STR Markers on Human

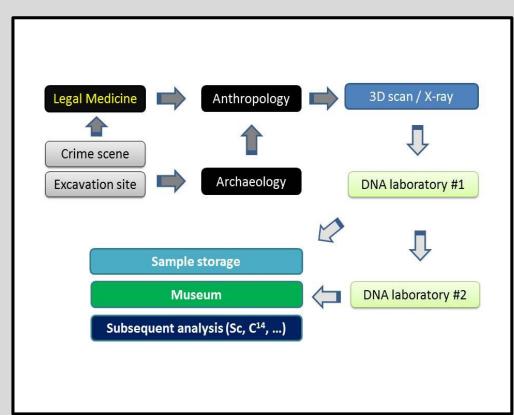


х

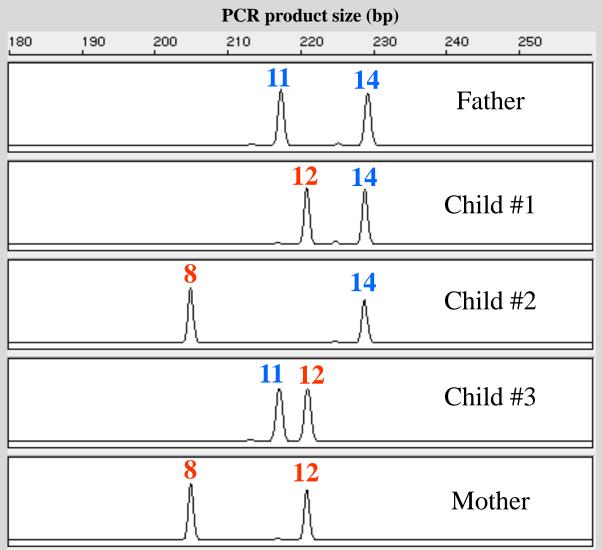

Y

The process of forensic DNA identification is not only about the technology used!!!

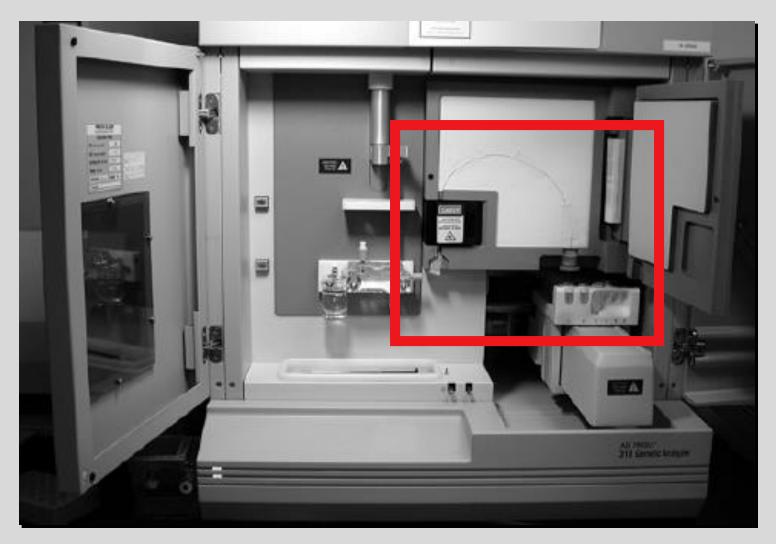
The process of forensic DNA analysis



Offender, Victim, 2nd expert)

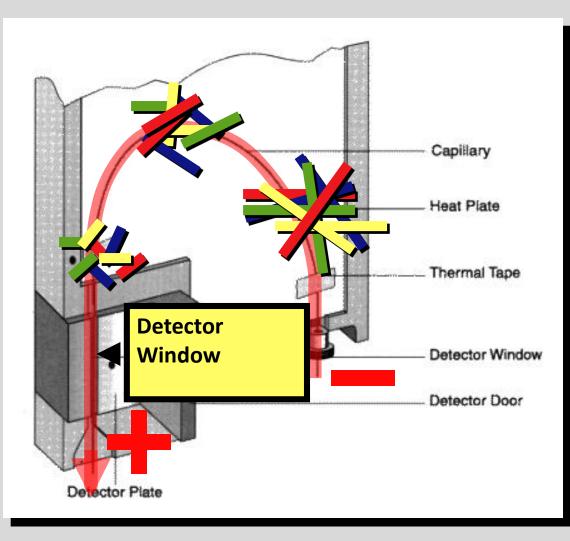

Major external factors influencing the quality of DNA typing

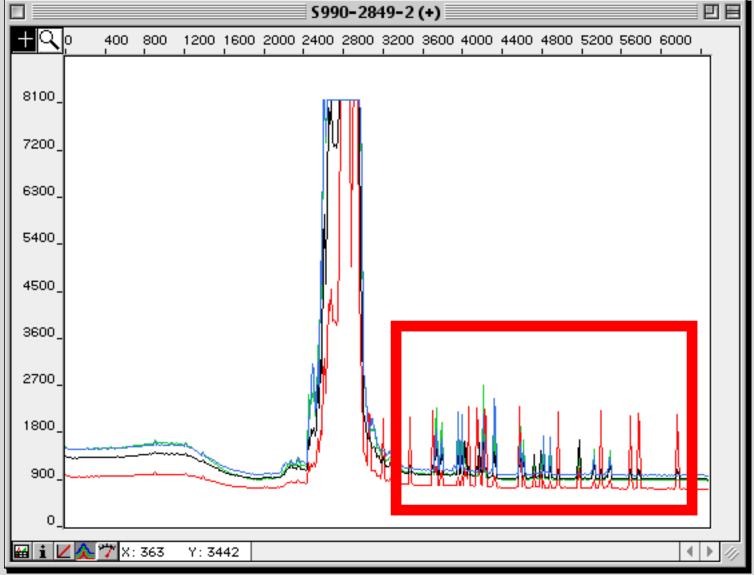
- UV light
- Humidity
- Radiation
- Chemicals
- Temperature
- Contamination
- Microorganisms



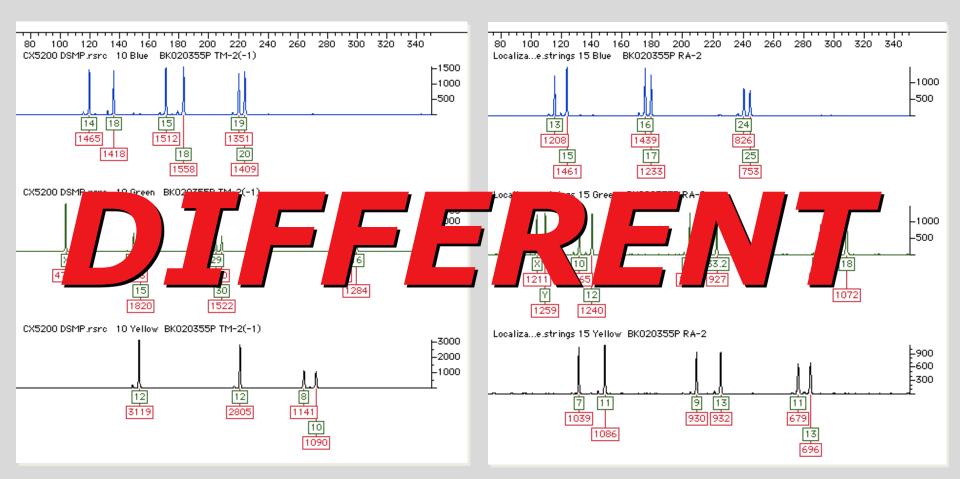
PATERNITY TESTING

Family Inheritance of STR Alleles (D13S317)

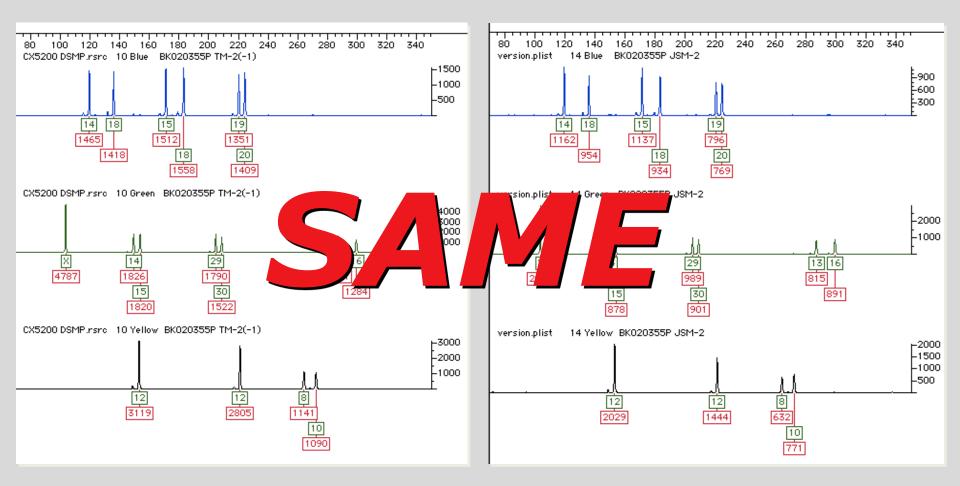

The ABI 310 Genetic Analyzer: SIZE, COLOR & AMOUNT


ABI 310 Genetic Analyzer: Capillary Electrophoresis

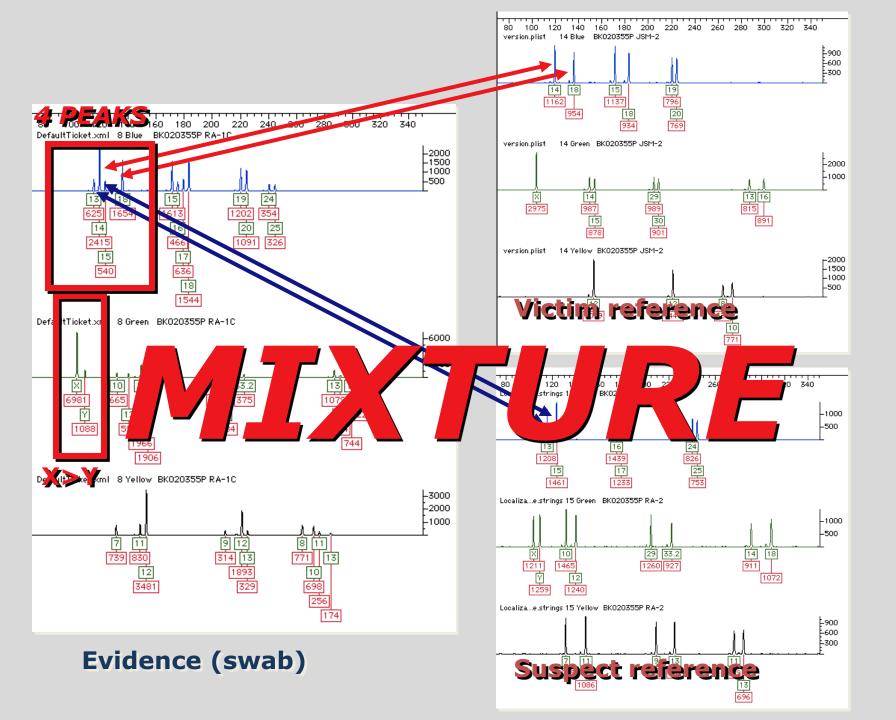
- •Amplified STR DNA injected onto column
- •Electric current applied
- •DNA pulled towards the positive electrode
- •DNA separated out by size:
 - Large STRs travel slower
 - Small STRs travel faster


•Color of STR detected and recorded as it passes the detector

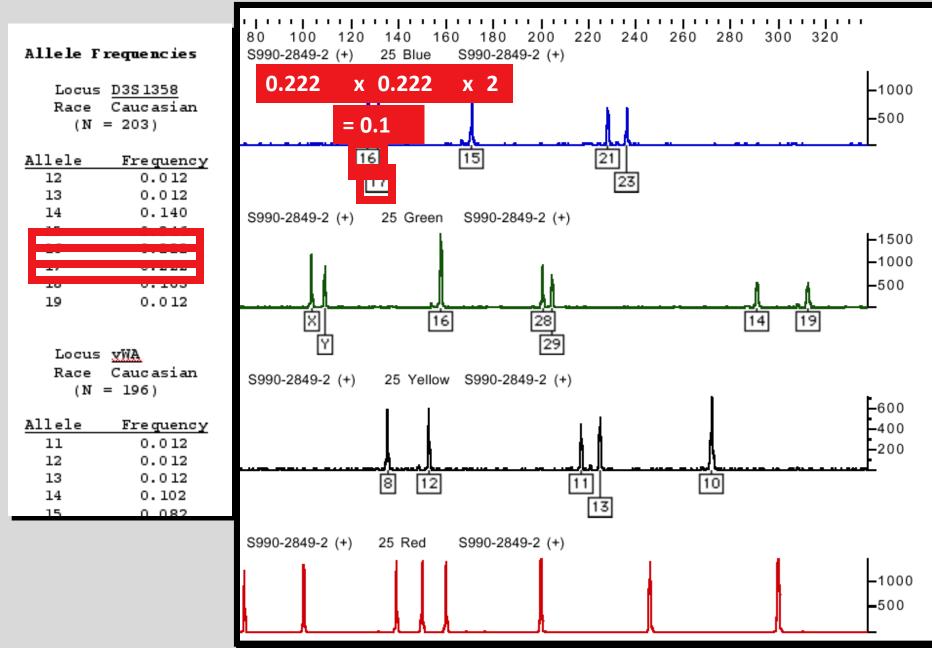
Profiler Plus: Raw data


Comparing electropherograms

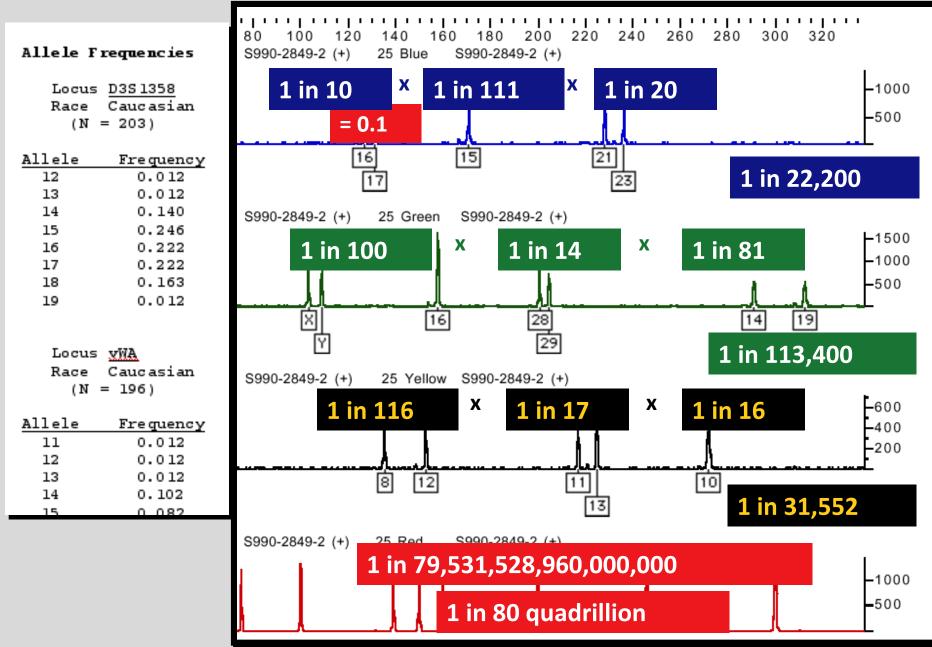
Evidence (Bloodstain)


Suspect reference

Comparing electropherograms



Evidence (Bloodstain)


Victim reference

Statistical estimates: the product rule

Statistical estimates: the product rule

What more is there to say after you have said: "The chance of a coincidental match is one in 80 quadrillion?" What more is there to say after you have said: "The chance of a coincidental match is one in 80 quadrillion?"

- Two samples really do have the same source
- Samples match coincidentally
- An error has occurred

DNA match probability

• Random Match Probability (RMP)

 What is the chance of finding a random, unrelated person in a given population that has a given DNA profile?

• **NOT** the probability that the defendant is guilty

• **NOT** the probability that someone other than the defendant committed the crime

Quantities of DNA

- Optimum amount of template for PCR: 0.5 to 2.0 ng
- 6 to 7 pg of DNA in each diploid human cell
- Our bodies are made of many billions if not trillions of cells
- pg = picogram (milligram, microgram, nanogram, picogram)
- SGM+ and Profiler Plus test kits are *designed* to fail with less than 100 pg to minimize these problems BUT new kits (SE filer, NGM, etc..) have NO minimal tresholds

DNA content in different biological samples

Type of sample	Amount of DNA
Blood	30,000 ng/mL
stain 1 cm ²	200 ng
stain 1 mm ²	2 ng
Semen	250,000 ng/mL
Postcoital vaginal swal	o 0 - 3,000 ng
Hair	
plucked	1 - 750 ng/hair
shed	1 - 12 ng/hair
Saliva	5,000 ng/mL
Urine	1 - 20 ng/mL

DNA sampling

Reference samples

Crime scene (unknown) samples

Lynda Mann †1983 Dawn Ashworth †1986

15-years old girls raped and murdered

1st mass screening in the field

Colin Pitchfork

General requirements for reference DNA sampling

- Easy to use
- Sample well preserved during the transport
- Compatible with current DNA techniques
- Non-invasive

Buccal swabs

• Non-intimate

Leriche A., <u>Vanek D.</u>, Schmitter H. at al. (1998) Final report of the INTERPOL European Working Party on DNA Profiling. Proceedings from the Second European Symposium on Human Identification 48-54, Promega Corporation

Buccal swabs

Sufficient amount of DNA for down-stream DNA identification applications

General requirements for crime-scene DNA sampling

- Find the stain, document the stain, collect the stain, describe the stain, protect the stain, transport the stain
- Strict counter cross-contamination procedures MUST be in place
 - Protecting both the sample AND the CS investigator

What is wrong?

General requirements for crime-scene DNA sampling

- ISO 17020 accreditation (optional)
- Clear written guidelines: what to swab, how to swab, what to collect, how to protect – "Sampling for Dummies"
- Proper chain of custody in place
- Changing gloves between different stains is a MUST
- STERILE ≠ Human DNA free

General requirements for crime-scene DNA sampling - SWABS

- Easy use, efficient sampling
- Sample well preserved during the transport
- Security during the transport
- Compatible with current forensic genetics techniques
- Maximum DNA recovery
- Human DNA-free, PCR inhibitor-free, DNase-free
- ISO 18385