Pathophysiology of malignant transformation

Copyright: Viktor Sýkora, 2013

Pavel Klener, MD, PhD

Institute of Pathological Physiology and Dept. of Hematology, Charles University General Hospital and First Faculty of Medicine

CANCER / TUMOR / MALIGNANCY / NEOPLASM

- Benign vs malignant
- Solid vs disseminated (hematologic)
- Carcinomas (epithelial) vs sarcomas (stromal)

The nomenclature of malignancies is largely historical:

-leukemia, lymphoma, myeloma, chloroma, hemoblastosis, hemoblastoma

TUMOR MICROENVIRONMENT

-tumor parenchyma

- -tumor stroma
- -"non-malignant" component

HODGKIN LYMPHOMA

Hodgkin / Reed-Sternberg (HRS) cells ← malignant transformation of B-lymphocytes

HRS cells \rightarrow loss of most of the B-cell markers

Figure 9 Child with lymphadenopathy of the neck (Dorothy Reed, ref

TUMOR MICROENVIRONMENT / ECOSYSTEM

CANCER STEM CELL PARADIGM

MALIGNANT TRANSFORMATION = A PROCESS

MODEL OF COLORECTAL CARCINOGENESIS

TWO-HIT MODEL OF THE PATHOGENESIS OF MYELOPROLIFEATIVE DISORDERS

HALLMARKS OF CANCER

1.

LIMITLESS SELF-RENEWAL

CANCER STEM CELLS, TELOMERES AND TELOMERASES

Self-renewal enables maintenance of <u>low numbers</u> of adult stem cells in undifferentiated state

Self-renewal is associated with <u>low mitotic activity</u> (as majority of stem cells are in G0 quiescent state).

Proliferation occurs during **differentiation** from the stem and progenitor cells toward mature, effector cells

Proliferation is associated with <u>high mitotic activity</u>, which is indispensable to provide large numbers of effector mature cells.

www.biolcell.org

SELF-RENEWAL

Self-renewal **in normal cells** is always limited, with the exception of **stem cells**.

Malignant cells aberantly acquire ability for unlimited self-renewal, which constitutes (from the definition of malignancy) one of the hallmarks of cancer.

REPLICATIVE SENESCENCE

With the exception of stem cells, the mitotic activity of all other cells is always limited.

Progenitor cells proliferate during differentiation process to yield mature effector cells.

Proliferation of mature cells is always limited to certain number of mitoses, after which the cells can no more divide. This phenomenon is called **replicative senescence**.

The non-dividing cells comprise two groups:

- 1. Terminally-differentiated cells (osteocyte, keratinocyte, enterocyte etc.).
- 2. Quiescent cells (in G0 phase). They can re-enter cell cycle under special circumstances (naïve B-cells, stem cells etc.).

REPLICATIVE SENESCENCE AND CRITICAL ROLE OF TELOMERES

progressive shortening of telomeres

"closed" telomeres" $\rightarrow \rightarrow \rightarrow$ critically short "open" telomeres \rightarrow recognition of double-strand DNA breaks \rightarrow senescence / apoptosis

doi:10.1152/physrev.00026.2007

TELOMERE LENGTH AND SENESCENCE / AGING

Aubert, G. et al. Physiol. Rev. 88: 557-579 2008; doi:10.1152/physrev.00026.2007

Physiological Reviews 5 1 1

TELOMERES, TELOMERASES AND CANCER

Telomerase is reverse transcriptase enzyme that elongates telomeres.

Telomerase carries its own RNA molecule, which is used as a template.

Malignant cells aberantly acquire ability for unlimited self-renewal, which constitutes (from the definition of malignancy) one of the hallmarks of cancer.

HALLMARKS OF CANCER

2.-3.

ENHANCED PROLIFERATION AND

IMPAIRED DIFFERENTIATION

ONCOGENES

AND

TUMOR SUPPRESSORS

TRANSCRIPTION FACTORS

Legend: A transcription factor molecule binds to the DNA at its binding site, and thereby regulates the production of a protein from a gene.

DIFFERENTIATION AND TRANSCRIPTION FACTORS

Differentiation \leftarrow changes in gene-expression regulated by a variety of transcription factors (TFs).

Different TFs are responsible for various stages of differentiation.

TFs are frequently deregulated and/or mutated in cancers.

Stem and progenitor cells that acquire **loss-of-function / inactivating mutations** of a particular TF cannot properly differentiate

 \rightarrow maturational arrest / block of differentiation.

MUTATION OF TF \rightarrow MATURATIONAL ARREST

ACUTE MYELOGENEOUS LEUKEMIA AND AML1-ETO

AML1 / RUNX1 / CBF α = normal hematopoietic TF

t(8;21) \rightarrow AML1-ETO fusion protein = dominant negative competitive inhibitor of normal transcription factor AML1

ONCOGENES AND LIGAND-INDEPENDENT MITOGENIC STIMULATION

Mitogens (growth factors, cytokines, interleukines, hormones etc.) \rightarrow increased mitotic activity to provide organism with sufficient numbers of mature, terminally differentiated, effector cells.

Rate of proliferation of malignant cells directly translates into the rapidity of growth of the tumor = biological aggressiveness

Proto-oncogenes = genes that encode mitogens (growth factors, cytokines etc.) or proteins involved in mitogen signaling (receptors, signal cascade mediators, transcription factors etc.)

Activation of (proto-)oncologenes by overexpression, mutation, chromosomal translocation etc \rightarrow ligand-independent signalling mimicking the corresponding physiological mitogene-activated pathway(s).

LIGAND-INDEPENDENT (ONCOGENIC) SIGNALING

ONCOGENES AND PROTO-ONCOGENES

Cellular proto- oncogene	Function	Viral oncogen e	Viral strain	Alteration of viral oncogene compared to proto-oncogene	Most common somatic mutation of proto- oncogene
c-Src	РТК	v-src	Rous Sarcoma Virus	Gene truncation	Point mutation
EGFR	RTK (ligand= EGF)	v-erbB	Avian Erythroblastos is Virus	Gene truncation	Point mutation
с-Мус	Transcription factor	v-myc	MC29 Avian Myelocytomat osis Virus	Fusion gene GAG-MYC	Point mutation, chromosomal translocation
K-Ras	GTPázový <i>switch</i> protein	v-kras	Kirsten Murine Sarcoma Virus	Overexpression from viral promotor	Point mutation
c-Mpl	Receptor (ligand= Tpo)	v-mpl	Myelo- Proliferative Leukemia Virus	Gene truncation	Point mutation
PDGF	Growth factor	v-sis	Simian Sarcoma Virus	Fusion gene ENV-SIS	Chromosomal translocation
Akt/PKB	Non-receptor tyrosin-kinase	v-akt	AKT8 Murine Leukemia Virus	Overexpression from viral promotor	Overexpression

CHRONIC MYELOGENOUS LEUKEMIA

• t(9q34;22q11) BCR-ABL

Breakpoint Cluster Region- ABeLson Tyrosine Kinase

BCR-ABL ONCOGENE IN CML CELLS

• t(9q34;22q11) BCR-ABL

Breakpoint Cluster Region- (John) Abelson Tyrosine Kinase

IMATINIB MESYLATE AND BEGINNING OF THE ERA OF TARGETED-THERAPY

TUMOR-SUPPRESSOR GENES AND GROWTH-INHIBITORY SIGNALS

Tumor-suppressor genes = anti-oncogenes: control cell cycle, proliferation, self-renewal

Loss-of-function mutation of anti-oncogenes \rightarrow cancerogenesis

Inactivation of **both alleles** usually required.

Congenital mutation of one allele = **hereditary cancer syndromes**

 \rightarrow postnatal loss-of-heterozygocyty (LOH) \rightarrow cancer

HEREDITARY CANCER SYNDROMES

TP53 AND CANCER

p53 is transcription factor coded on chromosome 17p.

p53 is upregulated and stabilized in response to DNA damage

Over 50% solid cancers have mutations of p53 (del 17p).

Hereditary Li-Fraumeni syndrome = germline mutations of the p53 tumor suppressor gene = high risk for a wide range of malignancies.

DNA DAMAGE AND p53

RETINOBLASTOMA (RB) PROTEIN, RB PATHWAY AND CELL CYCLE MACHINERY

Retinoblastoma (Rb) protein is key regulator of cell cycle progression, encoded on chromosome 13q.

Congenital mutation of RB gene is associated with early retinoblastoma development.

13q deletions is frequent finding in many tumors.

HALLMARKS OF CANCER

4.

INCREASED SURVIVAL (IMPAIRED APOPTOSIS)

DEREGULATION OF ANTI- AND PRO-APOPTOTIC PLAYERS

APOPTOSIS

U.S. National Library of Medicine

APOPTOSIS

APOPTOTIC PATHWAYS

Death-receptor pathway

Mitochondrial pathway

FOLLICULAR LYMPHOMA

- t(14;18)= juxtaposition of BCL2 into the IgH heavy chain promotors
- \rightarrow Blockage of apoptosis

HALLMARKS OF CANCER

5.

ANGIOGENESIS

AND

NEOVASCULARISATION

ANGIOGENIC SWITCH

AND

ACQUIRED ABILITY TO GROW FURTHER

SPROUTING ANGIOGENESIS

Angiogenic switch = acquisition of angiogenic phenotype.

ALTERNATIVE MECHANISMS OF ANGIOGENESIS

TUMOR VASCULATURE IS CHAOTIC

Tumor vasculature is chaotic, deregulated, desorganized, both structurally and functionally abnormal.

ANGIOGENIC FACTOR

Proangiogenic factors

VEGFs Angiopoietins Ephrins FGFs HGF SDF-1 IL-8 atd.

Antiangiogenic factors

Thrombospondins Angiostatin Endostatin BAI-1 Chondromodulin IP-10 PEDF atd.

VASCULAR ENDOTHELIAL GROWTH FACTORs

Hypoxia = the key factor that induces expression of VEGFs Other factors that enhance expression of VEGFs = oncogenes

HALLMARKS OF CANCER

6.

ADHESION, INVASION AND METASTASIS

METASTATIC SWITCH AND ACQUIRED ABILITY TO SPREAD

METASTATIC CASCADE

DIFFERENT TUMORS FORM METASTASES IN DIFFERENT ORGANS/TISSUES

A TUMOR FORMS METASTASES IN MULTIPLE ORGANS

TUMORS FORM METASTASES IN MULTIPLE ORGANS

Specific sets of genes are responsible for metastasis initiation, others facilitate metastasis progression, while yet others are in charge of metastasis virulence.

Integrins, Matrix Metallo-Proteases (MMP), Transforming Growht Factor-beta (TGF-beta), Ephrin B, beta-Catenin

MALIGNANT TRANSFORMATION = A PROCESS

U.S. National Library of Medicine

THANK YOU

