5 . Sequences and series of functions

We can define not only the sequences (and series) of real numbers but also sequences on general topology space or both sequences and series on linear topology spaces (X, τ) or even normed vector space $(X, \boldsymbol{\|} \cdot \boldsymbol{\|})$.

Then we define a sequence as a mapping of $\mathbb{N t o}(X, \tau)$ or $(X,\|\cdot\|)$ and we denote it

$$
\begin{array}{llll}
\left\{x_{n}\right\}_{n=1}^{\infty}: & \mathbb{N} \longrightarrow(X, \tau) & : n \mapsto x_{n} & \text { or } \\
\left\{x_{n}\right\}_{n=1}^{\infty}: & \mathbb{N} \longrightarrow(X,\|\cdot\|) & : n \mapsto x_{n} &
\end{array}
$$

There is possible introduce also limit of sequence and sum of sequence or conception of convergence (or divergence) amd summability by following way.

$x_{n}{ }^{\frac{\tau}{4} x}$		$(\forall U \tau$-neighbourhood of 0$)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right) x_{n}-x \in U$					
$\sum_{n=1}^{\infty} x_{n}{ }^{\underline{\tau}} s$	$\stackrel{\text { def, }}{ }{ }_{\text {del }}$	$(\forall U \tau$-neighbourhood of 0$)\left(\exists n_{0}\right)\left(\forall n \geq n_{0}\right) x_{1}+x_{2}+\cdots+x_{n}-s \in U$					
$\xrightarrow{\substack{n=1 \\ x_{n} \xrightarrow{\prime} \\|}}{ }_{\text {d }}$	$\stackrel{\text { def }}{\Longrightarrow}$	$\left\\|x_{n}-x\right\\| \rightarrow 0$					
$\sum_{n=1}^{\infty} x_{n} \stackrel{\\|\cdot\\|}{=} s$	$\stackrel{\text { def. }}{ } \stackrel{\text { der }}{ }$	$\left\\|\sum_{k=1}^{n} x_{k}-s\right\\| \rightarrow 0$					
$x_{n} \tau$-convergent in X	$\stackrel{\text { def. }}{\Longrightarrow}$	$(\exists x \in X) x_{n} \stackrel{\tau}{\sim} x$					
$x_{n} \tau$ - summable in X	$\stackrel{\text { def. }}{ }{ }_{\text {der }}$	$(\exists s \in X) \sum_{n=1}^{\infty} x_{n} \stackrel{\tau}{=} s$					
$x_{n}\\|\cdot\\|$-convergent in X		$(\exists x \in X) x_{n} \xrightarrow{\\|\cdot\\|} x$					
$x_{n}\\|\cdot\\|$-summable in X		$(\exists s \in X) \sum_{n=1}^{\infty} x_{n} \stackrel{\\| \\| \\|}{=} s$					

Given $S \subset \mathbb{R}$, we can define

$$
\mathcal{F}(S):=\{f: S \longrightarrow \mathbb{R}\}
$$

space of all real functions on the set S. As for any $f, g \in \mathcal{F}(S), \alpha \in \mathbb{R}$ also $f+g \in \mathcal{F}(S)$ and $\alpha f \in \mathcal{F}(S)$ and operations of addition and multiples fulfil corresponding axioms $\mathcal{F}(S)$ create vector space.

We can introduce also topologies on $\mathcal{F}(S)$.

1. Weak topology can be defined by base of neighbourhoods of 0

$$
U_{n, K}:=\left\{f \in \mathcal{F}(S) ; \sup _{x \in K}|f(x)| \leq \frac{1}{n}\right\}, \text { where } n \in \mathbb{N} \text { and } K \subset S, K \text { finite }
$$

2. Strong topology can be defined by norm

$$
\|f\|:=\sup _{x \in S}|f(x)|, \quad f \in \mathcal{F}(S)
$$

then base of neighbourhoods consists of $U_{n}=\left\{f \in \mathcal{F}(S) ;\|f\| \leq \frac{1}{n}\right\}$, where $n \in \mathbb{N}$. Now we can use the presented definitions of limits, sums, pointwise convergence or summability (in the case of weak topology) and uniform convergence or summability (in the case of strong topology). But this conception suppose some basic knowledges of topology and functional analysis.

Therefore we shall define limits, sums, convergence and summability by another way. We can imagine sequences of real functions on S as a map

$$
\begin{array}{llll}
\left\{f_{n}\right\}_{n=1}^{\infty}: & \mathbb{N} \longrightarrow \mathcal{F}(S) & : n \mapsto f_{n} & \text { or } \\
& \mathbb{N} \times \mathbb{R} \longrightarrow \mathbb{R} & :(n ; x) \mapsto f_{n}(x)
\end{array}
$$

pointwise and uniform limit
def. 23

$S \subset \mathbb{R}, f, f_{n}: S \longrightarrow \mathbb{R}:$		
$f_{n} \rightarrow f$ pointwise on S	$\stackrel{\text { def. }}{\Longleftrightarrow}$	$(\forall x \in S) f_{n}(x) \rightarrow f(x)$
$f_{n} \rightarrow f$ uniformly on S	$\stackrel{\text { def. }}{\Longleftrightarrow}$	$\sup _{x \in S}\left\|f_{n}(x)-f(x)\right\| \rightarrow 0$

We also denote $f=\lim _{n \rightarrow \infty} f_{n}$ pointwise or uniformly on S and we say f is pointwise or uniform limit of sequence f_{n} on S or f_{n} tends to f pointwise or uniformly on S. (There is sometimes used notation $f_{n} \rightrightarrows f$ on S for uniform limit.)

pointwise and uniform sum

def. 24	$\begin{aligned} & S \subset \mathbb{R}, f, f_{n}: S \longrightarrow \mathbb{R}: \\ & \sum_{n=1}^{\infty} f_{n}=f \text { pointwise on } S \quad \stackrel{\text { def }}{\Longrightarrow} \end{aligned}$	$\left(f_{1}+f_{2}+\cdots+f_{n}\right) \rightarrow f \text { pointwise on } S$
	$\sum_{n=1}^{\infty} f_{n}=f$ uniformly on $S \quad \stackrel{\text { def }}{\Longleftrightarrow}$	$\begin{aligned} & \left(\text { or }(\forall x \in S) \sum_{n=1}^{\infty} f_{n}(x)=f(x)\right) \\ & \left(f_{1}+f_{2}+\cdots+f_{n}\right) \rightarrow f \text { uniformly on } S \end{aligned}$
		$\left(\text { or } \sup _{x \in S}\left\|\sum_{k=1}^{n} f_{k}(x)-f(x)\right\| \rightarrow 0\right)$

It is said f is pointwise or uniform sum of sequence f_{n} on S or series of sequence f_{n} tends to f pointwise or uniformly on S.
pointwise and uniform convergence and summability
$S \subset \mathbb{R}, f_{n}: S \longrightarrow \mathbb{R}:$
f_{n} pointwise convergent on $S \stackrel{\text { def. }}{\Longleftrightarrow} \quad(\exists f$ real function on $S) f_{n} \rightarrow f$ pointwise on S
def. 25
$\begin{array}{lll}f_{n} \text { uniformly convergent on } S & \stackrel{\text { def. }}{\Longleftrightarrow}(\exists f \text { real function on } S) f_{n} \rightarrow f \text { uniformly on } S \\ f_{n} \text { pointwise summable on } S & \stackrel{\text { def. }}{\Longleftrightarrow}(\exists f \text { real function on } S) \sum_{n=1}^{\infty} f_{n}=f \text { pointwise on } S \\ f_{n} \text { uniformly summable on } S & \stackrel{\text { def. }}{\Longleftrightarrow}(\exists f \text { real function on } S) \sum_{n=1}^{\infty} f_{n}=f \text { uniformly on } S\end{array}$

Bolzano - Cauchy

$S \subset \mathbb{R}, f_{n}: S \longrightarrow \mathbb{R}:$
st. 108

f_{n} pointwise convergent on S
f_{n} uniformly convergent on S

$\quad(\forall \epsilon>0)\left(\exists n_{0} \in \mathbb{N}\right)\left(\forall m, n \geq n_{0}\right)(\forall x \in S)\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$
or $\left.\sup _{x \in S}\left|f_{n}(x)-f_{m}(x)\right|<\epsilon\right)$
proof. It is consequence of next definitions and statement 52 .
Similar statement holds also for pointwise or uniformly summable sequences.
It is obvious that sequence f_{n} uniformly convergent on both S and T is also uniformly convergent on union $S \cup T$. It holds naturally for pointwise convergence, too.
st. 109

$$
\begin{aligned}
& \left.f_{n}, f:\right] a ; a+\Delta[\longrightarrow \mathbb{R}, \Delta>0: \\
& \left.\lim _{x \rightarrow a^{+}} f_{n}(x)=a_{n} \in \mathbb{R}, \text { and } f_{n} \rightarrow f \text { uniformly on }\right] a ; a+\Delta\left[\Longrightarrow a_{n} \rightarrow A \in \mathbb{R} \text { and } \lim _{x \rightarrow a^{+}} f(x)=A\right.
\end{aligned}
$$

proof. I. $a_{n} \rightarrow A \in \mathbb{R}$: Given arbitrary $\epsilon>0$. As f_{n} uniformly convergent on $] a ; a+\Delta\left[\right.$ we have n_{1} such that for any $m, n \geq n_{1}$

$$
\sup _{x \in] a ; a+\Delta[}\left|f_{n}(x)-f_{m}(x)\right|<\frac{\epsilon}{3}
$$

Let $m, n \geq n_{1}$ given also arbitrary. The existence of finite limit $\lim _{x \rightarrow a^{+}} f_{n}(x)=a_{n} \in \mathbb{R}$ ensures existence of $\delta_{n}>0, \Delta>\delta$ such that for any $\left.x \in\right] a ; a+\delta_{n}[$

$$
\left|f_{n}(x)-a_{n}\right|<\frac{\epsilon}{3}
$$

and similarly existence of $\lim _{x \rightarrow a^{+}} f_{m}(x)=a_{m} \in \mathbb{R}$ provides $\delta_{m}>0$ such that for any $\left.x \in\right] a ; a+\delta_{m}[$

$$
\left|f_{m}(x)-a_{m}\right|<\frac{\epsilon}{3}
$$

Let $x_{0}:=a+\frac{1}{2} \min \left\{\delta_{n}, \delta_{m}\right\}$, then

$$
\left|a_{n}-a_{m}\right| \leq \underbrace{\left|a_{n}-f_{n}\left(x_{0}\right)\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|f_{m}\left(x_{0}\right)-a_{m}\right|}_{<\frac{\epsilon}{3}}<\epsilon .
$$

This means $\left\{a_{n}\right\}_{n=1}^{\infty}$ is Cauchy sequence and according Bolzano-Cauchy statement 52 it is convergent, so $a_{n} \rightarrow A \in \mathbb{R}$.
II. $\lim _{x \rightarrow a^{+}} f(x)=A$: Given $\epsilon>0$ arbitrary. As $f_{n} \rightarrow f$ uniformly on $] a ; a+\Delta$ [we have n_{2} such that for any $n \geq n_{2}$

$$
\sup _{x \in] a ; a+\Delta[}\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{3}
$$

As $a_{n} \rightarrow A$ we have also n_{3} such that for any $n \geq n_{3}$

$$
\left|a_{n}-A\right|<\frac{\epsilon}{3}
$$

Let $n_{0}:=\max \left\{n_{2}, n_{3}\right\}$. The existence of limit $\lim _{x \rightarrow a^{+}} f_{n_{0}}(x)=a_{n_{0}} \in \mathbb{R}$ ensure existence of $\delta>0$ such that for any $x \in] a ; a+\delta[$

$$
\left|f_{n_{0}}(x)-a_{n_{0}}\right|<\frac{\epsilon}{3}
$$

Then for any $x \in] a ; a+\delta[$

$$
\left|f_{n}(x)-A\right| \leq \underbrace{\left|f(x)-f_{n_{0}}(x)\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|f_{n_{0}}(x)-a_{n_{0}}\right|}_{<\frac{\epsilon}{3}}+\underbrace{\left|a_{n_{0}}-A\right|}_{<\frac{\epsilon}{3}}<\epsilon .
$$

This statement is not true for pointwise convergence.
ex. 12 We can take $f_{n}(x)=(1-x)^{n}$ for $\left.x \in\right] 0 ; 1[$. This sequence tends pointwise to $f(x)=0$ on $] 0 ; 1[$. But $a_{n}=\lim _{x \rightarrow 0^{+}} f_{n}(x)=1$ for any $n \in \mathbb{N}$ and $\lim _{x \rightarrow 0^{+}} f(x)=0$.

We can formulate another two similar statements for limits and one consequence about continuity.
st. 110

$$
\begin{array}{|l}
\left.f_{n}, f:\right] a-\Delta ; a[\longrightarrow \mathbb{R}, \Delta>0: \\
\left.\lim _{x \rightarrow a^{-}} f_{n}(x)=a_{n} \in \mathbb{R}, \text { and } f_{n} \rightarrow f \text { uniformly on }\right] a-\Delta ; a\left[\quad \Longrightarrow a_{n} \rightarrow A \in \mathbb{R} \text { and } \lim _{x \rightarrow a^{-}} f(x)=A\right.
\end{array}
$$

proof. It is similar.
st. 111
proof. It is consequence of last two statements.
st. 112

> | $f_{n}, f: I \longrightarrow \mathbb{R}, I \subset \mathbb{R}$ interval $:$ |
| :--- |
| f_{n} continuous on I and $f_{n} \rightarrow f$ uniformly on $I \Longrightarrow f$ continuous on I |

proof. We have to realize that a function f is continuous at a iff $\lim _{x \rightarrow a} f(x)=f(a)$ (similarly for continuity from left or right). The rest is a consequence of the last three statements.

Now we shall consider integrals and derivatives of limit of sequence of function.
st. 113

$$
\begin{array}{|l}
\hline f_{n}, f:[\alpha ; \beta] \longrightarrow \mathbb{R}, \alpha, \beta \in \mathbb{R}: \\
(R) \int_{\alpha}^{\beta} f_{n} \text { exists and } f_{n} \rightarrow f \text { uniformly on }[\alpha ; \beta] \quad \Longrightarrow f(R) \int_{\alpha}^{\beta} f \text { exists and }(R) \int_{\alpha}^{\beta} f_{n} \rightarrow(R) \int_{\alpha}^{\beta} f \\
\hline
\end{array}
$$

proof. We shall denote $a_{n}:=\sup _{x \in[\alpha ; \beta]}\left|f_{n}(x)-f(x)\right|$. As $f_{n} \rightarrow f$ uniformly on $[\alpha ; \beta]$ then $a_{n} \rightarrow 0$. We have for any $x \in[\alpha ; \beta]$

$$
f_{n}(x)-a_{n} \leq f(x) \leq f_{n}(x)+a_{n} \quad \text { and }
$$

$$
\int_{\alpha}^{\beta} f_{n}-(\beta-\alpha) a_{n} \leq \int_{\alpha}^{\beta}\left(f_{n}-a_{n}\right) \leq \operatorname{dolni} \int_{\alpha}^{\beta} f \leq \text { horni } \int_{\alpha}^{\beta} f \leq \int_{\alpha}^{\beta}\left(f_{n}+a_{n}\right) \leq \int_{\alpha}^{\beta} f_{n}+(\beta-\alpha) a_{n}
$$

After limiting we obtain

$$
\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} f_{n} \leq \operatorname{dolni} \int_{\alpha}^{\beta} f \leq \operatorname{horni} \int_{\alpha}^{\beta} f \leq \lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} f_{n}
$$

and $(R) \int_{\alpha}^{\beta} f=\lim _{n \rightarrow \infty} \int_{\alpha}^{\beta} f_{n}$ exists.
Similar statement is not true for pointwise convergence.
ex. 13
We can take $f_{n}(x)=n x\left(1-x^{2}\right)^{n}$ for $x \in[0 ; 1]$. This sequence tends pointwise to $f(x)=0$ on $[0 ; 1]$. But for any $n \in \mathbb{N}$ we have $\int_{0}^{1} f_{n} d x=\frac{n}{2 n+2} \rightarrow \frac{1}{2}$ and $\int_{0}^{1} f d x=0$.

$$
\begin{aligned}
& \left.f_{n}, f:\right] a-\Delta ; a[\cup] a ; a+\Delta[\longrightarrow \mathbb{R}, \Delta>0: \\
& \left.\lim _{x \rightarrow a} f_{n}(x)=a_{n} \in \mathbb{R} \text {, and } f_{n} \rightarrow f \text { uniformly on }\right] a-\Delta ; a[\cup] a ; a+\Delta[\Longrightarrow \\
& \Longrightarrow a_{n} \rightarrow A \in \mathbb{R} \text { and } \lim _{x \rightarrow a} f(x)=A
\end{aligned}
$$

st. 114
$\left.f_{n}, f:\right] \alpha ; \beta[\longrightarrow \mathbb{R}, \alpha, \beta, \in \mathbb{R}:$
$f_{n} \rightarrow f$ pointwise on $] \alpha ; \beta[$ and
$(\forall x \in] \alpha ; \beta[) f_{n}^{\prime}(x) \in \mathbb{R}$ exists and f_{n}^{\prime} uniformly convergent on $] \alpha ; \beta[\Longrightarrow$
$\Longrightarrow f_{n} \rightarrow f$ uniformly on $] \alpha ; \beta\left[\right.$ and $(\forall x \in] \alpha ; \beta[) f^{\prime}(x) \in \mathbb{R}$ exists and $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on $] \alpha ; \beta[$
proof. I. f_{n} is uniformly convergent on $] \alpha ; \beta[$:
We choose one $\left.x_{0} \in\right] \alpha ; \beta$ [and we have $f_{n}\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$. Given $\epsilon>0$ arbitrary. There is some n_{1} such that $\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|<\frac{\epsilon}{2}$ for any $m, n \geq n_{1}$. As f_{n}^{\prime} is uniformly convergent on $] \alpha ; \beta$ there is also n_{2} such that $\sup _{x \in] \alpha ; \beta[}\left|f_{n}^{\prime}(x)-f_{m}(x)\right|<\frac{\epsilon}{2(\beta-\alpha)}$ for any $m, n \geq n_{2}$. So for any $m, n \geq n_{0}:=\max \left\{n_{1}, n_{2}\right\}$ and any $\left.x \in\right] \alpha ; \beta[$ (for instance $x \geq x_{0}$) we can estimate

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq \underbrace{\left|f_{n}(x)-f_{m}(x)-f_{n}\left(x_{0}\right)+f_{m}\left(x_{0}\right)\right|}_{\leq\left|\left(f_{n}^{\prime}\left(c_{1}\right)-f_{m}^{\prime}\left(c_{1}\right)\right)\left(x-x_{0}\right)\right| \leq \frac{\epsilon}{2(\beta-\alpha)}\left|x-x_{0}\right| \leq \frac{\epsilon}{2}}+\underbrace{\left|f_{n}\left(x_{0}\right)-f_{m}\left(x_{0}\right)\right|}_{<\frac{\epsilon}{2}}<\epsilon
$$

having used the mean value theorem for the function $h:=f_{n}-f_{m}$ on interval $\left[x_{0} ; x\right]$ and so we know there is some $\left.c_{1} \in\left[x_{0} ; x\right] \subset\right] \alpha ; \beta\left[\left(c_{1}\right.\right.$ depends on n, m, x and $\left.x_{0}\right)$ such that $h(x)-h\left(x_{0}\right)=h^{\prime}\left(c_{1}\right)\left(x-x_{0}\right)$.
II. $f_{n}^{\prime} \rightarrow f^{\prime}:$

Given $a \in] \alpha ; \beta[$ arbitrary. We shall define

$$
\left.g_{n}(x):=\frac{f_{n}(x)-f_{n}(a)}{x-a} \text { and } g(x):=\frac{f(x)-f(a)}{x-a} \text { for } x \in\right] \alpha ; a[\cup] a ; \beta[.
$$

Then $\lim _{x \rightarrow a} g_{n}(x)=f_{n}^{\prime}(a)$ and $g_{n} \rightarrow g$ pointwise on $] \alpha ; a[\cup] a ; \beta\left[\right.$. We shall prove g_{n} converge also uniformly on this interval $] \alpha ; a[\cup] a ; \beta\left[\right.$. Indeed for arbitrary $\epsilon>0$ there is some n_{3} such that for all $m, n \geq n_{3} \sup _{x \in] \alpha ; \beta[} \mid f_{n}^{\prime}(x)-$ $f_{m}^{\prime}(x) \mid<\epsilon$ and so we can again estimate for any $\left.x \in\right] \alpha ; a[\cup] a ; \beta[$ (for instance $x \geq a$)

$$
\left|g_{n}(x)-g_{m}(x)\right| \leq\left|\frac{f_{n}(x)-f_{n}(a)-f_{m}(x)+f_{m}(a)}{x-a}\right| \leq\left|\frac{\left(f_{n}^{\prime}\left(c_{2}\right)-f_{m}^{\prime}\left(c_{2}\right)\right)(x-a)}{x-a}\right|<\epsilon
$$

using the mean value theorem for $h=f_{n}-f_{m}$ on the interval $] a ; x[$. Now we shall use the statement 111 and we obtain existence of limit $\lim _{x \rightarrow a} g(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(a)$ and hence with regard to definition of g the existence of derivative $f^{\prime}(a)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(a)$.

We see from proof we can suppose $f_{n}\left(x_{0}\right)$ is convergent only for one point x_{0}.
Similar statement is not true for pointwise convergence of f_{n}^{\prime} even if f_{n} itself is uniformly convergent.
ex. 14
We can take $f_{n}(x)=\frac{1}{n} \arctan n x$ for $\left.x \in\right]-1 ; 1[$. This sequence tends uniformly to $f(x)=0$ on $]-1 ; 1[$. But for any $n \in \mathbb{N}$ we have $f_{n}^{\prime}=\frac{1}{1+n^{2} x^{2}} \rightarrow g$, where $g=\left\{\begin{array}{ll}1 & \text { for } x=0 \\ 0 & \text { otherwise }\end{array}\right.$.

The same statements hold for series, too.
st. 115

$$
\begin{aligned}
& \left.f_{n}, f:\right] a ; a+\Delta[\longrightarrow \mathbb{R}, \Delta>0: \\
& \left.\lim _{x \rightarrow a^{+}} f_{n}(x)=a_{n} \in \mathbb{R}, \text { and } \sum_{n=1}^{\infty} f_{n}=f \text { uniformly on }\right] a ; a+\Delta\left[\Longrightarrow \sum_{n=1}^{\infty} a_{n}=A \in \mathbb{R} \text { and } \lim _{x \rightarrow a^{+}} f(x)=A\right.
\end{aligned}
$$

proof. It is consequence of statement 109.
We shall not formulate similar statements for limit from left and limit.
st. 116

$$
\begin{array}{|l}
f_{n}, f: I \longrightarrow \mathbb{R}, I \subset \mathbb{R} \text { interval }: \\
f_{n} \text { continuous on } I \text { and } \sum_{n=1}^{\infty} f_{n}=f \text { uniformly on } I \Longrightarrow f \text { continuous on } I
\end{array}
$$

proof. It is consequence of statement 112.
st. 117

$$
\begin{array}{|l}
\hline f_{n}, f:[\alpha ; \beta] \longrightarrow \mathbb{R}, \alpha, \beta \in \mathbb{R}: \\
(R) \int_{\alpha}^{\beta} f_{n} \text { exists and } \sum_{n=1}^{\infty} f_{n}=f \text { uniformly on }[\alpha ; \beta] \Longrightarrow(R) \int_{\alpha}^{\beta} f \text { exists and } \sum_{n=1}^{\infty}(R) \int_{\alpha}^{\beta} f_{n}=(R) \int_{\alpha}^{\beta} f
\end{array}
$$

proof. It is consequence of statement 113.
st. 118

$$
\begin{aligned}
& \left.f_{n}, f:\right] \alpha ; \beta[\longrightarrow \mathbb{R}, \alpha, \beta, \in \mathbb{R}: \\
& \left.\sum_{n=1}^{\infty} f_{n}=f \text { pointwise on }\right] \alpha ; \beta[\text { and } \\
& \left.(\forall x \in] \alpha ; \beta[) f_{n}^{\prime}(x) \in \mathbb{R} \text { exists and } f_{n}^{\prime} \text { uniformly sumable on }\right] \alpha ; \beta[\Longrightarrow \\
& \left.\Longrightarrow \sum_{n=1}^{\infty} f_{n}=f \text { uniformly on }\right] \alpha ; \beta\left[\text { and }(\forall x \in] \alpha ; \beta[) f^{\prime}(x) \in \mathbb{R} \text { exists and } \sum_{n=1}^{\infty} f_{n}^{\prime}=f^{\prime} \text { uniformly on }\right] \alpha ; \beta[
\end{aligned}
$$

proof. It is consequence of statement 114.
Now we shall present three tests about uniform summability of series of functions. They are similar to ones for series of numbers.

Weierstrass test of uniform summability
st. 119

$$
\begin{aligned}
& K \subset \mathbb{R}, f_{n}: K \longrightarrow \mathbb{R}: \\
& (\forall n \in \mathbb{N})\left(\exists a_{n} \in \mathbb{R}\right) \sup _{x \in K}\left|f_{n}(x)\right| \leq a_{n} \text { and } \sum_{n=1}^{\infty} a_{n} \in \mathbb{R} \Longrightarrow \sum_{n=1}^{\infty} f_{n} \text { uniformly summable on } K
\end{aligned}
$$

proof. We use Bolzano-Cauchy statemet for summability. For arbitrary $\epsilon>0$ there is n_{0} such that for any $m, n \geq n_{0} m<n$ we have $\sum_{k=m+1}^{n} a_{k}<\epsilon$ and also

$$
\sup _{x \in K}\left|\sum_{k=m+1}^{n} f_{k}(x)\right| \leq \sum_{k=m+1}^{n} \sup _{x \in K}\left|f_{k}(x)\right| \leq \sum_{k=m+1}^{n} a_{k}<\epsilon .
$$

Sequences of functions have similar properties as that of numbers.
def. 26

$$
\begin{array}{|l|}
\hline K \subset \mathbb{R}, f_{n}: K \longrightarrow \mathbb{R}: \\
f_{n} \text { decreasing on } K \stackrel{\text { def. }}{\Longleftrightarrow}(\forall n \in \mathbb{N})(\forall x \in K) f_{n+1}(x) \leq f_{n}(x)
\end{array}
$$

The definition of increasing sequence of function is similar.
Abel test of uniform summability
$K \subset \mathbb{R}, f_{n}, g_{n}: K \longrightarrow \mathbb{R}:$
st.
f_{n} uniformly summable on K,
$(\forall n \in \mathbb{N})(\forall x \in K) g_{n}(x) \geq 0, g_{1}$ bounded on K and g_{n} decreasing on $K \Longrightarrow$
$\Longrightarrow f_{n} g_{n}$ uniformly summable on K
proof. The function g_{1} is bounded by some constant $M \in \mathbb{R}$. As g_{n} is decreasing and positive on K we have $M \geq g_{1}(x) \geq g_{k}(x) \geq 0$ and $g_{k}(x)-g_{k+1}(x) \geq 0$ for any k. Given $\epsilon>0$ arbitrary. As f_{n} is uniformly summable on K according to the Bolzano-Cauchy theorem about summability there is some n_{0} such that for any $m, k \geq n_{0}$ $k>m$ we have $\sup _{x \in K}\left|f_{m+1}(x)+\cdots+f_{k}(x)\right|<\frac{\epsilon}{2 M}$. Then for arbitrary $m, n \geq n_{0}$ and arbitrary $x \in K$ we shall use Abel partial summation

$$
\sum_{k=m+1}^{n} f_{k}(x) g_{k}(x)=\sum_{k=m+1}^{n-1}\left(f_{m+1}(x)+\cdots+f_{k}(x)\right)\left(g_{k}(x)-g_{k+1}(x)\right)+\left(f_{m+1}(x)+\cdots+f_{n}(x)\right) g_{n}(x)
$$

and estimate

$$
\begin{align*}
\left|\sum_{k=m+1}^{n} f_{k}(x) g_{k}(x)\right| \leq \sum_{k=m+1}^{n-1} \underbrace{\left|f_{m+1}(x)+\cdots+f_{k}(x)\right|}_{\leq \frac{e}{2 M}} & \underbrace{\left(g_{k}(x)-g_{k+1}(x)\right)}_{\geq 0}+ \\
& +\underbrace{\left|f_{m+1}(x)+\cdots+f_{n}(x)\right|}_{\leq \frac{e}{2 M}} \underbrace{g_{n}(x)}_{\geq 0} \leq \frac{\epsilon}{2 M} \underbrace{g_{m+1}(x)}_{\leq M} \leq \frac{\epsilon}{2} . \tag{1}
\end{align*}
$$

As $x \in K$ was arbitrary also

$$
\sup _{x \in K}\left|\sum_{k=m+1}^{n} f_{k}(x) g_{k}(x)\right| \leq \frac{\epsilon}{2}<\epsilon
$$

and again according to Bolzano-Cauchy teorem $f_{n} g_{n}$ is uniformly summable on K.

Dirichlet test of uniform summability

$$
\begin{aligned}
& \begin{array}{l}
K \subset \mathbb{R}, f_{n}, g_{n}: K \longrightarrow \mathbb{R}: \\
(\exists M \in \mathbb{R})(\forall n \in \mathbb{N}) \sup _{x \in K}\left|f_{1}(x)+f_{2}(x)+\cdots+f_{n}(x)\right| \leq M, \\
(\forall n \in \mathbb{N})(\forall x \in K) g_{n}(x) \geq 0, g_{n} \text { decreasing on } K \xrightarrow{\text { and }} g_{n} \rightarrow 0 \text { uniformly on } K \Longrightarrow \\
\Longrightarrow f_{n} g_{n} \text { uniformly summable on } K
\end{array}
\end{aligned}
$$

proof. Given $\epsilon>0$ arbitrary. As g_{n} is uniformly approaching to 0 on K according to the definition there is some n_{0} such that for any $n \geq n_{0}$ we have $\sup _{x \in K}\left|g_{n}(x)\right|<\frac{\epsilon}{3 M}$. Then for arbitrary $m, n \geq n_{0}$ and arbitrary $x \in K$ we shall again use Abel partial summation and estimate

$$
\begin{align*}
&\left|\sum_{k=m+1}^{n} f_{k}(x) g_{k}(x)\right| \leq \sum_{k=m+1}^{n-1} \underbrace{\left|f_{m+1}(x)+\cdots+f_{k}(x)\right|}_{\leq 2 M} \underbrace{\left(g_{k}(x)-g_{k+1}(x)\right)}_{\geq 0}+ \\
&+\underbrace{\left|f_{m+1}(x)+\cdots+f_{n}(x)\right|}_{\leq 2 M} \underbrace{g_{n}(x)}_{\geq 0} \leq 2 M \underbrace{g_{m+1}(x)}_{\leq \frac{e}{3 M}} \leq \frac{2 \epsilon}{3} . \tag{2}
\end{align*}
$$

As $x \in K$ was arbitrary also

$$
\sup _{x \in K}\left|\sum_{k=m+1}^{n} f_{k}(x) g_{k}(x)\right| \leq \frac{2 \epsilon}{3}<\epsilon
$$

and $f_{n} g_{n}$ is uniformly summable on K.

Dini

st. 121
$f_{n}, f:[\alpha, \beta] \longrightarrow \mathbb{R}:$
f_{n}, f continuous on $[\alpha, \beta], f_{n} \rightarrow f$ on $[\alpha, \beta],(\forall x \in[\alpha, \beta]) f_{n}(x) \leq f_{n+1}(x) \Longrightarrow f_{n} \rightrightarrows f$ on $[\alpha, \beta]$
proof. Suppose f is increasing.
Let $\epsilon>0$ arbitrary. For any $t \in[\alpha, \beta]$ there is some $n(t)$ such that for all $k \geq n(t)$

$$
f(t)-f_{k}(t)<\epsilon
$$

Then there exists some $\delta(t)>0$ such that for all $x \in] t-\delta(t), t+\delta(t)[$

$$
|f(x)-f(t)|<\epsilon
$$

Interval

$$
\left.[\alpha, \beta]=\mathbb{U}_{t \in[\alpha, \beta]}\right] t-\delta(t), t+\delta(t)[
$$

is compact. So there is a finite number $t_{1}, \ldots, t_{m} \in[\alpha, \beta]$ such that

$$
\left.[\alpha, \beta]=\uplus_{k=1}^{m}\right] t-\delta(t), t+\delta(t)[
$$

For any $x \in[\alpha, \beta]$ there is p such that $x \in] t_{p}-\delta\left(t_{p}\right), t_{p}+\delta\left(t_{p}\right)\left[\right.$. For any $n \geq n_{0}=\max \left\{n\left(t_{1}\right), \ldots, n\left(t_{m}\right)\right\}$

$$
f(x)-f_{n}(x) \leq f(x)-f_{n_{0}}(x) \leq f(x)-f_{n\left(t_{p}\right)}(x)<\epsilon
$$

the last inequalities hold due to monotony.
So for any $\epsilon>0$ and any $n \geq n_{0}$

$$
\sup _{x \in[\alpha, \beta]}\left|f(x)-f_{n}(x)\right|<\epsilon
$$

and $f_{n} \rightrightarrows f$ on $[\alpha, \beta]$.

5 . Power series

Power series are series of sequences of type

$$
\left\{a_{n}(x-c)^{n}\right\}_{n=0}^{\infty} \text { or }\left\{a_{n} x^{n}\right\}_{n=0}^{\infty} .
$$

st. 122

$$
\begin{array}{|l|l|}
\left.\hline a_{n} x_{0}^{n} \text { summable } \Longrightarrow\left|a_{n} x^{n}\right| \text { poinwise summable on }\right]-\left|x_{0}\right| ;\left|x_{0}\right|[\mid \\
\hline
\end{array}
$$

proof. Given $x \in \mathbb{R}$ such that $|x|<\left|x_{0}\right|$. Let us denote $q:=\frac{|x|}{\left|x_{0}\right|}$. As $\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ the sequence $a_{n} x_{0}^{n}$ tends to 0 and so it is bounded by some $M \in \mathbb{R}$. For any $n \in \mathbb{N}$ we have $\left|a_{n} x_{0}^{n}\right| \leq M$ and also

$$
\left|a_{n} x^{n}\right| \leq\left|a_{n} x_{0}^{n}\right|\left|\frac{x}{x_{0}}\right|^{n} \leq\left|a_{n} x_{0}^{n}\right| q^{n} \leq M q^{n}
$$

As $\sum_{n=0}^{\infty} M q^{n}=\frac{M}{1-q}$ is finite also $\sum_{n=0}^{\infty} a_{n} x^{n}$ is finite according to the comparison test.
Similar statement holds also for $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$ and $x \in \mathbb{R}$ such that $|x-c|<\left|x_{0}-c\right|$.
st. 123

$$
\left.a_{n} x_{0}^{n} \text { summable } \Longrightarrow\left|n a_{n} x^{n}\right| \text { poinwise summable on }\right]-\left|x_{0}\right| ;\left|x_{0}\right|[
$$

proof. It is similar to that of last statement. Given $x \in \mathbb{R}$ such that $|x|<\left|x_{0}\right|$. Let us denote $q:=\frac{|x|}{\left|x_{0}\right|}$. Again the sequence $a_{n} x_{0}^{n}$ tends to 0 and so it is bounded by some $M \in \mathbb{R}$. Therefore

$$
\left|n a_{n} x^{n}\right| \leq\left|a_{n} x_{0}^{n}\right| n\left|\frac{x}{x_{0}}\right|^{n} \leq M n q^{n}
$$

By for instance ratio test $\sum_{n=0}^{\infty} M n q^{n}=\frac{M}{1-q}$ is finite. Hence $\sum_{n=0}^{\infty} a_{n} x^{n}$ is finite according to the comparison test.
radius of summability
def. 27

$$
\begin{aligned}
& a_{n} \text { sequence : } \\
& R \stackrel{\text { def. }}{=} \sup \left\{r \geq 0 ; \sum_{n=0}^{\infty}\left|a_{n}\right| r^{n} \text { is finite }\right\}
\end{aligned}
$$

st. 124

$$
\begin{aligned}
& a_{n} \text { sequence : } \\
& |x|<R \Longrightarrow a_{n} x^{n} \text { summable } \\
& |x|>R \Longrightarrow a_{n} x^{n} \text { is not summable }
\end{aligned}
$$

proof. I.: Given $x \in \mathbb{R},|x|<R$. There is $|x|<r_{1}<R$ such that $\sum_{n=0}^{\infty}\left|a_{n}\right| r_{1}^{n}$ is finite. According to the last statement also $\sum_{n=0}^{\infty}\left|a_{n} x^{n}\right|$ is finite and $\sum_{n=0}^{\infty} a_{n} x^{n}$ as well.
II.: We shall carry it out by contradiction. Suppose $\sum_{n=0}^{\infty} a_{n} x_{0}^{n}$ is finite for some $x_{0} \in \mathbb{R},\left|x_{0}\right|>R$. There is some $r_{2} \in \mathbb{R}, R<r_{2}<\left|x_{0}\right|$. According to the last statement $\sum_{n=0}^{\infty}\left|a_{n}\right| r_{2}^{n}=\sum_{n=0}^{\infty}\left|a_{n} r_{2}^{n}\right|$ is finite. But this contradicts the definition of R.

Similar statement holds also for $\sum_{n=0}^{\infty} a_{n}(x-c)^{n}$.
The set of $x \in \mathbb{R}$ for which the sequence $a_{n}(x-c)^{n}$ is summable (or series of this sequence is convergent) is called set of convergence of this power series. According the last statement this set creates an interval with boundary poins $c-R$ and $c+R$ and $c \in \mathbb{R}$ is called centre of convergence of power series and $R \in \mathbb{R}^{*}, R \geq 0$ radius of convergence of power series.

We can calculate this radius for instance by Cauchy root test $\frac{1}{R}=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}$ (for $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=0$ it is ∞ and for $\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=\infty$ it is 0).

$$
\begin{align*}
\left.a_{n} x^{n} \text { pointwise summable on }\right]-r ; & +r[\text { and }[\alpha ; \beta] \subset]-r ;+r[\Longrightarrow \tag{st. 125}\\
& \Longrightarrow a_{n} x^{n}=f \text { uniformly summable on }[\alpha ; \beta]
\end{align*}
$$

proof. Let $r_{1}:=\max (|\alpha|,|\beta|)$, There is some $r_{2} \in \mathbb{R}, r_{1}<r_{2}<r$. As $\sum_{n=0}^{\infty} a_{n} r_{2}^{n}$ is finite $\left(r_{2} \in\right]-r ; r[)$ also $\sum_{n=0}^{\infty}\left|a_{n} r_{1}^{n}\right|$ is finite. As $[\alpha ; \beta] \subset\left[-r_{1} ; r_{1}\right]$ for any $x \in[\alpha, b e t a]$ we have $|x| \leq r_{1}$ and $\left|a_{n} x^{n}\right| \leq\left|a_{n} r_{1}^{n}\right|$. Therefore ${ }_{a_{n}}^{n=0} x^{n}$ is uniformly summable on $[\alpha ; \beta]$ according to the Weierstrass test.
st. $126 \quad a_{n} x^{n}$ pointwise summable on $[0 ; r] \Longrightarrow a_{n} x^{n}$ uniformly summable on $[0 ; r]$
proof. We shall use Abel test for uniform summability. Let $f_{n}(x):=a_{n} r^{n}$, these functions are constants therefore uniformly summable on all \mathbb{R} as $\sum_{n=0}^{\infty} a_{n} r^{n}$ finite. Let $g_{n}(x):=\left(\frac{x}{r}\right)^{n} \geq 0$, then $\left\{g_{n}(x)\right\}_{n=0}^{\infty}$ create the decreasing sequence on $[0, r]$ and $g_{0}(x)=1$ is bounded on $[0 ; r]$. According to the Abel test $f_{n}(x) g_{n}(x)$ uniformly summable on $[0 ; r]$ and $f_{n}(x) g_{n}(x)=a_{n} r^{n}\left(\frac{x}{r}\right)^{n}=a_{n} x^{n}$.
st. 127

$$
\begin{aligned}
& \begin{array}{l}
\left.\sum_{n=0}^{\infty} a_{n} x^{n}=f \text { pointwise on }\right]-r ; r[\Longrightarrow \\
\xlongequal[n]{\Longrightarrow} f \text { continuous on }]-r ; r[\\
\left.\Longrightarrow(\forall x \in]-r ; r[) f^{\prime}(x) \in \mathbb{R} \text { exists and } f^{\prime}=\sum_{n=0}^{\infty} n a_{n} x^{n-1} \text { pointwise on }\right]-r ; r[\\
\Longrightarrow(\forall x \in]-r ; r[) F(x)=(R) \int_{0}^{x} f(\xi) d \xi \in \mathbb{R} \text { exists and } \\
\\
\left.\qquad F(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} \text { pointwise on }\right]-r ; r[
\end{array} \\
& \hline
\end{aligned}
$$

proof. I. Consequence of statements 116 and 125.
II. Consequence of statements 118 and 125.
III. Consequence of statements 117 and 125.
st. 128

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=f \text { pointwise on }[0 ; r] \quad \Longrightarrow \lim _{x \rightarrow r^{-}} f(x)=f(r)
$$

proof. Consequence of statements 115 (for the right limit) and 126.

$$
\text { st. } \left.129 \quad(\exists \Delta>0) \sum_{n=0}^{\infty} a_{n} x^{n}=0 \text { pointwise on }\right]-\Delta ; \Delta\left[\Longrightarrow(\forall n \in \mathbb{N}) a_{n}=0\right.
$$

proof. As function $\sum_{n=0}^{\infty} a_{n} x^{n}$ is continuous at 0 and pointwise summable on some $[-r ; r], 0<r<\Delta$, they and their derivatives are continuous at 0 , too. Therefore $0=\lim _{x \rightarrow 0} \sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}, 0=\lim _{x \rightarrow 1} \sum_{n=0}^{\infty} n a_{n} x^{n-1}=1 a_{1}$, $0=\lim _{x \rightarrow 2} \sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}=2 a_{2} \quad \ldots$.

Taylor, McLaurint series

$$
f:] c-r ; c+r[\longrightarrow \mathbb{R}:
$$

$$
\left.(\forall n \in \mathbb{N}) f^{[n]} \underset{|r-c|^{n}}{\text { exists on }}\right] c-r ; c+r[\text { and }
$$

st. 130

$$
\begin{aligned}
\begin{array}{l}
\text { xists on } \\
\frac{|x-c|^{n}}{n!} \sup _{|\xi-c| \leq|x-c|}\left|f^{[n]}(\xi)\right|
\end{array} & \rightarrow 0 \text { pointwise on }] c-r ; c+r[\Longrightarrow \\
& \left.\Longrightarrow \sum_{n=0}^{\infty} \frac{f^{[n]}(c)}{n!}(x-c)^{n}=f \text { poinwise on }\right] c-r ; c+r[
\end{aligned}
$$

proof. We shall use Taylor theorem for f on $[c ; x]$ (suppose for instance $x>c$)

$$
f(x)=\sum_{k=0}^{n} \frac{f^{[k]}(c)}{k!}(x-c)^{k}+\frac{f^{[n+1]}(\xi)}{(n+1)!}(x-c)^{n+1}
$$

where $\xi \in[c ; x]$. We have for partial sums $s_{n}(x):=\sum_{k=0}^{n} \frac{f^{[k]}(c)}{k!}(x-c)^{k}$

$$
\left|s_{n}(x)-f(x)\right| \leq\left|\frac{f^{[n+1]}(\xi)}{(n+1)!}(x-c)^{n+1}\right| \leq \frac{|x-c|^{n+1}}{(n+1)!} \sup _{|\xi-c| \leq|x-c|}\left|f^{[n+1]}(\xi)\right| \rightarrow 0
$$

expansion of e^{x}
st. 131

$$
(\forall x \in \mathbb{R}) \quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

proof. Let us put $f(x):=e^{x}$ and use for it and $c=0$ statement 130 . We have $f^{\prime}(x)=f^{\prime \prime}(x)=\cdots=f^{[k]}(x)=e^{x}$ for any $k \in \mathbb{N}$, hence $f(0)=f^{\prime}(0)=f^{\prime \prime}(0)=\cdots=f^{[k]}(0)=1$. For any $x \in \mathbb{R}$ there is some $r>0$ such that $x \in]-r ; r[$ and

$$
\frac{|x|^{n}}{n!} \sup _{|\xi| \leq|x|}\left|f^{[n]} \xi\right| \leq \frac{|x|^{n}}{n!} \sup _{|\xi| \leq|x|}\left|e^{\xi}\right| \leq \frac{r^{n}}{n!} e^{r} \rightarrow 0
$$

expansion of $\cos x$

st. 132

$$
(\forall x \in \mathbb{R}) \quad \cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

proof. We shall use the statement for $f(x):=\cos x$ and $c=0$. Similarly we have $f^{\prime}(x)=-\sin x, f^{\prime \prime}(x)=-\cos x$, $f^{\prime \prime \prime}(x)=\sin x$ etc. so $f^{[2 k+1]}(x)=(-1)^{k} \sin x$ and $f^{[2 k]}(x)=(-1)^{k} \cos x$ for any $k \in \mathbb{N}$. Hence $f^{[2 k+1]}(0)=0$ and $f^{[2 k]}(0)=(-1)^{k}$. For any $x \in \mathbb{R}$

$$
\frac{x^{n}}{n!} \sup _{|\xi| \leq|x|}\left|f^{[n]} \xi\right| \leq \frac{x^{n}}{n!} \rightarrow 0
$$

expansion of $\sin x$
st. 133

$$
(\forall x \in \mathbb{R}) \quad \sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

proof. It is similar.
expansion of $\ln x$
st. 134

$$
\begin{array}{|lll|}
\hline(\forall x \in]-1 ; 1]) & \ln (1+x)=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{x^{n}}{n} \quad \text { or } \\
(\forall x \in] 0 ; 2]) & \ln x=\sum_{n=0}^{\infty}(-1)^{n-1} \frac{(x+1)^{n}}{n} \\
\hline
\end{array}
$$

proof. We can use again the statement 130 for $\ln x$ and $c=1$ but only on $] \frac{1}{2} ; \frac{3}{2}[$. Therefore it is better to use sum of geometrical sequence. Let us denote by $f(x):=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}$ for any $\left.\left.x \in\right]-1 ; 1\right]$. We can do derivative of power series step by step on] $-1 ; 1\left[\right.$ and we obtain $f^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} x^{n-1}=\sum_{k=0}^{\infty}(-x)^{k}=\frac{1}{1+x}$. Therefore by integrating $f(x)=\ln (1+x)+C$, where C is some constant. From $f(0)=0$ we have $C=0$. As $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^{n}}{n}=f$ pointwise on $[0 ; 1]$ also limit $\lim _{x \rightarrow 1^{-}} \ln (x+1)=\sum_{n=1}^{\infty}(-1)^{n-1} \lim _{x \rightarrow 1^{-}} \frac{x^{n}}{n}$ according to the statement 128.

expansion of $\arctan x$

st. 135

$$
(\forall x \in]-1 ; 1]) \quad \arctan x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

proof. It is similar, we use

$$
\left(\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}\right)^{\prime}=\sum_{n=0}^{\infty}(-1)^{n}\left(\frac{x^{2 n+1}}{2 n+1}\right)^{\prime}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}
$$

and therefore $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=\arctan x$. For $x=1$ the same result holds like at the proof of statement 134.
st. 136

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}=-\ln 2 \text { and } \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2 n+1}=\frac{\pi}{4}
$$

proof. Consequences of 134 and 135.
Expansion of $\ln x$ enables us to prove several important formulas.

Wallis formula

st. 000
$\frac{1}{n}\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \longrightarrow \pi \quad$ or $\quad \frac{2^{4 n}}{n\binom{2 n}{n}} \longrightarrow \pi$
proof. Lets introduce integrals

$$
S_{n}=\int_{0}^{\frac{\pi}{2}} \sin ^{n} x d x
$$

Integration by parts yields us $S_{n+2}=\frac{n+1}{n+2} S_{n}$ and so

$$
\begin{aligned}
& S_{0}=\frac{\pi}{2}, S_{1}=1, S_{2}=\frac{1}{2} \cdot \frac{\pi}{2}, S_{3}=\frac{2}{3} \cdot 1, S_{4}=\frac{3}{2} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, S_{5}=\frac{4}{5} \cdot \frac{2}{3} \cdot 1, \ldots \\
& \ldots, S_{2 n}=\frac{2 n-1}{2 n} \cdots \cdots \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}, S_{2 n+1}=\frac{2 n}{2 n+1} \cdots \cdots \frac{4}{5} \cdot \frac{2}{3} \cdot 1 .
\end{aligned}
$$

Because $\sin ^{2 n+1} x \leq \sin ^{2 n} x \leq \sin ^{2 n-1} x$ it holds $S_{2 n+1} \leq S_{2 n} \leq S_{2 n-1}$ or

$$
\frac{(2 n)!!}{(2 n+1)!!} \leq \frac{(2 n-1)!!}{(2 n)!!} \cdot \frac{\pi}{2} \leq \frac{(2 n-2)!!}{(2 n-1)!!}
$$

and

$$
\frac{2}{2 n+1} \cdot\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}=\frac{((2 n)!!)^{2}}{(2 n+1)!!(2 n-1)!!} \leq \pi \leq \frac{(2 n-2)!!(2 n)!!}{((2 n-1)!!)^{2}}=\frac{1}{n} \cdot\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2}
$$

The result follows from inequality

$$
\pi \leq \frac{1}{n} \cdot\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \leq \frac{2 n+1}{2 n} \pi \longrightarrow \pi
$$

Stirling formula

st. 000

$$
\frac{n!\epsilon n}{n^{n+\frac{1}{2}}} \longrightarrow \sqrt{2 \pi}
$$

proof. We shall use expansion of $\ln x$ for $x \in]-1 ; 1[$

$$
\begin{align*}
& \ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots \tag{3}\\
& \ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\ldots \tag{4}
\end{align*}
$$

and their difference

$$
\ln \frac{1+x}{1-x}=\ln (1+x)-\ln (1-x)=2 x\left(1+\frac{1}{3} x^{2}+\frac{1}{5} x^{4}+\ldots\right) \geq 2 x
$$

We put $x:=\frac{1}{2 n+1}$ to the inequality and get

$$
\ln \left(1+\frac{1}{n}\right)>\frac{1}{n+\frac{1}{2}} \quad \text { and so } \quad \frac{1}{\epsilon}\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}>1
$$

Sequence

$$
c_{n}=\frac{n!\mathrm{e}^{n}}{n^{n+\frac{1}{2}}} \geq 0
$$

is decreasing because $\frac{c_{n}}{c_{n+1}}=\frac{1}{\mathrm{e}}\left(1+\frac{1}{n}\right)^{n+\frac{1}{2}}>1$ and bounded above.
From () we know the sequence c_{n} convergs to some $c \in \mathbb{R}$.

The value of c can be calculated from the Wallis formula because

$$
\begin{aligned}
\frac{c_{n}^{4}}{c_{2 n}^{2}}=\frac{\left(\left(\frac{\mathrm{e}}{n}\right)^{n} \cdot \frac{n!}{\sqrt{n}}\right)^{4}}{\left(\left(\frac{\mathrm{e}}{2 n}\right)^{2 n} \cdot \frac{(2 n)!}{\sqrt{2 n}}\right)^{2}} & =\frac{2}{n} \cdot \frac{\left(2^{n} \cdot n!\right)^{4}}{((2 n)!)^{2}}=\frac{2}{n} \cdot \frac{\left(2^{n} \cdot n(n-1) \cdots \cdots 3 \cdot 2 \cdot 1\right)^{4}}{(2 n(2 n-1)(2 n-2) \cdots \cdots 3 \cdot 2 \cdot 1)^{2}}= \\
& =\frac{2}{n} \cdot \frac{(2 n(2 n-2) \cdots \cdots 6 \cdot 4 \cdot 2)^{4}}{(2 n(2 n-2) \cdots \cdots \cdot 4 \cdot 2)^{2}((2 n-1) \cdots \cdots 3 \cdot 1)^{2}}=\frac{2}{n} \cdot\left(\frac{(2 n)!!}{(2 n-1)!!}\right)^{2} \longrightarrow 2 \pi
\end{aligned}
$$

As $\frac{c_{n}^{4}}{c_{2 n}^{2}} \rightarrow c^{2}$ we have $c=\sqrt{2 \pi}$.

Euler constant

st. $000 \quad \exists a \in \mathbb{R} \quad \sum_{k=1}^{n} \frac{1}{k}-\ln n \longrightarrow a$
proof. From expansion of $\ln x$ for $x \in]-1 ; 1[$

$$
\begin{align*}
& \ln (1+x)=x-\frac{1}{2} x^{2}+\underbrace{\left(\frac{1}{3} x^{3}-\frac{1}{4} x^{4}\right)}_{\geq 0}+\underbrace{\left(\frac{1}{5} x^{5}-\frac{1}{6} x^{6}\right)}_{\geq 0}+\cdots \geq x-\frac{x^{2}}{2} \quad \text { and } \tag{5}\\
& \ln (1+x)=x-\underbrace{\left(\frac{1}{2} x^{2}-\frac{1}{3} x^{3}\right)}_{\geq 0}-\underbrace{\left(\frac{1}{4} x^{4}-\frac{1}{5} x^{5}\right)}_{\geq 0}+\cdots \leq x \tag{6}
\end{align*}
$$

we have $x-\frac{x^{2}}{2} \leq \ln (1+x) \leq x$.
Lets denote

$$
a_{n}:=\sum_{k=1}^{n} \frac{1}{k}-\ln n \quad \text { and } \quad b_{n}:=\sum_{k=1}^{n-1} \frac{1}{k}-\ln n .
$$

We put $x:=\frac{1}{k}$ into last inequality, calculate

$$
\frac{1}{k}-\frac{1}{2 k^{2}} \leq \ln \left(1+\frac{1}{k}\right) \leq \frac{1}{k} \quad \text { and } \quad 0 \leq \frac{1}{k}-\ln (k+1)+\ln k \leq \frac{1}{2 k^{2}}
$$

From this inequality we have two properties of b_{n}. As

$$
0 \leq b_{n}=\sum_{k=1}^{n-1} \frac{1}{k}-\ln n \leq \frac{1}{2} \sum_{k=1}^{n-1} \frac{1}{k^{2}} \leq \frac{1}{2}(1+\underbrace{\sum_{k=2} n-1 \frac{1}{k(k-1)}}_{1+\frac{1}{n-1}}) \leq \frac{3}{2}
$$

so b_{n} is bounded above. As

$$
b_{n+1}-b_{n}=\frac{1}{n}-\ln (n+1)+\ln n=\frac{1}{n}-\ln \left(1+\frac{1}{n}\right) \geq 0
$$

so b_{n} is increasing.
From we know sequence b_{n} converges to some real number $a \in \mathbb{R}$ and

$$
a_{n}=\frac{1}{n}+b_{n} \rightarrow 0+a=a .
$$

ex. 16 (uniform summability)

(1.9) $\frac{1}{x^{2}+n^{2}}$ uniformly summable on \mathbb{R}

We have $\frac{1}{x^{2}+n^{2}} \leq \frac{1}{n^{2}}$ for any $x \in \mathbb{R}$. As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is finite we can use Weierstrass test.
(1.) $\frac{x^{2}}{e^{n x}}$ uniformly summable on $[0 ; \infty$ [

We shall put $f_{n}(x):=\frac{x^{2}}{e^{n x}}$ and inquire its maximum on $\left[0 ; \infty\left[\right.\right.$. Function f_{n} is non-negative, $f_{n}(0)=0$ and limit $\lim _{x \rightarrow \infty} f_{n}(x)=0$. As derivative $f_{n}^{\prime}(x)=\frac{x(2-x n)}{e^{n x}}$ is 0 for $x_{n}=\frac{2}{n}$ we have maximum $f_{n}\left(\frac{2}{n}\right)=\frac{4}{e^{2} n^{2}}$.
We denote $a_{n}:=\frac{4}{e^{2} n^{2}}=f_{n}\left(x_{n}\right) \geq \sup _{x \in[0 ; \infty]}\left|f_{n}(x)\right|$. As $\sum_{n=1}^{\infty} \frac{1}{e^{2} n^{2}}$ is finite we can use again Weierstrass test.
(1.) $\frac{x}{e^{n x}}$ uniformly summable on $[1 ; \infty[$

We shall again put $f_{n}(x):=\frac{x}{e^{n x}}$ and inquire its maximum on $\left[1 ; \infty\left[\right.\right.$. Function f_{n} is non-negative, $f_{n}(1)=\frac{1}{e^{n}}$ and limit $\lim _{x \rightarrow \infty} f_{n}(x)=0$. As derivative $f_{n}^{\prime}(x)=\frac{1-n x}{e^{n x}}$ is negative on $[1 ; \infty]$ we have maximum $a_{n}:=\frac{1}{e^{n}}=f_{n}(1) \geq \sup _{x \in[1 ; \infty]}\left|f_{n}(x)\right|$. As $\sum_{n=1}^{\infty} \frac{1}{\mathrm{e}^{n}}$ is finite we can use again Weierstrass test.
(1.) $\frac{\sqrt{x}}{n e^{\frac{x}{n}}}$ is not uniformly summable on $[0 ; \infty[$ We can again put $f_{n}(x):=\frac{\sqrt{x}}{n e^{\frac{1}{n}}}$ and inquire its maximum on $\left[0 ; \infty\left[\right.\right.$. Function f_{n} is non-negative, $f_{n}(0)=0$ and limit $\lim _{x \rightarrow \infty} f_{n}(x)=0$. As derivative $f_{n}^{\prime}(x)=\frac{n-2 x}{2 \sqrt{x} n^{2} e^{\frac{x}{n}}}$ is 0 for $x_{n}=\frac{n}{2}$ we have maximum $f_{n}\left(\frac{n}{2}\right)=$ $\frac{1}{\sqrt{2 n \mathrm{e}}} \geq \sup _{x \in[0 ; \infty]}\left|f_{n}(x)\right|$. But we cannot use Weierstrass test as $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2 n \mathrm{e}}}$ is not finite. Fortunately we can conclude $f_{n}(x)$ is not uniformly summable on $\left[0 ; \infty\left[\right.\right.$ as it is not summable for $x:=1, \sum_{n=1}^{\infty} f_{n}(1)=$ $\sum_{n=1}^{\infty} \frac{1}{n e^{\frac{1}{n}}}=\infty$.
(From the result $f_{n}\left(x_{n}\right)$ is not summable follows no conclusion for $f_{n}(x)$, we can consider following example.) $\quad \sum_{n=1}^{\infty} f_{n}(x)=f(x)$ uniformly on \mathbb{R}, where

$$
f_{n}(x)=\left\{\begin{array}{ll}
\frac{1}{n} & \text { for } x=n \\
0 & \text { otherwise }
\end{array} \quad, f(x)= \begin{cases}1 & \text { for } x=1 \\
\frac{1}{2} & \text { for } x=2 \\
\frac{1}{3} & \text { for } x=3 \\
\cdots & \\
\frac{1}{k} & \text { for } x=k \\
\cdots & \\
0 & \text { otherwise }\end{cases}\right.
$$

Function f_{n} has its maximum in $x_{n}=n, a_{n}:=\frac{1}{n} \geq \sup _{x \in \mathbb{R}}\left|f_{n}(x)\right|$ but $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$ and we cannot use Weierstrass test. In spite of this, for partial sums $s_{n}:=f_{1}+\cdots+f_{n}$ we have $\sup _{x \in \mathbb{R}}\left|s_{n}(x)-f(x)\right|=\frac{1}{n+1}$ hence $\sum_{n=1}^{\infty} f_{n}(x)=f(x)$ uniformly on \mathbb{R}.
(1.) $\quad(1-x) x^{n}$ is not uniformly summable on $[0 ; 1]$

We can calculate for $f_{n}(x)=(1-x) x^{n}$ partial sums

$$
s_{n}(x)=\sum_{k=0}^{n}(1-x) x^{n}=(1-x) \sum_{k=0}^{n} x^{n}=(1-x) \frac{1-x^{n+1}}{1-x}=1-x^{n+1}
$$

for $0 \leq x<1$ and $s_{n}(1)=0$. Partial sums $s_{n} \rightarrow f$ pointwise on $[0 ; 1]$, where

$$
f(x)= \begin{cases}0 & \text { for } x=0,1 \\ 1 & \text { otherwise }\end{cases}
$$

Functions f_{n} are continuous on $[0 ; 1]$. If $\sum_{n=0}^{\infty} f_{n}=f$ uniformly on $[0 ; 1]$ according to the statement f must be continuous on $[0 ; 1]$, too. But it is not.

ex. (summability)

(1.) $\frac{\ln ^{n} x}{n}$ is summable iff $x \in\left[\frac{1}{e} ; e[\right.$

For $x>1$ we can use ratio test $\frac{f_{n+1}(x)}{f_{n}(x)}=\frac{n}{n+1} \ln x \rightarrow \ln x$ amd we have $f_{n}(x)$ is summable for $x<e$ and is not summable for $x>e$.
Similarly we have for $0<x<1$ sequence $\frac{\ln ^{n} x}{n}=\frac{(-1)^{n} \ln ^{n} \frac{1}{x}}{n}$ as well as $\frac{\ln ^{n} \frac{1}{x}}{n}$ is summable for $\frac{1}{x}<e$ i.e. $x>\frac{1}{e}$. and is not summable For $x<\frac{1}{e}$ sequence is not summable as $\ln \frac{1}{x}>1$ and $\frac{\ln ^{n} \frac{1}{x}}{n} \nrightarrow 0$. It remain to inquire summability only for $x:=e, 1, \frac{1}{e}$ i.e. $\sum_{n=1}^{\infty} \frac{1}{n}=\infty, \sum_{n=1}^{\infty} 0=0$ and $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}<\infty$.

ex. (calculation of sums)

(1.3) $\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ pointwise on $[-1 ; 1[$ (and uniformly on $[-1 ; \beta]$ for any $\beta<1$)

It is geometrical sequence. We can do derivative on $]-1 ; 1\left[\right.$ and by useing statement $\sum_{n=0}^{\infty} n x^{n+1}=$ $\sum_{n=0}^{\infty}\left(x^{n}\right)^{\prime}=\left(\sum_{n=0}^{\infty} x^{n}\right)^{\prime}=\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}$ obtain next result. $3 \sum_{n=0}^{\infty} n x^{n}=\frac{x}{(1-x)}$ pointwise on $]-1 ; 1[$ Similarly we can integrate it for $x \in\left[-1 ; 1\left[\right.\right.$ and by using statement $\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}=\sum_{n=0}^{\infty} \int_{0}^{x} t^{n} d t=\int_{0}^{x} \sum_{n=0}^{\infty} t^{n} d t=$ $\int_{0}^{x} \frac{1}{1-t} d t=-\ln (1-x)$ obtain next result similar one of statement 134.
(1.2) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}=-\ln (1-x)$ pointwise on $[-1 ; 1[$

These formulas can be used for instance in following examples.
(5) $\quad \sum_{n=0}^{\infty} \frac{n}{3^{n}}=\frac{1}{3}$
(5) $\sum_{n=1}^{\infty} \frac{x^{2 n+1}}{n 2^{n}}=x\left(\ln 2-\ln \left(2-x^{2}\right)\right)$ pointwise on $[-\sqrt{2} ; \sqrt{2}[$

We can use formula () $x \sum_{n=1}^{\infty} \frac{1}{n}\left(() \frac{x^{2}}{2}\right)^{n}=x\left(-\ln \left(1-\frac{x^{2}}{2}\right)\right)$.
(1.) $\int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{n}{3^{n}\left(n^{2}+x^{2}\right)} d x=\frac{\pi}{4}$

Sequence $\frac{n}{3^{n}\left(n^{2}+x^{2}\right)}$ is uniformly summable on \mathbb{R} by the Weierstrass test. Therefore we can change sumation and integration an calculate (using substitution $t:=\frac{x}{n}$)

$$
\begin{align*}
& \int_{0}^{\infty} \sum_{n=1}^{\infty} \frac{n}{3^{n}\left(n^{2}+x^{2}\right)} d x=\sum_{n=1}^{\infty} \frac{n}{3^{n}} \int_{0}^{\infty} \frac{d x}{n^{2}+x^{2}}= \\
&=\sum_{n=1}^{\infty} \frac{1}{3^{n}} \int_{0}^{\infty} \frac{d t}{1+t^{2}}=\sum_{n=1}^{\infty} \frac{1}{3^{n}}[\arctan t]_{0}^{\infty}=\sum_{n=1}^{\infty} \frac{\pi}{2} \frac{1}{3^{n}}=\frac{\pi}{2} \frac{\frac{1}{3}}{1-\frac{1}{3}}=\frac{\pi}{4} \tag{7}
\end{align*}
$$

ex. (expansions)
(1.) $\int_{0}^{x} e^{-\xi^{2}} d \xi=x \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n+1) n!}$

We can expand $e^{t}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!}$ for any $t \in \mathbb{R}$, so for $t:=-x^{2}$ we have $e^{-x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}$. We can integrate this power series term by term

$$
\int_{0}^{x} e^{-\xi^{2}} d \xi=\int_{0}^{x} \sum_{n=0}^{\infty}(-1)^{n} \frac{\xi^{2 n}}{n!} d \xi=\sum_{n=0}^{\infty} \int_{0}^{x}(-1)^{n} \frac{\xi^{2 n}}{n!} d \xi=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) n!}
$$

(1.) $\lim _{x \rightarrow 0} \frac{\sin x-x}{x^{3}}=\frac{1}{6}$

As $\sin x=x-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\ldots$ we have $\frac{\sin x-x}{x^{3}}=-\frac{1}{6}+\frac{x^{2}}{120}-\ldots \rightarrow \frac{1}{6}$.

Schwartz inequality

st. 137

$$
\begin{gathered}
\hline f, g:[\alpha ; \beta] \longrightarrow \mathbb{R} \text { integrable on }[\alpha ; \beta]: \\
\int_{\alpha}^{\beta}|f g| \leq \sqrt{\int_{\alpha}^{\beta} f^{2}} \sqrt{\int_{\alpha}^{\beta} g^{2}} \\
\hline
\end{gathered}
$$

proof. From the existence of integrals of f and g it follows by the properties of Riemann integral the existence of integrals 154 and 155 of $f^{2}, g^{2}, f g$ and $(|f|+\gamma|g|)^{2}$ for any $\gamma \in \mathbb{R}$. As

$$
0 \leq \int_{\alpha}^{\beta}(|f|+\gamma|g|)^{2}=\int_{\alpha}^{\beta} f^{2}+2 \gamma \int_{\alpha}^{\beta}|f g|+\gamma^{2} \int_{\alpha}^{\beta} g^{2}
$$

discriminant of this quadratic equation must be non-positive. Therefore

$$
\left(2 \int_{\alpha}^{\beta}|f g|\right)^{2}-4 \int_{\alpha}^{\beta} f^{2} \int_{\alpha}^{\beta} g^{2} \leq 0
$$

Kronecker delta

def. 28
$(\forall k, l=0,1,2 \ldots) \quad \delta_{k l} \stackrel{\text { def. }}{=} \begin{cases}0 & \text { for } k \neq l \\ 1 & \text { for } k=l\end{cases}$

orthonormal system of functions

def. 29
$(\forall n=0,1,2, \ldots) \quad v_{n}:[\alpha ; \beta] \longrightarrow \mathbb{R}, \alpha, \beta \in \mathbb{R}:$
$v_{0}, v_{1}, v_{2}, \ldots, v_{n}, \ldots$ orthonormal system of functions on $[\alpha ; \beta] \stackrel{\text { def. }}{\Longleftrightarrow} \int_{\alpha}^{\beta} v_{k} v_{l}=\delta_{k l}$
Fourier coefficients
def. 30
$v_{0}, v_{1}, v_{2}, \ldots$ orthonormal system of functions on $[\alpha ; \beta], f:[\alpha ; \beta] \longrightarrow \mathbb{R}$, integrable on $[\alpha ; \beta]:$

$$
c_{k} \stackrel{\text { def. }}{=} \int_{\alpha}^{\beta} f v_{k} \text { Fourier coefficients of } f \text { in } v_{0}, v_{1}, v_{2}, \ldots
$$

Existence of them follows from Schwartz inequality.
st. 138

$$
\begin{array}{|l}
f:] \alpha ; \beta] \longrightarrow \mathbb{R} \text { integrable on }] \alpha ; \beta] \\
c_{k} \text { Fourier coefficients of } f \text { in orthonotmal system } v_{0}, v_{1}, v_{2}, \cdots: \\
\left(\forall \gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots \gamma_{n} \in \mathbb{R}\right) \quad \int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} \gamma_{k} v_{k}\right)^{2} \leq \int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} c_{k} v_{k}\right)^{2}
\end{array}
$$

proof. Let us calculate right site of inequality

$$
\begin{align*}
(R):=\int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} c_{k} v_{k}\right)^{2} & =\int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} c_{k} v_{k}\right)\left(f-\sum_{l=0}^{n} c_{l} v_{l}\right)= \\
& =\int_{\alpha}^{\beta} f^{2}-\sum_{k=0}^{n} c_{k} \underbrace{\int_{\alpha}^{\beta} v_{k} f}_{=c_{k}}-\sum_{l=0}^{n} c_{l} \underbrace{\int_{\alpha}^{\beta} f v_{l}}_{=c_{l}}+\sum_{k=0}^{n} c_{k} \sum_{l=0}^{\sum_{l=0}^{n} c_{l} \underbrace{\int_{\alpha}^{\beta} v_{k} v_{l}}_{=\delta_{k l}}=\underbrace{\beta}_{=c_{k}} f^{2}-\sum_{k=0}^{n} c_{k}^{2}} \tag{8}
\end{align*}
$$

and now left side of it

$$
\begin{align*}
&(L):=\int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} \gamma_{k} v_{k}\right)^{2}=\int_{\alpha}^{\beta} f^{2}+\underbrace{\sum_{k=0}^{n} \gamma_{k}^{2}-2 \sum_{k=0}^{n} \gamma_{k} c_{k}+\sum_{k=0}^{n} c_{k}^{2}}_{=\sum_{k=0}^{n}\left(\gamma_{k}-c_{k}\right)^{2}}-\sum_{k=0}^{n} c_{k}^{2}= \\
&=(R)+\sum_{n=0}^{n}\left(c_{k}-\gamma_{k}\right)^{2} \geq(R) \tag{9}
\end{align*}
$$

Bessel inequality

$f:] \alpha ; \beta] \longrightarrow \mathbb{R}$ integrable on $] \alpha ; \beta]$
st. 139
c_{k} Fourier coefficients of f in orthonotmal system $v_{0}, v_{1}, v_{2}, \cdots$:

$$
\int_{\alpha}^{\beta} f^{2} \geq \sum_{k=0}^{\infty} c_{k}^{2}
$$

proof. Consequence of the last statement.

Parseval equality

$f:[\alpha ; \beta] \longrightarrow \mathbb{R}$ integrable on $[\alpha ; \beta], f(\alpha)=f(\beta)$
c_{k} Fourier coefficients of f in orthonotmal system $v_{0}, v_{1}, v_{2}, \cdots$:
st. 140

$$
(\forall \epsilon>0)\left(\exists n \in \mathbb{N}, \gamma_{0}, \gamma_{1}, \ldots \gamma_{n} \in \mathbb{R}\right) \sup _{x \in[\alpha ; \beta]}\left|f(x)-\sum_{k=0}^{n} \gamma_{k} v_{k}(x)\right|<\epsilon \Longrightarrow \int_{\alpha}^{\beta} f^{2}=\sum_{k=0}^{\infty} c_{k}^{2}
$$

proof. Given $\epsilon>0$ arbitrary. For $\epsilon_{1}:=\sqrt{\frac{\epsilon}{\beta-\alpha}}$ there are $\gamma_{0}, \gamma_{1}, \gamma_{2}, \ldots \gamma_{n} \in \mathbb{R}$ such that $\sup _{x \in] \alpha ; \beta]} \mid f(x)-$ $\sum_{k=0}^{n} \gamma_{k} v_{k}(x) \left\lvert\,<\epsilon_{1}=\sqrt{\frac{\epsilon}{\beta-\alpha}}\right.$. Therefore

$$
\epsilon=\epsilon_{1}^{2}(\beta-\alpha)>\int_{\alpha}^{\beta}\left(f-\sum_{k=0}^{n} \gamma_{k} v_{k}\right)^{2} \geq \int_{\alpha}^{\beta} f^{2}-\sum_{k=0}^{n} c_{k}^{2} \geq \int_{\alpha}^{\beta} f^{2}-\sum_{k=0}^{\infty} c_{k}^{2}
$$

and also $\int_{\alpha}^{\beta} f^{2}-\sum_{k=0}^{\infty} c_{k}^{2} \leq 0$ because $\epsilon>0$ was arbitrary.

trigonometric system

st. 141
$v_{0}:=\frac{1}{\sqrt{2 \pi}}, v_{1}:=\frac{1}{\sqrt{\pi}} \sin x, v_{2}:=\frac{1}{\sqrt{\pi}} \cos x, v_{3}:=\frac{1}{\sqrt{\pi}} \sin 2 x, v_{4}:=\frac{1}{\sqrt{\pi}} \cos 2 x, \ldots$
$\ldots, v_{2 k-1}:=\frac{1}{\sqrt{\pi}} \sin k x, v_{2 k}:=\frac{1}{\sqrt{\pi}} \cos k x, \ldots$ is an orthonormal system of functions on $[-\pi ; \pi]$
proof. We have to enumerate integrals $\int_{-\pi}^{\pi}\left(\frac{1}{\sqrt{2 \pi}}\right)^{2} d x=1$, for all $k \int_{-\pi}^{\pi} \sin k x d x=0, \int_{-\pi}^{\pi} \cos k x d x=0$, $\int_{-\pi}^{\pi} \sin ^{2} k x d x=1, \int_{-\pi}^{\pi} \cos ^{2} k x d x=1$ for all $k \in \mathbb{N}$ and $\int_{-\pi}^{\pi} \sin k x \sin l x d x=0, \int_{-\pi}^{\pi} \cos k x \cos l x d x=0$ and $\int_{-\pi}^{-\pi} \sin k x \cos l x d x=0$ for all $k, l \in \mathbb{N}, k \neq l$.

Also so called Legendre polynomials $v_{0}:=1, v_{1}:=\sqrt{3}(2 x-1), v_{2}:=\sqrt{5}\left(6 x^{2}-6 x+1\right), \ldots$ create orthonormal system of functions on $[0 ; 1]$.
st.142 $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
proof. We shall use Parseval equality with trigonometric system (see the consequence of Stone - Weierstrass theorem) for function $f(x):=\left\{\begin{array}{ll}-\frac{x}{2}-\frac{\pi}{2} & \text { for } x \in[-\pi ; 0[\\ -\frac{x}{2}+\frac{\pi}{2} & \text { for } x=\in[0 ; \pi]\end{array}\right.$. We can calculate the Fourier coefficients $c_{0}=0$, $c_{2 k}=0$ and

$$
\begin{gather*}
c_{2 k-1}=\frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(x) \sin k x d x=\frac{1}{\sqrt{\pi}}\left(\int_{-\pi}^{0} \frac{-x-\pi}{2} \sin k x d x+\int_{0}^{\pi} \frac{-x+\pi}{2} \sin k x d x\right)= \\
=\frac{2}{\sqrt{\pi}} \int_{0}^{\pi} \frac{\pi-x}{2} \sin k x d x=\frac{1}{k \sqrt{\pi}}\left(\pi \int_{0}^{k \pi} \sin t d t-\frac{1}{k} \int_{0}^{k \pi} t \sin t d t\right)= \\
=\frac{1}{k \sqrt{\pi}}\left(-\pi[\cos t]_{0}^{k \pi}-\frac{1}{k}[\sin t-t \cos t]_{0}^{k \pi}\right)=\frac{1}{k \sqrt{\pi}}\left(\pi\left(1-(-1)^{k}\right)+\frac{1}{k} k \pi(-1)^{k}\right)=\frac{\sqrt{\pi}}{k} . \tag{10}
\end{gather*}
$$

Parseval inequality gives

$$
\pi \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\sum_{k=0}^{\infty} c_{k}^{2}=\int_{-\pi}^{\pi} f^{2}(x) d x=2 \int_{0}^{\pi}\left(\frac{x-\pi}{2}\right)^{2} d x=\frac{1}{2} \int_{0}^{\pi} t^{2} d t=\frac{1}{6}\left[t^{3}\right]_{0}^{\pi}=\frac{\pi^{3}}{6}
$$

st. 143

$$
\cos a \sin b=\frac{1}{2}(\sin (a+b)-\sin (a-b))
$$

proof. We shal substract following two equalities

$$
\begin{align*}
& \sin (a+b)=\sin a \cos b+\cos a \sin b \\
& \sin (a-b)=\sin a \cos b-\cos a \sin b \tag{11}
\end{align*}
$$

Dirichlet kernel

def. 31

$$
D_{n}(x) \stackrel{\text { def. }}{=} \begin{cases}\frac{\sin \left(n+\frac{1}{x}\right) x}{\sin \frac{x}{2}} & \text { for } x \neq 0, \pm 2 \pi, \pm 4 \pi, \ldots \\ 2 n+1 & \text { for } x=0, \pm 2 \pi, \pm 4 \pi, \ldots\end{cases}
$$

st. 144

$$
D_{n}(x)=1+2 \sum_{k=1}^{n} \cos k x
$$

proof. We shall use the statement 143 for $a:=k x$ and $b:=\frac{x}{2}$

$$
2 \sin \frac{x}{2} \cos k x=\sin \left(k+\frac{1}{2}\right) x-\sin \left(k-\frac{1}{2}\right) x
$$

and add over $k=1, \ldots, n$

$$
2 \sin \frac{x}{2} \sum_{k=1}^{n} \cos k x=\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x
$$

st. 145

$$
\int_{-\pi}^{\pi} D_{n}(t) d t=2 \pi
$$

proof. Easy calculation.

$$
c_{0}, c_{1}, c_{2}, \ldots \text { Fourier coefficients of } f
$$

st. 146

$$
f:[-\pi ; \pi] \longrightarrow \mathbb{R} \text { integrable on }[-\pi ; \pi], f(-\pi)=f(\pi),
$$

$$
\begin{aligned}
& \text { in orthonormal system } v_{0}:=\frac{1}{\sqrt{2 \pi}}, v_{2 k-1}:=\frac{1}{\sqrt{\pi}} \cos k x, v_{2 k}:=\frac{1}{\sqrt{\pi}} \sin k x, k=1,2, \cdots \text { : } \\
& \left(\forall x \in \left[-\pi ; \pi[) \sum_{i=0}^{2 n} c_{i} v_{i}(x)=c_{0} \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{n}\left(c_{2 k-1} \frac{\cos k x}{\sqrt{\pi}}+c_{2 k} \frac{\sin k x}{\sqrt{2 \pi}}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}(t) f(x-t) d t\right.\right.
\end{aligned}
$$

proof. We can wide function f to whole \mathbb{R} periodically and calculate by using substitution $s:=x-t$

$$
\int_{-\pi}^{\pi} D_{n}(t) f(x-t) d t=\int_{x-\pi}^{x+\pi} D_{n}(x-s) f(s) d s
$$

As both D_{n} and f are periodical functions with perion 2π we obtain the same integral with limits of integration changed from $[x-\pi ; x+\pi]$ to $[-\pi ; \pi]$ and

$$
\begin{align*}
\int_{-\pi}^{\pi} D_{n}(x-s) f(s) d s & =\int_{-\pi}^{\pi} f(s) d s+2 \int_{-\pi}^{\pi} \sum_{k=0}^{n} \cos k(x-s) f(s) d s= \\
& =\int_{-\pi}^{\pi} f(s) d s+2 \int_{-\pi}^{\pi} \sum_{k=1}^{n}(\cos k x \cos k s+\sin k x \sin k s) f(s) d s= \\
& =\underbrace{\int_{-\pi}^{\pi} f(s) d s}_{=\sqrt{2 \pi} c_{0}}+2 \sum_{k=1}^{n} \cos k x \underbrace{\int_{-\pi}^{\pi} f(s) \cos k s d s}_{=\sqrt{\pi} c_{2 k-1}}+2 \sum_{k=1}^{n} \sin k x \underbrace{\int_{-\pi}^{\pi} f(s) \sin k s d s}_{=\sqrt{\pi} c_{2 k}}=2 \pi \sum_{i=0}^{2 n} c_{i} v_{i}(x) \tag{12}
\end{align*}
$$

Lipschitz function

def. 32
$K \subset \mathbb{R}, I \subset K, f: K \longrightarrow \mathbb{R}:$
f Lipschitz function $\Longleftrightarrow(\exists M>0)\left(\forall x_{1}, x_{2} \in I\right)\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right|$

For instance any function f which have finite derivative f^{\prime} on set $K \subset \mathbb{R}$ is Lipschitz on any $[\alpha ; \beta] \subset K$. Function $f(x):=|x|$ is an example of that which is Lipschitz on $[-1 ; 1]$ and has no derivative at 0 . It is easy seen that any function Lipschitz on $] \alpha ; \beta[$ is continuous on $] \alpha ; \beta[$. Function $f(x):=\sqrt[3]{x}$ can be presented as an example of that which is continuous on $[-1 ; 1]$ and is not Lipschitz on $[-1 ; 1]$.

$$
\begin{aligned}
& \hline f:[-\pi ; \pi] \longrightarrow \mathbb{R} \text { integrable on }[-\pi ; \pi], f(-\pi)=f(\pi), a \in]-\pi ; \pi[\\
& c_{0}, c_{1}, c_{2}, \ldots \text { Fourier coefficients of } f \\
& \text { in orthonormal system } v_{0}:=\frac{1}{\sqrt{2 \pi}}, v_{2 k-1}:=\frac{1}{\sqrt{\pi}} \cos k x, v_{2 k}:=\frac{1}{\sqrt{\pi}} \sin k x, k=1,2, \cdots: \\
& (\exists \Delta>0) f \text { Lipschitz on }] a-\Delta ; a+\Delta\left[\Longrightarrow \sum_{i=0}^{\infty} c_{i} v_{i}(a)=c_{0} \frac{1}{\sqrt{2 \pi}}+\sum_{k=1}^{\infty}\left(c_{2 k-1} \frac{\cos k a}{\sqrt{\pi}}+c_{2 k} \frac{\sin k a}{\sqrt{2 \pi}}\right)=f(a)\right.
\end{aligned}
$$

st. 147
proof. By hypothesis for some $M>0$ we have $|f(a+x)-f(x)| \leq M|x|$ on $]-\Delta ; \Delta[$. We can again wide function f periodically to \mathbb{R} and use

$$
\begin{align*}
\sum_{i=0}^{2 n} c_{i} v_{i}(a)-f(a)= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(a-x)-f(a)) D_{n}(x) d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(a-x)-f(a)) \frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \frac{x}{2}} d x= \\
& =\frac{1}{2 \pi} \underbrace{\int_{-\pi}^{\pi} \underbrace{(f(a-x)-f(a))}_{\text {integrable on }[-\pi ; \pi]} \cot \frac{x}{2} \sin n x d x}_{-0}+\frac{1}{2 \pi} \underbrace{}_{\underbrace{\int_{-\pi}}_{-\pi} \underbrace{(f(a-x)-f(a))}_{\text {integrable on }[-\pi ; \pi]} \cos n x d x \rightarrow 0} \tag{13}
\end{align*}
$$

We can use statement 156 as $\cot \frac{x}{2}$ and also $(f(a-x)-f(x)) \cot \frac{x}{2}$ is integrable on $[\delta ; \Delta]$ for any $\delta>0$ and bounded on $[0 ; \Delta]$ (no matter function value at 0) because

$$
\left|(f(a-x)-f(x)) \cot \frac{x}{2}\right|=\underbrace{\frac{|f(a-x)-f(x)|}{|x|}}_{\leq M} \underbrace{\left\lvert\, \frac{x}{\left.\sin \frac{x}{2} \right\rvert\,}\right.}_{\rightarrow 2 \text { around } 0} \underbrace{\left|\cos \frac{x}{2}\right|}_{\leq 1} .
$$

$e x . \quad$ Example $\sum_{n=1}^{\infty} \frac{1}{2 n-1} \sin [(2 n-1) a]=\frac{\pi}{4}$ for any $a \neq 0, \pm$
We can use the statement 148 for function $f x:=\left\{\begin{array}{ll}1 & \text { for } x \in[0 ; \pi] \cup\{-\pi\} \\ -1 & \text { for } x \in]-\pi ; 0[\end{array}\right.$ and $0<a<\pi$. Fourier coefficients are $c_{0}=0, c_{2 k-1}=0$ and $c_{2 k}=\frac{2}{k \sqrt{\pi}}\left(1-(-1)^{k}\right)$ and so

$$
1=f(a)=\sum_{k=1}^{\infty} \frac{2}{k \sqrt{\pi}}\left(1-(-1)^{k}\right) \frac{\sin k a}{\sqrt{\pi}}=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin [(2 n-1) a]}{2 n-1}
$$

