5 . Sequences and series of functions

We can define not only the sequences (and series) of real numbers but also sequences on general topology
space or both sequences and series on linear topology spaces (X, 7) or even normed vector space (X, Il).
Then we define a sequence as a mapping of Nto (X, 7) or (X,1-1) and we denote it

{zp}y: N—(X,7) :nw—uz, or
{Zp}ory: N— (X, I-1) :n— o,

There is possible introduce also limit of sequence and sum of sequence or conception of convergence (or
divergence) amd summability by following way.

Ty LU (VU 7-neighbourhood of 0) (Ing) (Vn > ng) =, —x € U
S rn=s LU (VU 7-neighbourhood of 0) (Ing) (Vn > ng) 21 +z2+ -+ xp —s €U
n=1
xnux &L [lzn — || = 0
>, s &L S e —s|| =0
n=1 k=1
Zn, T-convergent in X LU (3r € X) x, 5w
, 7- summable in X &% (FseX) > zp=s
n=1
Zp I -Il-convergent in X &L (Fz e X) ay i
Zp Il Il-summable in X £ FseX) Y z, L0

Given S C R, we can define
F(S):={f:5 —R}
space of all real functions on the set S. As for any f,g € F(S), a € R also f + g € F(5) and af € F(S) and
operations of addition and multiples fulfil corresponding axioms F(S) create vector space.
We can introduce also topologies on F(S).
1. Weak topology can be defined by base of neighbourhoods of 0

1
Un.x =1{f € F(S); sup |f(z)] < E}’ where n € N and K C S, K finite .
reK

2. Strong topology can be defined by norm
I = SUEIf(év)I, feF(9),
rE

then base of neighbourhoods consists of U, = {f € F(S);[|f]| < 1}, where n € N. Now we can use the
presented definitions of limits, sums, pointwise convergence or summability (in the case of weak topology) and
uniform convergence or summability (in the case of strong topology). But this conception suppose some basic
knowledges of topology and functional analysis.

Therefore we shall define limits, sums, convergence and summability by another way. We can imagine
sequences of real functions on S as a map

{futozy: N—F(S) :nw—f, or
NxR—R :(njz)— fo(z).



pointwise and uniform limit

SCR, f,fn: 5 —R:

def. 23 fn — f pointwise on S BN (Vz € S) fulz) — f(x)

fn — f uniformly on S L sup |fn(x) — f(z)] — 0
€S

We also denote f = lim f, pointwise or uniformly on S and we say f is pointwise or uniform limit of sequence
n—oo

fnon S or f, tends to f pointwise or uniformly on S. (There is sometimes used notation f,, = f on S for
uniform limit.)

pointwise and uniform sum

SCR, f,fn: 5 —R:

oo

>~ fn = f pointwise on S LL (fi+ fo+- -+ fn) — f pointwise on S

def. 24 h ( (v €8) 3 fula) = f(w))

> fn = f uniformly on S L (fi+fa+---+ fu) — f uniformly on S
n=1

((or sup| & fute) ~ s )

rcS k=1

It is said f is pointwise or uniform sum of sequence f,, on S or series of sequence f, tends to f pointwise or
uniformly on S.

pointwise and uniform convergence and summability

SCR, fr,: 5 —R:
fn pointwise convergent on S ety (3f real function on S) f, — f pointwise on S
def. 25 fn uniformly convergent on S &t (3f real function on S) f, — f uniformly on S
cf. 00
fn pointwise summable on S &t (3f real function on S) > f, = f pointwise on S
n=1
frn uniformly summable on S Loty (3f real function on S) > f, = f uniformly on S
n=1
Bolzano - Cauchy
SCR, f,: S —R:
fn pointwise convergent on S <= (Vz € 5) (Ve > 0)(Ing € N) (Ym,n > ng) |fu(z) — f(x)] <€
st. 108 frn uniformly convergent on S <= (Ve > 0) (Ing € N) (Vm,n > ng) (Vz € S) |fu(z) — fm(x)| <€
((or suplfu(o) — fnto)l <)
€S

proof. It is consequence of next definitions and statement 52.

Similar statement holds also for pointwise or uniformly summable sequences.

It is obvious that sequence f, uniformly convergent on both S and 7T is also uniformly convergent on union
S UT. It holds naturally for pointwise convergence, too.



fosflasa+ A[—R, A>0:
lim_ fa(z) = an € R, and f,, — f uniformly on Ja;a+ A[ = a, > A€ Rand lim f(x)=A

T—a z—at

st. 109

proof. 1. a, — A € R: Given arbitrary € > 0. As f, uniformly convergent on |a;a + A[ we have ny such that
for any m,n > n;

€

sup [ fn(x) = fm(2)] < 3.

z€lasa+A| 3
Let m,n > n; given also arbitrary. The existence of finite limit 1im+ fn(x) = an, € R ensures existence of

r—a

dn, > 0, A > § such that for any x €]a;a + o,
€

|fn(‘r) _anl < 3

and similarly existence of lim f,,(x) = a,, € R provides d,,, > 0 such that for any z €]a; a + [
€

|fm(‘r) - am' < 3

Let 29 :=a + %min{&n, dm}, then

lan — am| < lan — fu(2o)| + | fr(w0) = fn(20)| + | frm(z0) — am| < €.

<3 <

<3

wlo

This means {a,},., is Cauchy sequence and according Bolzano-Cauchy statement 52 it is convergent, so
a, — AeR.
11 lim+ f(x) = A: Given € > 0 arbitrary. As f, — f uniformly on ]a;a + A[ we have ny such that for any

r—a

n>nso

sup | fule) = f(@)] < 5.

z€laja+A|

As a,, — A we have also n3 such that for any n > ns
€

Let ng := max{ng,n3}. The existence of limit lim+ fno(®) = an, € R ensure existence of 6 > 0 such that for
r—a

any z €|a;a + [

€
|fno(17) - CLn0| < g

Then for any x €]a;a + J]

[fa(x) = Al < [f(@) = o (@) + | fg (%) = | + |ang — A <. B
——

<

< <35

@l
wlm

This statement is not true for pointwise convergence.



ex. 12 We can take f,(z) = (1 —z)" for x €]0;1[. This sequence tends pointwise to f(z) = 0 on ]0;1[. But
ap, = 1im+ fn(xz) =1 for any n € N and lim+ f(z) =0.
z—0 z—0

We can formulate another two similar statements for limits and one consequence about continuity.

fos fila—Asal— R, A>0:
lim f,(z) =a, €R, and f, — f uniformly on Ja — A;a] = a, > A€Rand lim f(z)=A4

T—a = T—a =

st. 110

proof. It is similar. W

fn, fila—AsalUla;a+ Al— R, A>0:
st 111 9113}1 fn(z) =a, € R, and f, — f uniformly on Ja — A;a[Ula;a + A] =
= a, - A€Rand lim f(z) = A

r—a

proof. It is consequence of last two statements. W

fo, f: I — R, I CR interval :

st. 112 fn continuous on I and f, — f uniformly on I = f continuous on [

proof. We have to realize that a function f is continuous at a iff lim f(x) = f(a) (similarly for continuity from

r—a

left or right). The rest is a consequence of the last three statements. W
Now we shall consider integrals and derivatives of limit of sequence of function.

forfilosB] —R, a,fER:

st. 118 (R) ff fn exists and f,, — f uniformly on [a; 8] = f(R) ff f exists and (R) ff fn— (R) ff f

proof. We shall denote a,, := sup |fn(z) — f(z)|. As f, — f uniformly on [a; 5] then a, — 0. We have for
z€la;f]
any x € [a; ]
fal@) = an < f(2) < fule) +an  and

[ - aans [ oo <aomi [ <nomi [ [Cvan < [Cr0-aan,

After limiting we obtain

B B B B
lim < dolm'/ < horm'/ f < lim fn
n—oo a a n—oo o
and (R) [7 f = lim [” f, exists. W
o n—oo o n )

Similar statement is not true for pointwise convergence.
er. 13

We can take f,(z) = nx (1 — x2)n for € [0;1]. This sequence tends pointwise to f(x) = 0 on [0;1]. But

for any n € N we have fol frde = 5= — 1 and fol fdx=0.




fnvf ]O[,B[—> Ra o‘aﬂa € R :

fn — f pointwise on ]a; 5] and

(Vz €]a; B]) f1(z) € R exists and f], uniformly convergent on |o; 3] =

= fp, — f uniformly on Jo; 8] and (Vz €]o; B]) f'(z) € R exists and f], — f’ uniformly on Jo; ]

st. 114

proof. L. f,, is uniformly convergent on |a; O[:

We choose one z¢ €]a; ] and we have f,(z9) — f(zo). Given € > 0 arbitrary. There is some n; such that

|fn(z0) = fm(wo)| < § for any m,n > ni. As f; is uniformly convergent on Jo; ] there is also no such that
sup |f1(x) — fm(z)| < 3oy for any m,n > ny. So for any m,n = ng := max{ny,ne} and any x €]a; G[ (for

z€]a; B

instance ¢ > xo) we can estimate

[fn(@) = fm (@) < [fn(2) = fin(2) = fn(20) + fm(20)| +|fn(z0) = fim(z0)| <,

<SI(Fr ()= Fl () (@—mo) < sp=ay [z —wo| <5 <

[N

having used the mean value theorem for the function h := f,, — f,, on interval [zo;x] and so we know there is
some ¢; € [zg;x] Clo; B (¢1 depends on n, m, x and zg) such that h(z) — h(xo) = h'(c1) (x — x0).

IL. f) — f"

Given a €]a; §[ arbitrary. We shall define

B =) o H0) = )

for z €]a; alU]a; 6.
r—a r—a

gn(x) :

Then lim g,(z) = f,(a) and g, — g pointwise on ]«; a[U]a; B[ . We shall prove g, converge also uniformly on
r—a

this interval Jo; a[U]a; B[. Indeed for arbitrary e > 0 there is some ng such that for all m,n > ns sup |f,(z)—

z€]a; B
fl.(z)| < e and so we can again estimate for any x €]a; a[Ula; 8] (for instance z > a) )

using the mean value theorem for h = f,, — f,,, on the interval ]a; x[. Now we shall use the statement 111 and
we obtain existence of limit lim g(z) = lim f/(a) and hence with regard to definition of g the existence of
r—a n—oo

derivative f'(a) = lim f)(a). B
n—oo
We see from proof we can suppose f,(xo) is convergent only for one point .
Similar statement is not true for pointwise convergence of f/ even if f,, itself is uniformly convergent.

ex. 14
We can take fn(z) = Larctannz for z €] — 1;1[. This sequence tends uniformly to f(z) = 0 on ] — 1;1].
1 forz=0

But for any n € N we have f, = —%— — g, where g = )
Y In = T = 9 g 0 otherwise

The same statements hold for series, too.

fur filasa+ A[—R, A>0:
lim+ fu(x) =an € R, and > f, = f uniformly on Ja;a+ A = > a,=A€Rand lim f(z)=A

r—a n=1 n=1 r—a

st. 115




proof. It is consequence of statement 109. W

We shall not formulate similar statements for limit from left and limit.

fo, f: I — R, I CRinterval :
st. 116 fn continuous on I and §1 fn = f uniformly on I = f continuous on [
proof. It is consequence of statement 112. W
fas [z Bl — R, o, BER:
st. 117 (R) ff fn exists and §1 fn = f uniformly on [a; 3] = (R) fff exists and il(R) ff fn=(R) ff f
proof. It is consequence of statement 113. W
fos [l Bl— R, a, B, e R:
i fn = f pointwise on Ja; 8] and
st. 118 ?V:alr €la; B]) f1(z) € R exists and f) uniformly sumable on Jo; 3] =
= iojl frn = f uniformly on Jo; 8] and (Va €]a; 8]) f/(x) € R exists and iojl fr = f" uniformly on ]«; 5]

proof. It is consequence of statement 114. W

Now we shall present three tests about uniform summability of series of functions. They are similar to ones

for series of numbers.
Weierstrass test of uniform summability

KCR, f,: K—R:

st. 119 (VRGN) (Eane]R) sup |fn(;p)| < a, and Z anp € R =
zeK n=1

> fn uniformly summable on K
n=1

proof. We use Bolzano-Cauchy statemet for summability. For arbitrary € > 0 there is ng such that for any
n

m,n > ng m < n we have ax < € and also

2

k=m-+1

n

sup| D fulw)l <

k=m+1 k=m+1 ze

Sequences of functions have similar properties as that of numbers.

Z su2|fk(x)|§ Z ar <e.l

k=m+1

KcR, f,: K—R:
def. 26

fn decreasing on K €% (Vn eN) (Vz € K) frnt1(z) < fu(z)

The definition of increasing sequence of function is similar.

Abel test of uniform summability

KCR, fn,gn: K —R:

o fn uniformly summable on K,

(Vn € N) (Va € K) gn(x) >0, g1 bounded on K and g,, decreasing on K =
= fngn uniformly summable on K




proof. The function g; is bounded by some constant M € R. As g, is decreasing and positive on K we have
M > g1(z) > gk(x) > 0 and gr(z) — gk+1(x) > 0 for any k. Given € > 0 arbitrary. As f, is uniformly summable
on K according to the Bolzano-Cauchy theorem about summability there is some ng such that for any m, k > ng
k > m we have sup |fms1(x) + -+ fu(x)| < 5% . Then for arbitrary m,n > ng and arbitrary € K we shall

use Abel partlal summamon

n n—1
S @@ = D (fmrr@) + -+ fo@) (9(@) = gri1 () + (Fnrr(z) + - + ful@)) gn(@)
k=m+1 k=m+1
and estimate
n n—1
Yo h@e@) < D [ fnra@) 4+ fo(@)] (96(@) = grra (@) +
k=m+1 k=m+1 S2E >0
| frs1@) + -+ Jal@)] ga(@) < gz gmn @) S 50 (1)
~—~— N——
<g57 >0 <M
As x € K was arbitrary also
) 3 oo <5 <

and again according to Bolzano-Cauchy teorem f, ¢, is uniformly summable on K.

Dirichlet test of uniform summability

KCR, fh,gn: K —R:
(3M € R) (Vn €N) Sg}glfl(x)+f2(1?)+"'+fn($)| <M,

(Vn € N) (Vx € K) gn(x) >0, g, decreasing on K and g, — 0 uniformly on K —>
= fngn uniformly summable on K

st. 121

proof. Given € > 0 arbitrary. As g, is uniformly approaching to 0 on K according to the definition there is some

no such that for any n > ng we have sup |g,(z)| < 557. Then for arbitrary m,n > ng and arbitrary x € K we
zeK

shall again use Abel partial summation and estimate

n n—1
S H@ee@)] < Y0 (@) + o+ fo@)] (96(2) = grra(2)) +
k=m+1 k=m+1 <oM >0
2e
(@) + 2+ Fal@)] ga(a) < 2M gmia(@) < S (2)
— ——
<2M >0 <5

As x € K was arbitrary also

26

su <€
zelg| Z fk 3

k=m-+1



and f,g, is uniformly summable on K.

Dini

fo, [l Bl — R
fn, f continuous on [a, 8], fr, — f on [«, 5], (Vx € [, B]) fr(z) < fry1(x) = fr = f on [«, 5]

st.121

proof. Suppose [ is increasing.
Let € > 0 arbitrary. For any ¢ € [«, 8] there is some n(t) such that for all & > n(t)

f) = fe(t) <e.
Then there exists some §(¢) > 0 such that for all « €]t — §(t),t + 0(¢)[
[f(@) = f(B)] <e.

Interval
[, B] = Urepa,plt — 6(1),t +0(2)]
is compact. So there is a finite number ¢1, ..., € [, 5] such that
[, B] = YLy ]t = 6(2), ¢ + 0 (2)[ -
For any z € [a, 3] there is p such that x €]t, — §(tp), t, + (tp)[. For any n > ng = max{n(t1),...,n(tm)}
f(CL') - fn(x) < f(CL') - fno(‘r) < f(CL') - fn(tp)(x) <e€,

the last inequalities hold due to monotony.
So for any € > 0 and any n > ng

sup |f(x) = fa(z)] <e

z€la,f]

and fp, = fon[a, 5. B

5 . Power series

Power series are series of sequences of type

{an (& = ¢)"}7%0 or {anz"}7%, -

st.122 ‘anxg summable = |a,2z"| poinwise summable on | — |zol; |x0|[‘

(o]
proof. Given z € R such that |z| < |zg|. Let us denote ¢q := \w_zo‘| As 3" apz the sequence a,zf tends to 0

n=0
and so it is bounded by some M € R. For any n € N we have |a,z]| < M and also

n

lanz™| < |anx8| < |anx8|q" < Mq".

T
Lo



o0 o0
As > Mg = 1%1 is finite also > a,a™ is finite according to the comparison test. W

n=0 n=0
o0
Similar statement holds also for Y a, (z — ¢)" and x € R such that |z — ¢| < |zg — ¢|.
n=0
st.123 ‘ anxy summable = |na,z"| poinwise summable on | — |zo|; |x0|[‘
proof. It is similar to that of last statement. Given x € R such that |z| < |zo|. Let us denote ¢ := % Again

the sequence a,zg tends to 0 and so it is bounded by some M € R. Therefore

n

[nanz™| < lanzlin < Mng".

o0 o0
By for instance ratio test Y, Mng™ = % is finite. Hence Y a,z™ is finite according to the comparison test.

n=0 n=0
|
radius of summability
a, sequence :
def-27 | plet sup{r > 0; §0 |an|r™ is finite }
n=

ap sequence :
st.124 |z] < R = a,a™ summable
|z] > R = a,a™ is not summable

o]
proof. 1. Given z € R, |z| < R. There is |z| < r1 < R such that ) |a,|r} is finite. According to the last

n=0

o0 o0
statement also Y |a,z™] is finite and Y a,z™ as well.
n=0 n=0

o0
II.: We shall carry it out by contradiction. Suppose > a,xf is finite for some z¢ € R, |xg| > R. There is some
n=0

o0 [ee]
rg € R, R < ry < |zg|. According to the last statement 3 |an|ry = > |anry| is finite. But this contradicts
n=0 n=0

the definition of R. W

o0
Similar statement holds also for Y a, (z —¢)".
n=0
The set of z € R for which the sequence a,, (z — ¢)" is summable (or series of this sequence is convergent)
is called set of convergence of this power series. According the last statement this set creates an interval with
boundary poins ¢c— R and ¢+ R and ¢ € R is called centre of convergence of power series and R € R*, R > 0
radius of convergence of power series.
We can calculate this radius for instance by Cauchy root test + = limsup {/]a,| (for limsup {/[a,| = 0 it

n—oo n—o0

is 0o and for limsup {/|a,| = oo it is 0).

n—oo

apx™ pointwise summable on | — r;+r[ and [o; f] C] —r;+r[ =

st-125 = apz™ = [ uniformly summable on [«; J]




10

o0
proof. Let r1 := max(|a|,|B]), There is some ro € R, r1 < 7o < 7. As Y a,r¥ is finite (r2 €] — r;7[) also

n=0
00

> |anry] is finite. As [o; 8] C [—r1;71] for any z € [o, beta] we have |z| < 71 and |a,2™| < |anr}|. Therefore
n=0
anx™ is uniformly summable on [o; (] according to the Weierstrass test. W

st.126 ‘ anx"™ pointwise summable on [0;r] = a, 2" uniformly summable on [0; 7] ‘

proof. We shall use Abel test for uniform summability. Let f,(z) := a,r", these functions are constants
o0

therefore uniformly summable on all R as 3 a,r™ finite. Let g,(z) := (£)" > 0, then {g,(z)} ", create

n=0
the decreasing sequence on [0,7] and go(z) = 1 is bounded on [0;7]. According to the Abel test fy,(z)gn(z)
uniformly summable on [0;7] and f,(z)gn(z) = anr™ (%)n =apz™. A

(o]
> apa™ = f pointwise on | —r;r[ =
n=0

= f continuous on |-r;r

5,197 = (Vz €] —r;r]) f'(z) € R exists and f' = Y na,z" "' pointwise on | — r; 7]
. n=0

= (Vz €] —r;r]) F(x) = (R)Ofxf(f) d¢ € R exists and

Fa)= 3 -+ pointwise on | — 7|
=

proof. 1. Consequence of statements 116 and 125.
II. Consequence of statements 118 and 125.
IIT. Consequence of statements 117 and 125. W

r—r—

st.128 Z anz™ = f pointwise on [0;r] = lim f(x)= f(r)
n=0

proof. Consequence of statements 115 (for the right limit) and 126. W

st.129 (3A > 0) Z anz™ = 0 pointwise on | — A;A[ = (Vn € N)a, =0

n=0

o0
proof. As function Y a,z™ is continuous at 0 and pointwise summable on some [—r;r], 0 < r < A, they

n=0
o0 o0
and their derivatives are continuous at 0, too. Therefore 0 = lim > a,z" = ag, 0 = lim > na,z" ! = lay,
2—0,=0 z—1,=0
o0
0=1lim Y n(n—1)a,z"? = 2a, ....n1
x—2

n=0
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Taylor, McLaurint series

f?]C—T;C+r[—>R;
(VTL S N) f[”] exists on ]C —ric+ T[ and

st. 130 ‘z;—f‘n sup |f["] (€)| — 0 pointwise on |¢ — ;¢ + r[=>
|E—c|<|z—c|

. Z f"](C)( —¢)" = f poinwise on J¢ — r;c+ 7|
n=0

proof. We shall use Taylor theorem for f on [¢;x] (suppose for instance x > ¢)

[n+1]
. k f (5) _\ntl
Z =+ Gy @79
where £ € [¢; z]. We have for partial sums s, (z) := Z ) (g — )"
|£C _ C|n+1

[n+1]
[sn(z) — f(z)] < ‘% (:C_C)n+1 <

ST o,

expansion of e”

st.131 (Vz € R) e’ = Z %

proof. Let us put f(x) := e and use for it and ¢ = 0 statement 130. We have f'(z) = f"(z) = --- = flFl(z) = ¢®
for any k € N, hence f(0) = f'(0) = f"(0) = --- = flF(0) = 1. For any = € R there is some r > 0 such that
x €] —r;r[ and
ﬂ |f[n]| qup |e£|< e 0.1
nl \£\<\z [ ENE n!
expansion of cosz
0 r2n
t.132 V. R = -1)"
s (Vz € R) cos T ,;0( ) )l
proof. We shall use the statement for f(z) := cosz and ¢ = 0. Similarly we have f/(z) = —sinz, f/(z) = — cosz,
k

f"(x) = sinz ete. so fRRU(z) = (=1)"sinz and f2¥(2) = (=1)" cosz for any k € N. Hence f25+1(0) =0
and f2H(0) = (=1)". For any = € R

z" "
— sup |f[]§|<——>0 [ |
e g|< |z !

expansion of sinz

St x2n+l
st.133 (Vz € R) sinz = (-)" —
nZ:o (2n +1)!
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proof. It is similar. Il

expansion of Inzx

(Vz €] —1;1]) Im(l+z)=> (-1)" "2 or
st.134 o "0 .

(Va €]0;2]) Inz =Y (—1)* "o

n=0
proof. We can use again the statement 130 for Inxz and ¢ = 1 but only on ]%, %[ Therefore it is better to
use sum of geometrical sequence. Let us denote by f(z) := 3. (—1)" " % for any = €] — 1;1]. We can do
n=1
derivative of power series step by step on | — 1;1[ and we obtain f/(z) = > (=1)" 'zn~1 = 3 (—2)F = H%
n=1 k=0

Therefore by integrating f(z) = In(1 4 x) + C, where C is some constant. From f(0) = 0 we have C' = 0.
As 3 (=1)" '8 = f pointwise on [0;1] also limit lim In(z+1) = 3 (=1)""" lim £~ according to the
r—1—

n=1 n=1 rx—1—

statement 128. W

expansion of arctanzx

o x2n+1
135 | (Ve —1;1 tanz = 3 (=1)"
s (Vz €] D arctan x nzzo( ) o1

proof. It is similar, we use

oo g2 T - RN o 1
(Z(_l) 2n+1> =2 (1) (2n+1> =2 (e’ T 1422

n=0 n=0 n=0
and therefore . (—1)" % = arctanx. For x = 1 the same result holds like at the proof of statement 134.
n=0
|
5t.136 i (-1)" L = “n2 and i ) L
ot n — 2n+1 4

proof. Consequences of 134 and 135. W
Expansion of Inz enables us to prove several important formulas.

Wallis formula

n 2 4n
st.000 1 ﬂ — T or 2—2 — T
n \ (2n— 1) n (")

proof. Lets introduce integrals

jus

2
S’n:/ sin” x dx .
0
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Integration by parts yields us Sy42 = Z_ES" and so
So =

,Si=1, 8 = .g, Ss=2.1,8=2.2.2 5 —

N~

T
2

Because sin®" ! z < sin®" 2 < sin®" "' z it holds Sa,41 < Sa, < Sgn_1 OF

(2n)!! (2n — 1!
Gnr )l = (@)

(2n —2)!
(2n — )N

s
<
5 <

and

IN

2 @)l \* ((2n)11)2 W
((2 >n> T =

(2n —2)U@2n) 1 @)t \?
2n+1 \(2n—1 2n 4+ 1)11(2n — 1)!! _E'((z )!!) '

((2n — 1))2 n—1

The result follows from inequality

T— 7.1l

no\2
1 (_emt N2+
“n \(2n-1! 2n

Stirling formula

|
st.ooo | X L\ ox

1
n"t2

proof. We shall use expansion of Inz for x €] — 1; 1]
1 1 1
ln(l—l—x):x—512+§x3—1x4+... (3)

1 1 1
ln(l—x):—x—§x2—§:63—1x4+... (4)

and their difference

1 1 1
lnl+xzln(l—l—x)—ln(l—x)=2x<1+§x2+—x4+...) > 2x .

5

_1

sn71 to the inequality and get

1
1 1 1 1\"*2
111<1—|——>>—1 and so —<1+—> >1.
n n+§ € n

We put z :=

Sequence
nle™

C =
n nn-i-%

L
is decreasing because CCL = % (1 + %)"4’2 > 1 and bounded above.

From () we know the sequence ¢,, convergs to some ¢ € R.
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The value of ¢ can be calculated from the Wallis formula because

n | 4
o ()" 2) 2 @A) 2 (@ nm-1)----3.2.1)0
3. ((%)2’“ 3@)2 T (@) n @2n@2n-1)(2n—2)-----3-2-1)7
2 (2n@2n—2)----- 6-4-2)" 2 ( (2n)!!
n (2n(2n—2)- - 422 (2n—1)--- 3.1 n \(@2n—1)

4

As =+ — ¢ we have c = Vv27. W

2n

Euler constant

n

1
st.000 Jda € R Zg—lnn—wt

proof. From expansion of Inx for x €] — 1;1]

1 1 1 1 1 2
ln(l—l—x)—x—ixQ—i-<3x3——x4)+<—:175—6x6>—|—~-~>:17—x— and

1 1 1 1
ln(l—l—x):x—(5962—5:63)—(Zx‘l—g:vf’)—i—---gx

>0 >0

we have x — é <In(l+2z) <z
Lets denote

n

n—1
1 1

an:zg E—lnn and bn:zg E—lnn.
k=1

k=1

We put = := % into last inequality, calculate

11 1\ 1 1 1
. < — 1< = d <-——Inlk+1)+Ink < —
TR < k)_k an 0s g+ D+Ink< 55

From this inequality we have two properties of b,,. As

1 111 1 3
0<b,=Y — 322 =3 |1 | <2
= ko 2; 33 |1t kk—1) | = 2

so b, is bounded above. As

1 1 1
bn+1—bn_——1n(n+1)—|—lnn___]n<1_|__> >0,
n n n
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so by, is increasing.

ET.

(1.9)

(1)

(1.)

(1.)

From we know sequence b,, converges to some real number a € R and

1
an=—+b,—0+a=a.0
n

. 16 (uniform summability)

1 .
2757 uniformly summable on R

o0
‘We have ﬁ < # for any z € R. As 21 % is finite we can use Weierstrass test.
n=
e”i—i uniformly summable on [0; 00|
We shall put f,(x) := ;—1 and inquire its maximum on [0; co[. Function f, is non-negative, f,,(0) = 0
and limit xlin;o fu(z) = 0. As derivative f] (z) = z(ze:f") is 0 for z,, = % we have maximum fn(%) = 62‘22.
[e.e]
We denote a, := —3 = fn(zn) > sup |fn(z)]. As Y = is finite we can use again Weierstrass test.
2€[0;00] n=1
—z uniformly summable on [1; oof
We shall again put f,(r) := & and inquire its maximum on [1;00[. Function f, is non-negative,
fn(1) = % and limit lim f,(z) = 0. As derivative f}(z) = 522 is negative on [1;00] we have maximum
r—00
(o]
an == = fn(1) > sup |fu(2)|. As > % is finite we can use again Weierstrass test.
z€[1;00] n=1
N - .
% is not uniformly summable on [0; oo
nen
We can again put f,,(z) := ~Z_ and inquire its maximum on [0; 0o[. Function f,, is non-negative, f,(0) =0
nen
o . . o . . / o _9 . . . o
and limit 111_)120 fn(x) = 0. As derivative f/ (z) = Q\;ZETZ% is 0 for x,, = % we have maximum f,(§) =
o0
1 . 1 . .
> . .
e 2 :[151:;0 ] |fr(x)]. But we cannot use Weierstrass test as ngl Tae s mot finite. Fortunately we

can conclude f,(z) is not uniformly summable on [0;00[ as it is not summable for z := 1, > f,(1) =

n=1
= 1
> —+ =o0.
n—=1 nemw

(From the result f,(x,) is not summable follows no conclusion for f,(z), we can consider following

example.) Y fu(x) = f(z) uniformly on R, where
n=1

1 forx =1
1 _
5 for x = 2
1 forx =3

1 forx=n 3

IO RS ) Jfl@)=<...

0 otherwise 1
z for x = k
0 otherwise
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(1.)

cT.

(1.)

ex.

(1.3)

o0 o0
Function f,, has its maximum in @, = n, a, == & > sup|f,(z)| but Y a, = > 1 = oo and we cannot
z€R n=1 n=1

use Weierstrass test. In spite of this, for partial sums s,, ;= f1 +-- -+ f,, we have sup |s,(z) — f(z)| =

1
1
z€R s

hence > fn(z) = f(x) uniformly on R.
n=1

(1 — ) 2™ is not uniformly summable on [0; 1]
We can calculate for f,(z) = (1 — z) 2™ partial sums

_n_n__nn__ﬂ__wrl
sn(x)—Z(l x)a" = (1 :C)Z:E =(1-1x) =1l-z

1—x
k=0 k=0

for 0 <z <1 and s,(1) = 0. Partial sums s,, — f pointwise on [0; 1], where

f(x)_{o fore =0, 1

1 otherwise

o0

Functions f, are continuous on [0;1]. If >" f, = f uniformly on [0; 1] according to the statement f must
n=0

be continuous on [0; 1], too. But it is not.

(summability)
%z 5 summable iff 2 € [L;e]

3 fn+1(lﬂ) —_ _n_
For = > 1 we can use ratio test @) = nad

is not summable for x > e. o 1 4
o n —1)"In™ L 1l .
Similarly we have for 0 < z < 1 sequence 22 — ()% as well as % is summable for % < ei.e.

Inz — Inz amd we have f,(x) is summable for z < e and

n 1
In"

z > % and is not summable For z < % sequence is not summable as In + > 1 and —= 7 0. It remain

x

o0 o0 o0
to inquire summability only for 2 :=e,1,2 ie. > 2 =00, > 0=0and Y (-1)"1 < .
n=1 n=1 n=1

(calculation of sums)
> #" = & pointwise on [—1;1[ (and uniformly on [—1; 3] for any 3 < 1)
n=0

o0
It is geometrical sequence. We can do derivative on | — 1;1[ and by useing statement Y. naz"™! =
n=0

20 (") = (Eo x”) = (ﬁ) = ﬁ obtain next result. 3 20 na' = 7 pointwise on |- 1;1]

" " . ' T T oo

Similarly we can integrate it for z € [—1;1[ and by using statement Eo T = Eogt dt = g Zot dt =
n= n= n=

i dt = —In (1 — z) obtain next result similar one of statement 134.

O—s8



(1.2) Y 2 = —In(1— ) pointwise on [—1;1]

n=1
These formulas can be used for instance in following examples.
(5) =3
n=0
(5) — =In3—1In2
n=1
B) Y (-1)"it=-m2
n=1
(5) > x:;:l =2 (In2—1In (2 — 2?)) pointwise on [—v/2; V2]
n=1
S 2

(-n1-2))

We can use formula () = L) =a
n=1

Sequence W
and integration an calculate (using substitution ¢ := )

/21311 TL2+(E2 Z
0 "= =

\8

OJ|:

=1
Z — arctant
3"

n=1

M8°

3
Il
=

er. (expansions)
_ 2n
(1.) fe ¢ dﬁ—wZ( D" i
We can expand ef = Y & H for any t € R, so for t :== —z? we have e

n=0

this power series term by term

[ocue- /z = 2/ e
0 n=07
(1) ili% smzm T _ %
Assmx:x—%—l—%— .wehavewz—é—l-f;o— .—>%.

Schwartz inequality

[,9: o B

— R integrable on [«; 8

Naazgimfln

st.137

—z? _

-y

n=1

T
2

n=0

Z

1
3n

> (-1)"

17

is uniformly summable on R by the Weierstrass test. Therefore we can change sumation

ol
\

l\3| 3
C»JI»—'

2n .
Z—. We can integrate

2n+1

2n+1)n!'
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proof. From the existence of integrals of f and g it follows by the properties of Riemann integral the existence
of integrals 154 and 155 of f2, g2, fg and (|f| +7|g|)* for any v € R. As

8 s s 8
OS/(|f|+7|g|)2:/f2+27/|fg|+72/92

[e3

discriminant of this quadratic equation must be non-positive. Therefore

3 2 B B
2/|fg| —4/f2/92§0-l

Kronecker delta

0 for k #£1
def.28 | (Vk,1=0,1,2...) 6"
e ( ) M {1 for k=1

orthonormal system of functions

(Vn=0,1,2,...) v,:[;0] — R, a,€R:
def.29 i 0
f V0, V1, V2, . -+, Un, ... orthonormal system of functions on [«; (] Lefy J kv = Ok
Fourier coefficients
Vg, V1, V2, . .. orthonormal system of functions on [«; 5], f:[a; 8] — R, integrable on [a; ] :
def.30 def.

B
¢ = [ fui, Fourier coefficients of f in vg,v1,va, ...
(0%

Existence of them follows from Schwartz inequality.

f :]a; 8] — R integrable on |«; 5]
¢, Fourier coefficients of f in orthonotmal system vy, vy, va, - :

st.138 8 n 2 g n 2
(Y0, 71,72, ---m €R) [ (f— > 'kak) <[ (f— > c;m)
« k=0 « k=0

proof. Let us calculate right site of inequality

() i=j<f—§cwk>2=j<f—§cwk> <f_§cm> _

:/fQ—ZCk/ka—ZCz/va- Ck Cz/vkvz:/fQ— a (8)
J k=0 7 =0 k=0 1=0 J k=0
——— —— ——
=Ck =C =0k

——

=ck
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and now left side of it

(L) :=

5t.159

B n

j(f—;:)%vk>2=/f2+z

« = « k=0

n

n n
713—227%1@"‘20%_20% =
k=0 k=0

k=0

n
=Y (w—ck)?
k=0

Bessel inequality

f :]a; 8] — R integrable on |«; 5]
¢, Fourier coefficients of f in orthonotmal system vg, vy, va, - :

g 2 & 2
[r2=>¥q
« k=0

proof. Consequence of the last statement. l

st.140

Parseval equality

[+ lo; B] — R integrable on [a; 5], f(a) = f(5)
¢, Fourier coefficients of f in orthonotmal system vg, vy, va, - :

n /6 oo
(Ve > 0) (3n € N,v0,71,-..7n €R) SFPB] |f(z) — kE Top(z)| <e= [ f* = kE c
TE | =0 o =0

proof. Given € > 0 arbitrary. For ¢; := ,/ﬁia there are yo,71,72,..-7n € R such that sup |f(x) —

> wok(z)| < e1 = /5= Therefore
k=0 pra

st.141

z€la;f]

B n 2 B n B s
2 2 2 2 2
cd@-a [(1-Som) = [ro3as [r-3a
. k=0 . k=0 . k=0
B 00
and also [ f? — > ¢} <0 because € > 0 was arbitrary. W
« k=0
trigonometric system
1 1 1 « — 1 1
Vo 1= g, U1 ﬁjlnlx, .1)2 = ﬁco;a:,l vz 1= ﬁs1r.12a:, Vg = ﬁcos2x, e . |
Sy gk i 7 sin kx, vop 1= 7 cos kxz,... is an orthonormal system of functions on [—; 7]

T

2 s e
proof. We have to enumerate integrals [ (L) dr = 1, for all k [ sinkzdz = 0, [ coskzdz = 0,

Var

[ sin’kzdr = 1, [ cos’kxdr = 1 for all k € N and [ sinkxsinlzdr = 0, [ coskzcoslzdr = 0 and

—T —T —T

[ sinkxcoslzdr =0for allk,l e N, k#1. &
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Also so called Legendre polynomials v := 1, v1 := v3(2x — 1), vy := /5 (6:1:2 — 6z + 1) ,... create or-
thonormal system of functions on [0;1].

o0

1 2

n=1

proof. We shall use Parseval equality with trigonometric system (see the consequence of Stone - Weierstrass

_z_=x f —1:0

theorem ) for function f(z) := 202 or z € [-m; [ We can calculate the Fourier coefficients ¢y = 0,
-4z for x =€ [0; 7]

cor, = 0 and

1 ™ 1 0 ™
CQk—lzﬁ/f(l')Sin]ﬁUdl‘:ﬁ /_x_wsink:cdx—i-/_ 7Tsinkacd:zc =
—7 — T 0
9 ™ ] km ] km
= ﬁ/%ﬂsinlmdx: m w/sintdt— E/tsintdt =
0 0 0

— % <_7T [cos £]5™ — % [sint — tcost]’g“> - % <7r (1 - (_1)’“) + %km(—l)k) =T, (10)

Parseval inequality gives

T

Ooi*OOCQ* 2(z) dx = [
w;kg—kz_ok—/fmd —20/

—T

1
st.143 cosasinb = 3 (sin (@ + b) — sin (a — b))

proof. We shal substract following two equalities

sin (@ 4+ b) = sina cosb + cosasinb

sin (@ — b) = sinacosb — cosasinb. B

Dirichlet kernel

def.51 | Dp(x)™2{ w3 for z # 0,427, +4m, ...
2n+1 for x = 0, £2m, +4m, ...

st.144 D,(z)=1+2 Z cos kx
k=1
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proof. We shall use the statement 143 for a := kz and b := §
1 1
QSingcoskx = sin (k—i— 5) x — sin (k — —) T

and add over k =1,...,n

- 1 1
2sin§;cosk:v:sin (n—i— §>x—sin§x. |

K

st.145 /Dn(t) dt =2m

—T

proof. Easy calculation. l

f:[-m; 7] — R integrable on [—m; 7], f(—7) = f(nm),

co,C1, Co, . .. Fourier coefficients of f
st.146 in orthonormal system vg := \/%, Vog—1 = # coskz, v, 1= # sinkz, k=1,2,---:

2n n T
. — os kx sinkx | _
(VCC € [_ﬂ-?ﬂ'[) lz:o C’iv’i('r) - CO\/% + kgl (CQkfl Cﬁ + cok Var ) - %_{;— Dn(t)f('r - t) dt

proof. We can wide function f to whole R periodically and calculate by using substitution s : =z — ¢

]Dn(t)f(x—t)dtz /Dn(:v—s)f(s)ds.

As both D,, and f are periodical functions with perion 27 we obtain the same integral with limits of integration
changed from [z — 7;2 + 7| to [—7; 7] and

/ Do = 5)f(s) ds = / fods+2 [ D~ coskle —5)f(s)ds =

= /f(s) ds + 2 / Z (coskx cosks + sinkx sinks) f(s) ds =
S k=1

n n n n n 2n
= /f(s) ds +2Zcoskx/f(s) cosksds +2Zsink:v/f(s) sinksds = 27TZcivi(:v) .l (12)
2 k=1 e k=1 o i=0

——— S — S —
=V2mco =/TCak—1 =\/mcag

Lipschitz function

KCRICK,f:K—R:
f Lipschitz function <= (IM > 0) (V1,22 € I) |f(x1) — f(z2)] < M|z1 — 22

def.32
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For instance any function f which have finite derivative f’ on set K C R is Lipschitz on any [a; (] C K.
Function f(x) := |z| is an example of that which is Lipschitz on [—1;1] and has no derivative at 0. It is easy
seen that any function Lipschitz on ]a; 8] is continuous on Jo; B[. Function f(z) := /z can be presented as an
example of that which is continuous on [—1;1] and is not Lipschitz on [—1;1].

f i [=m; 7] — R integrable on [—m; 7], f(—7) = f(7),a €] — m;7]
o, C1,Co, ... Fourier coefficients of f
st.147 in orthonormal system vg := \/%, V2k—1 ::ooﬁ coskz, vy, 1= ﬁ:@ln kx,k=1,2,---:
(3A > 0) f Lipschitz on Ja — A;a + A[= i;) civi(a) = co\/% + 1;::1 (021@71 C‘ijga + Co Syg) = f(a)

proof. By hypothesis for some M > 0 we have |f(a + z) — f(z)] < M|z| on | — A; A[. We can again wide
function f periodically to R and use

T K

3 1 1 sin(n+3)x
;cm(a) — fla) = 5[ (f(a—=z) = f(a)) Dp(x) dz = ﬂ,,, (f(a —z) — f(a)) T; dz
- % / (fla—z)— f(a)) cot%sinnxdw —I—% / (fla—2z) = f(a))cosnzdr — 0. (13)
—T integrable on [—m;7] —7™ integrable on [—m;7|

We can use statement 156 as cot § and also (f(a —x) — f(z)) cot § is integrable on [4; A] for any § > 0 and
bounded on [0; A] (no matter function value at 0) because

x| _|fla—z) = fl=)] |_= ‘ HC‘
_ _ t 2| = d
(fla—=) = f(x))co 5 2] SnZ €os 3 |
<M —2 around 0 <1
er. Example Y 5l-sin[(2n—1)a] =7 for any a # 0,+
n=1

1 f 0;m]U{—
We can use the statement 148 for function fx := or @ € [0 m] U {—} and 0 < a < 7. Fourier
-1 for z €] —m;0]

coefficients are cg = 0, ¢op,_1 = 0 and cop, = # (1 — (—1)k) and so




