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3 . Series

3.1 . Summability of sequences

We can extend the operation of addition of two numbers a1+a2 to cover the addition of terms of any n-tuple
of real numbers a1 + a2 + · · · + an owing to associative rule. This is possible not only for n-tuples but also for
the first n terms of any (infinite) sequence called partial sum

An := a1 + a2 + · · · + an .

We obtain the new sequence An which is usually called series corresponding to sequence an in literature. This
is an analogy of antiderivative (or primitive function). The limit of An is usually called sum of the series

an. But this terminology is rather misleading. 1 By another approach we can comprehend the partial sum of

sequence as a mapping
n∑

k=1

which for any sequence yields the corresponding partial sum

n∑

k=1

: {an}∞n=1 7→ a1 + a2 + · · · + an ∈ R .

By generalization we obtain a sum of all terms of sequence. We shall consider it as a mapping
∞∑

k=1

which for

any given sequence yields the value

∞∑

k=1

: {an}∞n=1 7→ lim
n→∞

(a1 + a2 + · · · + an) ∈ R
∗ ,

(iff the limit exists). Domain of mapping
∞∑

k=1

is all sequences for which the lim
n→∞

(a1 +a2 + · · ·+an) exists (finite

or ±∞).

In the beginning of the last chapter we compared the notion of sequence (mapping N −→ R) with the notion

of function (mapping R −→ R), now there is another obvious analogy. Sum of terms of sequence
∞∑

n=1
an is

similar to integral of function f (defined for instance on [1;∞[)
∫ ∞
1

f . The integral can also be considered as
an operator or a mapping which for any defined functions yields a real number or ±∞.

1For instance {an}
∞

n=1
is a sequence, {An}

∞

n=1
is a corresponding series, limit of {An}

∞

n=1
is a sum of series corresponding to

{an}
∞

n=1
, so the sum of sequence is {An}

∞

n=1
. Does this mean that the sum of {An}

∞

n=1
is tantamount to the limit of {An}

∞

n=1

?
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And so in the chapter with superscription ”series” we shall quite avoid this notation.

partial sum and sum of sequence

def. 17

an sequence :
n∑

k=1

ak
def.
= a1 + a2 + · · · + an and for n > m

n∑

k=m+1

ak
def.
= am+1 + am+2 + · · · + an

∞∑

k=1

ak
def.
= lim

n→∞

n∑

k=1

ak = lim
n→∞

(a1 + a2 + · · · + an)

∞∑

k=m+1

ak
def.
= lim

n→∞

n∑

k=1

am+k = lim
n→∞

(am+1 + am+2 + · · · + an)

We introduced two basic types of sequences in the last chapter. Now we can construct two tables of their
sums.

Arithmetical sequence (with difference d ∈ R and opening term a ∈ R):

∞∑

n=1

(a + (n − 1)d)

∑
a > 0 a = 0 a < 0

d > 0 ∞ ∞ ∞
d = 0 ∞ 0 ∞
d < 0 −∞ −∞ −∞

Geometrical sequence (with quotient q ∈ R and opening term a ∈ R):

∞∑

n=1

(
a · qn−1

)

∑
a > 0 a = 0 a < 0

q ≥ 1 ∞ 0 −∞
−1 < q < 1 a

1−a
a

1−a
a

1−a

q ≤ −1 doesn′t ex. 0 doesn′t ex.

To deduce the formula for sum of geometrical sequence for −1 < q < 1, we can prove by mathematical
induction that

(
1 + q + q2 + · · · + qn−1

)
(1 − q) = (1 − qn) .

Then we have

1 + q + q2 + · · · + qn−1 =
1 − qn

1 − q
→ 1

1 − q
,

therefore
∞∑

k=1

aqk−1 = lim
n→∞

a
(
1 + q + q2 + · · · + qn−1

)
=

a

1 − q
as n → ∞ . (5)

st. 59 (∀m ∈ N)

∞∑

k=1

ak = a1 + a2 + · · · + am +

∞∑

k=m+1

ak
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proof. A consequence of statement about limit of addition and equality
n∑

k=1

ak = a1 + a2 + · · ·+ am +
n∑

k=m+1

ak

for m < n.

summability of sequence

def. 18 {an}∞n=1 summable ⇐⇒
∞∑

n=1

an ∈ R

We sometimes say a sequence has finite sum (or series of an is convergent).
The fact that a sequence has finite sum, does not depend on a finite number of its first terms.

st. 60

∞∑

n=1
an finite =⇒ (∀m ∈ N)

∞∑

n=1
am+n finite

(∃m ∈ N)
∞∑

n=1
am+n finite =⇒

∞∑

n=1
an finite

proof. Consequence of last statement.

Bolzano - Cauchy theorem

st. 61

∞∑

n=1

an finite ⇐⇒ (∀ǫ > 0) (∃n0 ∈ N) (∀m, n ≥ n0, n > m) |
n∑

k=m+1

ak| < ǫ

proof. For partial sum An = a1 + · · ·+an of sequence an we have An−Am =
n∑

k=m+1

ak. Therefore the condition

in the statement means the sequence An is Cauchy and we can use statement 52.

st. 62

∞∑

n=1

an finite ⇐⇒ (∀ǫ > 0) (∃n0 ∈ N) |
∞∑

k=n0+1

ak| < ǫ

proof. (=⇒): Given ǫ > 0 arbitrary. As the sequence of partial sums converge a1 + a2 + · · ·+ an → a ∈ R for all
n from some n0 onwards we have |a − (a1 + · · · + an) | < ǫ. The inequality holds also for n0 and by statement

59 we obtain a − (a1 + · · · + an0) =
∞∑

k=1

ak − (a1 + · · · + an0) =
∞∑

k=n0+1

ak.

(=⇒): It follows from statement 61.

st. 63

∞∑

n=1

an finite =⇒ an → 0

proof. For the sequence of partial sums converges, An := a1 + a2 + . . . an → a ∈ R and so An+1 → a. As
an = An − An−1 for n > 1 we have

lim
n→∞

an = lim
n→∞

An − lim
n→∞

An−1 = a − a = 0 .
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The consequence of this statement is that a sequence with non zero limit has no finite sum.

st. 64 an → a =⇒
∞∑

n=1

(an − an+1) = a1 − a

proof. We can express the partial sum of the sequence {an − an+1}∞n=1 in the form

(a1 − a2) + (a2 − a3) + . . . (an − an+1) = a1 − an+1 → a1 − a .

3.2 . Tests for positive sequences

In the following section we shall consider the sequences with non negative or positive terms. The sequence
of partial sums of non negative sequences is increasing and its limit exists always (finite or ∞).

st. 65 (∀n ∈ N) an ≥ 0 =⇒ exists
∞∑

n=1

an ≥ 0

proof. Monotone sequences have limits.
We shall introduce a very important sequence.
harmonic sequence :

∞∑

n=1

1

n
= ∞

We can prove it also by the Bolzano - Cauchy theorem, with ǫ := 1
2 for any k ∈ N there are two numbers m := k

and n := 2k such that
1

k + 1
+

1

k + 2
+ · · · + 1

2k
≥ k · 1

2k
=

1

2
= ǫ .

So we know this sequence is not summable. According to the last statement 65, its sum must be equal to ∞.

st. 66

(∀n ∈ N) an ≥ 0, An := a1 + a2 + · · · + an :
∞∑

n=1
an < ∞ ⇐⇒ An bounded

proof. The increasing sequence An is convergent iff it is bounded according to the statements 26 and 2.

comparison test

st. 67

(∀n ∈ N) an ≥ 0, bn ≥ 0 :

(∀n ∈ N) an ≤ bn and
∞∑

n=1
bn = b ∈ R =⇒ (∃a ∈ R)

∞∑

n=1
an = a and a ≤ b

(∀n ∈ N) an ≤ bn and
∞∑

n=1
an = ∞ =⇒

∞∑

n=1
bn = ∞
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proof. The inequality 0 ≤ an ≤ bn induces the inequality 0 ≤ a1 + a2 + · · ·+ an ≤ b1 + b2 + · · · + bn. Thus this
statement is a direct consequence of statements 3 and 5.

st. 68

(∀n ∈ N) an > 0, bn > 0 :

an

bn
→ c ∈ R and

∞∑

n=1
bn < ∞ =⇒

∞∑

n=1
an < ∞

proof. The convergent sequence an

bn
is bounded, so there exists M ∈ R such that 0 ≤ an

bn
≤ M , so 0 ≤ an ≤ M ·bn.

Then we use the last statement.

st. 69

(∀n ∈ N) an > 0, bn > 0 :

an

bn
→ c ∈ R and c 6= 0 =⇒

( ∞∑

n=1

bn < ∞ ⇐⇒
∞∑

n=1

an < ∞
)

proof. This is a consequence of the last statement. It is only necessary to realize that for c 6= 0, the sequence
bn

an
also has a finite limit 1

c
.

comparison test

st. 70

(∀n ∈ N) an > 0, bn > 0 :

(∀n ∈ N) an+1

an
≤ bn+1

bn
and

∞∑

n=1
bn < ∞ =⇒

∞∑

n=1
an < ∞

(∀n ∈ N) an+1

an
≤ bn+1

bn
and

∞∑

n=1
an = ∞ =⇒

∞∑

n=1
bn = ∞

proof. For any n ∈ N we have

an

a1
=

an

an−1
· an−1

an−2
· · · · · a3

a2
· a2

a1
≤ bn

bn−1
· bn−1

bn−2
· · · · · b3

b2
· b2

b1
=

bn

b1
.

I.: As an < a1

b1
bn and

∞∑

n=1

a1

b1
bn = a1

b1

∞∑

n=1
bn < ∞, the statement 67 gives us

∞∑

n=1
an < ∞.

II.: Similarly.

Maclaurin integral test

st. 71

f : [1;∞[−→ R, f ≥ 0 decreasing, (∀n ∈ N) an = f(n) :
∞∑

n=1
an < ∞ ⇐⇒ there exists (R)

∫ ∞
1 f < ∞

proof. We shall use knowledge of integral calculus that any monotone function on [1;∞[ has (Riemann) integral
∫ ∞
1 f being finite or infinite. We establish two functions g : [1;∞[−→ R and h : [1;∞[−→ R

g(x) =







a1 for x ∈ [1; 2[

a2 for x ∈ [2; 3[

. . .

an−1 for x ∈ [n − 1; n[

. . .

h(x) =







a2 for x ∈ [1; 2[

a3 for x ∈ [2; 3[

. . .

an for x ∈ [n − 1; n[

. . .

.
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These functions are monotone so their integrals exist from 1 to ∞, too. Let us also take note of the relation
0 ≤ g ≤ f ≤ h on [1;∞[.
(=⇒) : Given t > 0 arbitrary, there exists n ≥ t (for instance n := [t] + 1, [t] denotes integral part of t.) We
have

∫ t

1

f ≤
∫ t

1

h ≤
∫ n

1

h =

n∑

k=2

ak ≤
∞∑

k=1

ak − a1 and

∫ ∞

1

f = lim
t→∞

∫ t

1

f ≤ a − a1

and so this integral is finite.
(⇐=) : Given n ∈ N arbitrary. We have

n∑

k=1

ak =

∫ n+1

1

g ≤
∫ n+1

1

f ≤
∫ ∞

1

f and so

∞∑

k=1

ak = lim
n→∞

n∑

k=1

ak ≤
∫ ∞

1

f

and sequence an has a finite sum.

d’Alembert ratio test

st. 72

(∀n ∈ N) an > 0 :

(∃q ∈ R, 0 ≤ q < 1) (∀n ∈ N) an+1

an
≤ q =⇒

∞∑

n=1
an < ∞

(∀n ∈ N) an+1

an
≥ 1 =⇒

∞∑

n=1
an = ∞

proof. I.: We shall step by step put n = 1, 2, . . . into the hypothesis and obtain

a2 ≤ qa1, a3 ≤ qa2 ≤ q2a1, a4 ≤ qa3 ≤ q3a1, . . . , an ≤ qn−1a1 .

The geometric sequence
{
a1q

k−1
}∞

n=1
has finite sum

∞∑

k=1

a1q
k−1 = a1

1−q
, therefore

∞∑

n=1
an is finite by comparison

test (statement 67).
II.: We again step by step put n = 1, 2, . . . into the hypothesis and obtain an ≥ a1 for all n. Then we have for

partial sums a1 + a2 + · · · + an ≥ na1 → ∞ and so
∞∑

n=1
an = lim

n→∞
(a1 + a2 + · · · + an) = ∞.

st. 73

(∀n ∈ N) an > 0, c ∈ R
∗, c ≥ 0 :

lim
n→∞

an+1

an
= c < 1 =⇒

∞∑

n=1
an < ∞

lim
n→∞

an+1

an
= c > 1 =⇒

∞∑

n=1
an = ∞

proof. I.: We put ǫ := 1−c
2 into the definition of limit and obtain from some n0 onwards

c − 1 − c

2
<

an+1

an

< c +
1 − c

2
=

1 + c

2
.

Then the sequence an0+1, an0+2, . . . fulfil the hypothesis of the first part of the ratio test (statement 72) for

q := 1+c
2 > 0, therefore

∞∑

k=n0+1

ak < ∞. By the statement 60 also
∞∑

k=1

ak < ∞.

II.: We put ǫ := c − 1 into the definition of limit and obtain from some n0 onward

1 = c − (c − 1) <
an+1

an

< c + (c − 1) .
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Then the sequence an0+1, an0+2, . . . fulfill the hypothesis of the second part of the ratio test (statement 72),

therefore
∞∑

k=1

ak ≥
∞∑

k=n0+1

ak = ∞.

We can generalize the last statement 73 replacing the hypothesis in the first part with lim sup
n→∞

an+1

an
= c < 1

and in the second, by lim inf
n→∞

an+1

an
= c > 1, because we can use the characterization of upper and lower limit in

the statements 40, 41 and 43.

Cauchy root test

st. 74

(∀n ∈ N) an ≥ 0 :

(∃q ∈ R, 0 ≤ q < 1) (∀n ∈ N) n
√

an ≤ q =⇒
∞∑

n=1
an < ∞

for infinite number of n ∈ N n
√

an ≥ 1 =⇒
∞∑

n=1
an = ∞

proof. I.: As an ≤ qn for all n ∈ N we can again use the comparison test for {an}∞n=1 and the geometric sequence

{qn}∞n=1 . Then sum
∞∑

n=1
an is finite because the sum of geometric sequence

∞∑

n=1
qn = q

1−q
with quotient q ∈ 〈0; 1)

is finite, too.
II.: The inequality an ≥ 1 holds for infinite number of terms an. So for ǫ0 := 1 and for any n there is kn ≥ n

such that |akn
| ≥ 1. According to the definition an → 0 is not true and

∞∑

n=1
an ∈ R is not true. Therefore with

regard to an ≥ 0 we have
∞∑

n=1
an = ∞.

st. 75

(∀n ∈ N) an ≥ 0, c ∈ R
∗, c ≥ 0 :

lim
n→∞

n
√

an = c < 1 =⇒
∞∑

n=1
an < ∞

lim
n→∞

n
√

an = c > 1 =⇒
∞∑

n=1
an = ∞

proof. I.: We put ǫ := 1−c
2 into the definition of limit and obtain from some n0 onwards

c − 1 − c

2
< n

√
an < c +

1 − c

2
=

1 + c

2
.

Then the sequence an0+1, an0+2, . . . fulfil the hypothesis of the first part of the root test (statement 74) for

q := 1+c
2 > 0, therefore

∞∑

k=n0+1

ak < ∞. By the statement 60 also
∞∑

k=1

ak < ∞.

II.: We put ǫ := c − 1 into the definition of limit and obtain from some n0 onward

1 = c − (c − 1) < n
√

an < c + (c − 1) .

Then the sequence an0+1, an0+2, . . . fulfill the hypothesis of the second part of the root test (statement 74),

therefore
∞∑

k=1

ak ≥
∞∑

k=n0+1

ak = ∞.
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We can again generalize the last statement 75 replacing the lim
n→∞

n
√

an in hypothesis of both parts with

lim sup
n→∞

n
√

an and again use the characterization of only upper limit in the statement 40.

Rhabe test

st. 76

(∀n ∈ N) an > 0 :

(∃p ∈ R, p > 1) (∀n ∈ N)
(

1 − an+1

an

)

n ≥ p =⇒
∞∑

n=1
an < ∞

(∀n ∈ N)
(

1 − an+1

an

)

n ≤ 1 =⇒
∞∑

n=1
an = ∞

proof. I.: We transform the condition into a form (an − an+1)n ≥ pan or

(n − 1) an
︸ ︷︷ ︸

=bn

−nan+1
︸ ︷︷ ︸

=bn+1
︸ ︷︷ ︸

=cn

≥ (p − 1)
︸ ︷︷ ︸

>0

an > 0 (6)

and define sequences bn := (n − 1) an and cn := bn − bn+1. From (6) we deduce that sequence bn is decreasing.
As it is also bounded below bn = (n − 1)an ≥ 0 by statement 30 has finite limit bn → b ∈ R. It follows from

statement 64 that sequence cn = bn− bn+1 has finite sum
∞∑

n=1
cn = b1− b. According to (6) we have an ≤ 1

p−1 cn

for all n and
∞∑

n=1

cn

p−1 = b1−b
p−1 < ∞, therefore

∞∑

n=1
an < ∞, too, by the comparison test (statement 67).

II.: We transform the condition into a form

(n − 1) an
︸ ︷︷ ︸

=bn

≤ nan+1
︸ ︷︷ ︸

=bn+1

and again define sequence bn := (n − 1) an. This sequence bn is increasing and for all n ≥ 2 we have bn ≥ b2 =

a2 > 0 and also an = bn

n−1 ≥ a2

n−1 . As
∞∑

n=2

a2

n−1 = a2

∞∑

n=1

1
n

= ∞ we obtain
∞∑

n=1
an = ∞ by the comparison test

(statement 67).

st. 77

(∀n ∈ N) an > 0, c ∈ R
∗, c ≥ 0 :

lim
n→∞

(

1 − an+1

an

)

n = c > 1 =⇒
∞∑

n=1
an < ∞

lim
n→∞

(

1 − an+1

an

)

n = c < 1 =⇒
∞∑

n=1
an = ∞

proof. It is the same as in the statement 75.

The notion of replacing the limits in the hypothesis by upper and lower limits can similarly be accepted in
this statement as in the case of statement 73.
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Now we state a quite general test from which other tests can be obtained.

Kummer test

st. 78

(∀n ∈ N) an > 0, bn > 0 and
∞∑

n=1
bn = ∞ :

(∃p ∈ R, p > 0) (∀n ∈ N) an

an+1

1
bn

− 1
bn+1

≥ p =⇒
∞∑

n=1
an < ∞

(∀n ∈ N) an

an+1

1
bn

− 1
bn+1

≤ 0 =⇒
∞∑

n=1

an = ∞

proof. It is similar to that of the statement 76.
I.: We define sequences dn := an

bn
and cn := dn − dn+1 and we can again transform the condition into a form

an

bn
︸︷︷︸

=dn

− an+1

bn+1
︸ ︷︷ ︸

=dn+1
︸ ︷︷ ︸

=cn

≥ pan+1 ≥ 0 . (7)

Sequence dn has positive terms and it is decreasing. Therefore by statement 30 it has finite limit dn → d ∈ R.

It follows from statement 64 that sequence cn = dn − dn+1 has finite sum
∞∑

n=1
cn = a1

b1
− d. According the (7)

an ≤ 1
p−1cn for all n and

∞∑

n=1

cn

p−1 < ∞, therefore also
∞∑

n=1
an < ∞ by the comparison test (statement 67).

II.: We transform the condition into a form
an

bn
︸︷︷︸

=dn

≤ an+1

bn+1
︸ ︷︷ ︸

=dn+1

and define sequence dn := an

bn
. This sequence dn is increasing and for all n ∈ N we have dn ≥ a1

b1
> 0. Therefore

it has limit A ∈ R
∗ such that A > 0. So there exists K ∈ R, K > 0 such that an ≥ Kbn (for A ∈ R we have

K := A
2 , for A = ∞ we can take arbitrary K, for instance K := 1). As

∞∑

n=1
bn = ∞ we obtain

∞∑

n=1
an = ∞ by

the comparison test (statement 67).

3.3 . Tests for positive decreasing sequences

Now we go on to consider the sequences with positive or non-negative terms and we shall more over suppose
they are decreasing. For any sequence with finite sum we have an → 0, for decreasing sequences with positive
terms in addition nan → 0.

st. 79 (∀n ∈ N) an > 0, an+1 ≤ an and

∞∑

n=1

an ∈ R =⇒ nan → 0

proof. Given ǫ > 0 arbitrary. By Bolzano-Cauchy theorem (statement 61) there is some n1 such that for all
k, l ≥ n1, k > l we have

al+1 + · · · + ak <
ǫ

2
. (8)
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Let n0 := 2n1 + 4 and let n ≥ n0 is arbitrary. There exists m ∈ N such that n ≥ 2m > n − 2 (we can put
m :=

[
n
2

]
, [·] denotes integral part of real number). We put l := m− 1 ≥ n1 and k := 2m ≥ n1 into the relation

(8) and we obtain

am + · · · + a2m <
ǫ

2
.

Because sequence an is monotone and inequalities n ≥ 2m and m + 1 > n
2 holds we have the valid estimation

below
am
︸︷︷︸

≥a2m

+ · · ·+ a2m

︸ ︷︷ ︸

m+1 terms

≥ (m + 1)
︸ ︷︷ ︸

> n
2

a2m
︸︷︷︸

≥an

>
n

2
an .

Then for arbitrary n ≥ n0 we have nan

2 < am + · · · + a2m < ǫ
2 and |nan| < ǫ.

The condition an is a decreasing (not strictly) sequence is necessary in the statement 79.
For instance the sequence

1, 0, 0,
1

4
, 0, 0, 0, 0,

1

9
, 0, 0, 0, 0, 0, 0,

1

16
, 0, 0, 0, 0, 0, 0, 0, 0,

1

25
, 0, 0, . . .

an =

{
1
n

for n = k2

0 for n 6= k2

is summable but n · an 6→ 0 as n2 · an2 = 1.

Cauchy accumulation test

st. 80

(∀n ∈ N) an > 0, an+1 ≤ an :
∞∑

n=1
an < ∞ ⇐⇒

∞∑

n=1
2na2n < ∞

proof. We shall denote An := a1 + a2 + · · · + an and Bn := 2a2 + 4a4 + 8a8 + · · · + 2na2n .
(I.=⇒:) For any n ∈ N we have

A2n = a1 + a2 + a3
︸︷︷︸

≥a4

+a4

︸ ︷︷ ︸

≥2a4

+ a5
︸︷︷︸

≥a8

+ a6
︸︷︷︸

≥a8

+ a7
︸︷︷︸

≥a8

+a8

︸ ︷︷ ︸

≥4a8

+ · · · + a2n−1 + a2n−1+1
︸ ︷︷ ︸

≥a2n

+ · · · + a2n

︸ ︷︷ ︸

≥2n−1a2n

and

A2n − a1 ≥ a2 + 2a4 + 4a8 + · · · + 2n−1a2n =
1

2
Bn .

Therefore Bn ≤ 2 (A2n − a1) ≤ 2

( ∞∑

n=1
an − a1

)

. As Bn is increasing and bounded it converges by statement

28.
(I.⇐=:) Similarly for any n ∈ N we have

A2n = a1 + a2 + a3
︸︷︷︸

≤a2
︸ ︷︷ ︸

≤2a2

+ a4 + a5
︸︷︷︸

≤a4

+ a6
︸︷︷︸

≤a4

+ a7
︸︷︷︸

≤a4
︸ ︷︷ ︸

≤4a4

+ · · ·+ a2n−1−1 + a2n−1 + · · · + a2n+1
︸ ︷︷ ︸

≤a2n−1

︸ ︷︷ ︸

2n−1a2n−1

+ a2n
︸︷︷︸

≤2na2n

.
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Therefore A2n ≤ Bn ≤
∞∑

n=1

2na2n and as An is increasing and bounded it converges again by statement 28.

We can also state similar test which is more general.

st. 81

(∀n ∈ N) an > 0, an+1 ≤ an,

p : N −→ N increasing and (∃M > 0) (∀n ∈ N, n ≥ 2) p(n + 1) − p(n) ≤ M (p(n) − p(n − 1)) :
∞∑

n=1

an < ∞ ⇐⇒
∞∑

n=1

(p(n + 1) − p(n)) ap(n) < ∞

proof. Proof is very similar to that of last statement 80.
We again denote An := a1 + a2 + · · · + an and

Bn := (p(2) − p(1)) ap(1) + (p(3) − p(2))ap(2) + · · · + (p(n + 1) − p(n)) ap(n) .

(I.=⇒:) For any n ∈ N we have

Ap(n) = a1 + · · · + ap(1)−1 + ap(1)
︸ ︷︷ ︸

≥
ap(1)

M
(p(2)−p(1))

+

+ ap(1)+1
︸ ︷︷ ︸

≥ap(2)

+ · · · + ap(2)

︸ ︷︷ ︸

≥ap(2) (p(2) − p(1))
︸ ︷︷ ︸

≥ 1
M

(p(3)−p(2))

+ ap(2)+1
︸ ︷︷ ︸

≥ap(3)

+ · · · + ap(3)

︸ ︷︷ ︸

≥ap(3) (p(3) − p(2))
︸ ︷︷ ︸

≥ 1
M

(p(4)−p(3))

+ · · · + ap(n−1) + ap(n−1)+1
︸ ︷︷ ︸

≥ap(n)

+ · · ·+ ap(n)

︸ ︷︷ ︸

ap(n) (p(n) − p(n − 1))
︸ ︷︷ ︸

≥ 1
M

(p(n+1)−p(n))

and

Ap(n) ≥ a1 + · · · + ap(1)−1 +
1

M
Bn ≥ 1

M
Bn .

Therefore Bn ≤ MAp(n) ≤ M
∞∑

n=1
an and as Bn is increasing and bounded it is convergent according to

statement 28.
(I.⇐=:) Let us denote Bn → B ∈ R. Then for any n ∈ N we have

Ap(n) = a1 + · · · + ap(1)−1+

+ ap(1) + · · · + ap(2)−1
︸ ︷︷ ︸

≤ap(1)

︸ ︷︷ ︸

≤ap(1)(p(2)−p(1))

+ ap(2) + · · · + ap(3)−1
︸ ︷︷ ︸

≤ap(2)

︸ ︷︷ ︸

≤ap(2)(p(3)−p(2))

+ap(3) + · · · + ap(n−1)−1 + ap(n−1) + · · · + ap(n)−1
︸ ︷︷ ︸

≤ap(n−1)

︸ ︷︷ ︸

ap(n−1)(p(n)−p(n−1))

+ap(n)

and
Ap(n) ≤ a1 + · · · + ap(1)−1 + Bn ≤ a1 + · · · + ap(1)−1 + B .

As An is increasing and bounded it converges again by statement 28.
The condition an is a decreasing (not strictly) sequence is necessary in the condensation test 80.
For instance the sequence

1,
1

4
, 1,

1

16
, 1, 1, 1,

1

64
, 1, 1, 1, 1, 1, 1, 1,

1

196
, 1, 1, . . .
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an =

{
1

n2 for n = 2k

1 for n 6= 2k

is not summable but 2n · a2n = 2n · 1
(2n)2= 1

2n
is summable.

3.4 . Tests for other sequences

The following statement is similar to integration by parts in integral calculus.

Abel partial summation

st. 82
a1b1 + · · · + anbn =
= a1 (b1 − b2) + (a1 + a2) (b2 − b3) + · · · + (a1 + a2 + · · · + an−1) (bn−1 − bn) + (a1 + · · · + an) bn

proof. We shall consider the following list

a1 (b1 − b2)
a1 (b2 − b3) a2 (b2 − b3)
a1 (b3 − b4) a2 (b3 − b4) a3 (b3 − b4)

. . .

a1 (bn−1 − bn) a2 (bn−1 − bn) a3 (bn−1 − bn) . . . an−1 (bn−1 − bn)
a1bn a2bn a3bn . . . an−1bn anbn

Upon adding the rows and columns we obtain exactly and respectively the right and left sides of the statement.

We can denote Ak := a1+· · ·+ak (something like an integral) and b′k := bk−bk−1 for k = 1, . . . , n (something

like a derivative). Then the Abel partial summation can be written in the form
n∑

k=1

akbk = Anbn −
n−1∑

k=1

Akb′k+1,

which suggests integration by parts indeed.

Abel test

st. 83 an summable , bn bounded and decreasing =⇒ anbn summable

proof. As sequence bn is bounded there is some M ≥ 0 such that |bn| ≤ M for all n ∈ N. As it is decreasing we
have bk − bk+1 ≥ 0.
I. First we suppose bn ≥ 0 for any n ∈ N. Given ǫ > 0 arbitrary. As an is summable according to the Bolzano -
Cauchy statement there is n0 ∈ N such that |am+1 + · · · + ak| < ǫ

M
for any k, m ≥ n0 k > m. Given m, n ≥ n0
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arbitrary. We use the Abel partial summation to estimate

|am+1bm+1 + · · · + anbn| =

= |am+1 (bm+1 − bm+2) + (am+1 + am+2) (bm+2 − bm+3) + . . .

· · · + (am+1 + · · · + an−1) (bn−1 − bn) + (am+1 + · · · + an) bn| ≤
≤ |am+1|

︸ ︷︷ ︸

< ǫ
M

(bm+1 − bm+2) + |am+1 + am+2|
︸ ︷︷ ︸

< ǫ
M

(bm+2 − bm+3) + . . .

· · · + |am+1 + · · · + an−1|
︸ ︷︷ ︸

< ǫ
M

(bn−1 − bn) + |am+1 + · · · + an|
︸ ︷︷ ︸

< ǫ
M

bn <

<
ǫ

M
(

n−1∑

k=m+1

(bk − bk+1) + bn)

︸ ︷︷ ︸

=bm+1≤M

≤ ǫ

II. For any (not only positive) sequence bn we use the part I. with sequence bn + M ≥ 0 and can conclude that
∞∑

n=1
anbn =

∞∑

n=1
an (bn + M) − M

∞∑

n=1
an is finite, too.

Dirichlet test

st. 84 (∃M > 0) (∀n ∈ N) |a1 + a2 + · · · + an| ≤ M, bn decreasing and bn → 0 =⇒ anbn summable

proof. Sequence bn is decreasing and tends to 0 hence bk − bk+1 ≥ 0 and bn ≥ 0. Given ǫ > 0 arbitrary. As
bn → 0 there is n0 ∈ N such that |bn| < ǫ

2M
for any n ≥ n0. Given m, n ≥ n0 arbitrary. We shall again use the

Abel partial summation to estimate

|am+1bm+1 + · · · + anbn| =

= |am+1 (bm+1 − bm+2) + (am+1 + am+2) (bm+2 − bm+3) + . . .

· · · + (am+1 + · · · + an−1) (bn−1 − bn) + (am+1 + · · · + an) bn| ≤
≤ |am+1|

︸ ︷︷ ︸

≤2M

(bm+1 − bm+2) + |am+1 + am+2|
︸ ︷︷ ︸

≤2M

(bm+2 − bm+3) + . . .

· · · + |am+1 + · · · + an−1|
︸ ︷︷ ︸

≤2M

(bn−1 − bn) + |am+1 + · · · + an|
︸ ︷︷ ︸

≤2M

bn ≤

≤ 2M

n−1∑

k=m+1

(bk − bk+1) + bn

︸ ︷︷ ︸

=bm+1< ǫ
2M

< ǫ .

Leibniz test

st. 85 bn decreasing and bn → 0 =⇒ (−1)n bn summable

proof. Consequence of the last statement for sequence an := (−1)
n
. This sequence −1, 1,−1, 1, . . . has bounded

partial sums −1, 0,−1, 0, . . . .
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The condition an is a decreasing (not strictly) sequence is necessary in the Leibniz test 85.
For instance the sequence

1

2
− 1

3
︸ ︷︷ ︸

= 1
6

+
1

4
− 1

6
︸ ︷︷ ︸

= 1
12

+
1

6
− 1

9
︸ ︷︷ ︸

= 1
18

+
1

8
− 1

12
︸ ︷︷ ︸

= 1
24

+
1

10
− 1

15
︸ ︷︷ ︸

= 1
30

+ · · · =
1

6

∞∑

n=1

1

n
= ∞

an =

{
1
2n for n = 2k − 1
1
3n for n = 2k

is not summable but an → 0.

3.5 . Summability in average

st. 86 cn → 0 =⇒ c1 + · · · + cn

n
→ 0

proof. Given ǫ > 0 arbitrary. There is n1 ∈ N such that |cn| < ǫ
2 for any n ≥ n1. We can choose some

n2 > 2
ǫ
(|c1| + · · · + |cn1 |) and put n0 := max(n1, n2). For arbitrary n ≥ n0 we have

∣
∣
∣
∣

c1 + · · · + cn

n

∣
∣
∣
∣
≤ |c1| + · · · + |cn1 |

n
︸ ︷︷ ︸

≤ |c1|+···+|cn1 |

n2
< ǫ

2

+
|cn1+1| + · · · + |cn|

n
︸ ︷︷ ︸

(n−n1) ǫ
2

1
n

< ǫ
2

<
ǫ

2
+

ǫ

2
= ǫ .

st. 87 an → a ∈ R =⇒ a1 + · · · + an

n
→ a

proof. It is a consequence of the last statement with cn := an − a → 0.

st. 88 cn → 0 and dn → 0 =⇒ c1dn + c2dn−1 + · · · + cnd1

n
→ 0

proof. As the sequences cn and dn are convergent they are also bounded, so for some constant M > 0 it holds
|cn|, |dn| ≤ M for any n ∈ N. Given ǫ > 0 arbitrary. There is n1 ∈ N such that |cn| < ǫ

2M
for any n ≥ n1 and

similarly for all n from a certain n2 onwards |dn| < ǫ
2M

. Let n0 := max(n1, n2) and n ≥ 2n0 be arbitrary. Then
n − n0 + 1 > n0 too, and we can estimate

∣
∣
∣
∣

c1dn + · · · + cnd1

n

∣
∣
∣
∣
≤ |c1||dn| + · · · + |cn0 ||dn−n0+1|

n
︸ ︷︷ ︸

≤ (|c1|+···+|cn0 |) ǫ
2M

n
<

n0
n

M ǫ
2M

≤ ǫ
2

+
|cn0+1||dn−n0 | + · · · + |cn||d1|

n
︸ ︷︷ ︸

≤
(|d1|+···+|dn−n0

|) ǫ
2M

n
<

n−n0
n

M ǫ
2M

≤ ǫ
2

<
ǫ

2
+

ǫ

2
= ǫ .
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st.89 an → a ∈ R and bn → b ∈ R =⇒ a1bn + a2bn−1 + · · · + anb1

n
→ ab

proof. It is a consequence of the last statement with cn := an − a → 0 and dn := bn − b → 0 .

st. 90 cn → 0,

∞∑

n=1

bn = ∞ and (∀n ∈ N) bn > 0 =⇒ c1b1 + c2b2 + · · · + cnbn

b1 + b2 + · · · + bn

→ 0

proof. It is similar to that of statement 86. Given ǫ > 0 arbitrary. There is n1 ∈ N such that |cn| < ǫ
2 for any

n ≥ n1. We can choose some n2 such that
n2∑

n=1
bn > 2

ǫ
(|c1|b1 + · · · + |cn1 |bn1) and set n0 := max(n1, n2). For

arbitrary n ≥ n0 we have

∣
∣
∣
∣

c1b1 + · · · + cnbn

b1 + · · · + bn

∣
∣
∣
∣
≤ |c1|b1 + · · · + |cn1 |bn1

b1 + · · · + bn
︸ ︷︷ ︸

< ǫ
2

+
|cn1+1|bn1+1 + · · · + |cn|bn

b1 + · · · + bn
︸ ︷︷ ︸

ǫ
2

bn1+1+···+bn

b1+···+bn
≤ ǫ

2

< ǫ .

st. 91
an

bn

→ a ∈ R,

∞∑

n=1

bn = ∞ and (∀n ∈ N) bn > 0 =⇒ a1 + a2 + · · · + an

b1 + b2 + · · · + bn

→ a

proof. It is a consequence of the last statement with cn := an

bn
− a → 0.

The next statement requires little recall of the l’Hospital rule.

Stolz theorem

st. 92
an − an−1

bn − bn−1
→ a ∈ R, bn → ∞ and bn strictly increasing =⇒ an

bn

→ a

proof. It is a consequence of the last statement with sequences a′
1 := a1, a′

n := an − an−1 and b′1 := b1,
b′n := bn − bn−1.

ex. Example

lim
n→∞

√
1 +

√
2 + . . .

√
n

n
√

n
=

2

3

we can use Stolz theorem 92 for sequences an =
√

1 +
√

2 + · · · + √
n and bn = n

√
n → ∞ increasing, lets

calculate

an − an−1

bn − bn−1
=

√
n

n
√

n − (n − 1)
√

n − 1
=

√
n(n

√
n − (n − 1)

√
n − 1)

n3 − (n − 1)3
=

=
n2 + (n − 1)

√

n(n − 1)

3n2 − 3n + 1
=

1 + (1 − 1
n
)
√

1 − 1
n

3 − 3
n

+ 1
n2

→ 2

3
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C - summability of sequence

def. 19 {an}∞n=1 C - summable ⇐⇒ 1

n

n∑

k=1

(a1 + · · · + ak) → a ∈ R

We usually denote sn := a1 + a2 + · · · + an and

σn :=
1

n
(a1 + (a1 + a2) + · · · + (a1 + · · · + an)) =

1

n

n∑

k=1

sk =

n∑

k=1

(

1 − k − 1

n

)

ak .

st. 93 an summable and

∞∑

n=1

an = a ∈ R =⇒ an C - summable and
1

n

n∑

k=1

(a1 + · · · + ak) → a

proof. We keep the notations of sn and σn. Given ǫ > 0 arbitrary. As sn → a there is n0 ∈ N such that
a − ǫ < sn < a + ǫ for any n ≥ n0. Let n ≥ n0 be arbitrary. Then we can estimate and use limits so that

σn =
1

n
(s1 + · · · + sn0 + sn0+1 + · · · + sn) >

1

n
(s1 + · · · + sn0) +

n − n0

n
(a − ǫ) → a − ǫ and

σn =
1

n
(s1 + · · · + sn0 + sn0+1 + · · · + sn) <

1

n
(s1 + · · · + sn0) +

n − n0

n
(a + ǫ) → a + ǫ .

These inequalities are true for any ǫ > 0, hence σn → a.

st. 93a lim inf
n→∞

an ≤ lim inf
n→∞

a1 + a2 + · · · + an

n
≤ lim sup

n→∞

a1 + a2 + · · · + an

n
≤ lim sup

n→∞
an

proof.

I. Lets denote a = lim inf
n→∞

an and ǫ > 0 arbitrary. For any n from some n0 onward it holds a− ǫ < an. Then for

any n ≥ n0 we have
a1 + a2 + · · · + an

n
=

a1 + · · · + an0

n
︸ ︷︷ ︸

→0

+
an0+1 + · · · + an

n
︸ ︷︷ ︸

≥(n−n0) a−ǫ
n

→a−ǫ

and so

lim inf
n→∞

a1 + a2 + · · · + an

n
≥ a − ǫ .

Because ǫ > 0 was arbitrary the inequality

lim inf
n→∞

a1 + a2 + · · · + an

n
≥ lim inf

n→∞
an

has been proved.
II. The second inequality is a consequence of statement .
III. The proof of the third inequality is the same like at case I.
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Statement 87 is a straight consequence of this inequalities.

st. 93b
(∀n ∈ N) an > 0 :
lim inf
n→∞

an ≤ lim inf
n→∞

n
√

a1 · a2 · · · · · an ≤ lim sup
n→∞

n
√

a1 · a2 · · · · · an ≤ lim sup
n→∞

an

proof. It is the consequence of the last statement 93a for the sequence bn = ln an.

st. 93c
(∀n ∈ N) an > 0 :
lim inf
n→∞

an+1

an
≤ lim inf

n→∞
n
√

an ≤ lim sup
n→∞

n
√

an ≤ lim sup
n→∞

an+1

an

proof. It is the consequence of the statement 93a for the sequence b1 = lna1, bn = ln an

an−1
for n ≥ 2. Then

lim inf
n→∞

ln
an

an−1
≤ lim inf

n→∞

ln a1 + ln a2

a1
+ · · · + ln an

an−1

n
= lim inf

n→∞
ln n

√
an

and
lim inf
n→∞

an+1

an

= lim inf
n→∞

ln
an

an−1
≤ lim inf

n→∞
n
√

an .

3.6 . Absolute summability

absolute summability

def. 20 an absolutely summable
def.⇐⇒ |an| summable

st. 94 an absolutely summable =⇒ an summable

proof. It is based on Bolzano - Cauchy statement and inequality |an+1 + · · ·+am| ≤ |an+1|+ · · ·+ |am|. For any
ǫ > 0 there is some n0 ∈ N such that |an+1|+ · · ·+ |am| < ǫ for all m > n ≥ n0. Therefore |an+1 + · · ·+am| < ǫ,
too.

Note that
∞∑

n=1
|an| and

∣
∣
∣
∣

∞∑

n=1
an

∣
∣
∣
∣
can assume different values.

st. 95 an absolutely summable and ap(n) subsequence of an =⇒ ap(n) absolutely summable

proof. As p is strictly increasing and by the statement 35 injective, too, the set of different indices {p(1), p(2), . . . , p(n)}
is a subset of {1, 2, . . . , p(n)}. Hence

Bn :=

n∑

k=1

|ap(k)| ≤
p(n)
∑

k=1

|ak| ≤
∞∑

k=1

|ak| < ∞
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is bounded and we can use the statement 66.

def. 21 a+def.
= max(a, 0) a−def.

= max(−a, 0)

Obviously |a| = a+ + a− and a = a+ − a−.

st. 96 an absolutely summable =⇒ a+
n , a−

n summable

proof. As 0 ≤ a+
n ≤ |an| (the same for a−

n ) it is obvious.

Clear that
∞∑

n=1
an =

∞∑

n=1
a+

n −
∞∑

n=1
a−

n and
∞∑

n=1
|an| =

∞∑

n=1
a+

n +
∞∑

n=1
a−

n .

The commutative law permits ”reordering” of the sum of a finite collection of numbers, for instance

a1 + a2 + a3 = a3 + a1 + a2 .

Now we ask ourselves whether something similar holds for infinite sums. First it is necessary to define the term
”reordering”.

rearrangement

def. 22 sequence
{
ap(n)

}∞
n=1

, where p : N −→ N bijective, is rearrangement of {an}∞n=1

For instance we can describe the rearrangement ”two odd; one even” by the map

p(n) :=







4n−1
3 = 4k − 3 for n = 3k − 2

4n+1
3 = 4k − 1 for n = 3k − 1

2
3n = 2k for n = 3k

(9)

The map p : N −→ N is bijective.

ex. Example For an := (−1)
n+1 1

n
and map p : N −→ N described by (9) we have

∞∑

n=1
an ≤ 10

12 and
∞∑

n=1
ap(n) ≥

11
12 .

∞∑

n=1

an = 1 − 1

2
+

1

3
︸ ︷︷ ︸

= 5
6

−1

4
+

1

5
︸ ︷︷ ︸

=− 1
20

−1

6
+

1

7
︸ ︷︷ ︸

=− 1
42

− . . .− 1

2k
+

1

2k + 1
︸ ︷︷ ︸

=− 1
2k(2k+1)

− · · · ≤ 5

6

∞∑

n=1

ap(n) = 1 +
1

3
− 1

2
+

1

5
+

1

7
− 1

4
︸ ︷︷ ︸

= 389
420≥

11
12

+
1

9
+

1

11
− 1

6
︸ ︷︷ ︸

= 7
198 > 1

20

+
1

13
+

1

15
− 1

8
︸ ︷︷ ︸

= 29
1560 > 1

42

+ · · ·+ 1

4k − 3
+

1

4k − 1
− 1

2k
︸ ︷︷ ︸

= 8k−3
2k(4k−3)(4k−1)

+ · · · ≥ 11

12

This example shows that summation in a different order gives a different sum in general.
Even, if a sequence is summable and not absolutely summable then for any A ∈ R

∗ there exists rearrangement
such that the sum of rearranged sequence is equal to A.

Riemann theorem

st. 97

∞∑

n=1

an < ∞,

∞∑

n=1

|an| = ∞, A ∈ R
∗ =⇒ there exists rearrangement p : N −→ N,

∞∑

n=1

ap(n) = A
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proof. The proof is similar to the process at last example. Because a+
n = 1

2 (|an|+ an) and a−
n = 1

2 (|an| − an) it

holds
∞∑

n=1
a+

n = ∞,
∞∑

n=1
a−

n = ∞ and partial sums of positive terms a+
n and negative terms a−

n are not bounded.

Suppose a1 ≥ A < ∞ first. We gain the rearrangement p by following way. First, we will add the non-
negative terms of sequence an until their sum does not get over number A, then we add the negative terms od
sequence an until the whole sum does not get below A and so on. The distance of partial sums of this newly

rearranged sequence
n∑

k=1

ap(k) from A is less than |ap(n)| → 0. Hence
∞∑

n=1
ap(n) = A.

The same for −∞ < A < an.
We proceed similarly for A = ∞. First we add the positive terms a+

n until the sum does not get over 1, then
we add one negative term and again we add another positive terms until the sum does not get over 2 and so
on. The same for A = −∞.

Even there exists rearrangement p such that lim
n→∞

n∑

k=1

ak does not exists.

The next statement shows that the order does not matter in summation of absolutely summable sequences.

about rearrangement

st. 98

∞∑

n=1

= a ∈ R, an absolutely summable and ap(n) rearrangement of an =⇒
∞∑

n=1

ap(n) = a

proof.

I. ap(n) is summable:
Given ǫ > 0 arbitrary. According to the statement 62 there is n1 ∈ N such that

∞∑

k=n1

|ak| < ǫ

as the sequence an is absolutely summable. As p is bijective there is n2 ∈ N such that p{1, 2, . . . , n2} =
{p(1), p(2), . . . , p(n2)} ⊃ {1, 2, . . . , n1}, (it is possible to choose max{p−1(1, . . . , n1)}, p−1(K) denotes pre-image
of set K).

Let n ≥ n2 arbitrary. It holds p(k) ≥ n1 for any k ≥ n ≥ n2, then

∣
∣
∣
∣
∣

∞∑

k=n

ap(k)

∣
∣
∣
∣
∣
≤

∞∑

k=n

∣
∣ap(k)

∣
∣ ≤

∞∑

l=n1

|al| < ǫ

and according to the statement 62 ap(n) is summable.

II.
∞∑

k=1

ap(k) = a:

Given ǫ > 0 arbitrary. According to the statement 62 there is n1 ∈ N such that

∞∑

k=n1

|ak| <
ǫ

2

as the sequence an is absolutely summable. As p is bijective there is n2 ∈ N such that p{1, 2, . . . , n2} =
{p(1), p(2), . . . , p(n2)} ⊃ {1, 2, . . . , n1}.
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We denote partial sum An =
n∑

k=1

ak and Sn =
n∑

k=1

ap(n). Let n ≥ n0 = max(n1, n2) arbitrary. Then we can

write

|Sn − An| =

∣
∣
∣
∣
∣

n∑

k=1

ap(n) −
n∑

l=1

al

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣
∣
∣

∑

1≤k≤n
k≤n2

ap(k) +
∑

1≤k≤n
n2<k

ap(k) −
∑

1≤l≤n1

al −
∑

n1<l≤n

al

∣
∣
∣
∣
∣
∣
∣
∣

≤

≤
∣
∣
∣
∣
∣

n∑

k=n2

ap(k)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

n∑

k=n1

ak

∣
∣
∣
∣
∣
<

ǫ

2
+

ǫ

2
= ǫ ,

the first and third terms in the second part of expression above are equal because n ≥ n2 and

{1, . . . , n1} ⊂ {p(1), . . . , p(n2)} ⊂ {p(1), . . . , p(n)}
{1, . . . , n1} ⊂ {p(1), . . . , p(n)} ∩ {1, . . . , n1} ⊂ {1, . . . , n1}

{p(k); 1 ≤ k ≤ n, p(k) ≤ n1} = {1, . . . , n1} .

(1)

Then Sn − An → 0 and
∞∑

n=1

ap(n) = lim
n→∞

Sn = lim
n→∞

An = a

and proof is complete.

3.6 . Product of series

It is possible to calculate the product

(a1 + a2)(b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2 .

Now we ask ourselves whether something similar holds for infinite sums. We have several possibilities how to
create such product - Cauchy product

∞∑

n=1

cn where cn = a1bn + a2bn−1 + · · · + anb1

and Dirichlet product

∞∑

n=1

dn where dn = anb1 + anb2 + · · · + anbn−1 + anbn+

+an−1bn + · · · + a2bn + a1bn .

st. 99

∞∑

k=1

ak = a ∈ R,

∞∑

k=1

bk = b ∈ R =⇒
∞∑

k=1

(anb1 + anb2 + · · · + anbn + · · · + a2bn + a1bn) = ab
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proof. We denote partial sums An =
n∑

k=1

ak, Bn =
n∑

k=1

bk and dn like above. We have

n∑

k=1

dk = a1b1 + a1b2 + · · · + a1bn+

+a2b1 + a2b2 + · · · + a2bn+

+ · · ·+
+anb1 + anb2 + · · · + anbn = a1Bn + a2Bn + · · · + anBn = AnBn → ab .

Mertens

st. 100

∞∑

k=1

ak = a ∈ R,

∞∑

k=1

bk = b ∈ R and an ∈ R absolutely summable =⇒
∞∑

k=1

(a1bk + a2bk−1 + · · · + akb1) = ab

proof. We introduce new notations (βn and ωn) based on the relation

n∑

k=1

(a1bk + a2bk−1 + · · · + akb1) =

= a1(b1 + · · · + bn
︸ ︷︷ ︸

:=b−βn

) + a2(b1 + · · · + bn−1
︸ ︷︷ ︸

:=b−βn−1

) + · · · + an−1(b1 + b2
︸ ︷︷ ︸

:=b−β2

) + an b1
︸︷︷︸

:=b−β1

=

= (a1 + · · · + ak)b − (a1βn + a2βn−1 + · · · + anβ1
︸ ︷︷ ︸

:=ωn

) ,

so ωn := a1βn + a2βn−1 + · · · + anβ1 and βn :=
∞∑

l=n+1

bl → 0 by Bolzano - Cauchy statement 61 and 52. We

denote M :=
∞∑

k=1

|ak|. Given ǫ > 0 arbitrary. As βn → 0 there is N ∈ N (depending on ǫ) such that |βn| < ǫ
M

.

Let n ≥ N be arbitrary. We can split ωn into two parts

ωn = a1βn + · · · + an−N+1βN + an−N+2βN−1 + · · · + anβ1

and estimate the absolute value of the first part

|a1βn + · · · + an−N+1βN | ≤ |a1||βn| + · · · + |an−N+1||βN | ≤ ǫ

M
(|a1| + · · · + |an−N+1|) ≤

ǫ

M
M = ǫ .

For any n ≥ N we have
|ωn| ≤ ǫ + |an−N+2||βN−1| + · · · + |an||β1|

therefore
lim

n→∞
|ωn| ≤ ǫ + lim

n→∞
|an−N+2|

︸ ︷︷ ︸

=0

|βN−1| + · · · + lim
n→∞

|an|
︸ ︷︷ ︸

=0

|β1| = ǫ .

As ǫ was arbitrary ωn → 0.
The condition of absolute convergence is necessary in Mertenz theorem.
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ex. Examples For ak = bk := (−1)k

√
k

,
∞∑

k=1

ak and
∞∑

k=1

bk are finite, but (a1bn + a2bn−1 + · · · + anb1) is not

summable.

We can use Leibniz test for
∞∑

k=1

ak and
∞∑

k=1

bk. We have inequality
√

k
√

n − k + 1 ≤ n and 1√
k
√

n−k+1
≥ 1

n
for

any 1 ≤ k ≤ n. Therefore for sequence

cn := (a1bn + a2bn−1 + · · · + anb1) = (−1)
n+1

(
1

1

1√
n

+
1√
2

1√
n − 1

+ · · · + 1√
k
√

n − k + 1
+ · · · + 1√

n

1

1

)

︸ ︷︷ ︸

≥1

we have |cn| ≥ 1, hence lim
n→∞

cn 6= 0 and cn is not summable by statement 63.

But we have the following statement.

Abel theorem

st. 101

∞∑

n=1

an = a ∈ R,

∞∑

n=1

bn = b ∈ R and

∞∑

n=1

(a1bn + · · · + anb1) = c ∈ R =⇒ c = ab

proof. We shall denote An :=
n∑

k=1

ak, Bn :=
n∑

k=1

bk and Cn :=
n∑

k=1

(a1bk + · · · + akb1). We obtain by simple

calculation

Cr =
∑

k + l ≤ r

k, l ≥ 1

akbl =
r∑

k=1

ak

r−k+1∑

l=1

bl =
r∑

k=1

akBr−k+1 and

C1 + · · · + Cn = A1Bn + · · · + AnB1 .

(2)

We can divide this equation by n and in limiting use the statements 87 and 89

1

n
(C − 1 + · · · + Cn)

︸ ︷︷ ︸

→c

=
1

n
A1Bn + · · · + AnB1

︸ ︷︷ ︸

→ab

.

It is possible to prove this statement using power series (for instance in ).

3.6 . Double series

Given a finite table of numbers, we can add all the rows to obtain a last column and then add the last
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column. Or first add all the columns to obtain a last row and then add the last row. For instance

a1,1 a1,2 a1,3 a1,4 . . . a1,n a1. =
n∑

l=1

a1,l

a2,1 a2,2 a2,3 a2,4 . . . a2,n a2. =
n∑

l=1

a2,l

a3,1 a3,2 a3,3 a3,4 . . . a3,n a3. =
n∑

l=1

a3,l

. . .

am,1 am,2 am,3 am,4 . . . am,n am. =
n∑

l=1

aml

a.1 =
m∑

k=1

ak,1 a.2 =
m∑

k=1

ak,2 a.3 =
m∑

k=1

ak,3 a.4 =
m∑

k=1

ak,4 . . . a.n =
m∑

k=1

ak,n a.. =
m∑

k=1

m∑

l=1

ak,l

Now we can ask ourselves if something similar holds for infinite tables called double series.

a1,1 a1,2 a1,3 a1,4 . . . s1 =
∞∑

l=1

a1,l

a2,1 a2,2 a2,3 a2,4 . . . s2 =
∞∑

l=1

a2,l

a3,1 a3,2 a3,3 a3,4 . . . s3 =
∞∑

l=1

a3,l

. . .

t1 =
∞∑

k=1

ak,1 t2 =
∞∑

k=1

ak,2 t3 =
∞∑

k=1

ak,3 t4 =
∞∑

k=1

ak,4 . . .
∞∑

n=1
tn

?
=

∞∑

n=1
sn

This cold be be linked to above question by changing the order of limits.

A1,1 A1,2 A1,3 A1,4 . . . → S1

A2,1 A2,2 A2,3 A2,4 . . . → S2

A3,1 A3,2 A3,3 A3,4 . . . → S3

. . .

↓ ↓ ↓ ↓ ↓
T1 T2 T3 T4 . . . → lim

n→∞
Tn

?
= lim

n→∞
Sn

But this is not true in general. For instance if Am,n := m
m+n

we have lim
m→∞

Am,n = 1 and lim
n→∞

Am,n = 0. Also

for sums we have counterexample
−1 0 0 0 . . . −1
1
2 −1 0 0 . . . − 1

2
1
4

1
2 −1 0 . . . − 1

4
1
8

1
4

1
2 −1 . . . − 1

8
. . .

0 0 0 0 . . . 0 6= −2

But it is possible for limits of increasing sequences or sums of sequences with positive terms.

st. 102

(∀k, l ∈ N) Ak,l ≤ Ak+1,l and Ak,l ≤ Ak,l+1,

(∀l ∈ N) lim
k→∞

Ak,l = Sl ∈ R and lim
l→∞

Sl = S ∈ R =⇒
=⇒ (∀k ∈ N) (∃Tk ∈ R) lim

l→∞
Ak,l = Tk and lim

k→∞
Tk = S
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proof. I.(∀k ∈ N) (∃Tk ∈ R) lim
l→∞

Ak,l = Tk: From hypothesis for any k, l, m ∈ N, l < m we have Ak,l ≤ Ak,m

therefore Sl ≤ Sm and Sl ≤ S. Let k ∈ N be arbitrary. Also Ak,l ≤ Sl ≤ S, hence {Ak,l}∞l=1 is an increasing
sequence bounded above by S. According to the statement 28 it has finite limit lim

l→∞
Ak,l ≤ S and we shall

denote it by Tk.
II. Tk → S: Given ǫ arbitrary. As Sl → S there is n0 ∈ N such that S − ǫ

2 ≤ Sl ≤ S for any l ≥ n0. We can
use lim

k→∞
Ak,n0 = Sn0 similarly and from some m0 ∈ N (depending on n0) onwards Sn0 − ǫ

2 ≤ Ak,n0 ≤ Sn0 . Let

k ≥ m0 and l ≥ n0 be arbitrary. Then

Akn0 ≤ Akl ≤ Tk ≤ S, Sn0 −
ǫ

2
≤ Akn0 and S − ǫ

2
Sn0 .

Hence
S − ǫ ≤ Akl ≤ Tk ≤ S and S − ǫ ≤ lim

k→∞
Tk ≤ S .

As ǫ > 0 was arbitrary S = lim
k→∞

Tk.

st. 103

(∀k, l ∈ N) Ak,l ≤ Ak+1,l and Ak,l ≤ Ak,l+1,

(∀l ∈ N) lim
k→∞

Ak,l ∈ R and (∀k ∈ N) lim
l→∞

Ak,l ∈ R =⇒
=⇒ lim

k→∞
lim
l→∞

Ak,l = lim
l→∞

lim
k→∞

Ak,l

proof. Keeping denotation from the last statement Tk, Sl are increasing, hence they have limits. If one such
limit is finite we can use the last statement, if not both limits are ∞.

st. 104

(∀k, l ∈ N) ak,l ≥ 0, (∀l ∈ N)
∞∑

k=1

ak,l = Sl ∈ R and
∞∑

l=1

Sl = S ∈ R =⇒

=⇒ (∀k ∈ N) (∃Tk ∈ R)
∞∑

l=1

ak,l = Tk and
∞∑

k=1

Tk = S

proof. We can use the statement 101 with Ak,l :=
k∑

i=1

l∑

j=1

ai,j .

st. 105 (∀k, l ∈ N) Ak,l ≥ 0, (∀l ∈ N)
∞∑

k=1

ak,l ∈ R and (∀k ∈ N)
∞∑

l=1

ak,l ∈ R =⇒
∞∑

k=1

∞∑

l=1

ak,l =
∞∑

l=1

∞∑

k=1

ak,l

proof. It is a consequence of the statement 102.

st. 106

(∀k, l ∈ N) ak,l ≤ 0, (∀l ∈ N)
∞∑

k=1

ak,l = Sl ∈ R and
∞∑

l=1

Sl = S ∈ R =⇒

=⇒
∞∑

r=2
(a1,r + a2,r−1 + · · · + ar,1) = S

proof. Given ǫ > 0 arbitrary. There is N ∈ N such that for any m ≥ N
∣
∣
∣
∣
∣

m∑

l=1

Sl − S

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

l=m+1

Sl

∣
∣
∣
∣
∣
<

ǫ

3
. (10)
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We also have for n ∈ N from some n1 onwards

∣
∣
∣
∣
∣

n∑

k=1

ak,1 − S1

∣
∣
∣
∣
∣
<

ǫ

3N
, ()

from some n2 onwards ∣
∣
∣
∣
∣

n∑

k=1

ak,2 − S2

∣
∣
∣
∣
∣
<

ǫ

3N
()

and so on, from some nN onward ∣
∣
∣
∣
∣

n∑

k=1

ak,N − SN

∣
∣
∣
∣
∣
<

ǫ

3N
. ()

Let n0 := max(n1, n2, . . . , nN , N − 1) and n ≥ 2n0 be arbitrary. Because
n∑

r=1
(a1r + · · · + ar1) =

n∑

l=1

(a1l + · · · +
an−l+1,l), we can estimate

∣
∣
∣
∣
∣

n∑

r=1

(a1,r + a2,r−1 + · · · + ar,1) − S

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

n∑

l=1

(a1,l + a2,l + · · · + an−l+1,l) − S

∣
∣
∣
∣
∣
=

=

∣
∣
∣
∣
∣

N∑

l=1

(a1,l + a2,l + · · · + an−l+1,l) +
n∑

l=N+1

(a1,l + a2,l + · · · + an−l+1,l) − S

∣
∣
∣
∣
∣
≤

≤
∣
∣
∣
∣
∣

N∑

l=1

(a1,l + · · · + an−l+1,l − Sl)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

:=I

+

∣
∣
∣
∣
∣

N∑

l=1

Sl − S

∣
∣
∣
∣
∣

︸ ︷︷ ︸

:=II

+

∣
∣
∣
∣
∣

n∑

l=N+1

(a1,l + · · · + an−l+1,l)

∣
∣
∣
∣
∣

︸ ︷︷ ︸

:=III

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

using the following inequalities. For 1 ≤ l ≤ N and n ≥ 2n0 we have n − l + 1 ≥ n0 ≥ max(n1, . . . , nN ), and

|a1,l + · · · + an−l+1,l − Sl| <
ǫ

3N
,

hence

I =

∣
∣
∣
∣
∣

N∑

l=1

(a1,l + · · · + an−l+1,l − Sl)

∣
∣
∣
∣
∣
<

ǫ

3
.

Also

II =

∣
∣
∣
∣
∣

N∑

l=1

Sl − S

∣
∣
∣
∣
∣
<

ǫ

3
,

according to the inequality (10). We shall also use (10) in the third estimate

III =

∣
∣
∣
∣
∣

n∑

l=N+1

(a1,l + · · · + an−l+1,l)

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

n∑

l=N+1

Sl

∣
∣
∣
∣
∣
≤

∣
∣
∣
∣
∣

∞∑

l=N+1

Sl

∣
∣
∣
∣
∣
<

ǫ

3

and proof is complete.
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For limits we have relations

lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn or lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

an + lim inf
n→∞

bn

Let us consider the situation where something similar holds for infinite sums. We obtain three statements,
which are similar to those in theory of Lebesgue integral.

Levi theorem

st. 107

(∀k, n ∈ N) ak,n ≥ 0, ak,n ≤ ak,n+1,

lim
n→∞

ak,n ∈ R and
∞∑

k=1

ak,n ∈ R =⇒

=⇒
∞∑

k=1

lim
n→∞

ak,n = lim
n→∞

∞∑

k=1

ak,n

We use the statement 102 with Am,n :=
m∑

k=1

. Then Am,n ≤ Am+1,n and Am,n ≤ Am,n+1 and as

Am,n =
∞∑

k=1

ak,n < ∞ and lim
n→∞

Am,n =
m∑

k=1

lim
n→∞

ak,n < ∞

we can conclude that

∞∑

k=1

lim
n→∞

ak,n = lim
m→∞

lim
n→∞

Am,n = lim
n→∞

lim
m→∞

Am,n = lim
n→∞

∞∑

k=1

ak,n .

Fatou theorem

st. 108

(∀k, n ∈ N) ak,n ≥ 0, lim
n→∞

ak,n ∈ R and
∞∑

k=1

ak,n ∈ R =⇒

=⇒
∞∑

k=1

lim inf
n→∞

ak,n ≤ lim inf
n→∞

∞∑

k=1

ak,n

proof. We shall use the statement 106 with bk,n := inf(ak,n, ak,n+1, . . . ). We have ak,n ≥ bk,n ≥ 0, bk,n+1 ≥ bk,n
∞∑

k=1

bk,n+1 ≥
∞∑

k=1

bk,n and by the definition of lower limit lim inf
n→∞

ak,n = lim
n→∞

bk,n. Therefore

∞∑

k=1

lim inf
n→∞

ak,n =
∞∑

k=1

lim
n→∞

bk,n = lim
n→∞

∞∑

k=1

bk,n = lim inf
n→∞

∞∑

k=1

bk,n ≤ lim inf
n→∞

∞∑

k=1

ak,n ,

we also used that monotonic sequences are convergent (statement 28, 29) and statement 48.

Lebesque theorem

st. 109

(∀k, n ∈ N) |ak,n| ≤ bk,
∞∑

k=1

bk ∈ R and lim
n→∞

ak,n ∈ R =⇒

=⇒
∞∑

k=1

lim
n→∞

ak,n = lim
n→∞

∞∑

k=1

ak,n



27

proof. We can use the last statement for ak,n + bk ≥ 0 and then for bk − ak,n ≥ 0. We shall also use
lim inf
n→∞

(−ak,n) = − lim sup
n→∞

ak,n.

ex. Examples

(1) 1 + 1
2 + 1

4 + 1
8 + · · · =

∞∑

n=0

(
1
2

)n
= 1

1− 1
2

= 2

We can use formula (5) .

(2) 1
2 + 2

4 + 3
8 + 4

16 + · · · =
∞∑

n=1

n
2n is finite (it means sequence n

2n is summable)

We can use the ratio test for instance: an+1

an
= n+1

2n+1
2n

n
= n+1

2n
→ 1

2 < 1.

(3) 2 + 3
4 + 4

27 + 5
64 + · · · =

∞∑

n=1

n+1
nn is finite (it means sequence n+1

nn is summable)

We can use the root test for instance: n
√

an =
n
√

n+1
n

→ 0 < 1.

(4)
(
1 − 1

2

)2
+

(
1 − 1

3

)3
+

(
1 − 1

4

)4
+ · · · =

∞∑

n=1

(
1 − 1

n

)n
is not finite (it means sequence

(
1 − 1

n

)n
is not

summable)
If this sum is finite then lim

n→∞

(
1 − 1

n

)n
= 0, but it is not true, indeed

(
1 − 1

n

)n → 1
e
.

(5) 1
2+ 1·3

22·2!+
1·3·5
23·3!+

1·3·5·7
24·4! +· · · =

∞∑

n=1

1·3·····(2n−1)
2nn! is not finit (it means sequence 1·3·····(2n−1)

2nn! is not summable)

We can use the Rhabe test:

(

1 − an+1

an

)

n =

(

1 − 1 · 3 · · · · · (2 (n + 1) − 1)

2n+1 (n + 1)!

2nn!

1 · 3 · · · · · (2n − 1)

)

n =

=

(

1 − 2n + 1

2n + 2

)

n =
n

2n + 2
→ 1

2
< 1 .

(6) 1 + 1
2 + 1

3 + 1
4 + · · · =

∞∑

n=1

1
n

is not finite (it means sequence 1
n

is not summable)

We can use the integral test
∞∫

1

1
x

dx = [lnx]
∞
1 = ∞.

(7) 1 + 1√
2

+ 1√
3

+ 1
2 + · · · =

∞∑

n=1

1√
n

is not finite (it means sequence 1√
n

is not summable)

(8) 1 + 1
4 + 1

9 + 1
16 + · · · =

∞∑

n=1

1
n2 is finit (it means sequence 1

n2 is summable)

Similarly by integral test as
∞∫

1

1√
x

dx = [2
√

x]
∞
1 = ∞ and

∞∫

1

1
x2 dx =

[
− 1

x

]∞
1

= 1.

(8) 1
2 ln 2 + 1

3 ln 3 + 1
4 ln 4 + · · · =

∞∑

n=2

1
n ln n

is not finite (it means sequence 1
n ln n

is not summable)

We can use for instance Cauchy accumulation test (p(n) := 2n) and inquire sum
∞∑

n=2
2n 1

2n ln 2n =
∞∑

n=2

1
n ln 2 , this

sum is not finit by example .

(We can also use integral test.) (9)
∞∑

n=1
(1
2 )

√
n

is finite (it means sequence (1
2 )

√
n

is summable)

We can use generalized Cauchy accumulation test for p(n) := n2 and inquire sum
∞∑

n=1

(

(n + 1)
2 − n2

)
1
2

n
=
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∞∑

n=1

2n+1
2n , This sum is finite according to the ratio test for instance.

(10)
∞∑

n=1

(−1)n

√
n2+1

is finite (it means sequence (−1)n

√
n2+1

is summable)

We can use Leibniz test as sequence with positive terms 1√
n2+1

is decreasing and tends tends to 0.

(11)
∞∑

n=1

cos n
n

is finite (it means sequence cos n
n

is summable)

We can use Dirichlet test for sequence an := cosn and decreasing sequence with positive terms bn := 1
n
→ 0.

To prove that an has bounded partial sums we use cos 1 + cos 2 + cos 3 + · · ·+ cosn =
cos n+1

2 sin n
2

sin 1
2

and we have

|a1 + · · · + an| ≤ 1
sin 1

2

.

(12)
∞∑

n=1
n

1
n
−2 is finite (it means sequence n

1
n
−2 is summable)

We can use Abel test for sequence with positive terms bn := n
√

n (it is decreasing from the third term onwards)

and an := 1
n2 as

∞∑

n=1

1
n2 is finite.


