DISORDERS OF GIT: Pathophysiology of oral cavity Dysphagia. Gastroesophageal reflux.

> Jan Živný Ústav patologické fyziologie 1. LF UK jzivny@LF1.cuni.cz

Outline

- Functions of GIT
- General manifestation of GIT disorders
- Pathophysiology of oral cavity
 - Salivary gland
 - Periodontium
 - Oral mucosa
 - Teeth
- Manifestation of systemic diseases in oral cavity
- Dysphagia
- Oesophagus
 - Structural diseases
 - Motility diseases
 - GERD

Function of GIT

- Water and nutrient uptake
 - Motility
 - Secretion
 - Digestion
 - Resorption
- Endocrine function
- Defense function
 - pathogens
 - toxins

GIT defense mechanism

- Integrity of oral mucosa is protected by:
 - Barrier function
 - Mucosa integrity (growth factors, prostaglandins, buffer systems), bacteria colonization..
 - Innate defence mechanisms
 - mucins, lysozyme, lactoferine, lactoperoxidase, antimicrobial peptides – histatin, defensins..., protease inhibitors...
 - Adaptive defense mechanisms
 - immune cells, secretory S-IgA, IgG, IgM

General manifestation of upper GIT disorders

- oral, pharyngeal, chest, and abdominal pain
- Nausea and vomiting
- dysphagia (difficulty with swallowing)
- bleeding

Some diseases of GIT may progress for a relatively long period without clinical manifestation

Complications of GIT disorders

- acute
 - dehydration
 - bleeding
 - sepsis
- chronic
 - malnutrition
 - deficiencies (vitamins, minerals,)
 - obstructions partial or full occlusions
 - caused by
 - edema
 - tumor
 - strincure

Pathophysiology of oral cavity

Salivary gland Periodontium Oral mucosa Teeth

Pathophysiology of salivary gland disorders

Saliva

750 – 1000 mL / day Sources:

- parotid gland (~40 %)
- submandibular gland (~40 %)
- sublingual gland (~10%)
- minor salivary glands (~10%)
- crevicular fluid (~ 0.5%)

Salivary glands

- Are exocrine glands which consist of individual acini (lobules)
- Saliva
 - Ultrafiltrate of plasma
 - Primary secretion by acinar cells (secretory granules)
 - Secondary modification in ducts (hypoosmolar saliva)

Salivary glands

- Classification of acini and salivary glands:
 - mucinose
 - serose (e.g. parotid gl.)

mixed

Myoepithelial cells between acinar cells and basal membrane are able to contract and squeeze out saliva.

Regulation of saliva secreation inervation

- Parasympathetic nerves (acetylcholine muscarin receptor)
 - inervation of large salivary glands
 - increase production of watery saliva with low concentration of amylases
- Sympathetic nerves (beta-adreneric)
 - production of viscose saliva with high concentration of minerals and organic substances (amylase, mucin)
 - contraction of acinar and ductal myoepithelial cells

Daily production: ~ 1 L

GI. parotis produce ~ 70% of stimulated secretion

Essential for the maintenance of healthy mucosa

Composition of saliva

- Water
- Anorganic components
 - HCO₃⁻, I⁻, K⁺, Cl⁻, Na⁺, Ca²⁺, phosphates, etc.
- Organic components
 - mucin
 - enzymes (alpha-amylases, lipases)
 - Antimicrobial substances (e.g. lysozyme, lactoperoxidase, lactoferrin, defensins, IgA, IgG, IgM...)

Sources of Immunoglobulin in oral cavity

Saliva contains ~ 10⁸ bacteria / mL (> 25 000 species)

The importance of saliva

- Moistening food and facilitate swallowing
 - water, mucin
- oral hygiene
 - Enzymes (amylase) break down food residues
 - Water washing away food debris
- Support the creation of voice
 - mucin, water
- Protection of the mucosa and dental enamel
 - mechanical (mucin, water)
 - innate and adaptive immunity (antimicrobial molecules, antibodies, cells)
 - Remineralization of tooth enamel
 - Control of pH in the oral cavity (buffer capacity)

Xerostomia dry mouth

Decreased saliva production by 50% and more

Causes of xerostomia

Medication

- anticholinergics
- alpha and beta blockers
- calcium channel blockers
- diuretics

Inflammatory and infectious diseases

- Sjögren's syndrome
- Chronic parotitis
- HIV / AIDS
- Radiation therapy to the head and neck
- Dehydration
- Obstruction of the salivary glands outlets
- Other causes (e.g. Diabetes mellitus)

Complications of xerostomia

- Inflammation
 - Mucositis (lichen planus, aphthous stomatitis), periodontal disease
- Burning mouth sy (oral dysestesia)
- Malnutrition
 - difficulty swallowing
 - burning sensation
- Psychologic status of the patient
 - difficulty speaking
 - constant sore throat
- Infections
 - dental caries, periodontal infection, tooth loss

Ptyalism

- Hypersalivation
- Causes:
 - Excessive production
 - Decreased or affected clearance

Excessive production of saliva

- Pregnancy (Ptyalism Gravidarum)
- GIT causes
 - Stomach diseases (dilatation, irritation, gastritis, ulcerations), GERD, pancreatitis, liver diseases
- Medication and intoxication
 - Clozapine (antipsychotikum), Pilocarpin (parasympathomimetic alkaloid), Intoxication with mercury, arsenic, copperí, iodides, bromides
- Localized oral infections and lesions
 - Aphtose stomatitis, Oral chemical burns, Dental caries, Chicken-pox, Tuberculosis ...
- Increased consumption of carbohydrates (saccharides)

Decreased or affected clearance of saliva

- Infectins
 - tonsilitis, retropharyngeal or peritonsilar absces, epiglotitis, mumps
- Damage to the jaw
 - fractures,, temporomandibular ankylosis, sarcoma)
- Neuromuscular diseases
 - e.g. Myastenia gravis, N. hypoglossus paralysis, botulism, Mental retardation, Cerebrovascular damage.
- Other
 - Radiotherapy, Macroglosia

Salivary gland diseases

Salivary gland diseases

Inflammatory diseases

- Autoimmunity (Sjögren sy)
- Infectious
- Other noninfectious inflammations (irritation, irradiation, chemotherapy)
- Sialolithiasis
- Sialoadenosis
- Tumors

Sjögren sy (SS)

- Chronic inflammatory autoimmune disorder
- Systemic
- Exocrine glands are affected
- Manifestation:
 - dryness of the mouth, eyes, and other mucousal membranes
- middle-aged women

Etiology of Sjögren sy

- Multifactorial disease
- Genetic factors and environmental factors
- Infections EBV, retroviruses, HCV
- Predisposition HLA-DR3

Among the frequent autoimmune diseses with F : $M \sim 9:1$)

Patophysiology of SS

- Salivary, lacrimal, and other exocrine glands become infiltrated with CD4+ T cells and with some B cells.
- Antigen specific T cells
 - produce inflammatory cytokines (eg, IL-2, interferon- γ)
 - stimulate inflammatory response
 - Cytokines (TNF, FasL, IL1, IL6)
 - Proteolytic enzymes (MMP3, MMP9)
 - Production of autoantibodies by B cells Damage to the secretory ducts
 - secondary gland dysfunction

Symptoms and signs of SS Glandular

- Keratoconjunctivitis sicca
- Xerostomia
 - dysphagia
 - Secondary infection
 - Tooth decay and loss
 - Sialithiasis
 - Taste disturbances
 - Speech disturbances

Symptoms and signs of SS Glandular

- Keratoconjunctivitis sicca
- Xerostomia
- Dryness of skin (sometimes alopecia)
- Dryness of mucosa (cough)
- Pancreatitis

Symptoms and signs of SS Extraglandular

- Arthralgia (~50% of patients) artritis (~33% of patients)
- Generaliozed lymphadenopathy
- Raynaud syndrome
- Inflammation of tissues and organs
 - lungs
 - kidneys
 - vaskulitis (peripheral neuropathy)
- Lymphomy (NHL 40x more often)

Classification of SS

- Primary SS
- Secondary SS
 - vzniká na podkladě autoimunitních onemocnění pojivových tkání
 - asi 30% pacientů (RA, SLE, sklerodermie, polymyositida)

Biomarkers - autoantibodies

Low sensitivity and specificity

Protilatky anti-Ro60 jsou přítomné v seru pacientů 3-4 roky před rozvojem SLE

Patophysiology of Periodontal diseases

Periodontium

- Consists of the tissues that support
 the teeth
 - Gingiva
 - Cementum
 - Periodontal ligament
 - Alveolar bone
- Functional biologic system
 - Continuous reconstruction
 - Dependent on the presence of tooth

Periodontal diseases

- Diseases affecting gingivae and supporting structures of the teeth
- Classification
 - Gingivitis Acute X Chronic
 - Reversible inflammation
 - Chronic marginal gingivitis (CMG) is the most common
 - inflammatory reaction to the presence of plaque
 - Periodontal disease
 - Adult periodontitis (chronic inflammatory periodontal disease)

Periodontal inflammation

- Frequent disorder (~ 30% of the population between 35-40 is affected)
- Caused by insufficient oral hygiene and presence of dental plaque
- High risk groups:
 - Pregnant females
 - diabetics
 - Immunedeficient individuals (inherited, HIV infection, oncology patients, medication)

Dental plaque - composition

- Dental pellicle
 - protein film on the surface enamel (saliva glycoproteins to prevent continuous deposition of salivary calcium phosphate)
- Mikroorganisms
 - bacteria, mycoplasma species, yeasts, protozoa and viruses.
- Host cells
 - epithelial cells, macrophages, and leukocytes
- The intercellular matrix (20% to 30% of the plaque mass)
 - Organic and inorganic materials derived from saliva, gingival, crevicular fluid, and bacterial products.
Plaque formation

Pelikula (získaná kutikula)

tenká (0,5 až 1 µm) vrstvička vytvářející se na očištěném povrchu zubů během několika minut až hodin. Tvoří ji glykoproteiny adsorbované ze slin.

Dental Calculus (Tartar)

- Hard deposit that forms by mineralization of dental plaque
- Is covered by a layer of unmineralized plaque

Etiology of periodontal disease

Causative bacteria

- Porphyromonas gingivalis
 - adult periodontitis
- Actinobacillus actinomycetemcomitans (Aa)
 - · localized juvenile periodontitis
- Prevonela intermedia
 - acute necrotizing ulcerative gingivitis
- Capnocytophaga
 - periodontal disease in immunedeficient host

Host factors

- HLA association
- > 50% of the periodontal disease is attributable to genetic factors

Porphyromonas gingivalis

- subverts complement and impairs host defence
- overgrowth of oral commensal bacteria dysbiosis
- complement-dependent inflammation
- inflammatory bone resorption provides the dysbiotic microbiota with new niches for colonization
- vicious cycle

Periodontitis development

- I. Initial lesion
- II. Early lesion
- III. Established lesion
- IV. Advanced lesion

Periodontitis– Initial Lesion

- Gingivitis localized inflammation to gingival sulcus
- PMN leucocyte infiltration
- Develop within 2-4 days of plaque accumulation
- Caused by activation of complement
 - alternative pathway (plaque components)
 - classical pathway (antibodies)

Periodontitis- Early Lesion

- Replacement of PMN infiltration by lymphocytes (T cells > B cells ~ 75%)
- About 2 weeks from plaque formation

Periodontitis– Established lesion

- 2 -3 weeks after plaque accumulation
- Plasma cell infiltration (most IgG secretion)
- Loss of collagen within epithelium
- Deepening of gingival sulcus = pocket formation

Periodontitis– Advanced Lesion

- Infiltration with lymphocutes, plasma cells and macrophages
- Destructive state
- Porphyromonas gingivalis
- Pocket formation and ulceration of the pocket epithelium
- destruction of the collagenous periodontal ligament
- significant resorption of bone

Pathophysiology of oral mucosa

Mouth Ulcers

Recurrent Aphthous Stomatitis Chronic Ulcerative Stomatitis

Recurrent Aphthous Stomatitis

- Affect up to 25% of population
- Cause??
 - Familial
 - Trauma, stress, tobacco deficiency/use
 - deficiency: folic acid, vit. B12, Fe
 - Menstrual cycle
 - Drugs (NSAID)
 - Intestinal diseases (CD, UC)
 - HIV infection (depends on the severity of immunodeficiency)

Pathogenesis

- Affects non-keratinized or slightly keratinized parts of oral mucosaizované
- Immune reaction cause damage to oral mucosa epithelial cells
- Forms:
 - minor (~80%)
 - major (ulcerace > 1 cm)
 - herpetiformis (small aphtous lesions in clusters)

Diagnosis

- No standard dg. Test
 - Hematologic evaluation (CBC, Iron, Folic Acid, etc.)
 - Immune system and infectious disease evaluation

Chronic Ulcerative Stomatitis (CUS)

- Known from 1989
- Affects older women

Chronic Ulcerative Stomatitis

- Antinuclear antibodies to squamous epithelia (Squamous epithelia-specific anti-nuclear Ab, SES-ANA)
 - Antibodies to keratinocyte protein KET (related to p53)
 - thymus, epithelial cells

Pathophysiology of tooth diseases

Tooth developmental defects (enamel, dentine) Dental caries (tooth decay)

Developmental defects of tooth enamel

92-96% of enamel consists of minerals – hydroxyapatite, a phosphate and calcium salt
water and organic material

Amelogenesis

- Development proceed via a series of distinct stages
- •

Amelogenisis Imperfecta

Is a disfiguring inherited condition. Occurs in 1 in 1000 -14,000. hypoplastic (thin enamel) hypocalcified (mineralisation defect) hypomaturated

From the radiograph one can note that all of the teeth have the defect of having little or no enamel

X-linked

14 sub types listed. Phenotypes include thin, smooth ,creamy or yellowed appearance, pits, localised. Hypocalcified are prone to caries and fracturing once exposed. Normal enamel 83 –90 % by volume AI hypocalcified enamel 53-50 %

Hypocalcified enamel

Hypoplastic enamel

Developmental defects of tooth dentine

Dentine composition

- Calcified tissue
 - 70% mineral hydroxylapatite
 - 20% organic material
 - 10% water
- Covered by enamel on the crown and cementum on the root
- Dentinogenesis
 - initiated by the odontoblasts of the pulp
 - begins prior to the formation of enamel

Dentinogenesis imperfecta

- estimated 1 in 6,000 to 8,000 people
- Teeth
 - discolored
 - blue-gray or yellow-brown (most often)
 - Translucent
 - weaker than normal
 - prone to rapid wear, breakage, and loss
 - Obliterated pulpal chamber

Three types of dentinogenesis imperfecta

- Type I occurs in people who have osteogenesis imperfecta
 - condition in which bones are brittle and easily broken.
 - caused by mutations in one of several genes (most often the COL1A1 or COL1A2 genes)
- Type II and type III usually occur in people without other inherited disorders
 - Mutations in the dentin sialophosphoprotein (DSPP) gene code for 3 proteins
 - Dentine sialo-, phospho-, glyco-protein
 - More than 20 mutations

Dental Caries

Dental Caries

- Prevalence of caries in developed countries remains at greater than 95% of the population.
- Localized destruction of the tooth by bacterial action
 - Cariogenic bacteria production of acid
 - Carbohydrate in the diet -
 - metabolized by the bacteria
 - to produce acid
 - to produce of extracellular polysacharides (biofilm that helps bacteria colonization on the tooth surface)

The first isolation of cariogenic bacteria

Clark, 1924

Isolation of cariogenic bacteria from caries lesions

Discovery of Mutans streptococci

Caries development

- Causative bacteria
 - Streptococci species
 - S. mutans, S. sorbitus
 - Lactobacilli species
 - L. acidophilus, L. oris, L. salivarius
 - Actinomyces species
 - A. viscosus, A. naeslundi
- Affects enamel and dentine
 - Demineralization by dissolution of the hydroxyapatit crystals by acids
 - Loss of organic components

S. mutans

- Production of extracellular polysacharides from sucrose (insoluble in water)
- Highly acidogenic
- Number of S. mutans bacteria significantly higher in patients with caries (almost all subjects)
- Some lesions can develop in the absence of *S. mutans* (particularly in fissures)
- Occasionally large numbers of S. *mutans* can be found in plaque in the absence of caries

Dental Caries

Enamel Caries

Dentin Caries

Cementum Caries (Root caries)

- 1. The first signs of demineralization.
- 2. A tooth surface without caries.
- 3. The enamel surface has broken down.
- 4. A filling has been made but the demineralization has not been stopped.
- 5. The demineralization proceeds and undermines the tooth.
- 6. The tooth has fractured.

Manifestation of systemic diseases in oral cavity

- Cardiovascular system diseases
 - Cyanosis mucosa and lips
- Liver diseases
 - Jaundice (icterus)
- Protein calorie malnutrition gingivitis, atrophy of tongue papillae, ulcers
- Vitamine deficiecy
- Inflammarory diseases (e.g. Crohn disease, Sjogren sy)
 - aphtouse stomatitis, mucosal edemas, ulcers, xerostomia

Manifestation of Crohn's Disease in Oral Cavity

Oral ulcerations, like in these pictures, were present in 95% of the patients with Crohn's disease 2% of the patients with ulcerous colitis 1% of the normal subjects

Cause: IBD or nutrition defect

pain and eating difficulties

Manifestation of Crohn's Disease in Oral Cavity

Manifestation of systemic diseases in oral cavity

- Cardiovascular system diseases
 - Cyanosis mucosa and lips
- Liver diseases
 - Jaundice (icterus)
- Protein calorie malnutrition gingivitis, atrophy of tongue papillae, ulcers
- Vitamine deficiecy
- Inflammarory diseases (e.g. Crohn disease, Sjogren sy)
 - aphtouse stomatitis, mucosal edemas, ulcers, xerostomia
- Hematologic diseases
 - pale mucosa (anemia)
 - gum bleeding, ulcers, gingiva infiltration with leukemia cells
A 24 year-old female in good health and who had just finished eating lunch when this "popped up"

This raised lesion of the soft palate may be:

- a. traumatic hematoma
- b. systemic problem
- c. melanoma
- d. hemangioma

A 40 year-old male:

- who just recently had his upper teeth removed
- did not have mandibular gingivae in this condition
- he has spontaneous bleeding and feels badly
- he has an abnormally high white blood count

The history and clinical features suggest:

- a. squamouse cell carcinoma
- b. hormonal hyperplasia
- c. hyperplasia due to leukemia
- d. localized gingival hyperplasia due to calculus

Idiopathic purpura and hemorrhagic bullae on the palatal mucosa

What is the diagnosis?

Thrombocytopenia

- manifestation usually when $< 50 \times 10^3$ Plt / μ L
- may be detected initially because of oral lesion development
- Minor trauma to the oral mucosa during routine function (such as chewing or swallowing) may produce various types of hemorrhagic lesions
 - petechiae
 - purpura
 - ecchymosis
 - hemorrhagic bullae
 - hematoma formation
- Gingival bleeding may result from minor trauma or occur spontaneously.

Dysphagia

Dysphagia

- Difficulty with swallowing
 - problems with the transit of food or liquid from the mouth to the hypopharynx or through the esophagus.

Consequences:

- Compromised nutrition
- Aspiration
- Reduced quality of life

Normal transport of an ingested bolus

- depends on:
 - the consistency and size of the bolus
 - the caliber of the lumen
 - the integrity of peristaltic contraction
 - deglutitive inhibition of both the UES and the LES

Additional terminology of swallowing dysfunction

• Aphagia

– complete esophageal obstruction (acute)

Odynophagia

painful swallowing (e.g. mucosal ulceration within the oropharynx or esophagus)

Globus pharyngeus

 foreign body sensation localized in the neck that does not interfere with swallowing and sometimes is relieved by swallowing.

Phagophobia

 fear of swallowing and *refusal to swallow* may be psychogenic or related to anticipatory anxiety about food bolus obstruction, odynophagia, or aspiration

Classification of dysphagia

- By location
 - Oral
 - Pharyngeal
 - Esophageal

Classification of dysphagia

- By circumstances in which it occurs
 - Structural dysphagia
 - oversized bolus
 - narrow lumen
 - Propulsive (motor) dysphagia
 - abnormalities of peristalsis
 - impaired sphincter relaxation after swallowing
 - Combined
 - e.g. scleroderma
 - presents with absent peristalsis as well as a weakened LES that predisposes patients to peptic stricture formation

Oral and Pharyngeal (Oropharyngeal) Dysphagia

- Oral-phase dysphagia
- Pharyngeal-phase dysphagia
- Cause
 - Neurologic (cerebrovascular accidents, Parkinson's disease, and amyotrophic lateral sclerosis)
 - Muscular
 - Structural (Zenker's diverticulum, cricopharyngeal bar, and neoplasia)
 - **latrogenic** (surgery and radiation)
 - Infectious
 - Metabolic causes

Oral-phase dysphagia

- Poor bolus formation and control
- Food has prolonged retention within the oral cavity and may seep out of the mouth
- Drooling and difficulty in initiating swallowing
- Premature spillage of food into the hypopharynx with resultant aspiration into the trachea or regurgitation into the nasal cavity

Pharyngeal-phase dysphagia

 Retention of food in the pharynx due to poor tongue or pharyngeal propulsion or obstruction at the UES

Zenker's diverticulum

- typically is encountered in elderly patients (estimated prevalence between 1:1000 and 1:10,000)
- Manifestation:
 - Dysphagia
 - Regurgitation of particulate food debris
 - Aspiration
 - Halitosis

Pathogenesis of Zenker's diverticulum

- Stenosis of the cricopharyngeus causes diminished opening of the UES
- Results in increased hypopharyngeal pressure during swallowing
- Development of a pulsion diverticulum immediately above the cricopharyngeus in a region of potential weakness (Killian's dehiscence)

Esophageal Dysphagia

- esophagus (18–26 cm x 2 cm x 3 cm) is anatomically divided into:
 - cervical esophagus (pharyngoesophageal junction to the suprasternal notch)
 - thoracic esophagus (to the diaphragmatic hiatus)
- Solid food dysphagia becomes common when the lumen is narrowed to <13 mm
 - can occur with larger diameters in the setting of poorly masticated food or motor dysfunction
- Circumferential lesions are more likely to cause dysphagia than are lesions that involve only a partial circumference of the esophageal wall

Common causes of esophageal dysphagia

- Structural causes
 - Schatzki's rings
 - Eosinophilic esophagitis
 - Peptic strictures
- Propulsive causes
 - abnormalities of peristalsis and/or deglutitive inhibition
 - Striated muscle diseases (usually involves both the oropharynx and the cervical esophagus)
 - Smooth muscle diseases (involve the thoracic esophagus and the LES absent peristalsis)
 - absence of swallow-induced contraction
 - presence of nonperistaltic, disordered contractions.
- Dysphagia also occurs in the setting of gastroesophageal reflux disease without a stricture, perhaps on the basis of altered esophageal sensation, distensibility, or motor function.

Pathophysiology of esophageal diseases

Structural disorders Mobility disorders

Structural disorders of esophagus

- Inflammation
 - acute (GER, bacteria toxins)
 - chronic (GER stenosis scarring, achalasia, tumors)
- Oesophageal ulcers GER, ulcer disease, gastrinoma
- Hiatal hernia
- Rings and webs
- Diverticula
 - may content meal, consequently infection, risk of perforation
- Varices
 - pathogenesis:
 - hypertension in v. portae (cirrhosis, trombus in v. portae
 - possibility of severe bleeding (!!!)
- Tumors
 - benign
 - malignant squamous cell carcinoma, adenocarcinoma

Motility disorders of esophagus

- Gastroesophageal reflux disease (GERD)
- Achalasia
- Difuse esophageal spasm
- Hypertensive esophageal peristaltic contractions (nutcracker esophagus)
- Hypertensive and hypercontracting LES

Mechanisms of LES incompetence in gastroesophageal reflux

- Hypotensive LES
- Increased intragastric pressure (e.g. obesity, pregnancy).
- LES may exhibit frequent reflex transient LES relaxation (TLESR) vagovagal inhibitory reflex
 Dodds WJ et al. N. Engl.J.

Dodds WJ et al. N. Engl J Med. 1982;307(25):1547–1552

Obesity and Gastroesophageal Reflux

GI Motility online (May 2006) | doi:10.1038/gimo21

- Squamous mucosa of esophagus is more vulnerable to peptic digestion than columnar gastric epithelium
- Manifestation
 - Heartburn (pyrosis)
- Consequences
 - Inflammation of esophageal mucosa
 - Barrett's esophagus
 - Esophageal adenocarcinoma
- 7% of the population experiences heartburn daily and 44% at least once a month

SDDW-Post Meeting-Running Order

Esophageal epithelial injury: Acidified pepsin vs acidity alone

Tobey et al, Am J Gastroenterol 2001; 96: 3062

Complications of Gastroesophageal Reflux Disease (GERD)

Reflux esophagitis

Peptic esofageal stricture

Reflux esophagitis Barrett's Esophagus

The squamocolumnar junction is proximal to the gastroesophageal junction

Esophagus: squamous epithelium; Stomach: columnar epithelium

Complications of Gastroesophageal Reflux Disease (GERD)

Barrett's esophagus

Presence of columnar epithelia in the lower esophagus, replacing the normal squamous cell epithelium = **METAPLASIA**

Achalasia

inhibitory neurons, which contain nitric oxide (NO) and vasoactive intestinal peptide (VIP) are slowly destroyed as part of the inflammatory reaction

- Motor disorder
- Involving the lower two thirds (smooth muscle segment) of the esophagus
- Caused by degeneration of intramural myenteric plexus neurons resulting in:
 - Absent peristalsis
 - Failure of deglutitive LES relaxation
- Symptoms
 - dysphagia, chest pain, and regurgitation

To remember

- Xerostomia (causes, consequences)
- Dysphagia (causes)
- Systemic diseases may manifest in oral mucosa (
- Gastroesophageal reflux disease (causes, pathogenesis)

