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Abstract

Structural equation modeling (SEM) is a vast field and widely used by many applied
researchers in the social and behavioral sciences. Over the years, many software pack-
ages for structural equation modeling have been developed, both free and commercial.
However, perhaps the best state-of-the-art software packages in this field are still closed-
source and/or commercial. The R package lavaan has been developed to provide applied
researchers, teachers, and statisticians, a free, fully open-source, but commercial-quality
package for latent variable modeling. This paper explains the aims behind the develop-
ment of the package, gives an overview of its most important features, and provides some
examples to illustrate how lavaan works in practice.
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1. Introduction

This paper describes package lavaan, a package for structural equation modeling implemented
in the R system for statistical computing (R Development Core Team 2012). The package is
available from the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.
org/package=lavaan and supported by the website http://lavaan.org/. lavaan is an
acronym for [atent wvariable analysis, and its name reveals the long-term goal: to provide
a collection of tools that can be used to explore, estimate, and understand a wide family of
latent variable models, including factor analysis, structural equation, longitudinal, multilevel,
latent class, item response, and missing data models (Skrondal and Rabe-Hesketh 2004; Lee
2007; Muthén 2002).

However, the development of lavaan has only begun and much remains to be done to reach
this ambitious goal. To date, the development of lavaan has focused on structural equation
modeling (SEM) with continuous observed variables (Bollen 1989), which is the focus of this
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paper. Structural equation models encompass a wide range of multivariate statistical tech-
niques. The history of the field traces back to three different traditions: (1) path analysis,
originally developed by the geneticist Sewall Wright (Wright 1921), later picked up in sociol-
ogy (Duncan 1966), (2) simultaneous-equation models, as developed in economics (Haavelmo
1943; Koopmans 1945), and (3) factor analysis from psychology (Spearman 1904; Lawley
1940; Anderson and Rubin 1956). The three traditions were ultimately merged in the early
1970s and although many different researchers have made significant contributions (Jéreskog
1970; Hauser and Goldberger 1971; Zellner 1970; Keesling 1973; Wiley 1973; Browne 1974),
it was the work of Karl Joreskog (Joreskog 1973), that came to dominate the field. Not least
because he (together with Dag Sérbom) developed a computer program called LISREL (for
LInear Structural RELations), providing many applied researchers access to this new and
exciting field of structural equation modeling. From 1974 onwards, LISREL was distributed
commercially by Scientific Software International. In the following decades, the wide avail-
ability of LISREL initiated a methodological revolution in the social and behavioral sciences.
Today, almost four decades later, LISREL 8 (Joreskog and S6rbom 1997) is still one of the
most widely used software packages for structural equation modeling.

In the years after the birth of LISREL, many technical advances were made and several new
software packages for structural equation modeling were developed. Some of the more popular
ones that are still in wide use today are EQS (Bentler 2004), AMOS (Arbuckle 2011) and
Mplus (Muthén and Muthén 2010), all of which are commercial. The few non-commercial
SEM programs outside the R environment are Mx (Neale, Boker, Xie, and Maes 2003) (free,
but closed-source), and gllamm, which is implemented in Stata (Rabe-Hesketh, Skrondal, and
Pickles 2004).

Within the R environment, there are two approaches to estimate structural equation models.
The first approach is to connect R with external commercial SEM programs. This is often
useful in simulation studies where fitting a model with SEM software is one part of the
simulation pipeline (see, for example, van de Schoot, Hoijtink, and Dekovié¢ 2010). During
one run of the simulation, syntax is written to a file in a format that can be read by the
external SEM program (say, Mplus or EQS); the model is fitted by the external SEM program
and the resulting output is written to a file that needs to be parsed manually to extract the
relevant information for the study at hand. Depending on the SEM program, the connection
protocols can be tedious to set up. Fortunately, two R packages have been developed to ease
this process: MplusAutomation (Hallquist 2012) and REQS (Mair, Wu, and Bentler 2010), to
communicate with the Mplus and EQS program respectively. The second approach is to use
a dedicated R package for structural equation modeling. At the time of writing, apart from
lavaan, there are two alternative packages available. The sem package, developed by John
Fox, has been around since 2001 (Fox, Nie, and Byrnes 2012; Fox 2006) and for a long time, it
was the only package for SEM in the R environment. The second package is OpenMx (Boker,
Neale, Maes, Wilde, Spiegel, Brick, Spies, Estabrook, Kenny, Bates, Mehta, and Fox 2011),
available from http://openmx.psyc.virginia.edu/. As the name of the package suggests,
OpenMx is a complete rewrite of the Mx program, consisting of three parts: a front end in
R, a back end written in C, and a third-party commercial optimizer (NPSOL). All parts of
OpenMx are open-source, except of course the NPSOL optimizer, which is closed-source.

The rest of the paper is organized as follows. First, I describe why I began developing
lavaan and how my initial objectives impacted the software design. Next, I illustrate the
most characteristic feature of lavaan: the ‘lavaan model syntax’. In the sections that follow,
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I present two well-known examples from the SEM literature (a CFA example, and a SEM
example) to illustrate the use of lavaan in practice. Next, I discuss the use of multiple groups,
and in the last section before the conclusion, I provide a brief summary of features included
in lavaan that may be of interest to applied researchers.

2. Why do we need lavaan?

As described above, many SEM software packages are available, both free and commercial,
including a couple of packages that run in the R environment. Why then is there a need for
yet another SEM package? The answers to this question are threefold:

1. lavaan aims to appeal to a large group of applied researchers that needs SEM software
to answer their substantive questions. Many applied researchers have not previously
used R and are accustomed to commercial SEM programs. Applied researchers often
value software that is intuitive and rich with modeling features, and lavaan tries to fulfill
both of these objectives.

2. lavaan aims to appeal to those who teach SEM classes or SEM workshops; ideally,
teachers should have access to an easy-to-use, but complete, SEM program that is
inexpensive to install in a computer classroom.

3. lavaan aims to appeal to statisticians working in the field of SEM. To implement a new
methodological idea, it is advantageous to have access to an open-source SEM program
that enables direct access to the SEM code.

The first aim is arguably the most difficult one to achieve. If we wish to convince users of
commercial SEM programs to use lavaan, there must be compelling reasons to switch. That
lavaan is free is often irrelevant. What matters most to many applied researchers is that
(1) the software is easy and intuitive to use, (2) the software has all the features they want,
and (3) the results of lavaan are very close, if not identical, to those reported by their current
commercial program. To ensure that the software is easy and intuitive to use, I developed the
‘lavaan model syntax’ which provides a concise approach to fitting structural equation models.
Two features that many applied researchers often request are support for non-normal (but
continuous) data, and handling of missing data. Both features have received careful attention
in lavaan. And lastly, to ensure that the results reported by lavaan are comparable to the
output of commercial programs, all fitting functions in lavaan contain a mimic option. If mimic
= "Mplus", lavaan makes an effort to produce output that resembles the output of Mplus,
both numerically and visually. If mimic = "EQS", lavaan produces output that approaches
the output of EQS, at least numerically (not visually). In future releases of lavaan, we plan
to add mimic = "LISREL" and mimic = "AMOS" (but users of those programs can currently
use mimic = "EQS" as a proxy for those).

The second aim targets those of us that teach SEM techniques in classes or workshops. For
teachers, the fact that lavaan is free is important. If the software is free, there is no longer a
need to install limited ‘student-versions’ of the commercial programs to accompany the SEM
course. Of course, teachers will also appreciate an easy and intuitive user experience, so that
they can spend more time discussing and interpreting the substantive results of a SEM anal-
ysis, instead of expending time explaining the awkward model syntax of a specific program.
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Finally, the mimic option makes a smooth transition possible from lavaan to one of the major
commercial programs, and back. Therefore, students who received initial instruction in SEM
with lavaan should have little difficulty using other (commercial) SEM programs in the future.

The third aim targets professional statisticians working in the field of structural equation
modeling. For too long, this field has been dominated by closed-source commercial software.
In practice, this meant that many of the technical contributions in the field were realized by
those research groups (and their collaborators) that had access to the source code of one of the
commercial programs. They could use the infrastructure that was already there to implement
and evaluate their newest ideas. Outsiders were forced to write their own software. Some
of them, faced with the enormous time-investment that is needed for writing SEM software
from scratch, may have given up, and changed their research objectives altogether. Indeed, it
seems unfortunate that new developments in this field have potentially been hindered by the
lack of open-source software that researchers can use, and reuse, to bring computational and
statistical advances to the field. This is in sharp contrast to other fields such as statistical
genetics or neuroimaging, where nearly exponential progress has been made in part because
both fields rely heavily on, and are driven by, open-source packages. Therefore, I chose to
keep lavaan fully open-source, without any dependencies on commercial and/or closed-source
components. In addition, the design of lavaan is extremely modular. Adding a new function
for computing standard errors, for example, would require just two steps: (1) adding the
new function to the source file containing all the other functions for computing various types
of standard errors, and (2) adding an option to the se argument in the fitting functions of
lavaan, allowing the user to request this new type of standard errors.

3. From model to syntax

Path diagrams are often a starting point for applied researchers seeking to fit a SEM model
(see Figure 2 for an example). Informally, a path diagram is a schematic drawing that
represents a concise overview of the model the researcher aims to fit. It includes all the
relevant observed variables (typically represented by square boxes) and the latent variables
(represented by circles), with arrows that illustrate the (hypothesized) relationships among
these variables. A direct effect of one variable on another is represented by a single-headed
arrow, while (unexplained) correlations between variables are represented by double-headed
arrows. The main problem for the applied researcher is typically to convert this diagram into
the appropriate input expected by the SEM program. In addition, the researcher has to take
extra care to ensure the model is identifiable and estimable.

3.1. Specifying models in commercial SEM programs

In the early days of SEM, the only way to specify a model was by setting up the model matrices
directly. This was the case for LISREL, and many generations of SEM users (including the
author of this paper) have come to associate the practice of SEM modeling with setting up a
LISREL syntax file. This required a good grasp of the underlying theory, and — for some — an
incentive to review the Greek alphabet once more. For many first time users, the translation
of their diagram directly to LISREL syntax was an unpleasant experience. And it added to
the still wide-spread belief that SEM modeling is something that should be left to experts,
well-versed in matrix algebra (and the Greek alphabet).
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In the mid-1980s, EQS was the first program to offer a matrix-free model specification. The
EQS model syntax distinguishes among four fundamental variable types: (1) measured vari-
ables, (2) latent variables or factors, (3) measured variable residuals or errors, and (4) latent
variable residuals or disturbances. The four types are labeled V, F, E and D respectively.
Rather than providing a full model matrix specification, users needed only to identify these
four types of variables and their relations. For many applied researchers, this was a giant
leap forward, and the EQS program quickly became successful. Soon after, this regression-
oriented approach was adopted by many other programs (including LISREL, which introduced
the SIMPLIS language with LISREL 8).

In the 1990s, the rise of operating systems with a graphical user interface led to a new evolution
in the SEM world. The AMOS program, originally developed by James L. Arbuckle, offered
a comprehensive graphical interface that allowed users to specify their model by drawing
its path diagram. There is no doubt that this approach was very appealing to many SEM
users, and again, many commercial SEM packages (including EQS and LISREL) added similar
capabilities to their programs.

But a pure graphical approach is not without its limitations. Sometimes, it can be very
tedious to draw each and every element of a path diagram, especially for large models. In
addition, many (advanced) features do not translate easily in a graphical environment. For
example, how do you specify nonlinear inequality constraints without relying on additional
syntax? Although a graphical interface may be excellent as a teaching tool, or as an entry
point for first-time users, an accessible text-based syntax may ultimately be more convenient.
This is the approach used by Mplus. In the Mplus program, no graphical interface is available
to specify the model, yet many models can be specified in a very concise and compact way.
Only the core measurement and structural parameters of a model need to be specified. For
example, in Mplus, there is no need to list all the residual variances that are part of the
model. Mplus will add these parameters automatically, keeping the syntax short and easy to
understand.

3.2. Specifying models in lavaan

In the lavaan package, models are specified by means of a powerful, easy-to-use text-based
syntax describing the model, referred to as the ‘lavaan model syntax’. Consider a simple
regression model with a continuous dependent variable y, and four independent variables x,
x2, x3 and x4. The usual regression model can be written as follows:

Yi = Bo + P1x1i + Paxa; + P3x3i + Paxai + €

where [ is called the intercept, 51 to B4 are the regression coefficients for each of the four
variables, and ¢; is the residual error for observation i. One of the attractive features of the
R environment is the compact way we can express a regression formula like the one above:

y 7 x1l +x2 + x3 + x4

In this formula, the tilde sign (‘~’) is the regression operator. On the left-hand side of
the operator, we have the dependent variable (y), and on the right-hand side, we have the
independent variables, separated by the ‘+” operator. Note that the intercept is not explicitly
included in the formula. Nor is the residual error term. But when this model is fitted (say,
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using the 1m() function), both the intercept and the variance of the residual error will be
estimated. The underlying logic, of course, is that an intercept and residual error term are
(almost) always part of a (linear) regression model, and there is no need to mention them in
the regression formula. Only the structural part (the dependent variable, and the independent
variables) needs to be specified, and the 1m() function takes care of the rest.

One way to look at SEM models is that they are simply an extension of linear regression. A
first extension is that you can have several regression equations at the same time. A second
extension is that a variable that is an independent (exogenous) variable in one equation can
be a dependent (endogenous) variable in another equation. It seems natural to specify these
regression equations using the same syntax as used for a single equation in R; we only have
more than one of them. For example, we could have a set of three regression equations:

yl 7 x1 + x2 + x3 + x4
y2 7 x5 + x6 + x7 + x8
y3 7yl + y2

This is the approach taken by lavaan. Multiple regression equations are simply a set of
regression formulas, using the typical syntax of an R formula.

A third extension of SEM models is that they include continuous latent variables. In lavaan,
any regression formula can contain latent variables, both as a dependent or as an independent
variable. For example, in the syntax shown below, the variables starting with an ‘f’ are latent
variables:

y 7 fl + £2 + x1 + x2
f1 7 x1 + x2

This part of the model syntax would correspond with the ‘structural part’ of a SEM model.
To describe the ‘measurement part’ of the model, we need to specify the (observed or latent)
indicators for each of the latent variables. In lavaan, this is done with the special operator
‘=""_which can be read as is manifested by. The left-hand side of this formula contains the
name of the latent variable. The right-hand side contains the indicators of this latent variable,
separated by the ‘+’ operator. For example:

f1 =" iteml + item2 + item3
f2 =" item4 + itemb + itemb6 + item7
f3 =" f1 + £2

In this example, the variables item1 to item7 are observed variables. Therefore, the latent
variables f1 and f2 are first-order factors. The latent variable £3 is a second-order factor,
since all of its indicators are latent variables themselves.

[Radiadd]

To specify (residual) variances and covariances in the model syntax, lavaan provides the
operator. If the variable name at the left-hand side and the right-hand side are the same,
it is a variance. If the names differ, it is a covariance. The distinction between residual
(co)variances and non-residual (co)variances is made automatically. For example:

iteml 7 iteml # variance
iteml 77 item?2 # covariance
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Formula type Operator Mnemonic
Latent variable =" is manifested by
Regression - is regressed on
(Residual) (co)variance . is correlated with
Intercept "1 intercept

Defined parameter = is defined as
Equality constraint == is equal to

is smaller than
is larger than

Inequality constraint
Inequality constraint

Table 1: Top panel of the table contains the four formula types that can be used to specify
a model in the lavaan model syntax. The lower panel contains additional operators that are
allowed in the lavaan model syntax.

Finally, intercepts for observed and latent variables are simple regression formulas (using
the ‘~’ operator) with only an intercept (explicitly denoted by the number ‘1’) as the only
predictor:

iteml 1 # intercept of an observed variable
f1 71 # intercept of a latent variable

Using these four formula types, a large variety of latent variable models can be described. For
reference, we summarize the four formula types in the top panel of Table 1.

A typical model syntax describing a SEM model will contain multiple formula types. In lavaan,
to glue them together, they must be specified as a literal string. In the R environment, this
can be done by enclosing the formula expressions with (single) quotes. For example,

myModel <- '# regressions

y 7 f1 + f2
y 7 xl + x2
f1 7 x1 + x2
# latent variables
fl =7 iteml + item2 + item3
f2 =7 item4 + itemb +

item6 + item7
£f3 =7 f1 + £2

# (residual) variances and covariances

iteml 7 iteml

iteml 77 item?2
# intercepts

iteml ~ 1

f1 -1

This piece of code will produce a model syntax object called myModel that can be used later
when calling a function that estimates this model given a dataset, and it illustrates several
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features of the lavaan model syntax. Formulas can be split over multiple lines, and you can
use comments (starting with the ‘#’ character) and blank lines within the single quotes to
improve readability of the model syntax. The order in which the formulas are specified does
not matter. Therefore, you can use the latent variables in the regression formulas even before
they are defined by the ‘=" operator. And finally, since this model syntax is nothing more
than a literal string, you can type the syntax in a separate text file and use a function like
readLines () to read it in. Alternatively, the text processing infrastructure of R may be used
to generate the syntax for a variety of models, perhaps when running a large simulation study.

4. A first example: Confirmatory factor analysis

The lavaan package contains a built-in dataset called HolzingerSwineford1939. We therefore
start with loading the lavaan package:

R> library("lavaan")

The Holzinger & Swineford 1939 dataset is a ‘classic’ dataset that has been used in many
papers and books on structural equation modeling, including some manuals of commercial
SEM software packages. The data consists of mental ability test scores of seventh- and eighth-
grade children from two different schools (Pasteur and Grant-White). In our version of the
dataset, only 9 out of the original 26 tests are included. A CFA model that is often proposed
for these 9 variables consists of three correlated latent variables (or factors), each with three
indicators:

¢ a visual factor measured by 3 variables: x1, x2 and x3,
e a texrtual factor measured by 3 variables: x4, x5 and x6,

e a speed factor measured by 3 variables: x7, x8 and x9.

x1

X2

x3

x4

x5

x6

X7

x8 speed

x9

Figure 1: Path diagram of the three factor model for the Holzinger & Swineford data.



Journal of Statistical Software 9

id lhs op rhs user free ustart
1 visual =" x1 1 0 1
2  visual =~ x2 1 1 NA
3 visual ="~ x3 1 2 NA
4 textual =" x4 1 0 1
5 textual =" x5 1 3 NA
6 textual =" x6 1 4 NA
7 speed =" X7 1 0 1
8 speed =" x8 1 5 NA
9 speed =" x9 1 6 NA

10 x1 7 x1 0 7 NA

11 x2 7 x2 0 8 NA

12 x3 7 x3 0 9 NA

13 x4 ~7 x4 0 10 NA

14 x5 "7 x5 0 11 NA

15 x6 "7 X6 0 12 NA

16 X7 77 X7 0 13 NA

17 x8 ~7 x8 0 14 NA

18 x9 ~° x9 0 15 NA

19  wvisual ~~ visual 0 16 NA

20 textual ~~ textual 0 17 NA

21 speed "~ speed 0 18 NA

22  visual ~~ textual 0 19 NA

23 wvisual ~~ speed 0 20 NA

24  textual ~~ speed 0 21 NA

Table 2: A complete list of all parameters in the three-factor CFA model for the Holzinger &
Swineford data.

In what follows, we will refer to this 3 factor model as the ‘H&S model’, graphically rep-
resented in Figure 1. Note that the path diagram in the figure is simplified: it does not
indicate the residual variances of the observed variables or the variances of the exogenous
latent variables. Still, it captures the essence of the model. Before discussing the lavaan
model syntax for this model, it is worthwhile first to identify the free parameters in this
model. There are three latent variables (factors) in this model, each with three indicators,
resulting in nine factor loadings that need to be estimated. There are also three covariances
among the latent variables — another three parameters. These 12 parameters are represented
in the path diagram as single-headed and double-headed arrows, respectively. In addition,
however, we need to estimate the residual variances of the nine observed variables and the
variances of the latent variables, resulting in 12 additional free parameters. In total we have
24 parameters. But the model is not yet identified because we need to set the metric of the
latent variables. There are typically two ways to do this: (1) for each latent variable, fix
the factor loading of one of the indicators (typically the first) to a constant (conventionally,
1.0), or (2) standardize the variances of the latent variables. Either way, we fix three of these
parameters, and 21 parameters remain free. Table 2, produced by the parTable() method,
contains an overview of all the relevant parameters for this model, including three fixed factor
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loadings. Each row in the table corresponds to a single parameter. The ‘rhs’, ‘op’ and ‘lhs’
columns uniquely define the parameters of the model. All parameters with the ‘=" operator
are factor loadings, whereas all parameters with the <~~’
The nonzero elements in the ‘free’ column are the free parameters of the model. The zero
elements in the ‘free’ column correspond to fixed parameters, whose value is found in the
‘ustart’ column. The meaning of the ‘user’ column will be explained below.

operator are variances or covariances.

4.1. Specifying a model using the lavaan model syntax

There are three approaches in lavaan to specify a model. In the first approach, a minimal
description of the model is given by the user and the remaining elements are added automat-
ically by the program. This ‘user-friendly’ approach is implemented in the fitting functions
cfa() and sem(). In the second approach, a complete explication of all model parameters
must be provided by the user — nothing is added automatically. This is the ‘power-user’ ap-
proach, implemented in the function lavaan(). Finally, in a third approach, the minimalist
and complete approaches are blended by providing an incomplete description of the model in
the model syntax, but adding selected groups of parameters using the auto.* arguments of
the lavaan function. We illustrate and discuss each of these approaches in turn.

Method 1: Using the cfa() and sem() functions

In the first approach, the idea is that the model syntax provided by the user should be as
concise and intelligible as possible. To accomplish this, typically only the latent variables
(using the ‘="" operator) and regressions (using the ‘~’ operator) are included in the model
syntax. The other model parameters (for this model: the residual variances of the observed
variables, the variances of the factors and the covariances among the factors) are added
automatically. Since the H&S example contains three latent variables, but no regressions, the

minimalist syntax is very short:

(~

R> HS.model <- 'visual =" x1 + x2 + x3
+ textual =" x4 + x5 + x6
+ speed =" x7 + x8 + x9'

We can now fit the model as follows:
R> fit <- cfa(HS.model, data = HolzingerSwineford1939)

The function cfa() is a dedicated function for fitting confirmatory factor analysis (CFA)
models. The first argument is the object containing the lavaan model syntax. The second
argument is the dataset that contains the observed variables. The ‘user’ column in Table 2
shows which parameters were explicitly contained in the user-specified model syntax (= 1),
and which parameters were added by the cfa() function (= 0). If a model has been fitted,
it is always possible (and highly informative) to inspect this parameter table by using the
following command:

parTable(fit)

When using the cfa() (or sem()) function, several sets of parameters are included by de-
fault. A complete list of these parameter sets is provided in the top panel of Table 3. In
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Keyword Operator Parameter set
auto.var a (residual) variances observed and latent variables
auto.cov.y - (residual) covariances observed and latent endogenous

variables

auto.cov.lv.x covariances among exogenous latent variables

Keyword Default Action

auto.fix.first TRUE fix the factor loading of the first indicator to 1

auto.fix.single TRUE fix the residual variance of a single indicator to 0

int.ov.free TRUE freely estimate the intercepts of the observed variables
(only if a mean structure is included)

int.lv.free FALSE freely estimate the intercepts of the latent variables (only

if a mean structure is included)

Table 3: Top panel: Sets of parameters that are automatically added to the model repre-
sentation when the functions cfa() or sem() are used. Bottom panel: The set of actions
automatically taken in an attempt to fulfill the minimum requirements for an identifiable
model. These defaults are used by the cfa() or sem() functions only.

addition, several steps are taken in an attempt to fulfill the minimum requirements for an
identifiable model. These steps are listed in the bottom panel of Table 3. In our example,
only the first action (fixing the factor loadings of the first indicator) is used. The second one
(auto.fix.single) is only needed if the model contains a latent variable that is manifested
by a single indicator. The third and the fourth actions (int.ov.free and int.lv.free,
respectively) are only needed if a mean structure is added to the model.

Before we move on to the next method, it is important to stress that all of these ‘automatic’
actions can be overridden. The model syntax always has precedence over the automatically
generated actions. If, for example, one wishes not to fix the factor loadings of the first
indicator, but instead to fix the variances of the latent variances, the model syntax would be
adapted as follows:

R> HS.model.bis <- 'visual =" NA*x1 + x2 + x3
+ textual =~ NA*x4 + x5 + x6
+ speed =" NA*x7 + x8 + x9
+ visual ~7 1*visual

+ textual ~7 1x*textual

+ speed 7 1*speed'’

As illustrated above, model parameters are fixed by pre-multiplying them with a numeric
value, and otherwise fixed parameters are freed by pre-multiplying them with ‘NA’. The
model syntax above overrides the default behavior of fixing the first factor loading and es-
timating the factor variances. In practice, however, a much more convenient method to use
this parameterization is to keep the original syntax, but add the std.1lv = TRUE argument
to the cfa() function call:

R> fit <- cfa(HS.model, data = HolzingerSwineford1939, std.lv = TRUE)

11
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Method 2: Using the lavaan() function

In many situations, using the concise model syntax in combination with the cfa() and sem()
functions is extremely convenient, particularly for many conventional models. But sometimes,
these automatic actions may get in the way, especially when non-standard models need to be
specified. For these situations, users may prefer to use the lavaan() function instead. The
lavaan() function has the ‘feature’ that it does not add any extra parameters to the model
by default, nor does it attempt to make the model identifiable. If the lavaan() function is
called without any use of the auto.* arguments, it becomes the user’s responsibility to specify
the correct model syntax. This can lead to lengthier model specifications, but the user has
full control. For the H&S model, the full lavaan model syntax would be:

R> HS.model.full <- '# latent variables

+ visual =" 1x*x1 + x2 + x3
+ textual =" 1*x4 + x5 + x6
+ speed =" 1*x7 + x8 + x9
+ # residual variances observed variables
+ x1 77 x1

+ x2 77 x2

+ x3 77 x3

+ x4 77 x4

+ x5 77 x5

+ x6 77 x6

+ X7 77 x7

+ x8 77 x8

+ x9 77 x9

+ # factor variances

+ visual ~7 visual

+ textual ~7 textual

+ speed ~~ speed

+ # factor covariances

+ visual ~7 textual + speed
+ textual "7 speed’

R> fit <- lavaan(HS.model.full, data = HolzingerSwineford1939)

Method 3: Using the lavaan() function with the auto.* arguments

When using the lavaan() function, the user has full control, but the model syntax may be-
come long and contain many formulas that could easily be added automatically. To compro-
mise between a complete model specification using lavaan syntax and the automatic addition
of certain parameters, the lavaan() function provides several optional arguments that can be
used to add a particular set of parameters to the model, or to fix a particular set of parameters
(see Table 3). For example, in the model syntax below, the first factor loadings are explicitly
fixed to one, and the covariances among the factors are added manually. It would be more
convenient and concise, however, to omit the residual variances and factor variances from the
model syntax. The following model syntax and call to lavaan() achieves this:
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R> HS.model.mixed <- '# latent variables

visual =7 1*x1 + x2 + x3
textual =" 1*x4 + x5 + x6
speed =7 1*x7 + x8 + x9

# factor covariances

textual + speed

textual 7 speed’

R> fit <- lavaan(HS.model.mixed, data = HolzingerSwineford1939,
+ auto.var = TRUE)

visual

+ + + + + +

4.2. Examining the results

All three methods described above fit the same model. The cfa(), sem() and lavaan()
fitting functions all return an object of class “lavaan”, for which several methods are available
to examine model fit statistics and parameters estimates. Table 4 contains an overview of
some of these methods.

The summary () method

Perhaps the most useful method to view results from a SEM fitted with lavaan is summary ().
The summary() method can be called without any extra arguments, in which case only a
short description of the model fit is displayed, together with the parameter estimates. Some
extra arguments of the summary () method are fit.measures, standardized, and rsquare.

Method Description

summary () print a long summary of the model results

show () print a short summary of the model results

coef () returns the estimates of the free parameters in the model as a named
numeric vector

fitted() returns the implied moments (covariance matrix and mean vector) of the
model

resid() returns the raw, normalized or standardized residuals (difference between
implied and observed moments)

veov () returns the covariance matrix of the estimated parameters

predict () compute factor scores

logLik () returns the log-likelihood of the fitted model (if maximum likelihood es-

timation was used)
AIC(), BIC() compute information criteria (if maximum likelihood estimation was

used)
update () update a fitted lavaan object
inspect () peek into the internal representation of the model; by default, it returns

a list of model matrices counting the free parameters in the model; can
also be used to extract starting values, gradient values, and much more

Table 4: Some methods for objects of class “lavaan”. See the help page for the lavaan class
for more details (type class?lavaan at the R prompt).

13
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If one or more of these is set to TRUE, the output will be enriched with additional fit mea-
sures, standardized estimates, and R? values for the dependent variables, respectively. In the
example below, we request only the additional fit measures.

R> HS.model <- 'visual =" x1 + x2 + x3
+ textual =" x4 + x5 + x6
+ speed =" x7 + x8 + x9'

R> fit <- cfa(HS.model, data = HolzingerSwineford1939)
R> summary(fit, fit.measures = TRUE)

lavaan (0.4-14) converged normally after 41 iterations

Number of observations 301
Estimator ML
Minimum Function Chi-square 85.306
Degrees of freedom 24
P-value 0.000

Chi-square test baseline model:

Minimum Function Chi-square 918.852
Degrees of freedom 36
P-value 0.000

Full model versus baseline model:

Comparative Fit Index (CFI) 0.931
Tucker-Lewis Index (TLI) 0.896

Loglikelihood and Information Criteria:

Loglikelihood user model (HO) -3737.745
Loglikelihood unrestricted model (H1) -3695.092
Number of free parameters 21
Akaike (AIC) 7517.490
Bayesian (BIC) 7595.339
Sample-size adjusted Bayesian (BIC) 7528.739

Root Mean Square Error of Approximation:

RMSEA 0.092
90 Percent Confidence Interval 0.071 0.114
P-value RMSEA <= 0.05 0.001

Standardized Root Mean Square Residual:
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SRMR 0.065
Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(|z])
Latent variables:

visual ="

x1 1.000

x2 0.553 0.100 5.554 0.000

x3 0.729 0.109 6.685 0.000
textual =~

x4 1.000

x5 1.113 0.065 17.014 0.000

x6 0.926 0.055 16.703 0.000
speed ="

x7 1.000

x8 1.180 0.165 7.152 0.000

x9 1.082 0.151 7.155 0.000

Covariances:

visual 7~

textual 0.408 0.074 5.552 0.000

speed 0.262 0.056 4.660 0.000
textual 77

speed 0.173 0.049 3.518 0.000

Variances:

x1 0.549 0.114

x2 1.134 0.102

x3 0.844 0.091

x4 0.371 0.048

x5 0.446 0.058

x6 0.356 0.043

x7 0.799 0.081

x8 0.488 0.074

x9 0.566 0.071

visual 0.809 0.145

textual 0.979 0.112

speed 0.384 0.086

The output consists of three sections. The first section (the first 6 lines) contains the package
version number, an indication whether the model has converged (and in how many iterations),
and the effective number of observations used in the analysis. Next, the model x? test statistic,
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degrees of freedom, and a p value are printed. If fit.measures = TRUE, a second section is
printed containing the test statistic of the baseline model (where all observed variables are
assumed to be uncorrelated) and several popular fit indices. If maximum likelihood estimation
is used, this section will also contain information about the loglikelihood, the AIC, and the
BIC. The third section provides an overview of the parameter estimates, including the type
of standard errors used and whether the observed or expected information matrix was used
to compute standard errors. Then, for each model parameter, the estimate and the standard
error are displayed, and if appropriate, a z value based on the Wald test and a corresponding
two-sided p value are also shown. To ease the reading of the parameter estimates, they
are grouped into three blocks: (1) factor loadings, (2) factor covariances, and (3) (residual)
variances of both observed variables and factors.

The parameterEstimates() method

Although the summary () method provides a nice summary of the model results, it is useful
for display only. An alternative is the parameterEstimates() method, which returns the
parameter estimates as a data.frame, making the information easily accessible for further
processing. By default, the parameterEstimates () method includes the estimates, standard
errors, z value, p value, and 95% confidence intervals for all the model parameters.

R> parameterEstimates(fit)

lhs op rhs est se z pvalue ci.lower ci.upper
1 visual =" x1 1.000 0.000 NA NA 1.000 1.000
2 visual =" x2 0.553 0.100 5.554 0 0.358 0.749
3 visual =" x3 0.729 0.109 6.685 0 0.516 0.943
4 textual =" x4 1.000 0.000 NA NA 1.000 1.000
5 textual =" x5 1.113 0.065 17.014 0 0.985 1.241
6 textual =" x6 0.926 0.055 16.703 0 0.817 1.035
7 speed =" x7 1.000 0.000 NA NA 1.000 1.000
8 speed =~ x8 1.180 0.165 7.152 0 0.857 1.503
9 speed =" x9 1.082 0.1561 7.155 0 0.785 1.378
10 x1l 7~ x1 0.549 0.114 4.833 0 0.326 0.772
11 x2 77 x2 1.134 0.102 11.146 0 0.934 1.333
12 x3 77 x3 0.844 0.091 9.317 0 0.667 1.022
13 x4 7 x4 0.371 0.048 7.779 0 0.278 0.465
14 xb 77 x5 0.446 0.058 7.642 0 0.332 0.561
15 x6 77 x6 0.356 0.043 8.277 0 0.272 0.441
16 X7 °7 x7 0.799 0.081 9.823 0 0.640 0.959
17 x8 7 x8 0.488 0.074 6.573 0 0.342 0.633
18 x9 77 x9 0.566 0.071 8.003 0 0.427 0.705
19 wvisual 7 visual 0.809 0.145 5.564 0 0.524 1.094
20 textual ~7 textual 0.979 0.112 8.737 0 0.760 1.199
21  speed ~ speed 0.384 0.086 4.451 0 0.215 0.553
22 visual "7 textual 0.408 0.074 5.552 0 0.264 0.552
23 visual ~ speed 0.262 0.056 4.660 0 0.152 0.373
24 textual ~7 speed 0.173 0.049 3.518 0 0.077 0.270
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The confidence level can be changed by setting the level argument. Setting ci = FALSE sup-
presses the confidence intervals. Another use of this function is to obtain several standardized
versions of the estimates, by setting standardized = TRUE:

R> Est <- para.meterEstimates(fit, ci = FALSE, standardized = TRUE)
R> subset (Est’ op == n="n)

lhs op rhs est se z pvalue std.lv std.all std.nox
1 wvisual =~ x1 1.000 0.000 NA NA 0.900 0.772 0.772
2 wvisual =7 x2 0.553 0.100 5.554 0 0.498 0.424 0.424
3 wvisual =7 x3 0.729 0.109 6.685 0 0.656 0.581 0.581
4 textual =~ x4 1.000 0.000 NA NA 0.990 0.852 0.852
5 textual =~ x5 1.113 0.065 17.014 0 1.102 0.855 0.855
6 textual = x6 0.926 0.055 16.703 0 0.917 0.838 0.838
7 speed =7 x7 1.000 0.000 NA NA 0.619 0.570 0.570
8 speed =7 x8 1.180 0.165 7.152 0 0.731 0.723 0.723
9 speed =7 x9 1.082 0.151 7.155 0 0.670 0.665 0.665

Here, only the factor loadings are shown. Relative to the prior output, three columns with
standardized values were added. In the first column (std.lv), only the latent variables
have been standardized; in the second column (std.all), both the latent and the observed
variables have been standardized; in the third column (std.nox), both the latent and the
observed variables have been standardized, except for the exogenous observed variables. The
last of these options may be useful if the standardization of exogenous observed variables has
little meaning (for example, binary covariates). Since there are no exogenous covariates in
this model, the last two columns are identical in this output.

The modificationIndices() method

If the model fit is not superb, it may be informative to inspect the modification indices (MIs)
and their corresponding expected parameter changes (EPCs). In essence, modification indices
provide a rough estimate of how the x? test statistic of a model would improve, if a particular
parameter were unconstrained. The expected parameter change is the value this parameter
would have if it were included as a free parameter. The modificationIndices() method (or
the alias with the shorter name, modindices()) will print out a long list of parameters as a
data.frame. In the output below, we only show those parameters for which the modification
index is 10 or higher.

R> MI <- modificationIndices(fit)
R> subset(MI, mi > 10)

1lhs op rhs mi epc sepc.lv sepc.all sepc.nox
1 visual =~ x7 18.631 -0.422 -0.380 -0.349 -0.349
2 visual =~ x9 36.411 0.577 0.519 0.515 0.515
3 X7 77 x8 34.145 0.536 0.536 0.488 0.488
4 x8 77 x9 14.946 -0.423 -0.423 -0.415 -0.415

The last three columns contain the standardized EPCs, using the same standardization con-
ventions as for ordinary parameter estimates.
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y1 x1 x2 x3

y3 dem60

Figure 2: Path diagram of the structural equation model used to fit the Political Democracy
data.

5. A second example: Structural equation modeling

In our second example, we will explore the ‘Industrialization and Political Democracy’ dataset
previously used by Bollen in his 1989 book on structural equation modeling (Bollen 1989),
and included with lavaan in the PoliticalDemocracy data.frame. The dataset contains
various measures of political democracy and industrialization in developing countries. In the
model, three latent variables are defined. The focus of the analysis is on the structural part
of the model (i.e., the regressions among the latent variables). A graphical representation of
the model is depicted in Figure 2.

5.1. Specifying and fitting the model, examining the results

For this example, we will only use the user-friendly sem() function to keep the model syntax
as concise as possible. To describe the model, we need three different formula types: latent
variables, regression formulas, and (co)variance formulas for the residual covariances among
the observed variables. After the model has been fitted, we request a summary with no fit
measures, but with standardized parameter estimates.

R> model <- '
# measurement model
ind60 =" x1 + x2 + x3
dem60 =" y1 + y2 + y3 + y4
dem65 =" y5 + y6 + y7 + y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual covariances
yi =" yb
y2 "7 y4 + y6
y3 T y7

+ + + + + + + + + + +
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+ y4 =~ y8
+ y6 =" y8'

R> fit <- sem(model, data = PoliticalDemocracy)
R> summary(fit, standardized = TRUE)

lavaan (0.4-14) converged normally after 70 iterations

Number of observations

Estimator

Minimum Function Chi-square
Degrees of freedom

P-value

Parameter estimates:

Information
Standard Errors

Estimate
Latent variables:
ind60 =~
x1 1.000
x2 2.180
x3 1.819
dem60 =~
y1 1.000
y2 1.257
y3 1.058
y4 1.265
dem65 =~
y5 1.000
y6 1.186
y7 1.280
y8 1.266
Regressions:
dem60 ~
ind60 1.483
dem65 ~
ind60 0.572
dem60 0.837
Covariances:
yi ="
y5 0.624

y2 "

Std.

o

err

.139
.152

.182
.151
.145

.169
.160
.158

.399

.221
.098

.358

Z-value

15.
.967

11

(e}

[00]

742

.889
.987
.722

.024
.002
.007

.715

.586
.514

.741

75

ML
38.125
35
0.329

Expected
Standard

PC>lzl)

0.000
0.000

0.000
0.000
0.000

0.000
.000
0.000

o

0.000

0.010
0.000

0.082

Std.1lv

0.670

=

NN NN

NN NN

.460
.218

.223
.794
.351
.812

.103
.493

.691
.662

.447

.182
.885

.624

Std.

o O

o O O O

o O O O

all

.920
.973
.872

.850
L1117
.722
.846

.808
. 746

.824
.828

.447

.182
.885

.296
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y4 1.313 0.702 1.871 0.061 1.313 0.273
y6 2.153 0.734 2.934 0.003 2.153 0.356
y3 7"
y7 0.795 0.608 1.308 0.191 0.795 0.191
y4& 7"
y8 0.348 0.442 0.787 0.431 0.348 0.109
y6 7"
y8 1.356 0.568 2.386 0.017 1.356 0.338
Variances:
x1 0.082 0.019 0.082 0.154
x2 0.120 0.070 0.120 0.053
x3 0.467 0.090 0.467 0.239
yi1 1.891 0.444 1.891 0.277
y2 7.373 1.374 7.373 0.486
y3 5.067 0.952 5.067 0.478
y4 3.148 0.739 3.148 0.285
y5 2.351 0.480 2.351 0.347
y6 4.954 0.914 4.954 0.443
y7 3.431 0.713 3.431 0.322
y8 3.254 0.695 3.254 0.315
ind60 0.448 0.087 1.000 1.000
dem60 3.956 0.921 0.800 0.800
dem65 0.172 0.215 0.039 0.039

5.2. Parameter labels and simple equality constraints

In lavaan, each parameter has a name, referred to as the ‘parameter label’. The naming scheme
is automatic and follows a simple set of rules. Each label consists of three components that
describe the relevant formula defining the parameter. The first part is the variable name
that appears on the left-hand side of the formula operator. The second part is the operator
type of the formula, and the third part is the variable on the right-hand side of the operator
that corresponds with the parameter. To see the naming mechanism in action, we can use
the coef () function, which returns the (estimated) values of the free parameters and their
corresponding parameter labels.

R> coef(fit)

ind60="x2 ind60="x3 dem60="y2 dem60="y3 dem60="y4 dem65="y6

2.180 1.819 1.257 1.058 1.265 1.186
dem65="y7 dem65="y8 dem607ind60 dem65"ind60 dem65~dem60 y177yb
1.280 1.266 1.483 0.572 0.837 0.624
y2~"y4 y277y6 y3~Ty7 y4~"y8 y6~"y8 x177x1
1.313 2.153 0.795 0.348 1.356 0.082
x277x2 x377x3 y177y1 y277y2 y377y3 y4~"y4

0.120 0.467 1.891 7.373 5.067 3.148
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y5~"y5 y6~~y6 y7 YT y8~~y8 ind60~~ind60 dem60~~dem60
2.351 4.954 3.431 3.254 0.448 3.956
dem65~~dem65
0.172

Custom labels may be provided by the user in the model syntax, by pre-multiplying a variable
name with that label. Consider, for example, the following regression formula:

y 7 blxxl + b2*%x2 + b3*x3 + bdxx4

Here we have ‘named’ or ‘labeled’ the four regression coefficients as b1, b2, b3 and b4. Custom
labels are convenient because you can refer to them in other places of the model syntax. In
particular, labels can be used to impose equality constraints on certain parameters. If two
parameters have the same name, they will be considered to be the same, and only one value will
be computed for them (i.e., a simple equality constraint). To illustrate this, we will respecify
the model syntax of the Political Democracy data. In the original example in Bollen’s book,
the factor loadings of the dem60 factor are constrained to be equal to the factor loadings of
the dem65 factor. This make sense, since it is the same construct that is measured on two
time points. To enforce these equality constraints, we label the factor loadings of the dem60
factor (arbitrarily) as d1, d2, and d3. Note that we do not label the first factor loading since
it is a fixed parameter (equal to 1.0). Next, we use the same labels for the factor loadings of
the dem65 factor, effectively imposing three equality constraints.

R> model.equal <- '# measurement model
ind60 =" x1 + x2 + x3
dem60 =" y1 + dilx*y2 + d2*xy3 + d3*y4
dem65 =" yb5 + dil*y6 + d2*xy7 + d3*y8
# regressions
dem60 ~ ind60
dem65 ~ ind60 + dem60
# residual covariances
yl =7 yb
y2 "7 y4 + y6
y3 " y7
y4 ~7 y8
y6 "~ y8'
R> fit.equal <- sem(model.equal, data = PoliticalDemocracy)
R> summary(fit.equal)

+ + + + + + + + 4+ + + +

lavaan (0.4-14) converged normally after 69 iterations

Number of observations 75
Estimator ML
Minimum Function Chi-square 40.179
Degrees of freedom 38

P-value 0.374
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Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(|z])
Latent variables:

ind60 =~
x1 1.000
x2 2.180 0.138 15.751 0.000
x3 1.818 0.152 11.971 0.000
dem60 =~
y1 1.000
y2 (d1) 1.191 0.139 8.551 0.000
y3 (d2) 1.175 0.120 9.755 0.000
y4 (d3) 1.251 0.117 10.712 0.000
dem65 ="
y5 1.000
y6 (d1) 1.191 0.139 8.551 0.000
y7 (d2) 1.175 0.120 9.755 0.000
y8 (d3) 1.2561 0.117 10.712 0.000
Regressions:
dem60 ~
ind60 1.471 0.392 3.750 0.000
dem65 ~
ind60 0.600 0.226 2.661 0.008
dem60 0.865 0.075 11.554 0.000
Covariances:
yi ="
y5 0.583 0.356 1.637 0.102
y2 °"
y4 1.440 0.689 2.092 0.036
y6 2.183 0.737 2.960 0.003
y3 7"
y7 0.712 0.611 1.165 0.244
y4 "
y8 0.363 0.444 0.817 0.414
y6 ="
y8 1.372 0.577 2.378 0.017
Variances:
x1 0.081 0.019
x2 0.120 0.070

x3 0.467 0.090
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yi 1.855  0.433
y2 7.581  1.366
y3 4.956  0.956
y4 3.225  0.723
y5 2.313  0.479
y6 4.968  0.921
y7 3.560  0.710
y8 3.308  0.704
ind60 0.449  0.087
dem60 3.875  0.866
dem65 0.164  0.227

The fit of the constrained model is slightly worse compared to the unconstrained model. But
is it significantly worse? To compare two nested models, we can use the anova() function,
which will compute the x? difference test:

R> anova(fit, fit.equal)
Chi Square Difference Test

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit 35 3157.6 3229.4 38.125
fit.equal 38 3153.6 3218.5 40.179 2.0543 3 0.5612

5.3. Extracting fit measures

The summary() method with the argument fit.measures = TRUE will output a number of
fit measures. If fit statistics are needed for further processing, the fitMeasures() method is
preferred. The first argument to fitMeasures () is the fitted object and the second argument
is a character vector containing the names of the fit measures one wish to extract. For
example, if we only need the CFI and RMSEA values, we can use:

R> fitMeasures(fit, c("cfi", '"rmsea"))

cfi rmsea
0.995 0.035

Omitting the second argument will return all the fit measures computed by lavaan.

5.4. Using the inspect() method

To finish our SEM example, we will briefly mention the inspect () method which allows the
user to peek under the hood of a lavaan object. By default, calling inspect() on a fitted
lavaan object returns a list of the model matrices that are used internally to represent the
model. The free parameters are nonzero integers.

R> inspect(fit)
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The output reveals that lavaan is currently using the LISREL matrix representation, albeit
with no distinction between endogenous and exogenous variables. This is the so-called ‘all-
y’ representation. In future releases, I plan to allow for alternative matrix representations,
including the Bentler-Weeks and the reticular action model (RAM) approach (Bollen 1989,
chapter 9). To see the starting values of the parameters in each model matrix, type

R> inspect(fit, what = "start")
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0.000 0.000 0.000 0.000 5.197

Many more inspect options are described in the help page for the lavaan class.

6. Multiple groups

The lavaan package has full support for multiple-groups SEM. To request a multiple-groups
analysis, the variable defining group membership in the dataset can be passed to the group
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argument of the cfa(), sem(), or lavaan() function calls. By default, the same model is
fitted in all groups without any equality constraints on the model parameters. In the following
example, we fit the H&S model for the two schools (Pasteur and Grant-White).

R> HS.model <- 'visual =" x1 + x2 + x3
+ textual =" x4 + x5 + x6
+ speed =" x7 + x8 + x9'
R> fit <- cfa(HS.model, data = HolzingerSwineford1939, group = "school")

The summary() output is rather long and not shown here. Essentially, it shows a set of
parameter estimates for the Pasteur group, followed by another set of parameter estimates
for the Grant-White group. If we wish to impose equality constraints on model parame-
ters across groups, we can use the group.equal argument. For example, group.equal =
c("loadings", "intercepts") will constrain both the factor loadings and the intercepts of
the observed variables to be equal across groups. Other options that can be included in the
group.equal argument are described in the help pages of the fitting functions. As a short
example, we will fit the H&S model for the two schools, but constrain the factor loadings and
intercepts to be equal. The anova function can be used to compare the two model fits.

R> fit.metric <- cfa(HS.model, data = HolzingerSwineford1939,
+ group = "school", group.equal = c("loadings", "intercepts"))
R> anova(fit, fit.metric)

Chi Square Difference Test

Df  AIC  BIC Chisq Chisq diff Df diff Pr(>Chisq)
fit 48 7484.4 7706.8 115.85
fit.metric 60 7508.6 7686.6 164.10 48.251 12 2.826e-06

If the group.equal argument is used to constrain the factor loadings across groups, all fac-
tor loadings are affected. If some exceptions are needed, one can use the group.partial
argument, which takes a vector of parameter labels that specify which parameters will re-
main free across groups. Therefore, the combination of the group.equal and group.partial
arguments gives the user a flexible mechanism to specify across group equality constraints.

7. Can lavaan do this? A short feature list

The lavaan package has many features, and we foresee that the feature list will keep growing
in the next couple of years. To present the reader a flavor of the current capabilities of lavaan,
I will use this section to mention briefly a variety of topics that are often of interest to users
of SEM software.

7.1. Non-normal and categorical data

The 0.4 version of the lavaan package only supports continuous data. Support for categorical
data is expected in the 0.5 release. In the current release, however, I have devoted considerable
attention to dealing with non-normal continuous data. In the SEM literature, the topic of
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dealing with non-normal data is well studied (see Finney and DiStefano 2006, for an overview).
Three popular strategies to deal with non-normal data have been implemented in the lavaan
package: asymptotically distribution-free estimation; scaled test statistics and robust standard
errors; and bootstrapping.

Asymptotically distribution-free (ADF) estimation

The asymptotically distribution-free (ADF) estimator (Browne 1984) makes no assumption
of normality. Therefore, variables that are skewed or kurtotic do not distort the ADF based
standard errors and test statistic. The ADF estimator is part of a larger family of estimators
called weighted least squares (WLS) estimators. The discrepancy function of these estimators
can be written as follows:

F=(s—6)Wls—¢)

where s is a vector of the non-duplicated elements in the sample covariance matrix (S), &
is a vector of the non-duplicated elements of the model-implied covariance matrix (ﬁ]), and
W is a weight matrix. The weight matrix utilized with the ADF estimator is the asymp-
totic covariance matrix: a matrix of the covariances of the observed sample variances and
covariances. Theoretically, the ADF estimator seems to be a perfect strategy to deal with
non-normal data. Unfortunately, empirical research (e.g., Olsson, Foss, Troye, and Howell
2000) has shown that the ADF method breaks down unless the sample size is huge (e.g.,
N > 5000).

In lavaan, the estimator can be set by using the estimator argument in one of the fitting
functions. The default is maximum likelihood estimation, or estimator = "ML". To switch
to the ADF estimator, you can set estimator = "WLS".

Satorra-Bentler scaled test statistic and robust standard errors

An alternative strategy is to use maximum likelihood (ML) for estimating the model param-
eters, even if the data are known to be non-normal. In this case, the parameter estimates
are still consistent (if the model is identified and correctly specified), but the standard errors
tend to be too small (as much as 25-50%), meaning that we may reject the null hypothesis
(that a parameter is zero) too often. In addition, the model (x?) test statistic tends to be too
large, meaning that we may reject the model too often.

In the SEM literature, several authors have extended the ML methodology to produce stan-
dard errors that are asymptotically correct for arbitrary distributions (with finite fourth-order
moments), and where a rescaled test statistic is used for overall model evaluation.

Standard errors of the maximum likelihood estimators are based on the covariance matrix
that is obtained by inverting the associated information matrix. Robust standard errors
replace this covariance matrix by a sandwich-type covariance matrix, first proposed by Huber
(1967) and introduced in the SEM literature by Bentler (1983); Browne (1984); Browne and
Arminger (1995) and many others. In lavaan, the se argument can be used to switch between
different types of standard errors. Setting se = "robust" will produce robust standard errors
based on a sandwich-type covariance matrix.

The best known method for correcting the model test statistic is the so-called Satorra-Bentler
scaled test statistic (Satorra and Bentler 1988, 1994). Their method rescales the value of
the ML-based x? test statistic by an amount that reflects the degree of kurtosis. Several
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simulation studies have shown that this correction is effective with non-normal data (Chou,
Bentler, and Satorra 1991; Curran, West, and Finch 1996), even in small to moderate samples.
And because applying the correction often results in a better model fit, it is not surprising
that the Satorra-Bentler rescaling method has become popular among SEM users.

In lavaan, the test argument can be used to switch between different test statistics. Setting
test = "satorra.bentler" supplements the standard x? model test with the scaled version.
In the output produced by the summary () method, both scaled and unscaled model tests (and
corresponding fit indices) are displayed in adjacent columns. Because one typically wants
both robust standard errors and a scaled test statistic, specifying estimator = "MLM" fits
the model using standard maximum likelihood to estimate the model parameters, but with
robust standard errors and a Satorra-Bentler scaled test statistic.

R> fit <- cfa(HS.model, data = HolzingerSwineford1939, missing = "listwise",
+ estimator = "MLM", mimic = "Mplus")
R> summary(fit, estimates = FALSE, fit.measures = TRUE)

lavaan (0.4-14) converged normally after 41 iterations

Number of observations 301
Estimator ML Robust
Minimum Function Chi-square 85.306 81.908
Degrees of freedom 24 24
P-value 0.000 0.000
Scaling correction factor 1.041
for the Satorra-Bentler correction (Mplus variant)
Chi-square test baseline model:
Minimum Function Chi-square 918.852 888.912
Degrees of freedom 36 36
P-value 0.000 0.000
Full model versus baseline model:
Comparative Fit Index (CFI) 0.931 0.932
Tucker-Lewis Index (TLI) 0.896 0.898
Loglikelihood and Information Criteria:
Loglikelihood user model (HO) -3737.745  -3737.745
Loglikelihood unrestricted model (H1) -3695.092 -3695.092
Number of free parameters 30 30
Akaike (AIC) 7535.490 7535.490
Bayesian (BIC) 7646.703 7646.703
Sample-size adjusted Bayesian (BIC) 7551.560 7551.560
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Root Mean Square Error of Approximation:

RMSEA 0.092 0.090

90 Percent Confidence Interval 0.071 0.114 0.069 0.111

P-value RMSEA <= 0.05 0.001 0.001
Standardized Root Mean Square Residual:

SRMR 0.060 0.060
In this example, the mimic = "Mplus" argument was used to mimic the way the Mplus

program computes the Satorra-Bentler scaled test statistic. By default (i.e., when the mimic
argument is omitted), lavaan will use the method that is used by the EQS program. To mimic
the exact value of the Satorra-Bentler scaled test statistic as reported by the EQS program,
one can use

R> fit <- cfa(HS.model, data = HolzingerSwineford1939, estimator = "MLM",
+ mimic = "EQS")
R> fit

lavaan (0.4-14) converged normally after 41 iterations

Number of observations 301

Estimator ML Robust
Minimum Function Chi-square 85.022 81.141
Degrees of freedom 24 24
P-value 0.000 0.000
Scaling correction factor 1.048

for the Satorra-Bentler correction

If two models are nested, but the model test statistics are scaled, the usual y? difference
test can no longer be used. Instead, a special procedure is needed known as the scaled 2
difference test (Satorra and Bentler 2001). The anova() function in lavaan will automatically
detect this and compute a scaled x? difference test if appropriate.

Bootstrapping: The naive bootstrap and the Bollen-Stine bootstrap

The third strategy for dealing with non-normal data is bootstrapping. For standard errors, we
can use the standard nonparametric bootstrap to obtain bootstrap standard errors. However,
to bootstrap the test statistic (and its p value), the standard (naive) bootstrap is incorrect
because it reflects not only non-normality and sampling variability, but also model misfit.
Therefore, the original sample must first be transformed so that the sample covariance matrix
corresponds with the model-implied covariance. In the SEM literature, this model-based
bootstrap procedure is known as the Bollen-Stine bootstrap (Bollen and Stine 1993).

In lavaan, bootstrap standard errors can be obtained by setting se = "bootstrap". In
this case, the confidence intervals produced by the parameterEstimates() method will be
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bootstrap-based confidence intervals. If test = "bootstrap" or test = "bollen.stine",
the data are first transformed to perform a model-based ‘Bollen-Stine’ bootstrap. The boot-
strap standard errors are also based on these model-based bootstrap draws, and the standard
p value of the x? test statistic is supplemented with a bootstrap probability value, obtained
by computing the proportion of test statistics from the bootstrap samples that exceed the
value of the test statistic from the original (parent) sample.

By default, lavaan generates R = 1000 bootstrap draws, but this number can be changed by
setting the bootstrap argument. It may be informative to set verbose = TRUE to monitor
the progress of bootstrapping.

7.2. Missing data

If the data contain missing values, the default behavior in lavaan is listwise deletion. If the
missing mechanism is MCAR (missing completely at random) or MAR (missing at random),
the lavaan package provides case-wise (or ‘full information’) maximum likelihood (FIML)
estimation (Arbuckle 1996). FIML estimation can be enabled by specifying the argument
missing = "ml" (or its alias missing = "fiml") when calling the fitting function. An un-
restricted (hl) model will automatically be estimated, so that all common fit indices are
available. Robust standard errors are also available, as is a scaled test statistic (Yuan and
Bentler 2000) if the data are both incomplete and non-normal.

7.3. Linear and nonlinear equality and inequality constraints

In many applications, it is necessary to impose constraints on some of the model parameters.
For example, one may wish to enforce that a variance parameter is strictly positive. For some
models, it is important to specify that a parameter is equal to some (linear or nonlinear)
function of other parameters. The aim of the lavaan package is to make such constraints easy
to specify using the lavaan model syntax. A short example will illustrate constraint syntax
in lavaan. Consider the following regression:

y 7 blxxl + b2*xx2 + b3*x3

where we have explicitly labeled the regression coefficients as b1, b2 and b3. We create a toy
dataset containing these four variables and fit the regression model:

R> set.seed(1234)

R> Data <- data.frame(y = rnorm(100), x1 = rnorm(100), x2 = rnorm(100),
+ x3 = rnorm(100))

R> model <- 'y 7 bl*x1 + b2+*x2 + b3*x3'

R> fit <- sem(model, data = Data)

R> coef(fit)

bl b2 b3  y Ty
-0.052 0.084 0.139 0.970

Suppose that we wish to impose two (nonlinear) constraints on by: by = (by + b3)? and
by > exp(by + b3). The first constraint is an equality constraint, whereas the second is an
inequality constraint. Both constraints are nonlinear. In lavaan, this is accomplished as
follows:
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R> model.constr <- '# model with labeled parameters

+ y 7 bl*x1 + b2*x2 + b3*x3
+ # constraints

+ b1 == (b2 + b3)"2

+ b1 > exp(b2 + b3)'

R> fit <- sem(model.constr, data = Data)
R> summary (fit)

lavaan (0.4-14) converged normally after 49 iterations

Number of observations 100
Estimator ML
Minimum Function Chi-square 50.660
Degrees of freedom 2
P-value 0.000

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(C|zl)

Regressions:
y -

x1 (b1) 0.495
x2 (b2) -0.405 0.092 -4.411 0.000
x3 (b3) -0.299 0.092 -3.256 0.001

Variances:
y 1.610 0.228

Constraints: Slack (>=0)
bl - (exp(b2+b3)) 0.000
bl - ((b2+b3)~2) 0.000

The reader can verify that the constraints are indeed respected. The equality constraint holds
exactly. The inequality constraint has resulted in an equality between the left-hand side (b;)
and the right-hand side (exp(bs + b3)). Since in both cases, the left-hand side is equal to the
right-hand side, the ‘slack’ (= the difference between the two sides) is zero.

7.4. Indirect effects and mediation analysis

Once a model has been fitted, we may be interested in values that are functions of the original
estimated model parameters. One example is an indirect effect which is a product of two (or
more) regression coefficients. Consider a classical mediation setup with three variables: Y is
the dependent variable, X is the predictor, and M is a mediator. For illustration, we again create
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a toy dataset containing these three variables, and fit a path analysis model that includes the
direct effect of X on Y and the indirect effect of X on Y via M.

R> set.seed(1234)
R> X <- rnorm(100)
R> M <- 0.5 * X + rnorm(100)
R> Y <- 0.7 * M + rnorm(100)
R> Data <- data.frame(X = X, Y=Y, M = M)
model <- '# direct effect
Y 7 c*X
# mediator
M~ axX
Y 7 bxM
# indirect effect (a*b)
ab := a*b
# total effect
total := ¢ + (a*b)'
R> fit <- sem(model, data = Data)
R> summary(fit)

fv]
v

+ + + + + + + +

lavaan (0.4-14) converged normally after 13 iterations

Number of observations 100
Estimator ML
Minimum Function Chi-square 0.000
Degrees of freedom 0
P-value 0.000

Parameter estimates:

Information Expected
Standard Errors Standard

Estimate Std.err Z-value P(C|zl|)

Regressions:
y ~
X (c) 0.036 0.104 0.348 0.728
M~
X (a) 0.474 0.103 4.613 0.000
y ~
M (b) 0.788 0.092 8.539 0.000
Variances:
Y 0.898 0.127

M 1.054 0.149
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Defined parameters:

ab 0.374 0.092 4.059 0.000
total 0.410 0.125 3.287 0.001
The example illustrates the use of the ‘:=" operator in the lavaan model syntax. This operator

‘defines’ new parameters which take on values that are an arbitrary function of the original
model parameters. The function, however, must be specified in terms of the parameter labels
that are explicitly mentioned in the model syntax. By default, the standard errors for these
defined parameters are computed using the delta method (Sobel 1982). As with other models,
bootstrap standard errors can be requested simply by specifying se = "bootstrap" in the
fitting function.

8. Concluding remarks

This paper described the R package lavaan. Despite its name, the current version (0.4) of
lavaan should be regarded as a package for structural equation modeling with continuous data.
One of the main attractions of lavaan is its intuitive and easy-to-use model syntax. lavaan is
also fairly complete, and contains most of the features that applied researchers are looking for
in a modern SEM package. So when will lavaan become a package for latent variable analysis?
In due time.
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