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Assignment 13: Solutions to Selected Problems

Problem 13.1. [Encodings of Turing Machines]

LetM = ({q0, q1, q2, q3}, {0, 1}, {0, 1,2},2, q0, q3) be the Turing machine that is given through
the following transition function:

δ 0 1 2 Comments

q0 (q0, 0, R) (q0, 1, R) (q2,2, L) Move right to the last nonblank symbol

q1 (q1, 0, L) (q1, 1, L) (q3,2, R) Move left to the first nonblank symbol

q2 (q1, 1, L) (q2, 0, L) (q3, 1, 0) Add 1 while moving left

q3 − − − Final state

that is, M computes the binary +1-function (compare M to the TM in the first example of
Section 4.1).

(a) Compute the encoding c(M) of the above TM (see the definition before Lemma 4.9).

(b) Let M ′ be the TM that is given through the following encoding

c(M ′) = 11100011111010101001000110100101010001101000100101011
00101001001011001001001010110010001000100100111.

Reconstruct the TM M ′ = (Q,Σ,Γ,2, δ′, q0, qn) from its encoding c(M ′).

(c) Construct the encoding c(M̂) of the following TM M̂ from the encoding c(M ′) of M ′

and the input word x = 10, where M̂ behaves as follows:

(1) erase the given input;
(2) write x;
(3) simulate M ′ on input x.

Solution. (a) M is already in the form required for the encoding. Hence, we obtain

c(M) = 1110411111 · 01010101000 · 11 · 0100101001000 · 11 · 010001000100010·
11 · 00101001010 · 11 · 0010010010010 · 11 · 0010001000010001000·
11 · 0001010010010 · 11 · 00010010001010 · 11 · 000100010000100100 · 111.

(b) We obtain the TM M ′ = ({q0, q1, q2}, {0, 1}, {0, 1,2}, δ′, q0, q2), where δ′ is described by
the following table:

δ′ 0 1 2 Comments

q0 (q0, 1, R) (q0, 0, R) (q1, 0, L) Move right, invert symbols, add suffix 0

q1 (q1, 1, L) (q1, 0, L) (q2, 1, 0) Move left, invert symbols, add prefix 1

q2 − − − Final state

(c) We need two new states in order to realize (1) and (2):

0 1 2 Comments

q0 (q0,2, R) (q0,2, R) (q1, 0, L) Erase input, write 0, move left

q1 − − (q2, 1, 0) Write 1, goto M ′



Hence, all states qi of M ′ have to be replaced by qi+2, which gives the following encoding for
the TM M̂ :

c(M̂) = 1110511111 · 0101010001000 · 11 · 01001010001000 · 11 · 010001001010·
11 · 0010001000100100·
11 · 0001010001001000 · 11 · 0001001000101000 · 11 · 0001000100001010 · 11·
0000101000010010 · 11 · 0000100100001010 · 11 · 00001000100000100100 · 111.
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Problem 13.2. [Recursively Enumerable Languages]

Prove that the following languages are recursively enumerable:

(a) L1 = {w ∈ {a, b, c}∗ | |w|a = |w|b + |w|c },
(b) L2 = {w ∈ {a}∗ | ∃n ≥ 0 : w = a2

n }.
Solution. We must present Turing machines that halt exactly for the words from the lan-
guage Li (1 ≤ i ≤ 2).

(a) The TM M1 proceeds as follows:

• While scanning its input w from left to right on tape 1, M1 realizes two unary counters
on tapes 2 and 3 for counting the number |w|a (on tape 2) and the number |w|b + |w|c
(on tape 3).

• The counters on tape 2 and tape 3 are compared by moving the corresponding heads
simultaneously and synchronously across them.

• If |w|a = |w|b + |w|c, then M1 halts and accepts; otherwise, it enters an infinite loop.

Thus, L(M1) = L1, which proves that L1 is recursively enumerable.

(b) The TM M2 proceeds as follows:

• While moving across its tape, M2 checks that the input is from {a}+, and it replaces
every second letter a by b.

• Now M2 moves repeatedly across its tape, in each round replacing every second letter
a encountered by b. This continues until after round n all but one symbols a have been
replaced, which means that the input was the word a2

n
, or until the process gets stuck,

as the number of a-symbols is uneven, but larger than one. In the former case M2 halts
and accepts, while in the latter case it enters an infinite loop.

Thus, L(M2) = L2, which proves that L2 is recursively enumerable. 2



Problem 13.3. [Undecidable Languages]

Prove that the following languages are undecidable:

(a) H0 = {w ∈ {0, 1}∗ | The TM Mw halts on empty input },
(b) H∀ = {w ∈ {0, 1}∗ | The TM Mw halts for every input },
(c) T2 = {u#v | u, v ∈ {0, 1}∗ and the TM Mu halts for all inputs

for which the TM Mv halts }.

Solution. (a) Assume that H0 is decidable, that is, there exists a TM M0 such that M0

halts for each input w ∈ {0, 1}∗, and it yields the output 1 if Mw halts on empty input and
the output 0 if Mw does not halt on empty input. For each w ∈ {0, 1}∗, we now construct a
TM M ′w that proceeds as follows:

(1) check that the tape is empty and go into an infinite loop, if not;
(2) write the word w onto the tape;
(3) simulate the TM Mw on input w.

Then M ′w halts on empty input iff Mw halts on input w. Thus, given the encoding c(M ′w) of
M ′w as input, M0 will halt and return 1 iff Mw halts on input w, and it will halt and return 0
iff Mw does not halt on input w. Hence, by applying M0 to the encoding c(M ′w), we decide
whether or not w ∈ K. As K is undecidable by Theorem 4.10, this is a contradiction. Thus,
H0 is undecidable, too.

(b) Assume that H∀ is decidable, that is, there exists a TM M∀ such that M∀ halts for
each input w ∈ {0, 1}∗, and it yields the output 1 if Mw halts for all inputs and the output 0
if Mw does not halt for all inputs. For each w ∈ {0, 1}∗, we now construct a TM M ′w as follows:

(1) erase the tape;
(2) simulate the TM Mw on empty input.

Then M ′w halts an any input iff Mw halts on empty input. Thus, given the encoding c(M ′w)
of M ′w as input, M∀ will halt and return 1 iff Mw halts on empty input, and it will halt and
return 0 iff Mw does not halt on empty input. Hence, by applying M∀ to the encoding c(M ′w),
we decide whether or not w ∈ H0. As H0 is undecidable by (a), this is a contradiction. Thus,
H∀ is undecidable, too.

(c) Assume that T2 is decidable, that is, there exists a TM M2 such that M2 halts for each
input u#v (u, v ∈ {0, 1}∗), and it yields the output 1 if Mu halts for all inputs for which Mv

halts and the output 0 if Mu does not halt for all inputs for which Mv halts. Let Mc be a
fixed TM that halts for all inputs. Then w#c ∈ T2 iff w ∈ H∀. Thus, by applying the TM
M2 to the input w#c we can decide whether or not w ∈ H∀. As H∀ is undecidable by (b),
this is a contradiction. Thus, T2 is undecidable, too. 2



Problem 13.4 [Non-Recursively Enumerable Languages]

Prove that the following languages are not even recursively enumerable:

(a) L1 = {w ∈ {0, 1}∗ | The TM Mw does not halt on empty input },
(b) L2 = {w ∈ {0, 1}∗ | The TM Mw does not halt on any input },
(c) L3 = {u#v | u, v ∈ {0, 1}∗ and the TMs Mu and Mv halt on the same inputs }.

Solution. (a) By Problem 13.3 (a) the set H0 = {0, 1}∗ r L1 = Lc
1 is not recursive. Hence,

at least one of the languages L1 and Lc
1 is not recursively enumerable by Theorem 4.8. Here

we show that H0 = Lc
1 is recursively enumerable. Let M ′0 be the TM that proceeds as follows,

given a word w ∈ {0, 1}∗ as input:

(1) simulate the TM Mw on empty input.

Then M ′0 halts on input w iff the TM Mw halts on empty input. Thus, L(M ′0) = H0 =
Lc
1, which shows that Lc

1 is recursively enumerable. It follows that L1 is not recursively
enumerable.

(b) Assume that L2 is recursively enumerable, that is, there exists a TM M2 such that
L(M2) = L2. For each w ∈ {0, 1}∗, let M ′w be the following TM:

(1) erase the input;
(2) simulate the TM Mw on empty input.

Then M ′w does not halt on any input iff Mw does not halt on empty input. Hence, c(M ′w) ∈ L2

iff w ∈ L1. As there is a TM Mc that computes c(M ′w) from w, we see that M2 ◦Mc halts on
input w iff w ∈ L1, that is, L(M2 ◦Mc) = L1. This contradicts (a), showing that L2 is not
recursively enumerable.

(c) Assume that L3 is recursively enumerable, that is, there exists a TM M3 such that
L(M3) = L3. Let M ′ be a fixed TM such that L(M ′) = ∅, which means that M ′ does not
halt for any input. For w ∈ {0, 1}∗, let M ′w be the following TM:

(1) erase the input;
(2) simulate the TM Mw on empty input.

Then

L(M ′w) =

{
{0, 1}∗, if Mw halts on empty input,
∅, if Mw does not halt on empty input.

Hence, c(M ′w)#c(M ′) ∈ L3 iff Mw does not halt on empty input iff w ∈ L1. As c(M ′) is a
fixed constant, and as c(M ′w) can be computed from w by a TM Mc, we see that we get a
TM M from M3, Mc, and c(M ′) such that w ∈ L(M) iff w ∈ L1, that is, L(M) = L1. This,
however, contradicts (a), implying that L3 is not recursively enumerable, either. 2


