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Problem 5.7 Suppose you could find a solution ¥(ry,rs,...,rz) to the
Schrodinger (Equation 5.25) for the Hamiltonian in Equation 5.24. Describe how
you could construct from it a completely symmetric function and a completely an-
tisymmetric function, which also satisty the Schrodinger equation, with the same
energy.

5.2.1 Helium

After hydrogen, the simplest atom is helium (Z = 2). The Hamiltonian,
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consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for electron
1 and one for electron 2, together with a final term describing the repulsion of the
two electrons. It is this last term that causes all the problems. If we simply ignore it,
the Schrodinger equation separates, and the solutions can be written as products of
hydrogen wave functions:

lﬁ(rh r) = Ynim (1‘1)¢n/1/m/(l‘2), [5.28]

only with half the Bohr radius (Equation 4.72), and four times the Bohr energies
(Equation 4.70). The total energy would be

E = 4(E, + Ey), [5.29]

where E, = —13.6/n? eV. In particular, the ground state would be

8
Yo(ri, 12) = Yroo(T)diop(r2) = —e 720/ [5.30]
(see Equation 4.80), and its energy would be
Ep =8(—13.6eV) = —109eV. [5.31]

Because v is a symmetric function, the spin state has to be antisymmetric, so the
ground state of helium is a singlet configuration, with the spins “oppositely aligned”.
The actual ground state of helium is indeed a singlet, but the experimentally deter-
mined energy is —78.975 eV, so the agreement is not very good. But this is hardly
surprising: We ignored electron repulsion, which is certainly not a small contribution.
Itis clearly positive (see Equation 5.27), which is comforting—evidently it brings the
total energy up from —109 to —79 eV (see Problem 5.10).

The excited states of helium consist of one electron in the hydrogenic ground
state and the other in an excited state:

Ynim ¥100- [5.32]
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[If you try to put both electrons in excited states, one immediately drops to the ground
state, releasing enough energy to knock the other one into the continuum (£ > 0.
leaving you with a helium ion (He™) and a free electron. This is an interesting sys-
tem in its own right—see Problem 5.8—but it is not our present concern.] We can
construct from this both symmetric and antisymmetric combinations, in the usual
way (Equation 5.10); the former go with the antisymmetric spin configuration (the
singlet), and they are called parahelium, while the latter require a symmetric spin
configuration (the triplet), and they are known as orthohelium. The ground state
1s necessarily parahelium; the excited states come in both forms. Because the sym-
metric spatial state brings the electrons closer together (as we discovered in Section
5.1.2), we expect a higher interaction energy in parahelium, and indeed it is exper-
imentally confirmed that the parahelium states have somewhat higher energy than
their orthohelium counterparts (see Figure 5.2).

Problem 5.8

(a) Suppose you put both electrons in a helium atom into the n = 2 state; what
would the energy of the emitted electron be?

(b) Describe (quantitatively) the spectrum of the helium jon, He™.

Problem 5.9 Discuss (qualitatively) the energy level scheme for helium (a) if elec-
trons were identical bosons, and (b) if electrons were distinguishable particles (but
still with the same mass and charge). Pretend the electrons still have spin 1/2.

xxProblem 5.10

(@) Calculate ((1/|r; — r,])) for the state ¥y (Equation 5.30). Hint: Do the d°r»
integral first, using spherical coordinates and setting the polar axis along ry, so
that

Iri — | = \/rlz + r22 — 2r1ry cos 6;.

The 6, integral is easy, but be careful to take the positive root. You’ll have to
break the 7, integral into two pieces, one ranging from 0 to 7, the other from
r| to co. Answer: 5/4a.

(b) Use your result in (a) to estimate the electron interaction energy in the ground
state of helium. Express your answer in electron volts, and add it to Ey (Equa-
tion 5.31) to get a corrected estimate of the ground-state energy. Compare the
experimental value. Note: Of course, we’re still working with an approximate
wave function, so don’t expect perfect agreement.
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Figure 5.2: Energy level diagram for helium (the notation is explained in Section
5.2.2). Note that parahelium energies are uniformly higher than their orthohelium
counterparts. The numerical values on the vertical scale are relative to the ground
state of ionized helium (He*): 4 x (—13.6 eV) = —54.4 eV; to get the total energy of
the state, subtract 54.4 eV.

5.2.2 The Periodic Table

The ground-state electron configurations for heavier atoms can be pieced together
in much the same way. To first approximation (ignoring their mutual repulsion al-
together), the individual electrons occupy one-particle hydrogenic states (r, [, m),
called orbitals, in the Coulomb potential of a nucleus with charge Ze. If electrons
were bosons (or distinguishable particles), they would all shake down to the ground
state (1,0,0), and chemistry would be very dull indeed. But electrons are in fact iden-
tical fermions, subject to the Pauli exclusion principle, so only two can occupy any
given orbital (one with spin up, and one with spin down—or, more precisely, in the
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singlet configuration). There are n? hydrogenic wave functions (all with the same
energy E,) for a given value of n, so the n = 1 shell has room for two electrons, the
n = 2 shell holds eight, n = 3 takes 18, and in general the nth shell can accomodate
2n? electrons. Qualitatively, the horizontal rows on the Periodic Table correspond
to filling out each shell (if this were the whole story, they would have lengths 2.
8, 18, 32, 50, etc., instead of 2, 8, 8, 18, 18, etc.; we’ll see in a moment how the
electron-electron repulsion throws the counting off).

With helium, the n = 1 shell is filled, so the next atom, lithium (Z = 3), ha~
to put one electron into the n = 2 shell. Now, for » = 2 we can have [ = 0 or
! = 1, which of these will the third electron choose? In the absence of electron-
electron interactions, they both have the same energy (the Bohr energies depend on
n, remember, but not on /). But the effect of electron repulsion is to favor the lowest
value of /, for the following reason: Angular momentum tends to throw the electron
outward (more formally, the expectation value of » increases with increasing /, for a
given n), and the farther out an electron gets, the more effectively the inner electron~
screen the nucleus (roughly speaking, the innermost electron “sees” the full nuclear
charge Ze, but the outermost electron sees an effective charge hardly greater than e).
Within a given shell, therefore, the state with lowest energy (which is to say, the most
tightly bound electron) is / = 0, and the energy increases with increasing /. Thus the
third electron in lithinm occupies the orbital (2,0,0). The next atom (beryllium, with
Z = 4) also fits into this state (only with “opposite spin”), but boron (Z = 5) has to
make use of / = 1.

Continuing in this way, we reach neon (Z = 10), at which point the n = 2 shell
is filled, and we advance to the next row of the periodic table and begin to populate the
n = 3 shell. First there are two atoms (sodium and magnesium) with / = 0, and then
there are six with / = 1 (aluminum through argon). Following argon there “should”
be 10 atoms with n = 3 and / = 2; however, by this time the screening effect is so
strong that it overlaps the next shell, so potassium (Z = 19) and calcium (Z = 20)
choose n = 4,1 = 0, in preference to n = 3,/ = 2. After that we drop back to pick
up the n = 3, ] = 2 stragglers (scandium through zinc), followed by n = 4,1 = |
(gallium through krypton), at which point we again make a premature jump to the
next row (n = 5) and wait until later to slip in the / = 2 and / = 3 orbitals from the
n = 4 shell. For details of this intricate counterpoint, refer to any book on atomic
physics.”

I would be delinquent if I failed to mention the archaic nomenclature for atomic
states, because all chemists and most physicists use it (and the people who make up the
Graduate Record Exam love this kind of thing). For reasons known best to nineteenth-
century spectroscopists, [ = 0 is called s (for “sharp”), / = 1 is p (for “principal”).
I =2isd (“diffuse”), and/ = 3is f (“fundamental™); after that I guess they ran out of

7See, for example, U. Fano and L. Fano, Basic Physics of Atoms and Molecules (New York: John
Wiley & Sons, 1959), Chapter 18, or the classic by G. Herzberg, Atomic Spectra and Atomic Structure
(New York: Dover, 1944).
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imagination, because the list just continues alphabetically (g, A, i, etc.).® The state of
a particular electron is represented by the pair n/, with # (the number) giving the shell
and [ (the letter) specifying the orbital angular momentum; the magnetic quantum
number m is not listed, but an exponent is used to indicate the number of electrons
that occupy the state in question. Thus the configuration

(1)*(25)*2p)* [5.33]
tells us that there are two electrons in the orbital (1,0,0), two in the orbital (2,0,0), and
two in some combination of the orbitals (2,1,1), (2,1,0), and (2,1,—1). This happens
to be the ground state of carbon.

In that example there are two electrons with orbital angular momentum quantum
number 1, so the total orbital angular momentum quantum number L (capital L,
instead of /, to indicate that this pertains to the fotal, not to any one particle) could be
2, 1, or 0. Meanwhile, the two (1s) electrons are locked together in the singlet state,
with total spin zero, and so are the two (2s) electrons, but the two (2p) electrons could
be in the singlet configuration or the triplet configuration. So the total spin quantum
number S (capital, again, because it’s the total) could be 1 or 0. Evidently the grand
total (orbital plus spin) J could be 3, 2, 1, or 0. There exist rituals (Hund’s rules’)
for figuring out what these totals will be, for a particular atom. The result is recorded
as the following hieroglyphic:

28+, [5.34]

(where S and J are the numbers, and L the letter—capitalized, this time, because
we’re talking about the fotals). The ground state of carbon happens to be > Py: The
total spin is 1 (hence the 3), the total orbital angular momentum is 1 (hence the P), and
the grand total angular momentum is zero (hence the 0). In Table 5.1 the individual
configurations and the total angular momenta (in the notation of Equation 5.34) are
listed, for the first four rows of the Periodic Table.

x*+xProblem 5.11

(a) Figure out the electron configurations (in the notation of Equation 5.33) for the

first two rows of the Periodic Table (up to neon), and check your results against
Table 5.1.

(b) Figure out the corresponding total angular momenta, in the notation of Equation
[5.34], for the first four elements. List all the possibilities for boron, carbon,
and nitrogen.

8The shells themselves are assigned equally arbitrary nicknames, starting (don’t ask me why) with
K: the K shellisn = 1, the L shellis n = 2, M is n = 3, and so on (at least they re in alphabetical order).

9See, for example, Stephen Gasiorowicz, Quantum Physics (New York: John Wiley & Sons, 1974),
Chapters 18 and 19.



192

Chap. 5 Identical Particles

Table 5.1: Ground-state electron configurations for the first four rows of the
Periodic Table.

Z  Element Configuration

1 H (1s) 2812

2 He (15)? 18y

3 Li (He) (25) 281/

4  Be (He)(2s)? 1Sy

5 B (He)(2s)*(2p) P

6 C (He)(25)*(2p)? 3Py

7 N (He)(25)*(2p)° )

8 O (He)(2s)22p)* p

9 F (He)(2s)*(2p)° 2Py
10 Ne (He)(25)2(2 p)® 1o
11 Na (Ne)(3s) 281,
12 Mg (Ne)(3s)? 18
13 Al (Ne)(3s)*(3p) 2Py
14 Si (Ne)(35)*(3p)? 3Py
15 (Ne)(3s)*(3p)° 4832
16 S (Ne)(3s)2(3p)y* p
17 Cl (Ne)(35)2(3p)° 2P
18  Ar (Ne)(35)2(3p)® BRY
19 K (Ar)(4s) 281
20 Ca (Ar)(4s)? 1o
21 Sc (Ar)(45)% (3d) D3
2 T (Ar)(45)?(3d)? B
23V (Ar)(45)?(3d)° B
24 Cr (Ar)(45)(3d)° 785
25 Mn (An)(4s)2(3d)° 832
26 Fe (Ar)(4s)? (3d)° 3Dy
27 Co (An)(4s5)2(3d)7 4 Fop
28 Ni (Ar)(4s)*(3d)8 3F
29 Cu (Ar)(4s)(3d)'1° 281,
30 Zn (An(49)2(3d)'0 18
31 Ga (An(4s)*(3)%4p) Py
32 Ge AD@Es)23d)04p)? 3R
33 As (AD(4s)?(3d)°(4p)® 483
34 Se (An4s)2Gd)°4py* *p
35 Br (A4)°3d)!°@4p)® 2Py
36 Kr (AN4s)’(3d) %4p)® 1S

(c) Hund’s first rule says that, all other things being equal, the state with the highest
total spin will have the lowest energy. What would this predict in the case of
the excited states of helium?
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(d) Hund’s second rule says that if a subshell (n, /) is no more than half filled,
then the lowest energy level has J = |L — §}; if it is more than half filled, then
J = L + § has the lowest energy. Use this to resolve the boron ambiguity in
(b).

(e) Use Hund’s rules and the fact that a symmetric spin state must go with an

antisymmetric position state (and vice versa) to resolve the carbon ambiguity in
(b). What can you say about nitrogen?

Problem 5.12 The ground state of dysprosium (element 66, in the sixth row of the
Periodic Table) is listed as ° Iz. What are the total spin, total orbital, and grand total
angular momentum quantum numbers? Suggest a likely electron configuration for
dysprosium.

5.3 SOLIDS

In the solid state, a few of the loosely bound outermost valence electrons in each atom
become detached and roam around throughout the material, no longer subject only to
the Coulomb field of a specific “parent” nucleus, but rather to the combined potential
of the entire crystal lattice. In this section we will examine two extremely primitive
models: first, the electron gas theory of Sommerfeld, which ignores all forces (except
the confining boundaries), treating the wandering electrons as free particles in a
box (the three-dimensional analog to an infinite square well); and second, Bloch’s
theory, which introduces a periodic potential representing the electrical attraction of
the regularly spaced, positively charged, nuclei (but still ignores electron-electron
repulsion). These models are no more than the first halting steps toward a quantum
theory of solids, but already they reveal the critical role of the Pauli exclusion principle
in accounting for the “solidity” of solids, and provide illuminating insight into the
remarkable electrical properties of conductors, semiconductors, and insulators.

5.3.1 The Free Electron Gas

Suppose the object in question is a rectangular solid, with dimensions /., [,, /,, and
imagine that an electron inside experiences no forces at all, except at the impenetrable
walls:

V(x’y’z)z{o, fO0O<x<l,0<y<l,,0<z<l) [5.35]

oo, otherwise.

The Schrodinger equation,

h2
—5 VY = Ey,
2m



