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Problem 7.4

(a) Prove the following corollary to the variational principle: If (|/,) = 0, then
(H) > E, where E[ is the energy of the first excited state.

Thus, if we can find a trial function that is orthogonal to the exact ground state, we
can get an upper bound on the first excited state. In general, it’s difficult to be sure
that v is orthogonal to ¥, since (presumably) we don’t know the latter. However, if
the potential ¥ (x) is an even function of x, then the ground state is likewise even, and
hence any odd trial function will automatically meet the condition for the corollary.

(b) Find the best bound on the first excited state of the one-dimensional harmonic
oscillator using the trial function

vx) = Axe 7,

Problem 7.5

(@) Use the variational principle to prove that first-order nondegenerate perturbation
theory always overestimates (or at any rate never underestimates) the ground-
state energy.

(b) In view of (a), you would expect that the second-order correction to the ground
state is always negative. Confirm that this is indeed the case, by examining
Equation 6.14.

7.2 THE GROUND STATE OF HELIUM

The helium atom (Figure 7.3) consists of two electrons in orbit around a nucleus
containing two protons (also some neutrons, which are irrelevant to our purpose).
The Hamiltonian for this system (ignoring fine structure and smaller corrections) is

n? e (2 2 1
H=——(V4V) - — [+ = ——). 7.14
Zm( 1 + 2) 47[6() (i‘] + r |l'1 - l'2|> [ ]

Our problem is to calculate the ground-state energy, Eg—the amount of energy it
would take to strip off the two electrons. (Given Ej it is easy to figure out the
“jonization energy” required to remove a single electron—see Problem 7.6.) E, has
been measured very accurately in the laboratory:

E, =—78975eV (experimental). [7.15]

This is the number we would like to reproduce theoretically.
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+2e Figure 7.3: The helium atom.

It is curious that such a simple and important problem has no known exact
solution.” The trouble comes from the electron-electron repulsion,

e2 1

ee — . [716]
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If we ignore this term altogether, H splits into two independent hydrogen Hamilto-
nians (only with a nuclear charge of 2e, instead of e); the exact solution is just the
product of hydrogenic wave functions:

8
Yo(ry, 12) = Yri00(X ) Yi00(r2) = me_z(”“”/a, [7.17]

and the energy is 8E; = —109 eV (Eq. [5.31]).* This is a long way from —79 eV,
but it’s a start.

To get a better approximation for £, we’ll apply the variational principle, using
1o as the trial wave function. This is a particularly convenient choice because it’s an
eigenfunction of most of the Hamiltonian:

Hyy = (BE| + Vee)¥o. [7.18]
Thus
(H) =8E; + (Vee), [7.19]
where? ,
2 8 —4(ri+r2)/a
(Vi) = ( ¢ ) (_3> f  Pndn. [7.20]
4meg Ta Ir; — 13|

3There doexist exactly soluble three-body problems with many of the qualitative features of helium,
but using non-Coulombic potentials (see Problem 7.15).

“Here a is the ordinary Bohr radius and E, = —13.6/n2 ¢V is the nth Bohr energy; recall that
for a nucleus with atomic number Z, E, — Z2E, anda — a /Z (Problem 4.17). The spin configuration
associated with Equation 7.17 will be antisymmetric (the singlet).

5You can, if you like, interpret Equation 7.19 as first-order perturbation theory, with V., as H'.
However, I regard this as a misuse of the method, since the perturbation is roughly equal in size to the
unperturbed potential. I prefer, therefore, to think of it as a variational calculation, in which we are looking
for an upper bound on E,.
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Figure 7.4: Choice of coordinates for the r; integral (Equation 7.20).

I'll do the r integral first; for this purpose ry is fixed, and we may as well orient the
r, coordinate system so that the polar axis lies along r; (see Figure 7.4). By the law
of cosines,

Iry — | = r12 + r22 — 2rirpcos b, [7.21]
and hence
*4rz/a —4r2/a
L= f r2 sin 6y dryd6rdes. [7.22]
|r1 - r2| \/ + 73 — 2riryco86;

The ¢, integral is trivial (27r); the 9, integral is

rr 0

/ sin 6, 55 \/;12 + r22 — 2rrycosbh 1
7

ry+ r2 21172 cos 6,

1
= — ( r]2+r22 + 21y — rl2 +r22 —2r1r2>

nr;

2/1‘1, ifr2<r1,
2/1‘2, ifr2 >n.

1 r o
L =4n (—f —in/a 2dr2 +f e /ey, dr2>
riJo r

3
- [1 - (1 + 34) —4’1/“] . [7.24]
81‘1

1
=—I(rn+mrn)—In—nll= { [7.23]
rnr

Thus
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It follows that (V,,) is equal to

2 8 2
() -2) =i

The angular integrals are easy (47), and the r; integral becomes

i 2r? Sa?
—4rja __ “r —8r/a dr = 2.
/o [re (r+ a)e } "7 128

Finally, then,

Ve = = () = 25y = 34 [7.25
“TT 4a \dmey ) T 2 p=oney o

and therefore
(Hy=—109eV +34eV = —75eV. [7.26

Not bad (remember, the experimental value is —79 eV). But we can do better.

Can we think of a more realistic trial function than vy (which treats the two
electrons as though they did not interact at all)? Rather than completely ignoring
the influence of the other electron, let us say that, on the average, each electron
represents a cloud of negative charge which partially shields the nucleus, so that the
other electron actually sees an effective nuclear charge (Z) that is somewhat Jess than 2.
This suggests that we use a trial function of the form

Z3
Yi(ry, 1) = me‘”’“"z)/“. [7.27]

We’ll treat Z as a variational parameter, picking the value that minimizes (H).

This wave function is an eigenstate of the “unperturbed” Hamiltonian (neglect-
ing electron repulsion), but with Z, instead of 2, in the Coulomb terms. With this in
mind, we rewrite H (Equation 7.14) as follows:

o, . et (Z Z
H=-—(Vi+ V) - —+=

dmeg \ry n

[7.28]
e? ((Z-2) (Z-2) 1
+ + .
dmeg r r Iry — 1o
The expectation value of H is evidently

) e’ 1
(H)y =2Z°E1 +2Z - 2) (=) + (Vee). [7.29]

drey ) 1

Here (1/r) is the expectation value of 1/7 in the (one-particle) hydrogenic ground
state yrig0 (but with nuclear charge Z); according to Equation 6.54,

<l> = —Z— [7.30]



Sec. 7.2: The Ground State of Helium 265

The expectation value of ¥, is the same as before (Equation 7.25), except that instead
of Z = 2 we now want arbitrary Z—-so we multiply a by 2/Z:

2
<Vee) = 'S‘E ( ¢ ) = —S—Z—E]. [7.31]
8a

Putting all this together, we find
(H) = [2Z2 —4Z(Z-2)— (5/4Z] E, = [—2Z% 4+ (27/4)Z1E;. [1.32]

According to the variational principle, this quantity exceeds E, for any value
of Z. The lowest upper bound occurs when {H) is minimized:

d
—(H) =[-4Z + (27 E, =
dZ( ) =[—4Z + (27/4)]E, =0,
from which it follows that .
Z = T = 1.69. [7.33]

This is a reasonable result; it tells us that the other electron partially screens the
nucleus, reducing its effective charge from 2 down to 1.69. Putting in this value for
Z,we find

2

The ground state of helium has been calculated with great precision in this way,
using increasingly complicated trial wave functions with more and more adjustable
parameters.® But we're within 2% of the correct answer, and, frankly, at this point
my own interest in the problem begins to fade.

1/3\°
(H) = = (—) Ey = -775¢€V. [7.34]

Problem 7.6 Using E; = —79.0 eV for the ground-state energy of helium, cal-
culate the ionization energy (the energy required to remove just one electron). Hint:
First calculate the ground-state energy of the helium ion, He*, with a single electron
orbitting the nucleus; then subtract the two energies.

«Problem 7.7 Apply the techniques of this Section to the H™ and Li* ions (each has
two electrons, like helium, but nuclear charges Z = 1 and Z = 3, respectively). Find
the effective (partially shielded) nuclear charge, and determine the best upper bound
on E,, for each case. Note: In the case of H™ you should find that (H) > —13.6 eV,
which would appear to indicate that there is no bound state at all, since it is energet-
ically favorable for one electron to fly off, leaving behind a neutral hydrogen atom.
This is not entirely surprising, since the electrons are less strongly attracted to the
nucleus than they are in helium, and the electron repulsion tends to break the atom
apart. However, it turns out to be incorrect. With a more sophisticated trial wave
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