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(@) Construct the Hamiltonian matrix for this system.

(b) The electron starts out (at ¢ = 0) in the spin-up state with respect to the x-axis
[that is, x(0) = Xf)]. Determine x (¢) at any subsequent time. Beware: This
is a time-dependent Hamiltonian, so you cannot get x (¢) in the usual way from
stationary states. Fortunately, in this case you can solve the time-dependent
Schrodinger equation (Equation 4.162) directly.

(c) Find the probability of getting —#/2 if you measure S,. Answer:
B,
sin’ (J—/—B sin(cot)).
2w

(d) What is the minimum field (Bo) required to force a complete flip in S, ?

4.4.3 Addition of Angular Momenta

Suppose now that we have two spin-1/2 particles—for example, the electron and the
proton in the ground state® of hydrogen. Each can have spin up or spin down, so
there are four possibilities in all*:

Tt I [4.175]

where the first arrow refers to the electron and the second to the proton. Question:
What is the total angular momentum of the atom? Let

S=S0 4 §@ [4.176]

Each of the four composite states is an eigenstate of S,—the z-components simply
add

S = (S + 5D xxa = (S x0x + xS x2)
= (mix)xz + x1(thmax2) =h(m; + ma2)x1 x2,

[note that S acts only on y;, and S® acts only on x2]. So m (the quantum number
for the composite system) is just m; + ma:

tem = L
tbm = 0
tem =0
Wim = -1

351 put them in the ground state so there won’t be any orbital angular momentum to worry about.

36More precisely, each particle is in a linear combination of spin up and spin down, and the composite
system is in a linear combination of the four states listed.
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At first glance, this doesn’t look right: m is supposed to advance in integer
steps, from —s to +s, so it appears that s = 1—but there is an extra state with m = 0.
One way to untangle this problem is to apply the lowering operator S_ = s 4 g
to the state 11, using Equation 4.143:

-t = UM+ 1D
Bt +1 B =R+ 1.

Evidently the three states with s = 1 are (in the notation |s m)):

iy = 11
0oy = —%(NWLM) s = 1 (triplet). [4.177)
-1 = i

(As a check, try applying the lowering operator to |10); what should you get? See
Problem 4.35.) This is called the triplet combination, for the obvious reason. Mean-
while, the orthogonal state with m = 0 carries s = 0:
1 .
{|OO) «/Q(Ti iT)} s = 0 (singlet). [4.178]
(If you apply the raising or lowering operator to this state, you’ll get zero. See Prob-
lem 4.35))

I claim, then, that the combination of two spin-1/2 particles can carry a total spin
of 1 or 0, depending on whether they occupy the triplet or the singlet configuration.
To confirm this, I need to prove that the triplet states are eigenvectors of S? with
eigenvalue 242 and the singlet is an eigenvector of $2 with eigenvalue 0. Now

S? = (S(l) + S(2)) . (S(l) + S(2)) — (S(l))2 + (S(2))2 +28M . 8@ [4.179]

Using Equations 4.142 and 4.145, we have

SU-SP) = P HED D)+ S HEP )+ D )
_ (E h oy (Zh P (2
- GG GIGE)G)GE )
2
= 7’;(2 =1 -
Similarly,

h2
SPSOan =7 .

It follows that
505010, =" Lot —riq210 - in="110, @150
4 2 4 ’ ’
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and
s -82100) = "1 W=t =21 +iD= —ﬁmm [4.181]
=75 0 N=-= . [4
Returning to Equation 4.179 (and again using Equation 4.142), we conclude that
3r% 3n*_h?
yum=(7r+7r+22>um=2#um, [4.182]

50 |10) is indeed an eigenstate of S with eigenvalue 242; and

5 3n? 3mP 3
$%100) = { -+~ —27- ) 00y =0, [4.183]

s0 |0 0) is an eigenstate of S? with eigenvalue 0. (I will leave it for you to confirm that
[11) and |1 —1) are eigenstates of S?, with the appropriate eigenvalue—see Prob-
lem 4.35.)

What we have just done (combining spin 1/2 with spin 1/2 to get spin 1 and
spin 0) is the simplest example of a larger problem: If you combine spin s; with spin
52, what total spins s can you get?”’ The answer® is that you get every spin from
(s1 + s2) down to (57 — s2)—o0r (52 — 51), if 52 > §1—in integer steps:

s=061+5), 51+ —10, (s1+5—-2), ..., |s1 — 5| [4.184]

(Roughly speaking, the highest total spin occurs when the individual spins are aligned
parallel to one another, and the lowest occurs when they are antiparallel.) For example,
if you package together a particle of spin 3/2 with a particle of spin 2, you could get a
total spin of 7/2, 5/2, 3/2, or 1/2, depending on the configuration. Another example:
If a hydrogen atom is in the state ¥y, the net angular momentum of the electron
(spin plus orbital) is [ + 1/2 or [ — 1/2; if you now throw in the spin of the proton,
the atom’s total angular momentum quantum number is / + 1, /, or/ — 1 (and / can
be achieved in two distinct ways, depending on whether the electron alone is in the
{ + 1/2 configuration or the / — 1/2 configuration).
The particular state |s m) with total spin s and z-component m will be some
linear combination of the composite states |s; m1)|s2 m2):
smy=" Y Cusiulsimilszma) [4.185]

mmym
mi+my=m

(because the z-components add, the only composite states that contribute are those
for which m +m, = m). Equations 4.177 and 4.178 are special cases of this general

371 say spins for simplicity, but either one (or both) could just as well be orbital angular momentum
(for which, however, we would use the letter /).

38For a proof you must look in a more advanced text; see, for instance, Claude Cohen-Tannoudji,
Bernard Diu, and Franck Lalog, Quantum Mechanics (New York: John Wiley & Sons, 1977), Vol. 2,
Chapter X.



168

Chap. 4 Quantum Mechanics in Three Dimensions

Table 4.7: Clebsch-Gordan coefficients. (A square root sign is understood for
every entry; the minus sign, if present, goes outside the radical.)
1
1/2 X 112 § 11 pormns -
[+12+121 1o o X 52Kl a2
|+1/2 EANRA K [:2 2] 1]ar2 +3r
-2 412 |12 121 +2 12|15 45 s:2 3R
I-172 -122] 1 +1 1172 |45 —15] +12 +1/2
+1 —1/2| 2/5 355 52 372
= 0 /2| 35 -2i5] -112 12
1%x1/2 |3 - -
32 102 0 -12| 35 25] 52 32
Vit+2] 1 )z -1 +12| 2/5 -8/5]-a2 —32
2 .
w1 =12 | 13 2 32 2 32x1/2 -1 -1/2[ 455 15[ ¢
I 0 +1/2] 23-13}-1/2 12 Rl 2 i) 15 as] - ]
0-12| 2/3 1] ar Lazaz] =
-1 12| 13 -2/3]-3r2 |+3/2 Er] ;;4 3;4 2 1
1/2 +1/2 |3/4 -1/4
2x1|.3 [ 2] ] aex1].2 +12 + 0 o0
X 135 X 1 5= |+1/2 -12[12 122 1
f2 1 1]42 w2 [ 32 +1 ] 1|32 a2 Z12 a2t 12f-1
+2 0[1/3 23 +32 025 5[ &2 32 12 |—1/2 -12|34 141 2
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+2 -1 +32 11110 2/5 12 1-32 2] 1
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REARCErE B 21]ns s 35 42 -2 | =R
0-tl12 2] 2 —1-1(2/3 3] 3
-1 0]z -12|-=2 -2 0]1/3 -2/3]-3
| EEEIE | EEE

form, with s; = s, = 1/2 (I used the informal notation 1 = [ 1), = |4 (1)),
The constants C;, "2 are called Clebsch-Gordan coefficients. A few of the simplest
cases are listed in Table 4.7.* For example, the shaded column of the 2 x 1 table tells

us that ) | )
—=122)1 1) + —=[21)[10) — —=[20)[1 1).
V3 V6 V2
In particular, if two particles (of spin 2 and spin 1) are at rest in a box, and the total
spin is 2, and its z-component is 1, then a measurement of Sgl) could return the value
2h (with probability 1/3), or 7 (with probability 1/6), or O (with probability 1/2).
Notice that the probabilities add up to 1 (the sum of the squares of any column on the
Clebsch-Gordan table is 1).

These tables also work the other way around:

|s1my)|s2 my) = Z

5

121) =

CS[st

mymym

s m). [4.186]

For example, the shaded row in the 3/2 x 1 table tells us that
31 _ /351 131 111
|§§>|10>—\/; §§>+\/1isl§§)_\/;‘§§>'

3The general formula is derived in Arno Bohm, Quantum Mechanics: Foundations and Applica-
tions, 2nd ed. (New York: Springer-Verlag, 1986), p. 172.
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If you put particles of spin 3/2 and spin 1 in the box, and you know that the first has
my = 1/2 and the second has m, = 0 (so m is necessarily 1/2), and you measured the
total spin s, you could get 5/2 (with probability 3/5), or 3/2 (with probability 1/15),
or 1/2 (with probability 1/3). Again, the sum of the probabilities is 1 (the sum of the
squares of each row on the Clebsch-Gordan table is 1).

If you think this is starting to sound like mystical numerology, I don’t blame
you. We will not be using the Clebsch-Gordan tables much in the rest of the book,
but I wanted you to know where they fit into the scheme of things, in case you
encounter them later on. In a mathematical sense this is all applied group theory—
what we are talking about is the decomposition of the direct product of two irreducible
representations of the rotation group into a direct sum of irreducible representations.
(You can quote that to impress your friends.)

«Problem 4.35

(@) Apply S_ to |10) (Equation 4.177), and confirm that you get /271 —1).
(b) Apply S to |00) (Equation 4.178), and confirm that you get zero.

(c) Show that |11) and |1 —1) (Equation 4.177) are eigenstates of S?, with the
appropriate eigenvalue.

Problem 4.36 Quarks carry spin 1/2. Three quarks bind together to make a
baryon (such as the proton or neutron); two quarks (or more precisely a quark and
an antiquark) bind together to make a meson (such as the pion or the kaon). Assume
the quarks are in the ground state (so the orbital angular momentum is zero).

(a) What spins are possible for baryons?

(b) What spins are possible for mesons?

Problem 4.37

(@) A particle of spin 1 and a particle of spin 2 are at rest in a configuration such
that the total spin is 3, and its z-component is 1 (that is, the eigenvalue of S, is
). If you measured the z-component of the angular momentum of the spin-2
particle, what values might you get, and what is the probability of each one?

(b) An electron with spin down is in the state s, of the hydrogen atom. If you
could measure the total angular momentum squared of the electron alone (not
including the proton spin), what values might you get, and what is the probability
of each?

Problem 4.38 Determine the commutator of $? with S (where § = S© + §®),
Generalize your result to show that

(5%, 8] = 2in (ST x 8§, [4.187]



170 Chap. 4 Quantum Mechanics in Three Dimensions

Note: Because S{V does not commute with 2, we cannot hope to find states that are
simultaneous eigenvectors of both. To form eigenstates of S?, we need linear combi-
nations of eigenstates of SV, This is precisely what the Clebsch-Gordan coefficients
(in Equation 4.185) do for us. On the other hand, it follows by obvious inference fron:
Equation 4.187 that the sum S 4+ S@ does commute with S2, which only confirm-
what we already knew (see Equation 4,103).

FURTHER PROBLEMS FOR CHAPTER 4

«Problem 4.39 Consider the three-dimensional harmonic oscillator, for which
the potential is

Vr)= %maﬂr? [4.188

(a) Show that separation of variables in Cartesian coordinates turns this into three
one-dimensional oscillators, and exploit your knowledge of the latter to deter-
mine the allowed energies. Answer:

E, = (n +3/)ho. [4.189]

(b) Determine the degeneracy d(n) of E,,.

x+xxProblem 4.40 Because the three-dimensional harmonic oscillator potential (Equa-
tion 4.188) is spherically symmetric, the Schrodinger equation can be handled by
separation of variables in spherical coordinates as well as Cartesian coordinates. Use
the power series method to solve the radial equation. Find the recursion formula
for the coefficients, and determine the allowed energies. Check your answer against
Equation 4.189.

#xProblem 4.41

(@) Prove the three-dimensional virial theorem
2AT) = (r- VV) [4.190]
(for stationary states). Hint: Refer to Problem 3.53.
(b) Apply the virial theorem to the case of hydrogen, and show that
(T) = —E,; (V) =2E,. [4.191)
(c) Apply the virial theorem to the three-dimensional harmonic oscillator (Prob-
lem 4.39), and show that in this case

(T)=(V)=E,/2. [4.192]
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