CHAPTER 5

IDENTICAL PARTICLES

5.1 TWO-PARTICLE SYSTEMS

For a single particle, the wave function W(r, ¢) is a function of the spatial coordinates
r and the time 7 (we’ll ignore spin for the moment). The wave function for a two-
particle system is a function of the coordinates of particle one (r;), the coordinates
of particle two (r,), and the time:

W(r, ry,1). [5.1]
Its time evolution is determined (as always) by the Schrodinger equation:
ov
ih— = HY, [5.2]
ot
where H is the Hamiltonian for the whole system:
o, R? 2
H=———V]{— —V;+V(r;, ), t 5.3
3 L 2y 2+ V(r, 1) [5.3]

(the subscript on V indicates differentiation with respect to the coordinates of particle
I or particle 2, as the case may be). The statistical interpretation carries over in the
obvious way:

N (ry, 12, )2 d°ry dry [5.4]

is the probability of finding particle 1 in the volume d>r; and particle 2 in the volume
d’ry; evidently ¥ must be normalized in such a way that

/|\y(r1,r2,z)|2d3r1 d*r, = 1. [5.5]
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For time-independent potentials, we obtain a complete set of solutions by sep-
aration of variables:

W(r), 12 0) = Y (e r)e” [5.6
where the spatial wave function () satisfies the time-independent Schrodinger equa-
tion:

B, o, -

- —Viy — Vi + Vi = Ev, [5.7
21’}1] 2m2

and F is the total energy of the system.

xxProblem 5.1 Typically, the interaction potential depends only on the vector
r = r; — I, separating the two particles. In that case the Schrodinger equation
separates, if we change variables from ry, rytor, R = (mir; + mar)/(my + mz
(the center of mass).

(@) Show thatr; =R+ (u/mr,r; = R— (u/my)r,and Vi = (u/my)Ve + V..
V2 = (,LL/WI])VR -V, where

mimy [5 8]

= ——o
m| + my

is the reduced mass of the system.
(b) Show that the (time-independent) Schrodinger equation becomes

2

hh

712
I S _
2(m1+m2)VR1/f ZMV,~¢+V(1')1// Ey.

() Solve by separation of variables, letting ¢ (R, r) = ¥z (R)¥(r). Note that ¢«
satisfies the one-particle Schridinger equation, with the total mass (m + mz)
in place of m, potential zero, and energy E g, while ¥, satisfies the one-particle
Schrodinger equation with the reduced mass in place of m, potential ¥ (r), and
energy E,. The total energy is the sum: E = E + E,. Note: What this tells
us is that the center of mass moves like a free particle, and the relative motion
(that is, the motion of particle 2 with respect to particle 1) is the same as if we
had a single particle with the reduced mass, subject to the potential ¥. Exactly
the same separation occurs in classical mechanics'; it reduces the two-body
problem to an equivalent one-body problem.

Problem 5.2 In view of Problem 5.1, we can correct for the motion of the nucleus
in hydrogen by simply replacing the electron mass with the reduced mass:

(@) Find (to two significant digits) the percent error in the binding energy of hydro-
g p g y
gen (Equation 4.77) introduced by our use of m instead of i.

ISee, for example, Jerry Marion, Classical Dynamics, 2nd ed. (New York: Academic Press 1970).
Section 8.2.
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(b) Find the separation in wavelength between the red Balmer lines
(n =3 — n = 2) for hydrogen and deuterium.

(¢) Find the binding energy of pesitronium (in which the proton is replaced by a
positron—positrons have the same mass as electrons but opposite charge).

(d) Suppose you wanted to confirm the existence of muonic hydrogen, in which the
electron is replaced by a muon (same charge, but 206.77 times heavier). Where
(ie., at what wavelength) would you look for the “Lyman-a” line
n=2—->n=1)

5.1.1 Bosons and Fermions

Suppose particle 1 is in the (one-particle) state v, (r), and particle 2 is in the state
Y (r). In that case Y (ry, r2) is a simple product:

Y (T, 1) = Yo(r)¥p(ry). [5.9]

Of course, this assumes that we can tell the particles apart—otherwise it wouldn’t
make any sense to claim that number 1 is in state 1, and number 2 is in state 1,; all
we could say is that one of them is in the state v, and the other is in state v, but
we wouldn’t know which is which. If we were talking about classical mechanics this
would be a silly objection: You can always tell the particles apart, in principle—just
paint one of them red and the other one blue, or stamp identification numbers on
them, or hire private detectives to follow them around. But in quantum mechanics
the situation is fundamentally different: You can’t paint an electron red, or pin a label
on it, and a detective’s observations will inevitably and unpredictably alter the state,
raising doubts as to whether the two had perhaps switched places. The fact is, all
electrons are utterly identical, in a way that no two classical objects can ever be. It is
not merely that we don’t happen to know which electron is which; God doesn’t know
which is which, because there is no such thing as “this” electron, or “that” electron;
all we can legitimately speak about is “an” electron.

Quantum mechanics neatly accommodates the existence of particles that are
indistinguishable in principle: We simply construct a wave function that is noncom-
mittal as to which particle is in which state. There are actually two ways to do it:

Vi(r1, 12) = A[Ya () ¥s(r2) £ Y (r) ¥, (r2)]. [5.10]

Thus the theory admits two kinds of identical particles: boesons, for which we use the
plus sign, and fermions, for which we use the minus sign. Photons and mesons are
bosons; protons and electrons are fermions. It so happens that

{ all particles with integer spin are bosons, and (5.11]

all particles with half-integer spin are fermions.
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This connection between spin and “statistics” (as we shall see, bosons and fermions
have quite different statistical properties) can be proved in relativistic quantum me-
chanics; in the nonrelativistic theory it must be taken as an axiom.

It follows, in particular, that two identical fermions (for example, two electrons)
cannot occupy the same state. For if ¥, = ¥, then

Y (11, 12) = A[Ya (X)) ¥a(r2) — Ya(r)va ()] =0,

and we are left with no wave function at all. This is the famous Pauli exclusion
principle. It is not (as you may have been led to believe) a bizarre ad hoc assumption
applying only to electrons, but rather a consequence of the rules for constructing
two-particle wave functions, applying to all identical fermions.

I assumed, for the sake of argument, that one particle was in the state 1, and
the other in state 1, but there is a more general (and more sophisticated) way to
formulate the problem. Let us define the exchange operator P which interchanges
the two particles:

Pf(r;,ry) = f(ra, 1)) [5.12]

Clearly, P? = 1, and it follows (prove it for yourself) that the eigenvalues of P are £1.
If the two particles are identical, the Hamiltonian must treat them the same: m; = m-
and V (11, r3) = V (1, ry). It follows that P and H are compatible observables,

[P, H] =0, [5.13]

and hence we can find a complete set of functions that are simultaneous eigenstates of
both. That is to say, we can find solutions to the Schrodinger equation that are either
symmetric (eigenvalue +1) or antisymmetric (eigenvalue —1) under exchange:

Y(ry, ry) = ¥ (rz, ry) (+ for bosons, — for fermions). [5.14]

Moreover, if a system starts out in such a state, it will remain in such a state. The new
law (I'1l call it the symmetrization requirement) is that for identical particles the
wave function is not merely allowed, but required to satisfy Equation 5.14, with the
plus sign for bosons and the minus sign for fermions.? This is the general statement.
of which Equation 5.10 is a special case.

2]t is sometimes suggested that the symmetrization requirement (Equation 5.14) is nothing new—
that it is forced by the fact that P and H commute. This is false: It is perfectly possible to imagine a system
of two distinguishable particles (say, an electron and a positron) for which the Hamiltonian is symmetric.
and yet there is no requirement that the wave function be symmetric (or antisymmetric). But identical
particles have to occupy symmetric Of antisymmetric states, and this is a completely new fundamental
law—on a par, logically, with Schrédinger’s equation and the statistical interpretation. Of course, there
didn’t have to be any such things as identical particles; it could have been that every single particle in
nature was clearly distinguishable from every other one. Quantum mechanics allows for the possibility of
identical particles, and nature (being lazy) seized the opportunity. (But I'm not complaining—this makes
matters enormously simpler!)
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Example. Suppose we have two noninteracting® particles, both of mass m, in
the infinite square well (Section 2.2). The one-particle states are

Yu(x) = \/g Sin(%x), E, = n’K

(where K = m2h%/2ma?). If the particles are distinguishable, the composite wave
functions are simple products:

Vniny (X1, %2) = Y, X)) ¥n, (X2),  Egpn, = (n% + I’l%)K

For example, the ground state is
2. .
Y11 = —sin(zwx,/a) sin(wxz/a), E; = 2K;
a
the first excited state is doubly degenerate:
2. .
V2 = —sin(wx, /a) sin(Qrx,/a), Epp =5K,
a

2
Vo1 = —sin2mx, /a) sin(wxy/a), Ey =5K;
a

and so on. If the two particles are identical bosons, the ground state is unchanged,
but the first excited state is nondegenerate:

72 [sin(mwx; /a) sin(2wx, /a) + sin(2wx; /a) sin(w x, /a)]

(still with energy SK). And if the particles are identical fermions, there is no state
with energy 2K; the ground state is

—? [sin(rrxy /a) sin(2rxy/a) — sin(2wx; /a) sin(wxy/a)],

and its energy is 5K.

xProblem 5.3

(@) If v, and v, are orthogonal, and both normalized, what is the constant 4 in
Equation 5.107

(b) If 4, = ¥, (and itis normalized), what is 4? (This case, of course, occurs only
for bosons.)

3They pass right through one another—never mind how you would set this up in practice! I'll
ignore spin—if this bothers you (after all, a spinless fermion is a contradiction in terms), assume they’re
in the same spin state.



