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Chap. 5 Identical Particles

Problem 5.4

(a) Write down the Hamiltonian for two identical noninteracting particles in the
infinite square well. Verify that the fermion ground state given in the example
is an eigenfunction of H, with the appropriate eigenvalue.

(b) Find the next two excited states (beyond the ones given in the example)—wave
functions and energies—for each of the three cases (distinguishable, identical
bosons, identical fermions).

5.1.2 Exchange Forces

To give you some sense of what the symmetrization requirement actually does, I'm
going to work out a simple one-dimensional example. Suppose one particle is in
state 1, (x), and the other is in state v, (x), and these two states are orthogonal and
normalized. If the two particles are distinguishable, and number 1 is the one in state
Y., then the combined wave function is

Y(x1, x2) = Yo (x1)¥p(x2); [5.15]

if they are identical bosons, the composite wave function is (see Problem 5.3 for the
normalization)

Yy (x1, x0) = %[Wa(xl)Wb(xZ) + Y (x1)¥a (x2)]; [5.16]
and if they are identical fermions, it is
1
V2

Let’s calculate the expectation value of the square of the separation distance
between the two particles,

Y_(x1,x2) = (Ve (X)W (x2) — Yp{x1)¥alx2)]. (5.17]

(G = x2)%) = (x7) + (x3) = 2{xyx2). (5.18)

Case 1: Distinguishable particles. For the wave function in Equation 5.15.
we have

(x}) = f X Wa () dx, f e (x2) P dxa = (x%),

(the expectation value of x? in the one-particle state ,),

(x3) =f|wa(x1)|2dx1/x§|wb(xz)|2dxz= (x%)s,
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and
(X1x2) = /x1|10(x1)|2dx1/lelﬁ(xz)lzdxz = (xX)a{x)s.
In this case, then,

(1 — x2)%)a = (XN + (X2 — 2(x)a (x)s. [5.19]

(Incidentally, the answer would—of course—be the same if particle 1 had been in
state v, and particle 2 in state ,.)

Case 2: Identical particles. For the wave functions in Equations 5.16 and
5.17,

o = 5[ veoran [k
+ f X 1Ys ) dx, f |¥a(x2) I dxz
+ / X[ Ya(x1) Y (x1) dxy / Vb (X2)*Ya (x2) dxs
£ [ v [ vawar v dx]

1

= 5[<x2>a +(xM)p £0£0] = = ((x%), + (x%)s) .

NS

Similarly,

((x2 + (x%),) -

N | =

(x3) =
(Naturally, (x%) = (x?), since you can’t tell them apart.) But
1
(rixs) = 5[/ x| (1) dxy /xzrwb(xz>|2dxz
+ [l dx [olvaeor
ifxlllfa(xl)*lﬁb(h)dxlfleﬁb(xz)*lﬁa(xz)dxz

i/xﬂlfb(xl)*llfa(xl)dxl/lelfa(xz)*llfb(xz)dxz]
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1
= 5(<x>a<x>b + ()X a £ (X)ap(X)ba £ (X)pa(X)as)

(x)alx)p £ |{x)anl,

where

(Xas = / Ve (X) s (x) dx. [5.20

Evidently

((x1 = x2)%)e = (D) + (D) = 2(x)a(x)s F 20(x)asl*. [5.21

Comparing Equations 5.19 and 5.21, we see that the difference resides in the
final term:

(Ax))) 2 = (AX)P)a F 21{x)ap|%; [5.22

identical bosons (the upper signs) tend to be somewhat closer together, and identica.
fermions (the lower signs) somewhat farther apart, than distinguishable particles ir
the same two states. Notice that (x),, vanishes unless the two wave functions actually
overlap [if ¥, (x) is zero wherever v, (x) is nonzero, the integral in Equation 5.20 i~
itself zero]. So if v, represents an electron in an atom in Chicago and 1, represent-
an electron in an atom in Seattle, it’s not going to make any difference whether you
antisymmetrize the wave function or not. As a practical matter, therefore, it’s okay
to pretend that electrons with nonoverlapping wave functions are distinguishable
(Indeed, this is the only thing that allows physicists and chemists to proceed at all.
for in principle every electron in the universe is linked to every other one via the
antisymmetrization of their wave functions, and if this really mattered, you wouldn't
be able to talk about any one electron until you were prepared to deal with them all'

The interesting case is when there is some overlap of the wave functions. The
system behaves as though there were a “force of attraction” between identical bosons.
pulling them closer together, and a “force of repulsion” between identical fermions.
pushing them apart. We call it an exchange force, although it’s not really a force at
all—no physical agency is pushing on the particles; rather, it is a purely geometricai
consequence of the symmetrization requirement. It is also a strictly quantum me-
chanical phenomenon, with no classical counterpart. Nevertheless, it has profound
consequences. Consider, for example, the hydrogen molecule (H;). Roughly speak-
ing, the ground state consists of one electron in the atomic ground state (Equation
4.80) centered on nucleus 1, and one electron in the atomic ground state centered at
nucleus 2. If electrons were bosons, the symmetrization requirement (or, if you like.
the “exchange force™) would tend to concentrate the electrons toward the middle.
between the two protons (Figure 5.1a), and the resulting accumulation of negative
charge would attract the protons inward, accounting for the covalent bond that holds
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Figure 5.1: Schematic picture of the covalent bond: (a) Symmetric configura-
tion produces attractive force; (b) antisymmetric configuration produces repul-
sive force.

the molecule together. Unfortunately, electrons aren’t bosons, they’re fermions, and
this means that the concentration of negative charge should actually be shifted to the
wings (Figure 5.1b), tearing the molecule apart!

But wait. We have been ignoring spin. The complete state of the electron in-
cludes not only its position wave function, but also a spinor, describing the orientation
of its spin*:

Y (r)x(s). [5.23]
When we put together the two-electron state, it is the whole works, not just the
spatial part, that has to be antisymmetric with respect to exchange. Now, a glance
back at the composite spin states (Equations 4.177 and 4.178) reveals that the singlet
combination is antisymmetric (and hence would have to be joined with a symmetric
spatial function), whereas the three triplet states are all symmetric (and would require
an antisymmetric spatial function). Evidently, then, the singlet state should lead to
bonding, and the triplet to antibonding. Sure enough, the chemists tell us that covalent
bonding requires the two electrons to occupy the singlet state, with total spin zero.’

xProblem 5.5 Imagine two noninteracting particles, each of mass m, in the infinite
square well. If one is in the state v, (Equation 2.24) and the other in state v,
orthogonal to v,, calculate ((x; — x,)?), assuming that (a) they are distinguishable
particles, (b) they are identical bosons, and (c) they are identical fermions.

Problem 5.6 Suppose you had three particles, one in state ¥, (x), one in state ¥, (x),
and one in state ¥.(x). Assuming that ¥,, ¥,, and 1. are orthonormal, construct
the three-particle states (analogous to Equations 5.15, 5.16, and 5.17) representing
(a) distinguishable particles, (b) identical bosons, and (c) identical fermions. Keep in
mind that (b) must be completely symmetric under interchange of any pair of particles,
and (c) must be completely anti-symmetric in the same sense.) Nore: There’s a cute

“In the absence of coupling between spin and position, we are free to assume that the state is
separable in its spin and spatial coordinates. This just says that the probability of getting spin up is
independent of the location of the particle. In the presence of coupling, the general state would take the
form of a linear combination: ¥ (r) x4+ + ¥— () x-.

3In casual language, it is often said that the electrons are “oppositely aligned” (one with spin up,
and the other with spin down). This is something of an oversimplification, since the same could be said of
the m = O triplet state. The precise statement is that they are in the singlet configuration.



