
Automata and Grammars

SS 2018

Assignment 12: Solutions to Selected Problems

Problem 12.1. [Turing Machines]

Design a one-tape Turing machine M1 with at most 8 states such that

L(M) = { anbncn | n ≥ 0 }.

Solution. We present a single-tape TM M = (Q, {a, b, c}, {a, b, c, A,B,C,2},2, δ, q0, qf)
for the language { anbncn | n ≥ 0 }, where Q = {q0, q1, q2, q3, q4, qf} and δ is given by the
following table:

δ q0 q1 q2 q3 q4 qf
a (q1, A,R) (q1, a, R) − − (q4, a, L) −
b − (q2, B,R) (q2, b, R) − (q4, b, L) −
c − − (q3, C,R) (q3, c, R) (q4, c, L) −
A − − − − (q0, A,R) −
B (q0, B,R) (q1, B,R) − − (q4, B, L) −
C (q0, C,R) − (q2, C,R) − (q4, C, L) −
2 (qf ,2, 0) − − (q4,2, L) − −

Here the states are used as follows: q0: Search to the right for an a,
q1: Search to the right for a b,
q2: Search to the right for a c,
q3: Search to the right for a 2,
q4: Search to the left for an A,
qf : Final state.

If one wants the TM M to not halt on any words that do not belong to the language
{ anbncn | n ≥ 0 }, then one just needs to replace every undefined transition for each state
q ∈ {q0, q1, q2, q3, q4} by an infinite loop.

The computation of M on input aabbcc looks as follows:

q0aabbcc `M Aq1abbcc `M Aaq1bbcc `M AaBq2bcc
`M AaBbq2cc `M AaBbCq3c `M AaBbCcq32
`M AaBbCq4c `M AaBbq4Cc `M AaBq4bCc
`M Aaq4BbCc `M Aq4aBbCc `M q4AaBbCc
`M Aq0aBbCc `M AAq1BbCc `M AABq1bCc
`M AABBq2Cc `M AABBCq2c `M AABBCCq32
`M AABBCq4C `M AABBq4CC `M AABq4BCC
`M AAq4BBCC `M Aq4ABBCC `M AAq0BBCC
`4M AABBCCq02 `M AABBCCqf2

It can now be seen quite easily that L(M) = { anbncn | n ≥ 0 }. 2

Problem 12.2. [Turing Machines]

Let Lcopy = {wcw | w ∈ {a, b}∗ }.

(a) Design a one-tape Turing machine M1 with at most 8 states such that L(M1) = Lcopy.

(b) Design a two-tape Turing machine M2 with at most 4 states such that L(M2) = Lcopy.

Solution. (a) The TM M1 will work as follows. Let x = ucv be given as input, where
u, v ∈ {a, b}∗. M1 marks the first letter of u, stores it in its finite-state control, and moves
right until it reaches the first letter to the right of the symbol c. It then compares this letter
to the stored symbol. If these two symbols coincide, then it also marks the current symbol
and returns to the marked symbol in u; otherwise it just halts in a non-accepting state. Once
M1 has returned to the marked symbol in u, it moves one step to the right, marks the new
symbol, stores it in its finite-state control, and moves right again to the first unmarked symbol
to the right of the symbol c. This process is repeated until either a mismatch is found, and
then M1 halts without accepting, or until M1 has verified that u = v, and then M1 halts and
accepts. To realize this behaviour, we define M1 = (Q, {a, b, c}, {a, b, c, ∗,2},2, δ1, q0, qf),
where Q = {q0, qa, qb, q′a, q′b, p, p′, qf} and δ1 is given by the following table:

δ1 a b c ∗ 2 Comments

q0 (qa, ∗, R) (qb, ∗, R) (qf ,2, R) − − Mark and remember a letter

qa (qa, a, R) (qa, b, R) (q′a, c, R) − − Store a and move right

qb (qb, a, R) (qb, b, R) (q′b, c, R) − − Store b and move right

q′a (p, ∗, L) − − (q′a, ∗, R) − Compare to letter in v

q′b − (p, ∗, L) − (q′b, ∗, R) − Compare to letter in v

p − − (p′, c, L) (p, ∗, L) − Return left to c

p′ (p′, a, L) (p′, b, L) − (q0,2, R) − Return left

qf (p, a, 0) (p, b, 0) − (qf ,2, R) − Accept on empty tape

Given the word x = abcab as input, M1 executes the following computation:

q0abcab `M1 ∗qabcab `M1 ∗bqacab `M1 ∗bcq′aab
`M1 ∗bpc ∗ b `M1 ∗p′bc ∗ b `M1 p′ ∗ bc ∗ b
`M1 2q0bc ∗ b `M1 2 ∗ qbc ∗ b `M1 2 ∗ cq′b ∗ b
`M1 2 ∗ c ∗ q′bb `M1 2 ∗ cp ∗ ∗ `M1 2 ∗ pc ∗ ∗
`M1 2p′ ∗ c ∗ ∗ `M1 22q0c ∗ ∗ `M1 222qf ∗ ∗
`M1 2222qf∗ `M1 22222qf2,

that is, M1 accepts the word abcab. On the other hand, on input y = acab, M1 executes the
following computation:

q0acab `M1 ∗qacab `M1 ∗cq′aab `M1 ∗pc ∗ b
`M1 p′ ∗ c ∗ b `M1 2q0c ∗ b `M1 22qf ∗ b
`M1 222qfb `M1 222pb,

that is, M1 does not accept the word acab. It can now be seen that L(M1) = Lcopy.

(b) The TM M2 will work as follows. Let ucv be given as input, where u, v ∈ {a, b}∗. M2

scans the prefix u from left to right, thereby copying it to tape 2. On reaching the symbol c,
the head on tape 1 pauses on the symbol c, while the head on tape 2 is moved back to the
first symbol of u. Then M2 compares u (by reading from tape 2) to v (from tape 1). If u = v,
then M2 accepts.
To realize this behavior, we define M2 = ({q0, ql, qr, qf}, {a, b, c}, {a, b, c,2},2, δ2, q0, qf),
where δ2 is given by the following table:

δ2 q0 ql qr qf
(a,2) (q0,2, R, a,R) − − −
(a, a) − − (qr,2, R,2, R) −
(a, b) − − − −
(a, c) − − − −
(b,2) (q0,2, R, b, R) − − −
(b, a) − − − −
(b, b) − − (qr,2, R,2, R) −
(b, c) − − − −
(c,2) (ql, c, 0, c, L) (qr,2, R,2, R) − −
(c, a) − (ql, c, 0, a, L) − −
(c, b) − (ql, c, 0, b, L) − −
(c, c) − − − −

(2,2) − − − −
(2, a) − − − −
(2, b) − − − −
(2, c) − − (qf ,2, 0,2, 0) −

Given the word x = abcab as input, M2 executes the following computation:

(q0abcab, q02) `M2 (2q0bcab, aq02) `M2 (22q0cab, abq02)
`M2 (22qlcab, aqlbc) `M2 (22qlcab, qlabc)
`M2 (22qlcab, ql2abc) `M2 (222qrab,2qrabc)
`M2 (24qrb,2

2bc) `M2 (25qr2,2
3qrc)

`M2 (25qf2,2
3qf2),

that is, M2 accepts on input abcab.
On input y = acab, M2 executes the following computation:

(q0acab, q02) `M2 (2q0cab, aq02) `M2 (2qlcab, qlac)
`M2 (2qlcab, ql2ac) `M2 (22qrab,2qrac)
`M2 (23qrb,2

2qrc),

which is non-accepting. It can be shown that L(M2) = L. 2

Problem 12.3. [Turing Machines]

Let f : N → N be the function f(n) = |dya(n)|2, that is, for each non-negative integer n,
f(n) is the number of occurrences of the digit 2 in the dyadic representation of n. Construct
a two-tape Turing machine M with at most 8 states that computes the function f .

Hint: The dyadic representation of a positive integer n is the word w = amam−1 · · · a1a0 ∈
{1, 2}+ such that n =

∑m
i=0 ai ·2i. The advantage of the dyadic representation over the binary

representation is the fact that it establishes a bijection between the set of positive integers
and the set of words {1, 2}+, while the binary representation is not unique if leading zeros
are allowed.

Solution. Observe that the input n as well as the result f(n) are written on the tape of
M in their dyadic representations. Let M = (Q, {1, 2}, {1, 2,2},2, δ, p0, pf), where Q =
{p0, p1, p2, pf , q0, q2, q3} and δ is given by the following table:

δ p0 p1 q0 q2 q3 p2 pf
(2,2) (pf ,2, 0,2, 0) (p2,2, L,2, 0) (q3,2, 0,2, L) (p0,2, 0,2, R) (p0,2, 0, 1, 0) (pf ,2, R,2, 0) −
(2, 1) (p1,2, 0, 1, 0) (p1, 1, R,2, R) (q0,2, 0, 1, R) (q2,2, 0, 1, L) (q2,2, 0, 2, L) − −
(2, 2) (p1,2, 0, 2, 0) (p1, 2, R,2, R) (q0,2, 0, 2, R) (q2,2, 0, 2, L) (q3,2, 0, 1, L) − −
(1,2) (p0,2, R,2, 0) − (q3, 1, 0,2, L) (p0, 1, 0,2, R) (p0, 1, 0, 1, 0) (p2, 1, L,2, 0) −
(1, 1) (p0,2, R, 1, 0) − (q0, 1, 0, 1, R) (q2, 1, 0, 1, L) (q2, 1, 0, 2, L) − −
(1, 2) (p0,2, R, 2, 0) − (q0, 1, 0, 2, R) (q2, 1, 0, 2, L) (q3, 1, 0, 1, L) − −
(2,2) (q0,2, R,2, 0) − (q3, 2, 0,2, L) (p0, 2, 0,2, R) (p0, 2, 0, 1, 0) (p2, 2, L,2, 0) −
(2, 1) (q0,2, R, 1, 0) − (q0, 2, 0, 1, R) (q2, 2, 0, 1, L) (q2, 2, 0, 2, L) − −
(2, 2) (q0,2, R, 2, 0) − (q0, 2, 0, 2, R) (q2, 2, 0, 2, L) (q3, 2, 0, 1, L) − −

Observe that using the states q0, q2, q3, M simulates the Turing machine for the dyadic
+1-function on its second tape (see the corresponding example in Section 4.1).

Given the number n = 12 as input, M executes the following computation. Recall that
dya(12) = 212, that is, f(12) = 2:

(p0212, p02) `M (2q012, q02) `M (2q312, q322) `M (2p012, p01)
`M (22p02, p01) `M (23q02, q01) `M (23q02, 1q02)
`M (23q32, q31) `M (23q22, q222) `M (23p02, p02)
`M (23p12, p12) `M (232p12,2p12) `M (23p22, p22)
`M (22p222, p22) `M (23pf2, pf2).

Thus, first M scans and deletes its input on tape 1 from left to right, simulating the dyadic
+1-machine on tape 2 each time it detects a 2 on tape 1. After that it copies the result from
tape 2 to tape 1, erasing tape 2 in the process. Finally, the head on tape 1 is moved to the
first symbol of the result. Observe that f(0) = 0, and that dya(0) = ε. 2

Problem 12.4 [Phrase-Structure Grammars]

Determine the languages that are generated by the following general grammars:

(a) G1 = ({S,A,B,C,D,E}, {a, b}, P1, S), where P1 is defined as follows:
P1 = {S → EC,S → ε, C → ACa,C → BCb,C → D,

aA→ Aa, bA→ Ab, aB → Ba, bB → Bb,EA→ Ea,EB → Eb,
aD → Da, bD → Db,ED → ε},

(b) G2 = ({S,A,B}, {a, b}, P2, S), where P2 is defined as follows:
P2 = {S → ASB,S → BSA,S → SS, S → ε,

AB → ε,BA→ ε,A→ a,B → b}.

Solution. (a) We claim that L(G1) = Lcopy = {ww | w ∈ {a, b}∗ }. First we show that

{EwCw | w ∈ {a, b}∗ } ⊆ L̂(G1) ∩ E · ({C, a, b})∗.

To prove this inclusion, we proceed by induction on |w|. If |w| = 0, then w = ε, and we
see that S →G1 EC = EwCw. If |w| = 1, then w = a or w = b. In the former case
S →G1 EC →G1 EACa →G1 EaCa, and the other case is analogous. Now assume that
w = au. By the induction hypothesis, we have S →∗G1

EuCu. Now we can continue as
follows:

EuCu →G1 EuACau →∗G1
EAuCau →G1 EauCau = EwCw.

As EwCw →G1 EwDw →∗G1
EDww →G1 ww, we see that Lcopy ⊆ L(G1).

From we set of productions P1, we see that L̂(G1) = {ε} ∪ L̂(G1, EC) and that L̂(G1, C) =
{WRCw,WRDw | W ∈ {A,B}∗, π(W) = w}, where π(A) = a and π(B) = b. In or-
der to rewrite the nonterminals A and B into the terminals a and b, we need the pro-
ductions containing E on the left-hand side. These show that EWRCw →∗G1

EwCw and

EWRDw →∗G1
EwDw →∗G1

EDww →G1 ww are essentially the only derivations that rewrite
all these nonterminals. Hence, we see that L(G1) = Lcopy.

(b) We claim that L(G2) = Lgl = {w ∈ {a, b}∗ | |w|a = |w|b }. From the form of the

productions we see that |α|A + |α|a = |α|B + |α|b for all α ∈ L̂(G2). This implies that
L(G2) ⊆ Lgl.

To prove the converse inclusion, let w ∈ Lgl. We proceed by induction on |w|. If |w| = 0,
then w = ε, and S →G2 ε = w. If |w| = 2, then w = ab or w = ba, and S →G2 ASB →3

G2
ab

and S →G2 BSA →3
G2

ba. Now let |w| = 2n + 2. Then w = aub or w = bua for some word
u ∈ Lgl such that |u| = 2n, or w = u1au2b or w = u1bu2a for some words u1, u2 ∈ Lgl such
that |u1|+ |u2| = 2n. In the former case we have S →G2 ASB →2

G2
aSb →∗G2

aub = w, and
analogously for w = bua. In the latter case we have S →G2 SS →∗G2

u1S →G2 u1ASB →∗G2

u1au2b = w, and analogously for the other case. Thus, we see that L(G2) = Lgl. 2

