Automata and Grammars

SS 2018

Assignment 12: Solutions to Selected Problems

Problem 12.1. [Turing Machines]
Design a one-tape Turing machine M_{1} with at most 8 states such that

$$
L(M)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} .
$$

Solution. We present a single-tape $\mathrm{TM} M=\left(Q,\{a, b, c\},\{a, b, c, A, B, C, \square\}, \square, \delta, q_{0}, q_{f}\right)$ for the language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, where $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{f}\right\}$ and δ is given by the following table:

δ	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	q_{f}
a	$\left(q_{1}, A, R\right)$	$\left(q_{1}, a, R\right)$	-	-	$\left(q_{4}, a, L\right)$	-
b	-	$\left(q_{2}, B, R\right)$	$\left(q_{2}, b, R\right)$	-	$\left(q_{4}, b, L\right)$	-
c	-	-	$\left(q_{3}, C, R\right)$	$\left(q_{3}, c, R\right)$	$\left(q_{4}, c, L\right)$	-
A	-	-	-	-	$\left(q_{0}, A, R\right)$	-
B	$\left(q_{0}, B, R\right)$	$\left(q_{1}, B, R\right)$	-	-	$\left(q_{4}, B, L\right)$	-
C	$\left(q_{0}, C, R\right)$	-	$\left(q_{2}, C, R\right)$	-	$\left(q_{4}, C, L\right)$	-
\square	$\left(q_{f}, \square, 0\right)$	-	-	$\left(q_{4}, \square, L\right)$	-	-

Here the states are used as follows: q_{0} : Search to the right for an a,
q_{1} : Search to the right for a b,
q_{2} : Search to the right for a c,
q_{3} : Search to the right for a \square,
q_{4} : Search to the left for an A,
q_{f} : Final state.
If one wants the $\mathrm{TM} M$ to not halt on any words that do not belong to the language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$, then one just needs to replace every undefined transition for each state $q \in\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}\right\}$ by an infinite loop.

The computation of M on input aabbcc looks as follows:

$q_{0} a a b b c c$	\vdash_{M}	$A q_{1} a b b c c$	\vdash_{M}	$A a q_{1} b b c c$	\vdash_{M}	$A a B q_{2} b c c$
	\vdash_{M}	$A a B b q_{2} c c$	\vdash_{M}	$A a B b C q_{3} c$	\vdash_{M}	$A a B b C c q_{3} \square$
	$\vdash_{M} A a B b C q_{4} c$	\vdash_{M}	$A a B b q_{4} C c$	\vdash_{M}	$A a B q_{4} b C c$	
	$\vdash_{M} A a q_{4} B b C c$	\vdash_{M}	$A q_{4} a B b C c$	\vdash_{M}	$q_{4} A a B b C c$	
	$\vdash_{M} A q_{0} a B b C c$	\vdash_{M}	$A A q_{1} B b C c$	\vdash_{M}	$A A B q_{1} b C c$	
	\vdash_{M}	$A A B B q_{2} C c$	\vdash_{M}	$A A B B C q_{2} c$	\vdash_{M}	$A A B B C C q_{3} \square$
	$\vdash_{M} A A B B C q_{4} C$	\vdash_{M}	$A A B B q_{4} C C$	\vdash_{M}	$A A B q_{4} B C C$	
	$\vdash_{M} A A A q_{4} B B C C$	\vdash_{M}	$A q_{4} A B B C C$	\vdash_{M}	$A A q_{0} B B C C$	
	$\vdash_{M}^{4} A A B B C C q_{0} \square$	\vdash_{M}	$A A B B C C q_{f} \square$			

It can now be seen quite easily that $L(M)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Problem 12.2. [Turing Machines]

Let $L_{\text {copy }}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$.
(a) Design a one-tape Turing machine M_{1} with at most 8 states such that $L\left(M_{1}\right)=L_{\text {copy }}$.
(b) Design a two-tape Turing machine M_{2} with at most 4 states such that $L\left(M_{2}\right)=L_{\text {copy }}$.

Solution. (a) The TM M_{1} will work as follows. Let $x=u c v$ be given as input, where $u, v \in\{a, b\}^{*} . M_{1}$ marks the first letter of u, stores it in its finite-state control, and moves right until it reaches the first letter to the right of the symbol c. It then compares this letter to the stored symbol. If these two symbols coincide, then it also marks the current symbol and returns to the marked symbol in u; otherwise it just halts in a non-accepting state. Once M_{1} has returned to the marked symbol in u, it moves one step to the right, marks the new symbol, stores it in its finite-state control, and moves right again to the first unmarked symbol to the right of the symbol c. This process is repeated until either a mismatch is found, and then M_{1} halts without accepting, or until M_{1} has verified that $u=v$, and then M_{1} halts and accepts. To realize this behaviour, we define $M_{1}=\left(Q,\{a, b, c\},\{a, b, c, *, \square\}, \square, \delta_{1}, q_{0}, q_{f}\right)$, where $Q=\left\{q_{0}, q_{a}, q_{b}, q_{a}^{\prime}, q_{b}^{\prime}, p, p^{\prime}, q_{f}\right\}$ and δ_{1} is given by the following table:

δ_{1}	a	b	c	$*$	\square	Comments
q_{0}	$\left(q_{a}, *, R\right)$	$\left(q_{b}, *, R\right)$	$\left(q_{f}, \square, R\right)$	-	-	Mark and remember a letter
q_{a}	$\left(q_{a}, a, R\right)$	$\left(q_{a}, b, R\right)$	$\left(q_{a}^{\prime}, c, R\right)$	-	-	Store a and move right
q_{b}	$\left(q_{b}, a, R\right)$	$\left(q_{b}, b, R\right)$	$\left(q_{b}^{\prime}, c, R\right)$	-	-	Store b and move right
q_{a}^{\prime}	$(p, *, L)$	-	-	$\left(q_{a}^{\prime}, *, R\right)$	-	Compare to letter in v
q_{b}^{\prime}	-	$(p, *, L)$	-	$\left(q_{b}^{\prime}, *, R\right)$	-	Compare to letter in v
p	-	-	$\left(p^{\prime}, c, L\right)$	$(p, *, L)$	-	Return left to c
p^{\prime}	$\left(p^{\prime}, a, L\right)$	$\left(p^{\prime}, b, L\right)$	-	$\left(q_{0}, \square, R\right)$	-	Return left
q_{f}	$(p, a, 0)$	$(p, b, 0)$	-	$\left(q_{f}, \square, R\right)$	-	Accept on empty tape

Given the word $x=a b c a b$ as input, M_{1} executes the following computation:

$q_{0} a b c a b$	$\vdash_{M_{1}}$	$* q_{a} b c a b$	$\vdash_{M_{1}}$	$* b q_{a} c a b$	$\vdash_{M_{1}}$	$* b c q_{a}^{\prime} a b$
	$\vdash_{M_{1}}$	$* b p c * b$	$\vdash_{M_{1}}$	$* p^{\prime} b c * b$	$\vdash_{M_{1}}$	$p^{\prime} * b c * b$
	$\vdash_{M_{1}}$	$\square q_{0} b c * b$	$\vdash_{M_{1}}$	$\square * q_{b} c * b$	$\vdash_{M_{1}}$	$\square * c q_{b}^{\prime} * b$
	$\vdash_{M_{1}}$	$\square * c * q_{b}^{\prime} b$	$\vdash_{M_{1}}$	$\square * c p * *$	$\vdash_{M_{1}}$	$\square * p c * *$
	$\vdash_{M_{1}}$	$\square p^{\prime} * c * *$	$\vdash_{M_{1}}$	$\square \square q_{0} c * *$	$\vdash_{M_{1}}$	$\square \square \square q_{f} * *$
	$\vdash_{M_{1}}$	$\square \square \square \square q_{f} *$	$\vdash_{M_{1}}$	$\square \square \square \square \square q_{f} \square$,		

that is, M_{1} accepts the word $a b c a b$. On the other hand, on input $y=a c a b, M_{1}$ executes the following computation:

$$
\begin{array}{rllllll}
q_{0} a c a b & \vdash_{M_{1}} & * q_{a} c a b & \vdash_{M_{1}} & * c q_{a}^{\prime} a b & \vdash_{M_{1}} & * p c * b \\
& \vdash_{M_{1}} & p^{\prime} * c * b & \vdash_{M_{1}} & \square q_{0} c * b & \vdash_{M_{1}} & \square \square q_{f} * b \\
& \vdash_{M_{1}} & \square \square \square q_{f} b & \vdash_{M_{1}} & \square \square \square p b, & &
\end{array}
$$

that is, M_{1} does not accept the word $a c a b$. It can now be seen that $L\left(M_{1}\right)=L_{\text {copy }}$.
(b) The TM M_{2} will work as follows. Let $u c v$ be given as input, where $u, v \in\{a, b\}^{*} . M_{2}$ scans the prefix u from left to right, thereby copying it to tape 2 . On reaching the symbol c, the head on tape 1 pauses on the symbol c, while the head on tape 2 is moved back to the first symbol of u. Then M_{2} compares u (by reading from tape 2) to v (from tape 1). If $u=v$, then M_{2} accepts.
To realize this behavior, we define $M_{2}=\left(\left\{q_{0}, q_{l}, q_{r}, q_{f}\right\},\{a, b, c\},\{a, b, c, \square\}, \square, \delta_{2}, q_{0}, q_{f}\right)$, where δ_{2} is given by the following table:

δ_{2}	q_{0}	q_{l}	q_{r}	q_{f}
(a, \square)	$\left(q_{0}, \square, R, a, R\right)$	-	-	-
(a, a)	-	-	$\left(q_{r}, \square, R, \square, R\right)$	-
(a, b)	-	-	-	-
(a, c)	-	-	-	-
(b, \square)	$\left(q_{0}, \square, R, b, R\right)$	-	-	-
(b, a)	-	-	-	-
(b, b)	-	-	$\left(q_{r}, \square, R, \square, R\right)$	-
(b, c)	-	-	-	-
(c, \square)	$\left(q_{l}, c, 0, c, L\right)$	$\left(q_{r}, \square, R, \square, R\right)$	-	-
(c, a)	-	$\left(q_{l}, c, 0, a, L\right)$	-	-
(c, b)	-	$\left(q_{l}, c, 0, b, L\right)$	-	-
(c, c)	-	-	-	-
(\square, \square)	-	-	-	-
(\square, a)	-	-	-	-
(\square, b)	-	-	-	-
(\square, c)	-	-	$\left(q_{f}, \square, 0, \square, 0\right)$	-

Given the word $x=a b c a b$ as input, M_{2} executes the following computation:

$$
\begin{array}{rllll}
\left(q_{0} a b c a b, q_{0} \square\right) & \vdash_{M_{2}} & \left(\square q_{0} b c a b, a q_{0} \square\right) & \vdash_{M_{2}} & \left(\square \square q_{0} c a b, a b q_{0} \square\right) \\
& \vdash_{M_{2}}\left(\square \square q_{l} c a b, a q_{l} b c\right) & \vdash_{M_{2}} & \left(\square \square q_{l} c a b, q_{l} a b c\right) \\
& \vdash_{M_{2}} & \left(\square \square q_{l} c a b, q_{l} \square a b c\right) & \vdash_{M_{2}} & \left(\square \square \square q_{r} a b, \square q_{r} a b c\right) \\
& \vdash_{M_{2}}\left(\square^{4} q_{r} b, \square^{2} b c\right) & \vdash_{M_{2}} & \left(\square^{5} q_{r} \square, \square^{3} q_{r} c\right) \\
& \vdash_{M_{2}}\left(\square^{5} q_{f} \square, \square^{3} q_{f} \square\right), & &
\end{array}
$$

that is, M_{2} accepts on input $a b c a b$.
On input $y=a c a b, M_{2}$ executes the following computation:

$$
\begin{array}{rllll}
\left(q_{0} a c a b, q_{0} \square\right) & \vdash_{M_{2}} & \left(\square q_{0} c a b, a q_{0} \square\right) & \vdash_{M_{2}} & \left(\square q_{l} c a b, q_{l} a c\right) \\
& \vdash_{M_{2}} & \left(\square q_{l} c a b, q_{l} \square a c\right) & \vdash_{M_{2}} & \left(\square \square q_{r} a b, \square q_{r} a c\right) \\
& \vdash_{M_{2}} & \left(\square^{3} q_{r} b, \square^{2} q_{r} c\right), & &
\end{array}
$$

which is non-accepting. It can be shown that $L\left(M_{2}\right)=L$.

Problem 12.3. [Turing Machines]

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function $f(n)=|\operatorname{dya}(n)|_{2}$, that is, for each non-negative integer n, $f(n)$ is the number of occurrences of the digit 2 in the dyadic representation of n. Construct a two-tape Turing machine M with at most 8 states that computes the function f.
Hint: The dyadic representation of a positive integer n is the word $w=a_{m} a_{m-1} \cdots a_{1} a_{0} \in$ $\{1,2\}^{+}$such that $n=\sum_{i=0}^{m} a_{i} \cdot 2^{i}$. The advantage of the dyadic representation over the binary representation is the fact that it establishes a bijection between the set of positive integers and the set of words $\{1,2\}^{+}$, while the binary representation is not unique if leading zeros are allowed.
Solution. Observe that the input n as well as the result $f(n)$ are written on the tape of M in their dyadic representations. Let $M=\left(Q,\{1,2\},\{1,2, \square\}, \square, \delta, p_{0}, p_{f}\right)$, where $Q=$ $\left\{p_{0}, p_{1}, p_{2}, p_{f}, q_{0}, q_{2}, q_{3}\right\}$ and δ is given by the following table:

δ	p_{0}	p_{1}	q_{0}	q_{2}	q_{3}	p_{2}	p_{f}
(\square, \square)	$\left(p_{f}, \square, 0, \square, 0\right)$	$\left(p_{2}, \square, L, \square, 0\right)$	$\left(q_{3}, \square, 0, \square, L\right)$	$\left(p_{0}, \square, 0, \square, R\right)$	$\left(p_{0}, \square, 0,1,0\right)$	$\left(p_{f}, \square, R, \square, 0\right)$	-
$(\square, 1)$	$\left(p_{1}, \square, 0,1,0\right)$	$\left(p_{1}, 1, R, \square, R\right)$	$\left(q_{0}, \square, 0,1, R\right)$	$\left(q_{2}, \square, 0,1, L\right)$	$\left(q_{2}, \square, 0,2, L\right)$	-	-
$(\square, 2)$	$\left(p_{1}, \square, 0,2,0\right)$	$\left(p_{1}, 2, R, \square, R\right)$	$\left(q_{0}, \square, 0,2, R\right)$	$\left(q_{2}, \square, 0,2, L\right)$	$\left(q_{3}, \square, 0,1, L\right)$	-	-
$(1, \square)$	$\left(p_{0}, \square, R, \square, 0\right)$	-	$\left(q_{3}, 1,0, \square, L\right)$	$\left(p_{0}, 1,0, \square, R\right)$	$\left(p_{0}, 1,0,1,0\right)$	$\left(p_{2}, 1, L, \square, 0\right)$	-
$(1,1)$	$\left(p_{0}, \square, R, 1,0\right)$	-	$\left(q_{0}, 1,0,1, R\right)$	$\left(q_{2}, 1,0,1, L\right)$	$\left(q_{2}, 1,0,2, L\right)$	-	-
$(1,2)$	$\left(p_{0}, \square, R, 2,0\right)$	-	$\left(q_{0}, 1,0,2, R\right)$	$\left(q_{2}, 1,0,2, L\right)$	$\left(q_{3}, 1,0,1, L\right)$	-	-
$(2, \square)$	$\left(q_{0}, \square, R, \square, 0\right)$	-	$\left(q_{3}, 2,0, \square, L\right)$	$\left(p_{0}, 2,0, \square, R\right)$	$\left(p_{0}, 2,0,1,0\right)$	$\left(p_{2}, 2, L, \square, 0\right)$	-
$(2,1)$	$\left(q_{0}, \square, R, 1,0\right)$	-	$\left(q_{0}, 2,0,1, R\right)$	$\left(q_{2}, 2,0,1, L\right)$	$\left(q_{2}, 2,0,2, L\right)$	-	-
$(2,2)$	$\left(q_{0}, \square, R, 2,0\right)$	-	$\left(q_{0}, 2,0,2, R\right)$	$\left(q_{2}, 2,0,2, L\right)$	$\left(q_{3}, 2,0,1, L\right)$	-	-

Observe that using the states q_{0}, q_{2}, q_{3}, M simulates the Turing machine for the dyadic +1 -function on its second tape (see the corresponding example in Section 4.1).

Given the number $n=12$ as input, M executes the following computation. Recall that dya $(12)=212$, that is, $f(12)=2$:

$$
\begin{array}{rllllll}
\left(p_{0} 212, p_{0} \square\right) & \vdash_{M} & \left(\square q_{0} 12, q_{0} \square\right) & \vdash_{M} & \left(\square q_{3} 12, q_{3} \square \square\right) & \vdash_{M} & \left(\square p_{0} 12, p_{0} 1\right) \\
& \vdash_{M} & \left(\square \square p_{0} 2, p_{0} 1\right) & \vdash_{M} & \left(\square^{3} q_{0} \square, q_{0} 1\right) & \vdash_{M} & \left(\square^{3} q_{0} \square, 1 q_{0} \square\right) \\
& \vdash_{M} & \left(\square^{3} q_{3} \square, q_{3} 1\right) & \vdash_{M} & \left(\square^{3} q_{2} \square, q_{2} \square 2\right) & \vdash_{M} & \left(\square^{3} p_{0} \square, p_{0} 2\right) \\
& \vdash_{M} & \left(\square^{3} p_{1} \square, p_{1} 2\right) & \vdash_{M} & \left(\square^{3} 2 p_{1} \square, \square p_{1} \square\right) & \vdash_{M} & \left(\square^{3} p_{2} 2, p_{2} \square\right) \\
& \vdash_{M} & \left(\square^{2} p_{2} \square 2, p_{2} \square\right) & \vdash_{M} & \left(\square^{3} p_{f} 2, p_{f} \square\right) . & &
\end{array}
$$

Thus, first M scans and deletes its input on tape 1 from left to right, simulating the dyadic +1 -machine on tape 2 each time it detects a 2 on tape 1 . After that it copies the result from tape 2 to tape 1 , erasing tape 2 in the process. Finally, the head on tape 1 is moved to the first symbol of the result. Observe that $f(0)=0$, and that dya $(0)=\varepsilon$.

Problem 12.4 [Phrase-Structure Grammars]

Determine the languages that are generated by the following general grammars:
(a) $G_{1}=\left(\{S, A, B, C, D, E\},\{a, b\}, P_{1}, S\right)$, where P_{1} is defined as follows:
$P_{1}=\{S \rightarrow E C, S \rightarrow \varepsilon, C \rightarrow A C a, C \rightarrow B C b, C \rightarrow D$, $a A \rightarrow A a, b A \rightarrow A b, a B \rightarrow B a, b B \rightarrow B b, E A \rightarrow E a, E B \rightarrow E b$, $a D \rightarrow D a, b D \rightarrow D b, E D \rightarrow \varepsilon\}$,
(b) $\quad G_{2}=\left(\{S, A, B\},\{a, b\}, P_{2}, S\right)$, where P_{2} is defined as follows:
$P_{2}=\{S \rightarrow A S B, S \rightarrow B S A, S \rightarrow S S, S \rightarrow \varepsilon$, $A B \rightarrow \varepsilon, B A \rightarrow \varepsilon, A \rightarrow a, B \rightarrow b\}$.
Solution. (a) We claim that $L\left(G_{1}\right)=L_{\text {copy }}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$. First we show that

$$
\left\{E w C w \mid w \in\{a, b\}^{*}\right\} \subseteq \hat{L}\left(G_{1}\right) \cap E \cdot(\{C, a, b\})^{*}
$$

To prove this inclusion, we proceed by induction on $|w|$. If $|w|=0$, then $w=\varepsilon$, and we see that $S \rightarrow_{G_{1}} E C=E w C w$. If $|w|=1$, then $w=a$ or $w=b$. In the former case $S \rightarrow_{G_{1}} E C \rightarrow_{G_{1}} E A C a \rightarrow_{G_{1}} E a C a$, and the other case is analogous. Now assume that $w=a u$. By the induction hypothesis, we have $S \rightarrow_{G_{1}}^{*} E u C u$. Now we can continue as follows:

$$
E u C u \rightarrow_{G_{1}} \text { EuACau } \rightarrow_{G_{1}}^{*} \text { EAuCau } \rightarrow_{G_{1}} \quad \text { EauCau }=E w C w .
$$

As $E w C w \rightarrow_{G_{1}} E w D w \rightarrow_{G_{1}}^{*} E D w w \rightarrow_{G_{1}} w w$, we see that $L_{\text {copy }} \subseteq L\left(G_{1}\right)$.
From we set of productions P_{1}, we see that $\hat{L}\left(G_{1}\right)=\{\varepsilon\} \cup \hat{L}\left(G_{1}, E C\right)$ and that $\hat{L}\left(G_{1}, C\right)=$ $\left\{W^{R} C w, W^{R} D w \mid W \in\{A, B\}^{*}, \pi(W)=w\right\}$, where $\pi(A)=a$ and $\pi(B)=b$. In order to rewrite the nonterminals A and B into the terminals a and b, we need the productions containing E on the left-hand side. These show that $E W^{R} C w \rightarrow_{G_{1}}^{*} E w C w$ and $E W^{R} D w \rightarrow_{G_{1}}^{*} E w D w \rightarrow_{G_{1}}^{*} E D w w \rightarrow_{G_{1}} w w$ are essentially the only derivations that rewrite all these nonterminals. Hence, we see that $L\left(G_{1}\right)=L_{\text {copy }}$.
(b) We claim that $L\left(G_{2}\right)=L_{\mathrm{gl}}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{a}=|w|_{b}\right\}$. From the form of the productions we see that $|\alpha|_{A}+|\alpha|_{a}=|\alpha|_{B}+|\alpha|_{b}$ for all $\alpha \in \hat{L}\left(G_{2}\right)$. This implies that $L\left(G_{2}\right) \subseteq L_{\mathrm{gl}}$.
To prove the converse inclusion, let $w \in L_{\mathrm{gl}}$. We proceed by induction on $|w|$. If $|w|=0$, then $w=\varepsilon$, and $S \rightarrow_{G_{2}} \varepsilon=w$. If $|w|=2$, then $w=a b$ or $w=b a$, and $S \rightarrow G_{G_{2}} A S B \rightarrow_{G_{2}}^{3} a b$ and $S \rightarrow_{G_{2}} B S A \rightarrow_{G_{2}}^{3} b a$. Now let $|w|=2 n+2$. Then $w=a u b$ or $w=b u a$ for some word $u \in L_{\mathrm{gl}}$ such that $|u|=2 n$, or $w=u_{1} a u_{2} b$ or $w=u_{1} b u_{2} a$ for some words $u_{1}, u_{2} \in L_{\mathrm{gl}}$ such that $\left|u_{1}\right|+\left|u_{2}\right|=2 n$. In the former case we have $S \rightarrow_{G_{2}} A S B \rightarrow_{G_{2}}^{2} a S b \rightarrow_{G_{2}}^{*} a u b=w$, and analogously for $w=b u a$. In the latter case we have $S \rightarrow_{G_{2}} S S \rightarrow_{G_{2}}^{*} u_{1} S \rightarrow_{G_{2}} u_{1} A S B \rightarrow_{G_{2}}^{*}$ $u_{1} a u_{2} b=w$, and analogously for the other case. Thus, we see that $L\left(G_{2}\right)=L_{\mathrm{gl}}$.

