Automata and Grammars

SS 2018

Assignment 13

Solutions are to be presented at the Seminary on Thursday, May 24, 2018.

Problem 13.1. [Encodings of Turing Machines]
Let $M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{0,1\},\{0,1, \square\}, \square, q_{0}, q_{3}\right)$ be the Turing machine that is given through the following transition function:

δ	0	1	\square	Comments
q_{0}	$\left(q_{0}, 0, R\right)$	$\left(q_{0}, 1, R\right)$	$\left(q_{2}, \square, L\right)$	Move right to the last nonblank symbol
q_{1}	$\left(q_{1}, 0, L\right)$	$\left(q_{1}, 1, L\right)$	$\left(q_{3}, \square, R\right)$	Move left to the first nonblank symbol
q_{2}	$\left(q_{1}, 1, L\right)$	$\left(q_{2}, 0, L\right)$	$\left(q_{3}, 1,0\right)$	Add 1 while moving left
q_{3}	-	-	-	Final state

that is, M computes the binary +1 -function (compare M to the TM in the first example of Section 4.1).
(a) Compute the encoding $c(M)$ of the above TM (see the definition before Lemma 4.9).
(b) Let M^{\prime} be the TM that is given through the following encoding

$$
\begin{aligned}
c\left(M^{\prime}\right)= & 11100011111010101001000110100101010001101000100101011 \\
& 00101001001011001001001010110010001000100100111 .
\end{aligned}
$$

Reconstruct the TM $M^{\prime}=\left(Q, \Sigma, \Gamma, \square, \delta^{\prime}, q_{0}, q_{n}\right)$ from its encoding $c\left(M^{\prime}\right)$.
(c) Construct the encoding $c(\hat{M})$ of the following TM \hat{M} from the encoding $c\left(M^{\prime}\right)$ of M^{\prime} and the input word $x=10$, where \hat{M} behaves as follows:
(1) erase the given input;
(2) write x;
(3) simulate M^{\prime} on input x.

Problem 13.2. [Recursively Enumerable Languages]
Prove that the following languages are recursively enumerable:
(a) $L_{1}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a}=|w|_{b}+|w|_{c}\right\}$,
(b) $L_{2}=\left\{w \in\{a\}^{*} \mid \exists n \geq 0: w=a^{2^{n}}\right\}$.

Problem 13.3. [Undecidable Languages]
Prove that the following languages are undecidable:
(a) $H_{0}=\left\{w \in\{0,1\}^{*} \mid\right.$ The TM M_{w} halts on empty input $\}$,
(b) $H_{\forall}=\left\{w \in\{0,1\}^{*} \mid\right.$ The TM M_{w} halts for every input $\}$,
(c) $T_{2}=\left\{u \# v \mid u, v \in\{0,1\}^{*}\right.$ and the $\mathrm{TM} M_{u}$ halts for all inputs for which the TM M_{v} halts $\}$.

Problem 13.4 [Non-Recursively Enumerable Languages]

Prove that the following languages are not even recursively enumerable:
(a) $L_{1}=\left\{w \in\{0,1\}^{*} \mid\right.$ The TM M_{w} does not halt on empty input $\}$,
(b) $L_{2}=\left\{w \in\{0,1\}^{*} \mid\right.$ The TM M_{w} does not halt on any input $\}$,
(c) $L_{3}=\left\{u \# v \mid u, v \in\{0,1\}^{*}\right.$ and the TMs M_{u} and M_{v} halt on the same inputs $\}$.

