Automata and Grammars

SS 2018

Assignment 13

Solutions are to be presented at the Seminary on Thursday, May 24, 2018.

Problem 13.1. [Encodings of Turing Machines]

Let $M = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1, \Box\}, \Box, q_0, q_3)$ be the Turing machine that is given through the following transition function:

δ	0	1		Comments
q_0	$(q_0, 0, R)$	$(q_0, 1, R)$	(q_2, \Box, L)	Move right to the last nonblank symbol
q_1	$(q_1, 0, L)$	$(q_1, 1, L)$	(q_3, \Box, R)	Move left to the first nonblank symbol
q_2	$(q_1, 1, L)$	$(q_2, 0, L)$	$(q_3, 1, 0)$	Add 1 while moving left
q_3	_	_	_	Final state

that is, M computes the binary +1-function (compare M to the TM in the first example of Section 4.1).

- (a) Compute the encoding c(M) of the above TM (see the definition before Lemma 4.9).
- (b) Let M' be the TM that is given through the following encoding

Reconstruct the TM $M' = (Q, \Sigma, \Gamma, \Box, \delta', q_0, q_n)$ from its encoding c(M').

- (c) Construct the encoding $c(\hat{M})$ of the following TM \hat{M} from the encoding c(M') of M' and the input word x = 10, where \hat{M} behaves as follows:
 - (1) erase the given input;
 - (2) write x;
 - (3) simulate M' on input x.

Problem 13.2. [Recursively Enumerable Languages]

Prove that the following languages are recursively enumerable:

(a) $L_1 = \{ w \in \{a, b, c\}^* \mid |w|_a = |w|_b + |w|_c \},$ (b) $L_2 = \{ w \in \{a\}^* \mid \exists n \ge 0 : w = a^{2^n} \}.$

Problem 13.3. [Undecidable Languages]

Prove that the following languages are undecidable:

- (a) $H_0 = \{ w \in \{0,1\}^* \mid \text{The TM } M_w \text{ halts on empty input } \},$
- (b) $H_{\forall} = \{ w \in \{0,1\}^* \mid \text{The TM } M_w \text{ halts for every input } \},$
- (c) $T_2 = \{ u \# v \mid u, v \in \{0, 1\}^* \text{ and the TM } M_u \text{ halts for all inputs for which the TM } M_v \text{ halts } \}.$

Problem 13.4 [Non-Recursively Enumerable Languages]

Prove that the following languages are not even recursively enumerable:

- (a) $L_1 = \{ w \in \{0,1\}^* \mid \text{The TM } M_w \text{ does not halt on empty input } \},$ (b) $L_2 = \{ w \in \{0,1\}^* \mid \text{The TM } M_w \text{ does not halt on any input } \},$ (c) $L_3 = \{ u \# v \mid u, v \in \{0,1\}^* \text{ and the TMs } M_u \text{ and } M_v \text{ halt on the same inputs } \}.$