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4.3. General Phrase-Structure Grammars
A phrase-structure grammar is a 4-tuple G = (N,T ,S,P), where
P ⊆ (N ∪ T )∗ × (N ∪ T )∗ is a finite semi-Thue system on N ∪ T such
that |�|N ≥ 1 for all (� → r) ∈ P (see Section 2).

Theorem 4.20

For each phrase-structure grammar G, the language L(G) is
recursively enumerable.

Proof.

For G = (N,T ,S,P) we describe a 2-tape-NTM M that accepts the
language L(G): The input w is stored on tape 1, and on tape 2,
M guesses a derivation of G, starting from S.
As soon as a terminal word z has been generated on tape 2, M checks
whether z = w holds. In the affirmative, M halts, while in the negative,
M enters an infinite loop. Hence, L(M) = L(G).
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Theorem 4.21

If L is a recursively enumerable language, then there exists a
phrase-structure grammar G such that L(G) = L.

Proof.

Let L ⊆ Σ∗ be r.e., and let M = (Q,Σ, Γ,✷, δ, q0, q1) be a 1-TM
s.t. L(M) = L. We construct a grammer G = (N,Σ,A1,P) by taking

N := ((Σ ∪ {ε})× Γ) ∪ Q ∪ {A1,A2,A3},
and defining P as follows:
(1) A1 → q0A2, (4) A3 → [ε,✷]A3,
(2) A2 → [a, a]A2 for all a ∈ Σ, (5) A3 → ε.
(3) A2 → A3,

Using these productions G generates a sentential form
q0[a1, a1][a2, a2] · · · [an, an][ε,✷] · · · [ε,✷]

for a word w = a1a2 · · · an ∈ Σ∗. This sentential form encodes the initial
configuration of the TM M on input w .
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Proof of Theorem 4.21 (cont.)

Further, P contains the following productions for simulating M:
(6) q[a,X ] → [a,Y ]p, if δ(q,X ) = (p,Y ,R),
(7) [b,Z ]q[a,X ] → p[b,Z ][a,Y ] for all b ∈ Σ ∪ {ε} and Z ∈ Γ,

if δ(q,X ) = (p,Y , L),
(8) q[a,X ] → p[a,Y ], if δ(q,X ) = (p,Y , 0).

If q0w✷m �∗
M upv holds for some u, v ∈ Γ∗, p ∈ Q, and m ≥ 0, then

q0[a1, a1][a2, a2] · · · [an, an][ε,✷]
m →∗

P

[a1, u1] · · · [ak , uk ]p[ak+1, v1] · · · [an, vn−k ][ε, vn−k+1] · · · [ε, vn+m−k ],

where u = u1u2 . . . uk and v = v1v2 . . . vn+m−k .
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Proof of Theorem 4.21 (cont.)

Finally, P also contains some productions for treating halting
configurations:

(9)
[a,X ]q1 → q1aq1

q1[a,X ] → q1aq1

q1 → ε





for all a ∈ Σ ∪ {ε} and X ∈ Γ.

If q0w �∗
M uq1v , that is, if w ∈ L(M), then:

A1 →∗ q0[a1, a1][a2, a2] · · · [an, an][ε,✷]
m

→∗ [a1, u1] · · · [ak , uk ]q1[ak+1, v1] · · · [an, vn−k ] · · · [ε, vn+m−k ]
→∗ a1a2 · · · an = w ,

which shows that L(M) ⊆ L(G).

Conversely, if w ∈ L(G), then we see from the construction above that
M halts on input w , which implies that L(G) = L(M).
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Corollary 4.22

A language L is recursively enumerable if and only if it is generated by
a phrase-structure grammar.

From the various characterizations of the class of r.e. languages, we
obtain the following closure properties.

Corollary 4.23

(a) The class RE is closed under union, intersection, product, Kleene
star, reversal, and inverse morphisms.

(b) The class RE is not closed under complementation.
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4.4. Context-Sensitive Languages

A grammar G = (N,T ,S,P) is context-sensitive if each production
(� → r) ∈ P has the form αXβ → αuβ, where X ∈ N,
α,β, u ∈ (N ∪T )∗, and u �= ε. In addition, G may contain the production
(S → ε), if S does not occur on the right-hand side of any production.
A language L is called context-sensitive if there exists a
context-sensitive grammar G such that L = L(G).
By CSL(Σ) we denote the set of all context-sensitive languages on Σ,
and CSL denotes the class of all context-sensitive languages.
A grammar G = (N,T ,S,P) is called monotone if |�| ≤ |r | holds for
each production (� → r) ∈ P. Also a monotone grammar may contain
the production (S → ε) if S does not occur on the right-hand side of
any production.
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Theorem 4.24

(a) For each context-sensitive grammar G, there is a monotone
grammar G� such that L(G�) = L(G)

(b) For each monotone grammar G�, there is a context-sensitive
grammar G such that L(G) = L(G�).

Proof.

(a) ⇒ (b): By definition each context-sensitive grammar is monotone.

(b) ⇒ (a): Let G� = (N �,T ,S�,P �) be a monotone grammar.
From G� we construct G�� = (N ��,T ,S�,P ��) by taking

N �� := N � ∪ { Aa | a ∈ T } and P �� := h(P �) ∪ { Aa → a | a ∈ T },
where h is defined through A �→ A (A ∈ N �) and a �→ Aa (a ∈ T ).
G�� is monotone, and all the new productions are context-sensitive.
It remains to replace the productions in h(P �) by context-sensitive
productions.
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Proof of Theorem 4.24 (cont.)

Let A1 · · ·Am → B1 · · ·Bn (2 ≤ m ≤ n) be a production from h(P �),
where Ai ,Bj ∈ N ��. We introduce new nonterminals Z1,Z2, . . . ,Zm and
replace the above production by the following ones:

A1 · · ·Am → Z1A2 · · ·Am
Z1A2 · · ·Am → Z1Z2A3 · · ·Am

...
Z1Z2 · · ·Zm−1Am → Z1 · · ·ZmBm+1 · · ·Bn

Z1 · · ·ZmBm+1 · · ·Bn → B1Z2 · · ·ZmBm+1 · · ·Bn
...

B1 · · ·Bm−1ZmBm+1 · · ·Bn → B1 · · ·Bm−1BmBm+1 · · ·Bn.

The new productions are context-sensitive. It’s obvious that they
simulate the old production. On the other hand, the new productions
can only be used for this purpose, as the new nonterminals
Z1,Z2, . . . ,Zm do not occur in any other production. By repeating the
process above for each production from h(P �), we obtain a
context-sensitive grammar G such that L(G) = L(G�)
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Example.

Let G be the following monotone grammar:

G = ({S,B}, {a, b, c},S, {S → aSBc,S → abc, cB → Bc, bB → bb}).

We claim that L(G) = L := { anbncn | n ≥ 1 }.

Claim 1:

L ⊆ L(G).

Proof of Claim 1.

We show that anbncn ∈ L(G) by induction on n.
For n = 1, we have S → abc.
Assume that S →∗ anbncn has been shown for some n ≥ 1.
We consider the following derivation:

S → aSBc →∗ a · anbncn · Bc →∗ an+1bnBcn+1 → an+1bn+1cn+1.
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Example (cont.)

Claim 2:

L(G) ⊆ L.

Proof of Claim 2.

By applying production 1 repeatedly, we obtain a sentential form
anS(Bc)n, which is rewritten into a sentential form anSα by
production 3, where α ∈ {B, c}+ and |α|B = |α|c = n.
In order to get rid of S, production 2 must be applied, that is,
we obtain anSα → an+1bcα.
To get rid of all nonterminals B in α, all occurrences of c must be
moved to the right and then all B are rewritten into b by production 4,
that is, an+1bcα →∗ an+1bBncn+1 →∗ an+1bn+1cn+1.
Hence, L(G) ⊆ L.

Together Claims 1 and 2 show that L(G) = L.
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Each context-free grammar in CNF (Theorem 3.9) is context-sensitive.
On the other hand, { anbncn | n ≥ 1 } �∈ CFL (see the first example
after Theorem 3.14).

Corollary 4.25

CFL � CSL.

A grammar G = (N,T ,S,P) is in Kuroda Normal Form, if it only
contains productions of the following forms:

(A → a), (A → BC), (AB → CD), where a ∈ T and A,B,C,D ∈ N.

With respect to the production (S → ε), we have the same restriction
as before.

Theorem 4.26

Given a context-sensitive grammar G, one can effectively construct an
equivalent context-sensitive grammar G� that is in Kuroda Normal
Form.
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Proof of Theorem 4.26.

As in the proof of Theorem 3.9 we can first revise G in such a way that
terminals only occur on the right-hand side of productions of the form
(A → a).
Next we replace productions of the form (A → B1B2 · · ·Bn) (n > 2) by
new productions

(A → B1Z2), (Z2 → B2Z3), . . . , (Zn−1 → Bn−1Bn),

where Z2,Z3, . . . ,Zn−1 are new nonterminals.

Finally, let (A1A2 · · ·Am → B1 · · ·Bn) be a productions s.t. m > 1 and
m + n > 4. We choose new nonterminals Z2,Z3, . . . ,Zn−1 and replace
the production above by the following productions in Kuroda form:
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Proof of Theorem 4.26 (cont.)

(A1A2 → B1Z2),
(Z2A3 → B2Z3),

...
(Zm−1Am → Bm−1Zm),

(Zm → BmZm+1),
(Zm+1 → Bm+1Zm+2),

...
(Zn−1 → Bn−1Bn).

The new productions can simulate the old one. On the other hand,
they cannot be used in any other way, as the new nonterminals do not
occur in any other productions.
By repeating this process for all productions of the form above, we
obtain a grammar G� in Kuroda Normal Form s.t. L(G�) = L(G).
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A linear-bounded automaton (LBA) M is a 1-NTM

M = (Q,Σ, Γ,✷, δ, q0, q1)

with two special symbols c| , $ ∈ Γ.
For w ∈ Σ∗, q0c|w$ is the initial configuration of M on input w , and

L(M) := {w ∈ Σ∗ | ∃α,β ∈ Γ∗ : q0c|w$ �∗
M c|αq1β$ }

is the language accepted by M.
An LBA can be depicted as follows:

c| a1 a2 a3 · · · an−1 an $

read/write head

finite-state
control
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Theorem 4.27

For each L ∈ CSL, there exists an LBA M such that L = L(M).

Proof.

We proceed as in the proof of Theorem 4.20, only that here our NTM
M has a tape with two tracks instead of two tapes:
On track 1, the input word w is stored, and on track 2, a derivation of
the context-sensitive grammar G is simulated nondeterministically.
For doing so, we can assume that G is in Kuroda Normal Form.
If the simulated derivation generates the word w , then M accepts.
If another terminal word is obtained, or if the space provided by the
length of the input w does not allow for another step, then M enters an
infinite loop.
Thus, M is an LBA such that L(M) = L.
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Theorem 4.28

For each LBA M, there exists a context-sensitive grammar G such that
L(G) = L(M).

Proof.

Here we proceed as in the proof of Theorem 4.21, that is, from a given
LBA M, we construct a grammar G that simulates the computations
of M.
Given a word w = a1a2 · · · an ∈ Σ∗ as input, the corresponding initial
configuration q0c|w$ of M is encoded by the word

�
c| a1

c| q0a1

��
a2

a2

�
· · ·

�
an−1

an−1

��
an$

an$

�
,

which is derived from the start symbol S of G by applying some
context-free productions.
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Proof of Theorem 4.28 (cont.)

Then a computation of the LBA M is simulated on the lower track only
using productions (� → r) satisfying |�| = |r |.
If w ∈ L(M), then a word of the following form can be derived:

�
c| a1

c| b1

��
a2

b2

�
· · ·

�
ai

q1bi

�
· · ·

�
an−1

bn−1

��
an$

bn$

�
,

which can be rewritten into the word a1a2 · · · an−1an = w by using
monotone productions.
Hence, G is a context-sensitive grammar satisfying L(G) = L(M).

Corollary 4.29

A language L is context-sensitive iff there exists an LBA M such that
L(M) = L.
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A language L is called deterministic context-sensitive if it is accepted
by a deterministic LBA. We denote the corresponding class of
languages by DCSL.

Obviously, CFL � DCSL ⊆ CSL, but it is still open whether the
inclusion DCSL ⊆ CSL is proper.
This is the famous LBA Problem (see [Hartmanis, Hunt 1974]).

Corollary 4.30

CSL ⊆ REC, that is, each context-sensitive language has decidable
membership problem.

Proof.

Let G be a context-sensitive grammar. In order to decide whether
w ∈ L(G) it suffices to generate all sentential forms α of G that satisfy
the condition |α| ≤ |w | and that can be derived from the start symbol S.
If w is found in this way, then w ∈ L; otherwise, w �∈ L.
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Corollary 4.31

For each recursively enumerable language L on Σ, there exists a
context-sensitive language L� on Γ � Σ such that ΠΣ(L�) = L. Here
ΠΣ : Γ∗ → Σ∗ is the morphism that is defined by

a �→ a (a ∈ Σ) and b �→ ε (b ∈ Γ� Σ).

Proof.

Let L be a r.e. language on Σ. Then there exists a 1-TM
M = (Q,Σ,Δ,✷, δ, q0, q1) s.t. L(M) = L.
We take Γ := Σ ∪ {$} and

L� := {w$n | w ∈ L and M accepts w in space |w |+ n }.
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Proof of Corollary 4.31 (cont.)

For w ∈ Σ∗ and m ∈ N, M is given the input w$m.
Now M runs until it either accepts, which implies that w$m ∈ L�,
or until it needs more space than |w |+ m, or until it gets into a loop.
In the latter two cases, w$m �∈ L�.
From M we easily obtain an LBA that accepts L�.
Hence, L� ∈ CSL and L = ΠΣ(L�).

Because of Corollary 4.31, CSL is called a basis for the class RE.

Corollary 4.32

The class CSL is not closed under morphisms.

Proof.

This follows from the inclusion CSL ⊆ REC � RE and from
Corollary 4.31.
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Theorem 4.33

The class CSL is closed under union, product, Kleene star, and ε-free
morphisms.

Theorem 4.34

The class CSL is closed under intersection and inverse morphisms.

Theorem 4.35 (Immerman 1987, Szelepczenyi 1987)

The class CSL is closed under complementation.
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Corollary 4.36

CSL � REC.

Actually, the membership problem for a context-sensitive language is
decidable in exponential time.
On the other hand, Corollaries 4.14 and 4.31 imply that the following
problems are undecidable for CSL:

– finiteness,
– emptiness,
– regularity,
– context-freeness,
– inclusion, and
– equality.
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Chapter 5:

Summary
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5. Summary

Summary on Characterizations:

Language classes Grammars Automata
Typ 3 (regular) regular DFA

NFA
det. context-free DPDA
Typ 2 (context-free) context-free PDA
Typ 1 (context-sensitive) monotone LBA
Typ 0 (recursively enumerable) general TM

NTM
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5. Summary

Summary on Closure Properties:

Operation REG DCFL CFL CSL RE
Union + - + + +
Intersection + - - + +
Intersection with REG + + + + +
Complementation + + - + -
Product + - + + +
Kleene star + - + + +
Morphism + - + - +
Inverse Morphism + + + + +
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5. Summary

Summary on Decision Problems:

Decision
problem

REG DCFL CFL CSL RE

Membership + + + + –
Emptiness + + + – –
Finiteness + + + – –
Equality + + – – –
Inclusion + – – – –
Regularity + + – – –

+ decidable
– undecidable
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