4.2. Undecidability

A decision problem is called undecidable, if there does not exist a TM that answers each instance correctly after finitely many steps.
If $L \subseteq \Sigma^{*}$, then the Membership Problem for L is the following decision problem:

INSTANCE: A word $w \in \Sigma^{*}$.
QUESTION: Is $w \in L$?
Thus, this problem is decidable iff the language L is recursive.
In what follows we are interested in the Halting Problem for TMs:
INSTANCE: A TM M and an input word $w \in \Sigma^{*}$.
QUESTION: When starting with input w, will M halt eventually?

In order to study this problem we must encode the instance (M, w) in some way.
Let $M=\left(Q,\{0,1\},\{0,1, \square\}, \square, \delta, q_{0}, q_{n}\right)$ be a 1-TM on
$\Sigma=\{0,1\}$, and let $Q=\left\{q_{0}, q_{1}, \ldots, q_{n}\right\}$.
We will encode M through a word $c(M) \in \Sigma^{+}$.
Let $\delta=\left\{\left(q_{i_{1}}, a_{i_{1}}, q_{j_{1}}, a_{j_{1}}, m_{j_{1}}\right), \ldots,\left(q_{i_{m}}, a_{i_{m}}, a_{j_{m}}, a_{j_{m}}, m_{j_{m}}\right)\right\}$,
where $q_{i_{e}}, q_{j_{e}} \in Q, a_{i_{e}}, a_{j_{e}} \in \Sigma \cup\{\square\}$, and $m_{j_{e}} \in\{L, 0, R\}$.
Each 5-tuple ($q_{i_{e}}, a_{i_{e}}, q_{j_{e}}, a_{j_{e}}, m_{j_{e}}$) is encoded as

$$
\begin{array}{r}
c\left(q_{i e}, a_{i_{e}}, a_{j e}, a_{j_{e}}, m_{j_{e}}\right):=0^{i_{e}+1} 10^{e\left(a_{i e}\right)} 10^{j_{e}+1} 10^{e\left(a_{j e}\right)} 10^{e\left(m_{j e}\right)}, \\
\text { where } e\left(a_{i}\right):=\left\{\begin{array}{ll}
1, & \text { if } a_{i}=0, \\
2, & \text { if } a_{i}=1, \\
3, & \text { if } a_{i}=\square,
\end{array}\right\} \text { and } e(m):=\left\{\begin{array}{ll}
1, & \text { if } m=L, \\
2, & \text { if } m=0, \\
3, & \text { if } m=R .
\end{array}\right\}
\end{array}
$$

The function δ is interpreted as a sequence of 5 -tuples.
Assuming that this sequence is sorted in lexicographical order, we take

$$
\begin{aligned}
c(M):= & 1110^{n+1} 11111 \cdot c\left(q_{i_{1}}, a_{i_{1}}, q_{j_{1}}, a_{j_{1}}, m_{j_{1}}\right) \cdot 11 . \\
& \ldots \cdot 11 \cdot c\left(q_{i_{m}}, a_{i_{m}}, a_{j_{m}}, a_{j_{m}}, m_{j_{m}}\right) \cdot 111 .
\end{aligned}
$$

Lemma 4.9

The set

$$
\{c(M) \mid M \text { is a } 1-T M \text { on } \Sigma=\{0,1\} \text { and } \Gamma=\{0,1, \square\}\}
$$

is recursive.

Proof of Lemma 4.9.

Let $w \in\{0,1\}^{*}$. If w is not an element of the regular language
$1^{3} \cdot 0^{n+1} \cdot 1^{5} \cdot\left(0^{1 \leq i \leq n} \cdot 1 \cdot 0^{1 \leq i \leq 3} \cdot 1 \cdot 0^{1 \leq i \leq n+1} \cdot 1 \cdot 0^{1 \leq i \leq 3} \cdot 1 \cdot 0^{1 \leq i \leq 3} \cdot 11\right)^{\leq 3 \cdot n} \cdot 1$,
then w is not the encoding of a 1-TM.
If, however, w is an element of the above regular language, then one can try to reconstruct M from w. This reconstruction is successful iff w describes a function

$$
\delta:\left\{q_{0}, \ldots, q_{n-1}\right\} \times\{0,1, \square\} \leadsto\left\{q_{0}, \ldots, q_{n}\right\} \times\{0,1, \square\} \times\{L, 0, R\} .
$$

This function δ then yields the TM M satisfying $c(M)=w$.

By M_{∞} we denote the following TM, which does not halt on any input:

$$
\left(\left\{q_{0}, q_{1}\right\},\{0,1\},\{0,1, \square\}, \square,\left\{\left(q_{0}, a, q_{0}, a, 0\right) \mid a \in\{0,1, \square\}\right\}, q_{0}, q_{1}\right) .
$$

With each word $w \in \Sigma^{*}$, we now associate a TM M_{w} :

$$
M_{w}:= \begin{cases}M, & \text { if } c(M)=w, \\ M_{\infty}, & \text { if } w \text { is not the encoding of any TM. }\end{cases}
$$

By Lemma 4.9, the TM M_{w} can be reconstructed from w. Now let $K \subseteq\{0,1\}^{*}$ be the following language:

$$
K:=\left\{w \in\{0,1\}^{*} \mid M_{w} \text { halts on input } w\right\} .
$$

Theorem 4.10

The language K is not recursive.

Proof of Theorem 4.10.

Assume to the contrary that K is recursive. Then there exists a $1-\mathrm{TM}$ M_{0} that decides membership in K, that is,

$$
q_{0}^{(0)} w \vdash_{M_{0}}^{*} q_{1}^{(0)} 1, \text { if } w \in K
$$

and

$$
q_{0}^{(0)} w \vdash_{M_{0}}^{*} q_{1}^{(0)} 0, \text { if } w \notin K
$$

By modifying M_{0} we obtain a new TM M_{1} that behaves as follows:

$$
q_{0}^{(0)} w \vdash_{M_{0}}^{*} q_{1}^{(0)} a \vdash_{M_{1}} \begin{cases}q_{2} a \vdash_{M_{1}} q_{2} a \vdash_{M_{1}} \cdots, & \text { if } a=1, \\ q_{1} 0, & \text { if } a=0 .\end{cases}
$$

Proof of Theorem 4.10 (cont.)

Hence, for all $w \in \Sigma^{*}: M_{1}$ halts on input w iff
$q_{0}^{(0)} w \vdash_{M_{0}}^{*} q_{1}^{(0)} 0$, that is, iff $w \notin K$.
Now let $u:=c\left(M_{1}\right)$. Then $M_{u}=M_{1}$, and we have the following sequence of equivalent statements:
M_{1} halts on input u iff $u \notin K$
iff M_{u} does not halt on input u
iff M_{1} does not halt on input u, a contradiction!
This contradiction shows that the language K is not recursive.

Corollary 4.11
$K \in R E \backslash R E C$ and $K^{c} \notin R E$.

Corollary 4.12

The Halting Problem for TMs is undecidable.

Proof.

Let H be the following language:

$$
H:=\left\{(w, u) \mid M_{w} \text { halts on input } u\right\} .
$$

Then $w \in K$ iff $(w, w) \in H$.
If H were recursive, then K would be recursive, too.
Thus, H is not recursive, that is, the Halting Problem for (1-)TMs is undecidable.

Let \mathcal{S} be a set of recursively enumerable languages on $\{0,1\}$. We interpret \mathcal{S} as a property of recursively enumerable languages.
We say that a language L has property \mathcal{S}, if $L \in \mathcal{S}$.
The property \mathcal{S} is called trivial, if $\mathcal{S}=\emptyset$ or $\mathcal{S}=\operatorname{RE}(\{0,1\})$.
Finally, let $L_{\mathcal{S}}:=\{c(M) \mid L(M) \in \mathcal{S}\}$.

Theorem 4.13 (Rice 1953)

The language $L_{\mathcal{S}}$ is non-recursive for each non-trivial property \mathcal{S} of recursively enumerable languages, that is, given a TM M, it is in general undecidable whether the language $L(M)$ has property \mathcal{S}.

Proof of Theorem 4.13.

W.l.o.g. we can assume that $\emptyset \notin \mathcal{S}$, as otherwise we could consider the set $\mathcal{S}^{c}:=\operatorname{RE}(\{0,1\}) \backslash \mathcal{S}$ instead of \mathcal{S}.
As \mathcal{S} is non-trivial, there exists a language $\emptyset \neq L \in \mathcal{S}$.
Let M_{L} be a TM such that $L\left(M_{L}\right)=L$.
Assume that the language \mathcal{S} is decidable, that is, $L_{\mathcal{S}} \in \operatorname{REC}(\{0,1\})$.
Then there is a $\mathrm{TM} M_{\delta}$ for deciding L_{s}.
From M_{L} and M_{s}, we now construct a TM for the halting problem H.
Let M be a TM, and let $w \in\{0,1\}^{*}$ be an input word.
From M and w, we can construct a TM $M_{M, w}^{\prime}$ that, on input $x \in\{0,1\}^{*}$, executes the following program:
(1) simulate M on input w;
(2) if M halts on input w then simulate M_{L} on input x.

Proof of Theorem 4.13 (cont.)
Then $L\left(M_{M, w}^{\prime}\right)= \begin{cases}\emptyset, & \text { if } w \notin L(M), \\ L, & \text { if } w \in L(M) .\end{cases}$
By our hypothesis, $\emptyset \notin \mathcal{S}$ and $L \in \mathcal{S}$.
Hence, $c\left(M_{M, w}^{\prime}\right) \in L_{s}$ iff $w \in L(M)$.
Thus, the TM M_{S} accepts on input $c\left(M_{M, w}^{\prime}\right)$ iff $w \in L(M)$, and otherwise, M_{δ} rejects this input.
It follows that the TM M_{S} decides membership in H.
As H is undecidable, this is a contradiction! Hence, L_{δ} is non-recursive.

Corollary 4.14

The following properties are undecidable for recursively enumerable languages:

- emptiness,
- finiteness,
- regularity,
- context-freeness.

Let $M=\left(Q, \Sigma, \Gamma, \square, \delta, q_{0}, q_{1}\right)$ be a $1-\mathrm{TM}$, and let $\Delta:=\Gamma \dot{\cup} Q \dot{\cup}\{\#\}$, where $\#$ is an additional symbol.
A valid computation of M is a word of the form

$$
w=w_{1} \# w_{2}^{R} \# w_{3} \# w_{4}^{R} \cdots \# w_{2 m}^{R} \#\left(w_{2 m+1} \#\right)^{\mu} \in \Delta^{+},
$$

where $\mu \in\{0,1\}$ and $n:=\left\{\begin{array}{ll}2 m, & \text { if } \mu=0 \\ 2 m+1, & \text { if } \mu=1\end{array}\right\}$,
that satisfies the following conditions:
(1) $\forall i=1,2, \ldots, n: w_{i} \in \Gamma^{*} \cdot Q \cdot \Gamma^{*}$, where w_{i} does not end with the symbol \square;
(2) $w_{1}=q_{0} x$ for some $x \in \Sigma^{*}$, that is, w_{1} is an initial configuration of M;
(3) $w_{n} \in \Gamma^{*} \cdot q_{1} \cdot \Gamma^{*}$, that is, w_{n} is a halting configuration of M;
(4) $\forall i=1,2, \ldots, n-1: w_{i} \vdash_{M} w_{i+1}$.

By $\operatorname{GB}(M)$ we denote the language on Δ that consists of all valid computations of M.

Lemma 4.15

From a given 1-TM M, one can effectively construct two context-free grammars G_{1} and G_{2} such that $L\left(G_{1}\right) \cap L\left(G_{2}\right)=G B(M)$.

Proof.

Let L_{3} be the language

$$
L_{3}:=\left\{y \# z^{R} \mid y, z \in \Gamma^{*} \cdot Q \cdot \Gamma^{*} \text { such that } y \vdash_{M} z\right\} .
$$

From M one can easily construct a PDA that accepts L_{3}.
From L_{3} we obtain the language L_{1} :

$$
L_{1}:=\left(L_{3} \cdot \#\right)^{*} \cdot\left(\{\varepsilon\} \cup\left(\Gamma^{*} \cdot q_{1} \cdot \Gamma^{*} \cdot \#\right)\right) .
$$

From M we can construct a context-free grammar for the language L_{1} (Theorem 3.20, Theorem 3.22).

Proof of Lemma 4.15 (cont.)

Further, let L_{4} be the language

$$
L_{4}:=\left\{y^{R} \# z \mid y, z \in \Gamma^{*} \cdot Q \cdot \Gamma^{*} \text { such that } y \vdash_{M} z\right\}
$$

and let L_{2} be obtained from L_{4} as follows:

$$
L_{2}:=q_{0} \Sigma^{*} \cdot \# \cdot\left(L_{4} \cdot \#\right)^{*} \cdot\left(\{\varepsilon\} \cup\left(\Gamma^{*} \cdot q_{1} \cdot \Gamma^{*} \cdot \#\right)\right)
$$

From M we can construct a context-free grammar for L_{2}.

Claim.

$L_{1} \cap L_{2}=\mathrm{GB}(M)$.

Proof of Lemma 4.15 （cont．）

Proof of Claim．

Let $w=w_{1} \# w_{2}^{R} \# \cdots \# w_{n} \#$ such that $n \equiv 1 \bmod 2$ ．
If $w \in \mathrm{~GB}(M)$ ，then properties（1）to（4）imply that $w \in L_{1} \cap L_{2}$ ．
Conversely，if $w \in L_{1} \cap L_{2}$ ，then we see from the definitions of L_{1} and L_{2} that w satisfies（1）and（4）．
As $w \in L_{2}, w_{1}=q_{0} x$ for some $x \in \Sigma^{*}$ ，and as $w \in L_{1}, w_{n} \in \Gamma^{*} \cdot q_{1} \cdot \Gamma^{*}$ ，that is，$w \in \mathrm{~GB}(M)$ ．
For $w=w_{1} \# \cdots \# w_{n}^{R} \#$ such that $n \equiv 0 \bmod 2$ ，the proof is analogous．
Thus，$L_{1} \cap L_{2}=\mathrm{GB}(M)$ ．

Let M be a 1-TM.
Then $L(M) \neq \emptyset$ iff $\operatorname{GB}(M) \neq \emptyset$.
Now let G_{1} and G_{2} be two context-free grammars such that $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\mathrm{GB}(M)$.
Then $L(M) \neq \emptyset$ iff $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \emptyset$.
As emptiness is undecidable for $L(M)$, this yields the following result.

Corollary 4.16

The following Intersection Emptiness Problem is undecidable:
INSTANCE: Two context-free grammars G_{1} and G_{2}.
QUESTION: Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$?

The set $\Delta^{*} \backslash \mathrm{~GB}(M)=\mathrm{GB}(M)^{c}$ is called the set of invalid computations of M.

Lemma 4.17

For each 1-TM $M, \mathrm{~GB}(M)^{c} \in \mathrm{CFL}(\Delta)$.
As $L(M)=\emptyset$ iff $\operatorname{GB}(M)^{c}=\Delta^{*}$, we obtain the following undecidability result.

Corollary 4.18

The following Universality Problem is undecidable:
INSTANCE: A context-free grammar G on Δ.
QUESTION: Is $L(G)=\Delta^{*}$?

Theorem 4.19

The following problems are undecidable:
(1) INSTANCE: Two context-free grammars G_{1} and G_{2}.

- QUESTION: Is $L\left(G_{1}\right)=L\left(G_{2}\right)$?
- QUESTION:Is $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$?
- QUESTION: Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ context-free?
- QUESTION: Is $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ regular?
(2) INSTANCE: A context-free grammar G and a regular set R.
- QUESTION: Is $L(G)=R$?
- QUESTION:Is $R \subseteq L(G)$?
(3) INSTANCE: A context-free grammar G.
- QUESTION: Is $L(G)^{c}$ context-free?
- QUESTION: Is $L(G)^{c}$ regular?

Proof.

Let G_{1} be a context-free grammar s.t. $L\left(G_{1}\right)=R=\Sigma^{*}$.
Then the following holds for each context-free grammar G_{2} :

$$
R=L\left(G_{1}\right)=L\left(G_{2}\right) \text { iff } R=L\left(G_{1}\right) \subseteq L\left(G_{2}\right) \text { iff } L\left(G_{2}\right)=\Sigma^{*} .
$$

It follows from Corollary 4.18 that the first two problems of (1) and the two problems of (2) are undecidable.
The language $\mathrm{GB}(M)$ is finite and therewith regular, if $L(M)$ is finite; on the other hand, if $L(M)$ is infinite, then $\mathrm{GB}(M)$ is not even context-free, which can be shown by the Pumping Lemma (Theorem 3.14), if M makes at least 3 steps on each input.

Proof of Theorem 4.19 (cont.)

Let M be an arbitrary 1-TM. From M one can construct a 1-TM M^{\prime} that accepts the same language as M, but that executes at least 3 steps on each input.
Now $L(M)$ is finite iff $\mathrm{GB}\left(M^{\prime}\right)=\left(\mathrm{GB}\left(M^{\prime}\right)^{c}\right)^{c}$ is context-free (regular).
Further, from M^{\prime} we obtain two context-free grammars G_{1} and G_{2} such that $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\mathrm{GB}\left(M^{\prime}\right)$.
As finiteness of $L(M)$ is undecidable, it follows that the questions of whether $\left(\operatorname{GB}\left(M^{\prime}\right)^{c}\right)^{c}$ or $L\left(G_{1}\right) \cap L\left(G_{2}\right)$ are context-free (regular) are undecidable, too.

