4. Turing Machines and R. E. and Context-Sensitive Languages 4.2. Undecidability

4.2. Undecidability

A decision problem is called undecidable, if there does not exista TM
that answers each instance correctly after finitely many steps.

It L C ¥*, then the Membership Problem for L is the following decision
problem:

INSTANCE: A word w € ¥*.
QUESTION: Isw e L?
Thus, this problem is decidable iff the language L is recursive.

In what follows we are interested in the Halting Problem for TMs:

INSTANCE: A TM M and an input word w € ¥*.
QUESTION: When starting with input w, will M halt eventually?
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In order to study this problem we must encode the instance (M, w) in
some way.

Let M = (Q,{0,1},{0,1,0},0,6, 9o, qn) be a 1-TM on
x ={0,1},andlet Q={qo,91,-..,9n}
We will encode M through a word c(M) € X+.

Let ) = {(qi1 ) ai1 ) qj1 ) aj1 ) mj1 )7 IR (qima i, qjm7 ajm7 mjm)}7
where q;,, q;, € Q, a,,8, € XU {0}, and m;, € {L,0, R}.

Each 5-tuple (9., ai,, 9., @, M;,) is encoded as

c(qi,, ai,» Qi &, M;,) = 071108@s)10let110%(%) 108 M),

(1, ifg =0, ) (1, iftm=1L, "
where e(g;)) =4 2, ifa =1, ;ande(m):=¢ 2, ifm=0, >
3, ifa=0, 3, ifm=R.
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The function § is interpreted as a sequence of 5-tuples.
Assuming that this sequence is sorted in lexicographical order,
we take

c(M) = 111011111 - ¢(q;, ai, q;,, a,, my, ) - 11-
o1 'C(qimvaiqujm7ajm7mjm) -111.

The set

{c(M)|Misa1l-TMon¥x ={0,1}and ' = {0,1,0} }

IS recursive.
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Proof of Lemma 4.9.

Let w € {0,1}*. If wis not an element of the regular language

13.On+1 .15.(O1§i§n.1 'O1§i§3'1 .O1§i§n+1 A .01§i§3.1 .O1§i§3.11)§3-n.17

then w is not the encoding of a 1-TM.

If, however, w is an element of the above regular language, then one
can try to reconstruct M from w. This reconstruction is successful iff

w describes a function
0 : {QOa---aQn—1} X {0717D}/\’> {CIO7°'°7qn} X {0717D} X {L,O,R}

This function ¢ then yields the TM M satisfying c(M) = w. []
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By M., we denote the following TM, which does not halt on any input:

({q07 a1 }7 {07 1}7 {07 1 ) D}7 Da {(q07 a, (o, 4, O) ‘ ac {07 1 ) D}}? do, g1 )

With each word w € >*, we now associate a TM M,,:

M. M, if c(M) = w,
] M, if w is not the encoding of any TM.

By Lemma 4.9, the TM M,, can be reconstructed from w.
Now let K C {0, 1}* be the following language:

K:={we{0,1}* | My, halts on input w }.

Theorem 4.10
The language K is not recursive.
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Proof of Theorem 4.10.

Assume to the contrary that K is recursive. Then there exists a 1-TM
My that decides membership in K, that is,

q(()o)w =M, q1(0)1, if we K,

and
g w Fiy 9100, ifw g K.

By modifying My we obtain a new TM M, that behaves as follows:

(0) * (0) Q4 I_M1 gea |_M1 T if a = 17
QP WMy 913w, { 910, if a= 0.
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Proof of Theorem 4.10 (cont.)
Hence, for all w € >X*: My halts on input w iff

gy w i, 470, that is, iff w & K.

Now let u := ¢(M;). Then M, = My, and we have the following
sequence of equivalent statements:

M haltson input v iff u ¢ K
Iff M, does not halt on input u
iff My does not halt on input u, a contradiction!

This contradiction shows that the language K is not recursive. []

Corollary 4.11

K € RE ~ REC and K¢ ¢ RE.
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Corollary 4.12
The Halting Problem for TMs is undecidable.

Let H be the following language:
H:={ (w,u) | My halts on input u }.

Thenw € K iff (w,w) € H.

If H were recursive, then K would be recursive, too.

Thus, H Is not recursive, that is,
the Halting Problem for (1-)TMs is undecidable. ]
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Let S be a set of recursively enumerable languages on {0, 1}.
We interpret S as a property of recursively enumerable languages.

We say that a language L has property S, if L € 8.
The property 8§ is called trivial, if S = 0 or § = RE({0,1}).
Finally, let Lg := { ¢c(M) | L(M) € § }.

Theorem 4.13 (Rice 1953)

The language Lg is non-recursive for each non-trivial property 8 of
recursively enumerable languages, that is, givena TM M, it is in
general undecidable whether the language L(M) has property S.

256 / 294

Prof. Dr. F. Otto (Universitat Kassel) Automata and Grammars



4. Turing Machines and R. E. and Context-Sensitive Languages 4.2. Undecidability

Proof of Theorem 4.13.

W.l.o.g. we can assume that () ¢ S, as otherwise we could consider the
set 8¢ := RE({0,1}) \. S instead of S.

As 8§ is non-trivial, there exists a language () # L € 8.
Let M, be a TM such that L(M,) = L.

Assume that the language § is decidable, that is, Ls € REC({0, 1}).
Then there is a TM M;s for deciding Ls.

From M; and Mg, we now construct a TM for the halting problem H.
Let M be a TM, and let w € {0, 1}* be an input word.

From M and w, we can construct a TM M, , that, on input x € {0, 1}*,
executes the following program:

(1) simulate M on input w;
(2) If M halts on input w then simulate M, on input x.
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Proof of Theorem 4.13 (cont.)

0, if we L(M),

Then L(M), ) = { L, ifweL(M).

By our hypothesis, ) ¢ S and L € S.

Hence, c(M), ,) € Ls iff w € L(M).

Thus, the TM Ms accepts on input ¢(Mj, ) iff w € L(M),

and otherwise, Ms rejects this input.

It follows that the TM Ms decides membership in H.

As H is undecidable, this is a contradiction!

Hence, Lg IS hon-recursive. []
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Corollary 4.14

The following properties are undecidable for recursively enumerable
languages:

— emptiness,

— finiteness,

— regularity,

— context-freeness.
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Let M = (Q,X,I,0,9,q90,9;) be a1-TM, and
let A :=TUQU{#}, where # is an additional symbol.

A valid computation of M is a word of the form
W = Wi W H WA W - HWE A (Wom 1 #) € AT,

2m, ifu=20
2m+1, fpu=1 [
that satisfies the following conditions:

where p € {0,1} and n :=

(1) Vi=1,2,....,n: wjel™.-Q-T*, where w; does not end with the
symbol O;

(2) wqy = qox for some x € X%, that s,
wy is an initial configuration of M,

(3) wpel*.qgq-I*, thatis, w, is a halting configuration of M;

(4) Vi = 1,2,...,n—1 Wi |_M Wiy 1.

By GB(M) we denote the language on A that consists of all valid
computations of M.
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Lemma 4.15

From a given 1-TM M, one can effectively construct two context-free
grammars Gy and G» such that L(Gq) N L(G2) = GB(M).

Proof.

Let L3 be the language
Ly :={y#z"|y,zel*-Q-T*suchthat y -y z}.

From M one can easily construct a PDA that accepts Ls.
From L3 we obtain the language L;:

Ly = (L #) - ({e} U (T - qy - T* - #)).

From M we can construct a context-free grammar for the language L4
(Theorem 3.20, Theorem 3.22).
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Proof of Lemma 4.15 (cont.)

Further, let L4 be the language

Ly ={yP#z|y,zel*-Q -T*suchthaty by z},
and let L, be obtained from L4 as follows:

Lo:=qoX" - # - (Lo #) - ({3 U (T a1 - T ).

From M we can construct a context-free grammar for Lo.

Claim.
LiNLly = GB(M).
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Proof of Lemma 4.15 (cont.)

Proof of Claim.

Let w = wy#wWS# - - - #wy# such that n = 1 mod 2.

If w € GB(M), then properties (1) to (4) imply that w € L N Lo.
Conversely, if w € L1 N Ly, then we see from the definitions of Ly and
L, that w satisfies (1) and (4).

As w € Lo, wy = qpx for some x € ¥*, and

aswely,w,el*.q I thatis, w € GB(M).

For w = wy# - - - #w# such that n = 0 mod 2, the proof is analogous.
Thus, Ly N Ly = GB(M). ]

[]
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Let M be a 1-TM.

Then L(M) #£ () iff GB(M) # 0.

Now let Gy and G» be two context-free grammars such that
L(G1) M L(Gg) = GB(M).

Then L(M) £ 0 iff L(Gy) N L(Go) # 0.

As emptiness is undecidable for L(M), this yields the following result.

Corollary 4.16

The following Intersection Emptiness Problem is undecidable:

INSTANCE: Two context-free grammars Gy and Go.
QUESTION: Is L(Gi)NL(Go) =07
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The set A* ~ GB(M) = GB(M)® is called the
set of invalid computations of M.

Lemma 4.17
For each 1-TM M, GB(M)¢ € CFL(A).

As L(M) = 0 iff GB(M)¢ = A*, we obtain the following undecidability
result.

Corollary 4.18

The following Universality Problem is undecidable:

INSTANCE: A context-free grammar G on A.
QUESTION: Is L(G) = A*?
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Theorem 4.19

The following problems are undecidable:

(1) INSTANCE: Two context-free grammars Gy and Go.
- QUESTION:Is L(Gy) = L(G2) ?
- QUESTION:Is L(Gy) C L(G2)?
- QUESTION:Is L(G1) N L(G2) context-free?
- QUESTION:Is L(G1) N L(G>) regular?
(2) INSTANCE: A context-free grammar G
and a reqular set R.
- QUESTION:Is L(G) = R?
- QUESTION:IsR C L(G)?
(3) INSTANCE: A context-free grammar G.
- QUESTION:Is L(G)° context-free?
- QUESTION:Is L(G)¢ regular?
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Let G; be a context-free grammar s.t. L(Gy) = R =X*.
Then the following holds for each context-free grammar Go:

R=L(G)=L(Gy)iff R=L(Gy) C L(Go) iff L(G2) = X".
It follows from Corollary 4.18 that the first two problems of (1) and the

two problems of (2) are undecidable.

The language GB(M) is finite and therewith regular, if L(M) is finite; on
the other hand, if L(M) is infinite, then GB(M) is not even context-free,
which can be shown by the Pumping Lemma (Theorem 3.14), it M
makes at least 3 steps on each input.
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Proof of Theorem 4.19 (cont.)

Let M be an arbitrary 1-TM. From M one can construct a 1-TM M’ that
accepts the same language as M, but that executes at least 3 steps on

each input.

Now L(M) is finite iff GB(M') = (GB(M')¢)¢ is context-free (regular).
Further, from M’ we obtain two context-free grammars Gy and G, such
that L(Gy) N L(Go) = GB(M').

As finiteness of L(M) is undecidable, it follows that the questions of
whether (GB(M')°)¢ or L(G1) N L(G») are context-free (regular) are
undecidable, too. ]
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