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Assignment 11: Solutions to Selected Problems

Problem 11.1. [Emptiness and Finiteness]

Determine the cardinality of the language L(Gi) for the following context-free grammars Gi

(i = 1, 2, 3):

(a) G1 = ({S,A,B,C,D}, {a, b}, P1, S), where P1 is defined as follows:

P1 = {S → aS, S → AB,S → CD,A→ aDb,A→ AD,A→ BC,
B → bSb,B → BB,C → BA,C → ASb,D → ABCD,D → ε}.

(b) G2 = ({S,A,B,C,D}, {a, b}, P2, S), where P2 is defined as follows:

P2 = {S → AB,S → BC,S → CD,A→ BC,A→ BD,
B → BC,B → DD,B → b, C → AC,C → BC,D → a}.

(c) G3 = ({S,A,B,C,D}, {a, b}, P3, S), where P3 is defined as follows:

P3 = {S → AB,S → BC,S → CD,A→ BC,A→ BD,
B → CC,B → DD,B → b, C → AS,D → AC,D → a}.

Solution. (a) Vterm = {X ∈ N | L(G1, X) 6= ∅ } = {D,A}, and hence, L(G1) = ∅.

(b) Vterm = {D,B,A, S}. As S ∈ Vterm, we see that L(G2) 6= ∅. Further, Vreach =
{S,A,B,D}, that is, the nonterminal C is useless. Thus, we can delete it together with
all productions that contain it, which yields the grammar G′2 = ({S,A,B,D}, {a, b}, P ′2, S),
where P ′2 is defined as follows:

P ′2 = {S → AB,A→ BD,B → DD,B → b,D → a}.
From G′2 we obtain the following graph:
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As this graph does not contain any cycle, we see that L(G′2) = L(G2) is finite. In fact,
L(G2) = {bab, a3b, ba3, a5}, that is, it has cardinality 4.

(c) Vterm = {D,B,A, S,C}, that is, L(G3) 6= ∅. As Vreach = {S,A,B,C,D}, we see that G3

is a proper grammar without ε-rules that is in CNF. From G3 we obtain the following graph:
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As this graph contains cycles, e.g., S → D → C → S, we see that L(G3) is infinite. 2

Problem 11.2. [CKY-Algorithm]

Apply the CYK-algorithm from the proof of Theorem 3.30 to the following context-free
grammar

G = ({A,B,C,R, S, T, U, V,X, Y, Z}, {a, b, c}, P, S)

and the input words w1 = bcaaacbb and w2 = abcbaabc, where P is defined as follows:

P1 = {S → TU, T → BA, T → BX,T → BY,X → TA,
Y → CA, Y → RA,U → AB,U → AV,U → AZ,
Z → UB, V → RB,R→ CR,R→ c, A→ a,B → b, C → c }.

Solution. w1,1 = bcaaacbb: x/j b c a a a c b b

1 B C,R A A A C,R B B

2 − Y − − − V − −
3 T − − − U − − −
4 X − − − Z − − −
5 − − − U − − − −
6 − − − − − − − −
7 − − − − − − − −
8 S − − − − − − −

As S ∈ V1,8, we see that w1,1 ∈ L(G1). We can even reconstruct a derivation for w1,1 from
the table above:

S →P1 TU →P1 BY U →P1 bY U →P1 bRAU
→P1 bcAU →P1 bcaU →P1 bcaAZ →P1 bcaaZ
→P1 bcaaUB →P1 bcaaAV B →P1 bcaaaV B →P1 bcaaaRBB
→3

P1
bcaaacbb.

w1,2 = abcbaabc: x/j a b c b a a b c

1 A B C,R B A A B C,R

2 U − V T − U − −
3 − − − X − − − −
4 − − − S − − − −
5 − − − − − − − −
6 − − − − − − − −
7 − − − − − − − −
8 − − − − − − − −

As S 6∈ V1,8, we see that w1,2 6∈ L(G1). 2



Problem 11.3. [DPDA]

In Theorem 3.17 we have seen that, for each PDA M1, there exists a PDA M2 such that
N(M2) = L(M1), while for deterministic PDAs, a corresponding result does not hold. Why
doesn’t the proof of Theorem 3.17 carry over to DPDAs?

Solution. Let M1 = (Q,Σ,Γ, δ, q0, Z0, F ) be a PDA, and let L = L(M1), that is,

L = {w ∈ Σ∗ | (q0, Z0, w) `∗M1
(p, γ, ε) for some p ∈ F and γ ∈ Γ∗ }.

The PDA M2 that simulates the PDA M1 step by step solves the following two problems:

1. M2 must be able to recognize when M1 empties its pushdown without being in a final
state, as in this situation, M2 must not accept.

2. M2 must empty its pushdown when M1 accepts.

Accordingly, M2 is defined as

M2 = (Q ∪ {q`, q′0},Σ,Γ ∪ {X0}, δ′, q′0, X0, ∅),

where the transition relation δ′ is defined as follows:

(1) δ′(q′0, ε,X0) = {(q0, X0Z0)},

(2) δ′(q, a, Z) ⊇ δ(q, a, Z) for all q ∈ Q, a ∈ Σ ∪ {ε}, and Z ∈ Γ,

(3) δ′(q, ε, Z) 3 (q`, Z) for all q ∈ F and Z ∈ Γ ∪ {X0},

(4) δ′(q`, ε, Z) = {(q`, ε)} for all Z ∈ Γ ∪ {X0}.

• By (1) M2 enters the initial configuration of M1 with the symbol X0 below the bottom
marker of M1.

• By (2) M2 simulates the computation of M1 step by step.

• If and when M1 reaches a final state, then M2 can empty its pushdown using (3) and
(4).

Even if M1 is deterministic, M2 is not. This stems from the problem that M2 cannot detect
when the input has been read completely. Hence, whenever it enters a final state of M1, then
it has the option of continuing the simulation of M1 using (2) or of emptying its pushdown
using (3) (and then (4)). 2



Problem 11.4. [DPDA]

Consider the DPDAM = ({q0, q1, q2}, {a, b}, {#, Z}, δ, q0,#, {q2}), where the transition func-
tion δ is defined as follows:

δ(q0, a,#) = (q1,#Z),
δ(q1, a, Z) = (q1, ZZ),
δ(q1, b, Z) = (q2, ε),
δ(q2, b, Z) = (q2, ε).

(a) Give a nonempty input word w ∈ {a, b}∗ that M does not read completely.

(b) Use the construction from the proof of Lemma 3.33 to extend M to an equivalent DPDA
M ′ that always reads its input words completely.

Solution. (a) On input w = abb, M executes the following computation:

(q0,#, abb) `M (q1,#Z, bb) `M (q2,#, b).

(b) Let M ′ = ({q′0, q0, q1, q2, d}, {a, b}, {#, Z,X0}, δ′, q0,#, {q2}, where δ′ is defined by the
following table:

δ′ q′0 q0 q1 q2 d

(ε,#) (q0, X0#) − − − −
(a,X0) − (d,X0) (d,X0) (d,X0) (d,X0)

(a,#) − (q1,#Z) (d,#) (d,#) (d,#)

(a, Z) − (d, Z) (q1, ZZ) (d, Z) (d, Z)

(b,X0) − (d,X0) (d,X0) (d,X0) (d,X0)

(b,#) − (d,#) (d,#) (d,#) (d,#)

(b, Z) − (d, Z) (q2, ε) (q2, ε) (d, Z)

Then

(q′0,#, abb) `M ′ (q0, X0#, abb) `M ′ (q1, X0#Z, bb) `M ′ (q2, X0#, b)
`M ′ (d,X0#, ε),

that is, M ′ reads the input abb completely. 2



Problem 11.5. [Ogden’s Lemma for DCFL]

Prove that the language L = { anbnc, anb2nd | n ≥ 0 } is not deterministic context-free by
applying Ogden’s Lemma for DCFL (Theorem 3.40) to L.

Solution. Assume that L is deterministic context-free. Let k be the corresponding constant
from Thm. 3.40, and let p := k!.
Consider the word z := apbpc ∈ L, where we mark all occurrences of b. Then z = apbpc has a
factorization z = apbpc = uvwxy that satisfies conditions (1) to (5) of the theorem, that is,

(1) v 6= ε,

(2) uviwxiy ∈ L for all i ≥ 0,

(3) u, v and w or w, x and y contain marked positions,

(4) δ(vwx) ≤ k,

(5) if y 6= ε, then the following equivalence holds for all m,n ≥ 0 and all α ∈ Σ∗:
uvm+nwxnα ∈ L iff uvmwα ∈ L.

As by (2) z0 = uwy ∈ L and z2 = uv2wx2y ∈ L, we see that v = ai and x = bi for some
i ∈ {1, 2, . . . , k}. Hence, u does not contain a marked letter, and so by (3), w, x, and y
contain marked positions, that is,

u = an1 , v = ai, w = ap−n1−ibj , x = bi and
y = bp−i−jc for some j ∈ {1, 2, . . . , k}.

In fact, we have i+ j < k. In particular, we have y 6= ε.
Now we choose m = 1 and n = 1, and we take α = bp−j+p+id. Then

uvn+mwxnα = an1ai·2ap−n1−ibjbibp−j+p+id = ap+ibp+i+p+id ∈ L,

but uvmwα = an1aiap−n1−ibjbp−j+p+id = apbp+p+id = apb2p+id 6∈ L, a contradiction! Thus,
it follows that L 6∈ DCFL. 2


