Automata and Grammars
SS 2018
Assignment 11: Solutions to Selected Problems

Problem 11.1. [Emptiness and Finiteness]
Determine the cardinality of the language L(G;) for the following context-free grammars G;
(i=1,2,3):
(a) G1=({S,A,B,C,D},{a,b}, P1,S), where P, is defined as follows:
P = {S—aS,S— AB,S—CD,A— aDb,A— AD,A — BC,
B — bSb,B — BB,C — BA,C — ASb,D — ABCD, D — ¢}.
(b) Ga = ({S,A,B,C,D},{a,b}, P,,5), where P» is defined as follows:
P, = {S— AB,S— BC,S—CD,A— BC,A— BD,
B— BC,B— DD,B—b,C— AC,C — BC,D — a}.
(¢c) G3=({S,A,B,C,D},{a,b}, P5,S), where Ps is defined as follows:

Py = {S— AB,S— BC,S—-CD,A— BC,A— BD,
B—-CC,B— DD,B—b,C— AS,D — AC,D — a}.

Solution. (a) Vieem = {X € N | L(G1,X) # 0} = {D, A}, and hence, L(G1) = 0.

(b) Vieem = {D,B,A,S}. As S € Vierm, we see that L(G2) # 0. Further, Vieaeh =
{S, A, B, D}, that is, the nonterminal C' is useless. Thus, we can delete it together with
all productions that contain it, which yields the grammar G = ({S, 4, B, D},{a,b}, P}, S),
where Pj is defined as follows:

P,={S— AB,A— BD,B — DD,B —b,D — a}.

From G, we obtain the following graph:
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As this graph does not contain any cycle, we see that L(G,) = L(G3) is finite. In fact,
L(G3) = {bab, a®b, ba®,a®}, that is, it has cardinality 4.

(¢) Vieem = {D, B, A, S,C}, that is, L(G3) # 0. As Vieach = {5, A, B,C, D}, we see that G3
is a proper grammar without e-rules that is in CNF. From G5 we obtain the following graph:
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As this graph contains cycles, e.g., S — D — C' — S, we see that L(G3) is infinite. O

Problem 11.2. [CKY-Algorithm]

Apply the CYK-algorithm from the proof of Theorem 3.30 to the following context-free
grammar
G={AB,C,R,S,T,UV,X,Y, Z},{a,b,c}, P,S)

and the input words wy = bcaaacbb and wo = abcbaabe, where P is defined as follows:

P = {S—TUT - BA,T — BX,T — BY,X — TA,
Y - CAY - RAJU —- AB,U - AV, U — AZ,
Z—-UB,V - RB,R—CR,R—c¢,A—a,B—bC —c}.

Solution. w; 1 = bcaaacbb: x/j | b c alala c b|b
1 | B|C,R|A|A|A|C,R|B|B
2 | =Y |—=|=|=-|V |=]-
3 |/T| — |—|—-|\U| — |—|-
4 | X| — |—|—-|Z| - -
5 | —| — | —-|U|—-| — |—1]-
6 |—| — | === = [=T=
7 =1 = === = [==
8 | S| — |—|—|—-| — |—1|-
As S € Vi g, we see that wy; € L(G1). We can even reconstruct a derivation for wy; from

the table above:

S — P TU — P BYU — P bYU — P bRAU
—p,  bcAU —p, bcaU —p,  bcaAZ —p,  bcaaZ
—p, bcaaUB  —p, bcaaAVB —p, becaaaVB —p,  bcacaRBB

—>?1’3 bcaaachb.
1

wy 2 = abcbaabe:  x/j | a | b c blal|lalbd c
1 |A|B|C,R|B|A|A|B|C,R
2 |\U|—-| V | T|—|\U|—-| -
3 |—-1—-| — | X|—-|—-1—-] -
4 |—|—=| = |S|=-|=-]1-] -
5 | —1 -1 — |[—I=-|=-1= =
6 |—1—-1 — [—[—[=-[=1 =
T 1= = [ === =
S ||| = N R I

As S ¢ Vi g, we see that wy 2 & L(Gh). O



Problem 11.3. [DPDA]

In Theorem 3.17 we have seen that, for each PDA M, there exists a PDA M such that
N(Ms) = L(M;), while for deterministic PDAs, a corresponding result does not hold. Why
doesn’t the proof of Theorem 3.17 carry over to DPDAs?

Solution. Let M = (Q, %, T, 6, qo, Zo, F') be a PDA, and let L = L(My), that is,
L ={weX"|(q,2Zo,w)F}y, (p,7,€) for some p € F and v € I'* }.
The PDA M, that simulates the PDA M; step by step solves the following two problems:

1. M5y must be able to recognize when M; empties its pushdown without being in a final
state, as in this situation, My must not accept.

2. My must empty its pushdown when M; accepts.

Accordingly, M is defined as

= (Q U {qfa q6}7 27 F U {X0}7 5/7 q[/]7 X07 Q))a
where the transition relation ¢’ is defined as follows:

1) (g, ¢, Xo) = {(90, X020) },

(1) o'(q

(2) 0'(q,a,Z) D 6(q,a,Z) forall g € Q, a € XU {e}, and Z €T,
(3) 0'(q,e,Z) > (qu, Z) for all ¢ € F and Z € T' U { Xy},

(1) &(

8 (qe,e,Z) = {(qu,e)} for all Z € T U{Xy}.

e By (1) M enters the initial configuration of M; with the symbol Xy below the bottom
marker of M.

e By (2) M, simulates the computation of M step by step.

e If and when M reaches a final state, then My can empty its pushdown using (3) and

(4).

Even if M; is deterministic, My is not. This stems from the problem that Ms cannot detect
when the input has been read completely. Hence, whenever it enters a final state of M7, then
it has the option of continuing the simulation of Mj using (2) or of emptying its pushdown
using (3) (and then (4)). O



Problem 11.4. [DPDA]

Consider the DPDA M = ({qo,q1, 92}, {a,b},{#, Z}, 9, q0, #,{q2}), where the transition func-
tion ¢ is defined as follows:

5(Q07 a, ) - (qlv #Z>7
éqr,a,2) = (q1.2Z),
5((]17 bv Z) = (q275)7
6(g2,0,2) = (g2¢)

(a) Give a nonempty input word w € {a,b}* that M does not read completely.

(b) Use the construction from the proof of Lemma 3.33 to extend M to an equivalent DPDA
M’ that always reads its input words completely.

Solution. (a) On input w = abb, M executes the following computation:

(qO,#,CLbb) l_M ((h?#Zabb) l_M (QZa#ab)'

(b) Let M’ = ({q67 q0,41, 42, d}a {(I, b}a {#7 Z7 X0}7 5/7 q0, #7 {Q2}7 where 0" is defined by the
following table:

& % q0 @ a2 d
(e, #) | (20, Xo#)| — - - -
(a’aXO) — (da XO) (d7 XO) (da XO) (d7 XO)
(CL, #) — (Q17 #Z) (dv #) (dv #) (dv #)
(a7Z) — (d7Z) (QhZZ) (d7Z) (d,Z)
(b7X0> — (d, XO) (d7 XO) (da XO) (d7 XO)
(b7 Z) - (d7 Z) (QQ,E) (QQ,€) (d7 Z)

Then

(g6, #,abb) Far (qo, Xo#,abb) Far (g1, Xo#Z,0b) Far (g2, Xo#,b)
FM’ (daX0#76)7

that is, M’ reads the input abb completely. O



Problem 11.5. [Ogden’s Lemma for DCFL]

Prove that the language L = {a"b"c,a™b*"d | n > 0} is not deterministic context-free by
applying Ogden’s Lemma for DCFL (Theorem 3.40) to L.

Solution. Assume that L is deterministic context-free. Let k be the corresponding constant
from Thm. 3.40, and let p := k!.

Consider the word z := aPbPc € L, where we mark all occurrences of b. Then z = aPbPc has a
factorization z = aPbPc = wvwzry that satisfies conditions (1) to (5) of the theorem, that is,

1

2) w'wz'ly € L for all i > 0,

4

(1) v
(2)
(3) u,v and w or w,z and y contain marked positions,
(4) 6(vwzx) <k,

(5)

5) if y # e, then the followmg equivalence holds for all m,n > 0 and all a € X*:

uvm+”wx o€ L iff uww™wa € L.

As by (2) 20 = uwy € L and z3 = wv?war?y € L, we see that v = a’ and x = b’ for some

i € {1,2,...,k}. Hence, u does not contain a marked letter, and so by (3), w, =, and y
contain marked positions, that is,

u=a", v=a", w=a ™M, =101 and
y = bP~""Jc for some j € {1,2,...,k}.

In fact, we have i + j < k. In particular, we have y # €.
Now we choose m = 1 and n = 1, and we take a = bP~9TP*iq. Then

w" T wr o = a™ az 2ap—n1 —ibjbibp—j+p+id _ ap—i—ibp—l—i-‘rp-‘rid €L,

but wv™wa = a™ alaP~M TIHIBPITPTI] = qPhPPTi] = oPb?PHid & L, a contradiction! Thus,
it follows that L ¢ DCFL. O



