Automata and Grammars

SS 2018

Assignment 11: Solutions to Selected Problems

Problem 11.1. [Emptiness and Finiteness]
Determine the cardinality of the language $L\left(G_{i}\right)$ for the following context-free grammars G_{i} ($i=1,2,3$):
(a) $G_{1}=\left(\{S, A, B, C, D\},\{a, b\}, P_{1}, S\right)$, where P_{1} is defined as follows:

$$
\begin{aligned}
P_{1}= & \{S \rightarrow a S, S \rightarrow A B, S \rightarrow C D, A \rightarrow a D b, A \rightarrow A D, A \rightarrow B C, \\
& B \rightarrow b S b, B \rightarrow B B, C \rightarrow B A, C \rightarrow A S b, D \rightarrow A B C D, D \rightarrow \varepsilon\} .
\end{aligned}
$$

(b) $G_{2}=\left(\{S, A, B, C, D\},\{a, b\}, P_{2}, S\right)$, where P_{2} is defined as follows:

$$
\begin{aligned}
P_{2}= & \{S \rightarrow A B, S \rightarrow B C, S \rightarrow C D, A \rightarrow B C, A \rightarrow B D, \\
& B \rightarrow B C, B \rightarrow D D, B \rightarrow b, C \rightarrow A C, C \rightarrow B C, D \rightarrow a\} .
\end{aligned}
$$

(c) $G_{3}=\left(\{S, A, B, C, D\},\{a, b\}, P_{3}, S\right)$, where P_{3} is defined as follows:

$$
\begin{aligned}
P_{3}= & \{S \rightarrow A B, S \rightarrow B C, S \rightarrow C D, A \rightarrow B C, A \rightarrow B D, \\
& B \rightarrow C C, B \rightarrow D D, B \rightarrow b, C \rightarrow A S, D \rightarrow A C, D \rightarrow a\} .
\end{aligned}
$$

Solution. (a) $V_{\text {term }}=\left\{X \in N \mid L\left(G_{1}, X\right) \neq \emptyset\right\}=\{D, A\}$, and hence, $L\left(G_{1}\right)=\emptyset$.
(b) $V_{\text {term }}=\{D, B, A, S\}$. As $S \in V_{\text {term }}$, we see that $L\left(G_{2}\right) \neq \emptyset$. Further, $V_{\text {reach }}=$ $\{S, A, B, D\}$, that is, the nonterminal C is useless. Thus, we can delete it together with all productions that contain it, which yields the grammar $G_{2}^{\prime}=\left(\{S, A, B, D\},\{a, b\}, P_{2}^{\prime}, S\right)$, where P_{2}^{\prime} is defined as follows:

$$
P_{2}^{\prime}=\{S \rightarrow A B, A \rightarrow B D, B \rightarrow D D, B \rightarrow b, D \rightarrow a\}
$$

From G_{2}^{\prime} we obtain the following graph:

As this graph does not contain any cycle, we see that $L\left(G_{2}^{\prime}\right)=L\left(G_{2}\right)$ is finite. In fact, $L\left(G_{2}\right)=\left\{b a b, a^{3} b, b a^{3}, a^{5}\right\}$, that is, it has cardinality 4.
(c) $V_{\text {term }}=\{D, B, A, S, C\}$, that is, $L\left(G_{3}\right) \neq \emptyset$. As $V_{\text {reach }}=\{S, A, B, C, D\}$, we see that G_{3} is a proper grammar without ε-rules that is in CNF. From G_{3} we obtain the following graph:

As this graph contains cycles, e.g., $S \rightarrow D \rightarrow C \rightarrow S$, we see that $L\left(G_{3}\right)$ is infinite.
Problem 11.2. [CKY-Algorithm]
Apply the CYK-algorithm from the proof of Theorem 3.30 to the following context-free grammar

$$
G=(\{A, B, C, R, S, T, U, V, X, Y, Z\},\{a, b, c\}, P, S)
$$

and the input words $w_{1}=b c a a a c b b$ and $w_{2}=a b c b a a b c$, where P is defined as follows:

$$
\begin{aligned}
P_{1}= & \{S \rightarrow T U, T \rightarrow B A, T \rightarrow B X, T \rightarrow B Y, X \rightarrow T A, \\
& Y \rightarrow C A, Y \rightarrow R A, U \rightarrow A B, U \rightarrow A V, U \rightarrow A Z, \\
& Z \rightarrow U B, V \rightarrow R B, R \rightarrow C R, R \rightarrow c, A \rightarrow a, B \rightarrow b, C \rightarrow c\} .
\end{aligned}
$$

Solution. $w_{1,1}=b c a a a c b b:$

x / j	b	c	a	a	a	c	b	b
1	B	C, R	A	A	A	C, R	B	B
2	-	Y	-	-	-	V	-	-
3	T	-	-	-	U	-	-	-
4	X	-	-	-	Z	-	-	-
5	-	-	-	U	-	-	-	-
6	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-
8	S	-	-	-	-	-	-	-

As $S \in V_{1,8}$, we see that $w_{1,1} \in L\left(G_{1}\right)$. We can even reconstruct a derivation for $w_{1,1}$ from the table above:

$$
\begin{array}{llllllll}
S & \rightarrow_{P_{1}} & T U & \rightarrow_{P_{1}} & B Y U & \rightarrow_{P_{1}} & \text { bYU } & \rightarrow_{P_{1}} \\
& \rightarrow_{P_{1}} & \text { bcAU } & \rightarrow_{P_{1}} & \text { bcaU } & \rightarrow_{P_{1}} & \text { bcaAZ } & \rightarrow_{P_{1}}
\end{array} \text { bcaaZ }
$$

$w_{1,2}=a b c b a a b c:$

x / j	a	b	c	b	a	a	b	c
1	A	B	C, R	B	A	A	B	C, R
2	U	-	V	T	-	U	-	-
3	-	-	-	X	-	-	-	-
4	-	-	-	S	-	-	-	-
5	-	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-

As $S \notin V_{1,8}$, we see that $w_{1,2} \notin L\left(G_{1}\right)$.

Problem 11.3. [DPDA]

In Theorem 3.17 we have seen that, for each PDA M_{1}, there exists a PDA M_{2} such that $N\left(M_{2}\right)=L\left(M_{1}\right)$, while for deterministic PDAs, a corresponding result does not hold. Why doesn't the proof of Theorem 3.17 carry over to DPDAs?
Solution. Let $M_{1}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, Z_{0}, F\right)$ be a PDA, and let $L=L\left(M_{1}\right)$, that is,

$$
L=\left\{w \in \Sigma^{*} \mid\left(q_{0}, Z_{0}, w\right) \vdash_{M_{1}}^{*}(p, \gamma, \varepsilon) \text { for some } p \in F \text { and } \gamma \in \Gamma^{*}\right\}
$$

The PDA M_{2} that simulates the PDA M_{1} step by step solves the following two problems:

1. M_{2} must be able to recognize when M_{1} empties its pushdown without being in a final state, as in this situation, M_{2} must not accept.
2. M_{2} must empty its pushdown when M_{1} accepts.

Accordingly, M_{2} is defined as

$$
M_{2}=\left(Q \cup\left\{q_{\ell}, q_{0}^{\prime}\right\}, \Sigma, \Gamma \cup\left\{X_{0}\right\}, \delta^{\prime}, q_{0}^{\prime}, X_{0}, \emptyset\right)
$$

where the transition relation δ^{\prime} is defined as follows:
(1) $\delta^{\prime}\left(q_{0}^{\prime}, \varepsilon, X_{0}\right)=\left\{\left(q_{0}, X_{0} Z_{0}\right)\right\}$,
(2) $\delta^{\prime}(q, a, Z) \supseteq \delta(q, a, Z)$ for all $q \in Q, a \in \Sigma \cup\{\varepsilon\}$, and $Z \in \Gamma$,
(3) $\delta^{\prime}(q, \varepsilon, Z) \ni\left(q_{\ell}, Z\right)$ for all $q \in F$ and $Z \in \Gamma \cup\left\{X_{0}\right\}$,
(4) $\delta^{\prime}\left(q_{\ell}, \varepsilon, Z\right)=\left\{\left(q_{\ell}, \varepsilon\right)\right\}$ for all $Z \in \Gamma \cup\left\{X_{0}\right\}$.

- By (1) M_{2} enters the initial configuration of M_{1} with the symbol X_{0} below the bottom marker of M_{1}.
- By (2) M_{2} simulates the computation of M_{1} step by step.
- If and when M_{1} reaches a final state, then M_{2} can empty its pushdown using (3) and (4).

Even if M_{1} is deterministic, M_{2} is not. This stems from the problem that M_{2} cannot detect when the input has been read completely. Hence, whenever it enters a final state of M_{1}, then it has the option of continuing the simulation of M_{1} using (2) or of emptying its pushdown using (3) (and then (4)).

Problem 11.4. [DPDA]

Consider the DPDA $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{\#, Z\}, \delta, q_{0}, \#,\left\{q_{2}\right\}\right)$, where the transition function δ is defined as follows:

$$
\begin{aligned}
\delta\left(q_{0}, a, \#\right) & =\left(q_{1}, \# Z\right) \\
\delta\left(q_{1}, a, Z\right) & =\left(q_{1}, Z Z\right) \\
\delta\left(q_{1}, b, Z\right) & =\left(q_{2}, \varepsilon\right) \\
\delta\left(q_{2}, b, Z\right) & =\left(q_{2}, \varepsilon\right)
\end{aligned}
$$

(a) Give a nonempty input word $w \in\{a, b\}^{*}$ that M does not read completely.
(b) Use the construction from the proof of Lemma 3.33 to extend M to an equivalent DPDA M^{\prime} that always reads its input words completely.

Solution. (a) On input $w=a b b, M$ executes the following computation:

$$
\left(q_{0}, \#, a b b\right) \vdash_{M} \quad\left(q_{1}, \# Z, b b\right) \quad \vdash_{M} \quad\left(q_{2}, \#, b\right) .
$$

(b) Let $M^{\prime}=\left(\left\{q_{0}^{\prime}, q_{0}, q_{1}, q_{2}, d\right\},\{a, b\},\left\{\#, Z, X_{0}\right\}, \delta^{\prime}, q_{0}, \#,\left\{q_{2}\right\}\right.$, where δ^{\prime} is defined by the following table:

δ^{\prime}	q_{0}^{\prime}	q_{0}	q_{1}	q_{2}	d
$(\varepsilon, \#)$	$\left(q_{0}, X_{0} \#\right)$	-	-	-	-
$\left(a, X_{0}\right)$	-	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$
$(a, \#)$	-	$\left(q_{1}, \# Z\right)$	$(d, \#)$	$(d, \#)$	$(d, \#)$
(a, Z)	-	(d, Z)	$\left(q_{1}, Z Z\right)$	(d, Z)	(d, Z)
$\left(b, X_{0}\right)$	-	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$	$\left(d, X_{0}\right)$
$(b, \#)$	-	$(d, \#)$	$(d, \#)$	$(d, \#)$	$(d, \#)$
(b, Z)	-	(d, Z)	$\left(q_{2}, \varepsilon\right)$	$\left(q_{2}, \varepsilon\right)$	(d, Z)

Then

$$
\begin{array}{rllll}
\left(q_{0}^{\prime}, \#, a b b\right) & \vdash_{M^{\prime}}\left(q_{0}, X_{0} \#, a b b\right) & \vdash_{M^{\prime}} \quad\left(q_{1}, X_{0} \# Z, b b\right) & \vdash_{M^{\prime}} \quad\left(q_{2}, X_{0} \#, b\right) \\
& \vdash_{M^{\prime}}\left(d, X_{0} \#, \varepsilon\right),
\end{array}
$$

that is, M^{\prime} reads the input $a b b$ completely.

Problem 11.5. [Ogden's Lemma for DCFL]
Prove that the language $L=\left\{a^{n} b^{n} c, a^{n} b^{2 n} d \mid n \geq 0\right\}$ is not deterministic context-free by applying Ogden's Lemma for DCFL (Theorem 3.40) to L.
Solution. Assume that L is deterministic context-free. Let k be the corresponding constant from Thm. 3.40, and let $p:=k$!.
Consider the word $z:=a^{p} b^{p} c \in L$, where we mark all occurrences of b. Then $z=a^{p} b^{p} c$ has a factorization $z=a^{p} b^{p} c=u v w x y$ that satisfies conditions (1) to (5) of the theorem, that is,
(1) $v \neq \varepsilon$,
(2) $u v^{i} w x^{i} y \in L$ for all $i \geq 0$,
(3) u, v and w or w, x and y contain marked positions,
(4) $\delta(v w x) \leq k$,
(5) if $y \neq \varepsilon$, then the following equivalence holds for all $m, n \geq 0$ and all $\alpha \in \Sigma^{*}$: $u v^{m+n} w x^{n} \alpha \in L$ iff $u v^{m} w \alpha \in L$.

As by (2) $z_{0}=u w y \in L$ and $z_{2}=u v^{2} w x^{2} y \in L$, we see that $v=a^{i}$ and $x=b^{i}$ for some $i \in\{1,2, \ldots, k\}$. Hence, u does not contain a marked letter, and so by (3), w, x, and y contain marked positions, that is,

$$
\begin{aligned}
& u=a^{n_{1}}, v=a^{i}, w=a^{p-n_{1}-i} b^{j}, x=b^{i} \text { and } \\
& y=b^{p-i-j} c \text { for some } j \in\{1,2, \ldots, k\}
\end{aligned}
$$

In fact, we have $i+j<k$. In particular, we have $y \neq \varepsilon$.
Now we choose $m=1$ and $n=1$, and we take $\alpha=b^{p-j+p+i} d$. Then

$$
u v^{n+m} w x^{n} \alpha=a^{n_{1}} a^{i \cdot 2} a^{p-n_{1}-i} b^{j} b^{i} b^{p-j+p+i} d=a^{p+i} b^{p+i+p+i} d \in L
$$

but $u v^{m} w \alpha=a^{n_{1}} a^{i} a^{p-n_{1}-i} b^{j} b^{p-j+p+i} d=a^{p} b^{p+p+i} d=a^{p} b^{2 p+i} d \notin L$, a contradiction! Thus, it follows that $L \notin$ DCFL.

