Automata and Grammars

SS 2018

Assignment 11: Solutions to Selected Problems

Problem 11.1. [Emptiness and Finiteness]

Determine the cardinality of the language $L(G_i)$ for the following context-free grammars G_i (i = 1, 2, 3):

(a) $G_1 = (\{S, A, B, C, D\}, \{a, b\}, P_1, S)$, where P_1 is defined as follows:

$$\begin{array}{lll} P_1 &=& \{S \rightarrow aS, S \rightarrow AB, S \rightarrow CD, A \rightarrow aDb, A \rightarrow AD, A \rightarrow BC, \\ & B \rightarrow bSb, B \rightarrow BB, C \rightarrow BA, C \rightarrow ASb, D \rightarrow ABCD, D \rightarrow \varepsilon\}. \end{array}$$

(b) $G_2 = (\{S, A, B, C, D\}, \{a, b\}, P_2, S)$, where P_2 is defined as follows:

$$P_2 = \{S \to AB, S \to BC, S \to CD, A \to BC, A \to BD, \\ B \to BC, B \to DD, B \to b, C \to AC, C \to BC, D \to a\}.$$

(c)
$$G_3 = (\{S, A, B, C, D\}, \{a, b\}, P_3, S)$$
, where P_3 is defined as follows:
 $P_3 = \{S \to AB, S \to BC, S \to CD, A \to BC, A \to BD, A$

$$B \to CC, B \to DD, B \to b, C \to AS, D \to AC, D \to a\}.$$

Solution. (a) $V_{\text{term}} = \{ X \in N \mid L(G_1, X) \neq \emptyset \} = \{D, A\}$, and hence, $L(G_1) = \emptyset$.

(b) $V_{\text{term}} = \{D, B, A, S\}$. As $S \in V_{\text{term}}$, we see that $L(G_2) \neq \emptyset$. Further, $V_{\text{reach}} = \{S, A, B, D\}$, that is, the nonterminal C is useless. Thus, we can delete it together with all productions that contain it, which yields the grammar $G'_2 = (\{S, A, B, D\}, \{a, b\}, P'_2, S)$, where P'_2 is defined as follows:

$$P'_2 = \{ S \to AB, A \to BD, B \to DD, B \to b, D \to a \}.$$

From G'_2 we obtain the following graph:

As this graph does not contain any cycle, we see that $L(G'_2) = L(G_2)$ is finite. In fact, $L(G_2) = \{bab, a^3b, ba^3, a^5\}$, that is, it has cardinality 4.

(c) $V_{\text{term}} = \{D, B, A, S, C\}$, that is, $L(G_3) \neq \emptyset$. As $V_{\text{reach}} = \{S, A, B, C, D\}$, we see that G_3 is a proper grammar without ε -rules that is in CNF. From G_3 we obtain the following graph:

As this graph contains cycles, e.g., $S \to D \to C \to S$, we see that $L(G_3)$ is infinite.

Problem 11.2. [CKY-Algorithm]

Apply the CYK-algorithm from the proof of Theorem 3.30 to the following context-free grammar

$$G = (\{A, B, C, R, S, T, U, V, X, Y, Z\}, \{a, b, c\}, P, S)$$

and the input words $w_1 = bcaaacbb$ and $w_2 = abcbaabc$, where P is defined as follows:

$$\begin{array}{lll} P_1 &=& \{S \rightarrow TU, T \rightarrow BA, T \rightarrow BX, T \rightarrow BY, X \rightarrow TA, \\ && Y \rightarrow CA, Y \rightarrow RA, U \rightarrow AB, U \rightarrow AV, U \rightarrow AZ, \\ && Z \rightarrow UB, V \rightarrow RB, R \rightarrow CR, R \rightarrow c, A \rightarrow a, B \rightarrow b, C \rightarrow c \, \}. \end{array}$$

Solution. $w_{1,1} = bcaaacbb$:	x/j	b	c	a	a	a	c	b	b	
	1	B	C, R	A	A	A	C, R	B	B	
	2	_	Y	—	-	_	V	-	_	
	3	T	—	—	-	U	-	-	—	
	4	X	—	_	_	Z	_	-	—	
	5	—	_	_	U	_	_	_	—	
	6	_	—	_	_	_	_	_	—	
	7	_	—	—	-	-	_	-	_	
	8	S	_	_	_	_	_	_	_	

As $S \in V_{1,8}$, we see that $w_{1,1} \in L(G_1)$. We can even reconstruct a derivation for $w_{1,1}$ from the table above:

S	\rightarrow_{P_1}	TU	\rightarrow_{P_1}	BYU	\rightarrow_{P_1}	bYU	\rightarrow_{P_1}	bRAU
	\rightarrow_{P_1}	bcAU	\rightarrow_{P_1}	bcaU	\rightarrow_{P_1}	bcaAZ	\rightarrow_{P_1}	bcaaZ
	\rightarrow_{P_1}	bcaaUB	\rightarrow_{P_1}	bcaaAVB	\rightarrow_{P_1}	bcaaaVB	\rightarrow_{P_1}	bcaaaRBB
	$\rightarrow^3_{P_1}$	bcaaacbb.						

$w_{1,2} = abcbaabc$:	x/j	a	b	c	b	a	a	b	c
	1	A	B	C, R	B	A	A	В	C, R
	2	U	_	V	T	_	U	_	—
	3	_	_	_	X	_	_	_	—
	4	_	_	_	S	_	—	_	—
	5	_	-	—	_	_	_	_	—
	6	_	-	—	—	_	_	_	—
	7	_	_	_	_	_	_	_	—
	8	_	_	—	_	_	_	_	—

As $S \notin V_{1,8}$, we see that $w_{1,2} \notin L(G_1)$.

Problem 11.3. [DPDA]

In Theorem 3.17 we have seen that, for each PDA M_1 , there exists a PDA M_2 such that $N(M_2) = L(M_1)$, while for deterministic PDAs, a corresponding result does not hold. Why doesn't the proof of Theorem 3.17 carry over to DPDAs?

Solution. Let $M_1 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ be a PDA, and let $L = L(M_1)$, that is,

 $L = \{ w \in \Sigma^* \mid (q_0, Z_0, w) \vdash_{M_1}^* (p, \gamma, \varepsilon) \text{ for some } p \in F \text{ and } \gamma \in \Gamma^* \}.$

The PDA M_2 that simulates the PDA M_1 step by step solves the following two problems:

- 1. M_2 must be able to recognize when M_1 empties its pushdown without being in a final state, as in this situation, M_2 must not accept.
- 2. M_2 must empty its pushdown when M_1 accepts.

Accordingly, M_2 is defined as

$$M_2 = (Q \cup \{q_{\ell}, q'_0\}, \Sigma, \Gamma \cup \{X_0\}, \delta', q'_0, X_0, \emptyset),$$

where the transition relation δ' is defined as follows:

- (1) $\delta'(q'_0, \varepsilon, X_0) = \{(q_0, X_0 Z_0)\},\$
- (2) $\delta'(q, a, Z) \supseteq \delta(q, a, Z)$ for all $q \in Q, a \in \Sigma \cup \{\varepsilon\}$, and $Z \in \Gamma$,
- (3) $\delta'(q, \varepsilon, Z) \ni (q_{\ell}, Z)$ for all $q \in F$ and $Z \in \Gamma \cup \{X_0\}$,
- (4) $\delta'(q_{\ell}, \varepsilon, Z) = \{(q_{\ell}, \varepsilon)\}$ for all $Z \in \Gamma \cup \{X_0\}$.
 - By (1) M_2 enters the initial configuration of M_1 with the symbol X_0 below the bottom marker of M_1 .
 - By (2) M_2 simulates the computation of M_1 step by step.
 - If and when M_1 reaches a final state, then M_2 can empty its pushdown using (3) and (4).

Even if M_1 is deterministic, M_2 is not. This stems from the problem that M_2 cannot detect when the input has been read completely. Hence, whenever it enters a final state of M_1 , then it has the option of continuing the simulation of M_1 using (2) or of emptying its pushdown using (3) (and then (4)).

Problem 11.4. [DPDA]

Consider the DPDA $M = (\{q_0, q_1, q_2\}, \{a, b\}, \{\#, Z\}, \delta, q_0, \#, \{q_2\})$, where the transition function δ is defined as follows:

$$\begin{aligned} \delta(q_0, a, \#) &= (q_1, \#Z), \\ \delta(q_1, a, Z) &= (q_1, ZZ), \\ \delta(q_1, b, Z) &= (q_2, \varepsilon), \\ \delta(q_2, b, Z) &= (q_2, \varepsilon). \end{aligned}$$

- (a) Give a nonempty input word $w \in \{a, b\}^*$ that M does not read completely.
- (b) Use the construction from the proof of Lemma 3.33 to extend M to an equivalent DPDA M' that always reads its input words completely.

Solution. (a) On input w = abb, M executes the following computation:

 $(q_0, \#, abb) \vdash_M (q_1, \#Z, bb) \vdash_M (q_2, \#, b).$

(b) Let $M' = (\{q'_0, q_0, q_1, q_2, d\}, \{a, b\}, \{\#, Z, X_0\}, \delta', q_0, \#, \{q_2\},$ where δ' is defined by the following table:

δ'	q_0'	q_0	q_1	q_2	d	
$(\varepsilon, \#)$	$(q_0, X_0 \#)$	_	_	—	-	
(a, X_0)	—	(d, X_0)	(d, X_0)	(d, X_0)	(d, X_0)	
(a, #)	—	$(q_1, \#Z)$	(d, #)	(d, #)	(d, #)	
(a,Z)	—	(d, Z)	(q_1, ZZ)	(d, Z)	(d, Z)	
(b, X_0)	_	(d, X_0)	(d, X_0)	(d, X_0)	(d, X_0)	
(b, #)	—	(d, #)	(d, #)	(d, #)	(d, #)	
(b,Z)	—	(d, Z)	(q_2, ε)	(q_2, ε)	(d, Z)	

Then

$$\begin{array}{cccc} (q'_0, \#, abb) & \vdash_{M'} & (q_0, X_0 \#, abb) & \vdash_{M'} & (q_1, X_0 \# Z, bb) & \vdash_{M'} & (q_2, X_0 \#, b) \\ & \vdash_{M'} & (d, X_0 \#, \varepsilon), \end{array}$$

that is, M' reads the input *abb* completely.

Problem 11.5. [Ogden's Lemma for DCFL]

Prove that the language $L = \{a^n b^n c, a^n b^{2n} d \mid n \ge 0\}$ is not deterministic context-free by applying Ogden's Lemma for DCFL (Theorem 3.40) to L.

Solution. Assume that L is deterministic context-free. Let k be the corresponding constant from Thm. 3.40, and let p := k!.

Consider the word $z := a^p b^p c \in L$, where we mark all occurrences of b. Then $z = a^p b^p c$ has a factorization $z = a^p b^p c = uvwxy$ that satisfies conditions (1) to (5) of the theorem, that is,

- (1) $v \neq \varepsilon$,
- (2) $uv^i wx^i y \in L$ for all $i \ge 0$,
- (3) u, v and w or w, x and y contain marked positions,
- (4) $\delta(vwx) \leq k$,
- (5) if $y \neq \varepsilon$, then the following equivalence holds for all $m, n \geq 0$ and all $\alpha \in \Sigma^*$: $uv^{m+n}wx^n \alpha \in L$ iff $uv^m w\alpha \in L$.

As by (2) $z_0 = uwy \in L$ and $z_2 = uv^2wx^2y \in L$, we see that $v = a^i$ and $x = b^i$ for some $i \in \{1, 2, ..., k\}$. Hence, u does not contain a marked letter, and so by (3), w, x, and y contain marked positions, that is,

$$u = a^{n_1}, v = a^i, w = a^{p-n_1-i}b^j, x = b^i$$
 and
 $y = b^{p-i-j}c$ for some $j \in \{1, 2, \dots, k\}$.

In fact, we have i + j < k. In particular, we have $y \neq \varepsilon$.

Now we choose m = 1 and n = 1, and we take $\alpha = b^{p-j+p+i}d$. Then

$$uv^{n+m}wx^{n}\alpha = a^{n_{1}}a^{i\cdot 2}a^{p-n_{1}-i}b^{j}b^{i}b^{p-j+p+i}d = a^{p+i}b^{p+i+p+i}d \in L,$$

but $uv^m w \alpha = a^{n_1} a^i a^{p-n_1-i} b^j b^{p-j+p+i} d = a^p b^{p+p+i} d = a^p b^{2p+i} d \notin L$, a contradiction! Thus, it follows that $L \notin \text{DCFL}$.