Automata and Grammars

SS 2018

Assignment 12

Solutions are to be presented at the Seminary on Thursday, May 17, 2018.

Problem 12.1. [Turing Machines]
Design a one-tape Turing machine M_{1} with at most 8 states such that

$$
L(M)=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\} .
$$

Problem 12.2. [Turing Machines]
Let $L_{\text {copy }}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$.
(a) Design a one-tape Turing machine M_{1} with at most 8 states such that $L\left(M_{1}\right)=L_{\text {copy }}$.
(b) Design a two-tape Turing machine M_{2} with at most 4 states such that $L\left(M_{2}\right)=L_{\text {copy }}$.

Problem 12.3. [Turing Machines]

Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be the function $f(n)=|\operatorname{dya}(n)|_{2}$, that is, for each non-negative integer n, $f(n)$ is the number of occurrences of the digit 2 in the dyadic representation of n. Construct a two-tape Turing machine M with at most 8 states that computes the function f.
Hint: The dyadic representation of a positive integer n is the word $w=a_{m} a_{m-1} \cdots a_{1} a_{0} \in$ $\{1,2\}^{+}$such that $n=\sum_{i=0}^{m} a_{i} \cdot 2^{i}$. The advantage of the dyadic representation over the binary representation is the fact that it establishes a bijection between the set of positive integers and the set of words $\{1,2\}^{+}$, while the binary representation is not unique if leading zeros are allowed.

Problem 12.4 [Phrase-Structure Grammars]
Determine the languages that are generated by the following general grammars:
(a) $G_{1}=\left(\{S, A, B, C, D, E\},\{a, b\}, P_{1}, S\right)$, where P_{1} is defined as follows:
$P_{1}=\{S \rightarrow E C, S \rightarrow \varepsilon, C \rightarrow A C a, C \rightarrow B C b, C \rightarrow D$, $a A \rightarrow A a, b A \rightarrow A b, a B \rightarrow B a, b B \rightarrow B b, E A \rightarrow E a, E B \rightarrow E b$, $a D \rightarrow D a, b D \rightarrow D b, E D \rightarrow \varepsilon\}$,
(b) $G_{2}=\left(\{S, A, B\},\{a, b\}, P_{2}, S\right)$, where P_{2} is defined as follows:
$P_{2}=\{S \rightarrow A S B, S \rightarrow B S A, S \rightarrow S S, S \rightarrow \varepsilon$, $A B \rightarrow \varepsilon, B A \rightarrow \varepsilon, A \rightarrow a, B \rightarrow b\}$.

