Automata and Grammars

SS 2018

Assignment 11

Solutions are to be presented at the Seminary on Thursday, May 10, 2018.

Problem 11.1. [Emptiness and Finiteness]
Determine the cardinality of the language $L\left(G_{i}\right)$ for the following context-free grammars G_{i} ($i=1,2,3$):
(a) $G_{1}=\left(\{S, A, B, C, D\},\{a, b\}, P_{1}, S\right)$, where P_{1} is defined as follows:

$$
\begin{aligned}
P_{1}= & \{S \rightarrow a S, S \rightarrow A B, S \rightarrow C D, A \rightarrow a D b, A \rightarrow A D, A \rightarrow B C \\
& B \rightarrow b S b, B \rightarrow B B, C \rightarrow B A, C \rightarrow A S b, D \rightarrow A B C D, D \rightarrow \varepsilon\}
\end{aligned}
$$

(b) $G_{2}=\left(\{S, A, B, C, D\},\{a, b\}, P_{2}, S\right)$, where P_{2} is defined as follows:

$$
\begin{aligned}
P_{2}= & \{S \rightarrow A B, S \rightarrow B C, S \rightarrow C D, A \rightarrow B C, A \rightarrow B D \\
& B \rightarrow B C, B \rightarrow D D, B \rightarrow b, C \rightarrow A C, C \rightarrow B C, D \rightarrow a\}
\end{aligned}
$$

(c) $G_{3}=\left(\{S, A, B, C, D\},\{a, b\}, P_{3}, S\right)$, where P_{3} is defined as follows:

$$
\begin{aligned}
P_{3}= & \{S \rightarrow A B, S \rightarrow B C, S \rightarrow C D, A \rightarrow B C, A \rightarrow B D \\
& B \rightarrow C C, B \rightarrow D D, B \rightarrow b, C \rightarrow A S, D \rightarrow A C, D \rightarrow a\}
\end{aligned}
$$

Problem 11.2. [CKY-Algorithm]
Apply the CYK-algorithm from the proof of Theorem 3.30 to the following context-free grammar

$$
G=(\{A, B, C, R, S, T, U, V, X, Y, Z\},\{a, b, c\}, P, S)
$$

and the input words $w_{1}=b c a a a c b b$ and $w_{2}=a b c b a a b c$, where P is defined as follows:

$$
\begin{aligned}
P_{1}= & \{S \rightarrow T U, T \rightarrow B A, T \rightarrow B X, T \rightarrow B Y, X \rightarrow T A \\
& Y \rightarrow C A, Y \rightarrow R A, U \rightarrow A B, U \rightarrow A V, U \rightarrow A Z \\
& Z \rightarrow U B, V \rightarrow R B, R \rightarrow C R, R \rightarrow c, A \rightarrow a, B \rightarrow b, C \rightarrow c\} .
\end{aligned}
$$

Problem 11.3. [DPDA]

In Theorem 3.17 we have seen that, for each PDA M_{1}, there exists a PDA M_{2} such that $N\left(M_{2}\right)=L\left(M_{1}\right)$, while for deterministic PDAs, a corresponding result does not hold. Why doesn't the proof of Theorem 3.17 carry over to DPDAs?

Problem 11.4. [DPDA]

Consider the DPDA $M=\left(\left\{q_{0}, q_{1}, q_{2}\right\},\{a, b\},\{\#, Z\}, \delta, q_{0}, \#,\left\{q_{2}\right\}\right)$, where the transition function δ is defined as follows:

$$
\begin{aligned}
\delta\left(q_{0}, a, \#\right) & =\left(q_{1}, \# Z\right) \\
\delta\left(q_{1}, a, Z\right) & =\left(q_{1}, Z Z\right) \\
\delta\left(q_{1}, b, Z\right) & =\left(q_{2}, \varepsilon\right) \\
\delta\left(q_{2}, b, Z\right) & =\left(q_{2}, \varepsilon\right)
\end{aligned}
$$

(a) Give a nonempty input word $w \in\{a, b\}^{*}$ that M does not read completely.
(b) Use the construction from the proof of Lemma 3.33 to extend M to an equivalent DPDA M^{\prime} that always reads its input words completely.

Problem 11.5. [Ogden's Lemma for DCFL]
Prove that the language $L=\left\{a^{n} b^{n} c, a^{n} b^{2 n} d \mid n \geq 0\right\}$ is not deterministic context-free by applying Ogden's Lemma for DCFL (Theorem 3.40) to L.

