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3.6. Decision Problems

Theorem 3.28

The following Emptiness Problem is decidable in polynomial time:

INSTANCE: A context-free grammar G.
QUESTION: Is L(G) �= ∅?

Proof.

Let G = (N,T ,S,P) be a context-free grammar. In polynomial time we
can determine the set Vterm of usefull nonterminals of G (Lemma 3.3),
where

Vterm = {A ∈ N | L(G,A) �= ∅ }.
As L(G) �= ∅ iff S ∈ Vterm, this yields the desired algorithm.
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Theorem 3.29

The following Finiteness Problem is decidable:

INSTANCE: A context-free grammar G.
QUESTION: Is L(G) a finite language?

Proof.

First we transform the given grammar into a grammar
G1 = (N,T ,S,P) in CNF s.t. L(G1) = L(G) ∩ T+ (Theorem 3.9).
In addition, we can assume that G1 is proper and that it contains no
ε-productions.
From G1 we construct a directed graph (V ,E) as follows:

– V := N, that is, there exists a node for each nonterminal, and
– (A → B) ∈ E iff there exists a nonterminal C such that P contains

the production A → BC or A → CB (or both).
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Proof of Theorem 3.29 (cont.)

Claim:

The language L(G) is infinite iff the graph (V ,E) contains a cycle.

Proof.

If A0,A1, . . . ,Am,A0 is a cycle in (V ,E), then we have a derivation of
the following form in G1:

A0 →P α1A1β1 →P α1α2A2β2β1 →P · · · →P α1 · · ·αmAmβm · · ·β1

→P α1 · · ·αmαm+1A0βm+1 · · ·β1,

where αi ,βi ∈ N∗ and |αi |+ |βi | = 1 for all i = 1, 2, . . . ,m + 1.

As G1 is proper, S →∗
P u0A0v0 for some u0, v0 ∈ T ∗

and αi →∗
P ui ∈ T ∗, βi →∗

P vi ∈ T ∗, i = 1, 2, . . . ,m + 1.
As G1 contains no ε-production, it follows that |uivi | ≥ |αi |+ |βi | = 1.
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Proof of Theorem 3.29 (cont.)

Proof of Claim (cont.)

Thus, we obtain the following derivations in G1:
S →∗

P u0A0v0 →∗
P u0u1 · · · um+1A0vm+1 · · · v1v0

→∗
P u0(u1 · · · um+1)

kA0(vm+1 · · · v1)
kv0

→∗
P u0(u1 · · · um+1)

kx(vm+1 · · · v1)
kv0 ∈ T ∗

for some x ∈ T ∗ and all k ≥ 1. As |u1 · · · um+1vm+1 · · · v1| ≥ m + 1,
all these words differ from one another, that is, L(G) is infinite.

If (V ,E) does not contain any cycle, then each path in each syntax
tree of each derivation from S to some word v ∈ T ∗ has length at most
|N|+ 1. Thus, there are only finitely many syntax trees for G, and
hence, L(G) is finite.

It is decidable in time O(|N|2) whether (V ,E) contains a cycle.
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Example:

Let G = ({S,A,B,C, }, {a, b},S,P), where

P = {S → AB,A → BC,A → a,B → CC,B → b,C → a}.
G is a proper context-free grammar in CNF without ε-productions.
The directed graph(V ,E) for G looks as follows:

S C

A

B

(V ,E) does not contain any cycle, that is, L(G) is finite.
In fact, it is easily seen that L(G) = {ab, a3, a3b, ba3, bab, a5}.
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Theorem 3.30

The following Membership Problem is decidable in polynomial time:

INSTANCE: A context-free grammar G in CNF,
and a word w ∈ T ∗.

QUESTION: Is w ∈ L(G)?

Proof.

Let G = (N,T ,S,P) be a context-free grammar in CNF, let
N = {A1,A2, . . . ,Am}, and let S = A1.
We can assume that (S → ε) is the only ε-production (if any), and that
A1 does not occur on the righthand side of any production.
Hence, ε ∈ L(G) iff (A1 → ε) ∈ P.
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Proof of Theorem 3.30 (cont.)

Let w = x1x2 · · · xn, where x1, x2, . . . , xn ∈ T .
For all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , n + 1 − i},
let Vi,j ⊆ N be defined as follows:

Vi,j := {A ∈ N | A →∗
P xixi+1 · · · xi+j−1 }.

Then w ∈ L(G) iff S = A1 ∈ V1,n.

We now compute all the sets Vi,j through the method of dynamic
programming.

This algorithm goes back to J. Cocke, T. Kasami, and D. Younger
(1967).
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Proof of Theorem 3.30 (cont.)

procedure CKY;
begin

for i := 1 to n do Vi,1 := {A | (A → xi) ∈ P };
for j := 2 to n do

for i := 1 to n − j + 1 do
begin

Vi,j := ∅;
(∗) for k := 1 to j − 1 do

Vi,j := Vi,j ∪ {A | (A → BC) ∈ P,B ∈ Vi,k ,C ∈ Vi+k,j−k }
end

end.

As A →∗
P xi · · · xi+j−1 iff ∃(A → BC) ∈ P s.t. B →∗

P xi · · · xi+k−1 and
C →∗

P xi+k · · · xi+j−1, the set Vi,j is computed correctly in (∗).
Obviously, this algorithm runs in polynomial time.
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Example:

Let G = ({S,A,B,C,D,E ,F}, {a, b, c},P,S),
where P = {S → AB,A → CD,A → CF ,B → c,B → EB,

C → a,D → b,E → c,F → AD }
Let x = aaabbbcc.

a a b b b c cx =

DDDCCC1

BA2

F3

A4

F5

6 A

7

8 S

S

j
↓

a

B,EB,E

As S ∈ V1,8, it follows that x ∈ L(G).
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Theorem 3.31

The following problems cannot be solved algorithmically:
INSTANCE: Two context-free grammars G1,G2.
(1.) QUESTION: Is L(G1) ∩ L(G2) = ∅ ?
(2.) QUESTION: Is |L(G1) ∩ L(G2)| = ∞ ?
(3.) QUESTION: Is L(G1) ∩ L(G2) context-free ?
(4.) QUESTION: Is L(G1) ⊆ L(G2)?
(5.) QUESTION: Is L(G1) = L(G2)?
(6.) QUESTION: Is G1 unambiguous?
(7.) QUESTION: Is L(G1)

c context-free?
(8.) QUESTION: Is L(G1) regular?
(9.) QUESTION: Is L(G1) deterministic context-free?

Proof: Later!
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3.7. Deterministic Context-Free Languages

A PDA M = (Q,Σ, Γ, δ, q0,Z0,F ) is deterministic, that is, M is a DPDA,
if in each configuration there is at most one applicable transition.
This is equivalent to the following two conditions,
where q ∈ Q and z ∈ Γ:

(1) For all a ∈ Σ ∪ {ε}, |δ(q, a, z)| ≤ 1.
(2) If δ(q, ε, z) �= ∅, then δ(q, a, z) = ∅ for all a ∈ Σ.

A language L is deterministic context-free, if there exists a DPDA M
such that L = L(M).
DCFL denotes the class of deterministic context-free languages.

Remark:

For a DPDA M, if L� = N(M), that is, L� is accepted by empty
pushdown, then L� is prefix-free: for all u ∈ L�, u · Σ+ ∩ L� = ∅.
Hence, a+ �= N(M) for each DPDA M.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 205 / 294



3. Context-Free Languages and Pushdown Automata 3.7. Deterministic Context-Free Languages

Example:

L := { ambmanbn | m, n ≥ 0 } ∈ DCFL,
but L �= N(M) for each DPDA M.

A DPDA M = (Q,Σ, Γ, δ, q0,Z0,F ) is in normal form, if one of the
following statements holds for each δ(q, a, z) = (p, γ):

(i) γ = ε, that is, the symbol z is popped from the pushdown,
(ii) γ = z, that is, the pushdown is not changed, or
(iii) γ = zz � for some z � ∈ Γ, that is, the symbol z � is pushed onto the

pushdown.

Theorem 3.32

If L ∈ DCFL(Σ), then there exists a DPDA M in normal form such that
L = L(M).
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Let M be a DPDA, and let u ∈ L(M).
Then M reads input u completely and accepts.
For v ∈ Σ∗ � L(M), M will in general not read input v completely.
In fact, one of the following cases can occur before M has read v
completely:

– M reaches a configuration to which no transition applies,
– M empties its pushdown completely,
– M enters an infinite computation consisting entirely of

ε-transitions.

Lemma 3.33

For each DPDA M, there exists an equivalent DPDA M � that always
reads its input completely.
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Proof of Lemma 3.33.

Let M = (Q,Σ, Γ, δ, q0,Z0,F ) be a DPDA in normal form.
- We introduce a new pushdown symbol X0 and a new initial state q�

0
together with the transition δ(q�

0, ε,Z0) = (q0,X0Z0).
- We add a new state d s.t. δ(d , a, z) = (d , z) for all a ∈ Σ and z ∈ Γ.
If δ(q, a, z) ∪ δ(q, ε, z) = ∅ for some q ∈ Q, a ∈ Σ, and z ∈ Γ, then we
take δ(q, a, z) = (d , z).
The resulting DPDA M1 accepts the same language as M.
If M1 does not read an input completely, this means that, starting in
some state q, M1 executes an infinite sequence of ε-transitions without
removing the topmost symbol z from the pushdown.
- In this situation we take δ(q, ε, z) = (d , z), provided that no final state
is reached through this sequence of ε-steps.
If, however, a final state is reached, then we take δ(q, ε, z) := (e, z) for
a new final state e and δ(e, ε, z) := (d , z).
The DPDA M � obtained in this way has the desired property.
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Remark:

The construction in the proof of Lemma 3.33 is effective.

Theorem 3.34

The language class DCFL is closed under complementation, that is,
for each L ∈ DCFL(Σ), Lc := (Σ∗ � L) ∈ DCFL(Σ), too.

Proof.

Let M = (Q,Σ, Γ, δ, q0,Z0,F ) be a DPDA such that L(M) = L, and
assume that M always reads its input completely.
Unfortunately, Lc does in general not coincide with the language
accepted by the DPDA M � = (Q,Σ, Γ, δ, q0,Z0, Q� F ), as M may have
a computation of the following form:

(q0,Z0,w) �∗
M (q,α, ε) �M (q�,β, ε) for some q ∈ F and q� �∈ F .

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 209 / 294



3. Context-Free Languages and Pushdown Automata 3.7. Deterministic Context-Free Languages

Proof of Theorem 3.34 (cont.)

We must ensure that the DPDA M cannot execute ε-transitions in a
final state.
We define a DPDA M1 = (Q1,Σ, Γ, δ1, q1,Z0,F1) as follows:
– Q1 := { [q, k ] | q ∈ Q and k ∈ {1, 2, 3} },

– q1 :=

�
[q0, 1], if q0 ∈ F ,
[q0, 2], if q0 �∈ F ,

�
, – F1 := { [q, 3] | q ∈ Q },

– and the transition function δ1 is defined by:

(1) δ1([q, k ], ε, z) := ([p, k �], γ) if δ(q, ε, z) = (p, γ), k ∈ {1, 2}
and k � =

�
1, if k = 1 or p ∈ F ,
2, otherwise,

(2) δ1([q, 2], ε, z) := ([q, 3], z) if δ(q, a, z) = (p, γ),

(3) δ1([q, 1], a, z) := ([p, k ], γ)
δ1([q, 3], a, z) := ([p, k ], γ)

� if δ(q, a, z) = (p, γ)

and k =

�
1, if p ∈ F ,
2, otherwise.
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Proof of Theorem 3.34 (cont.)

Claim:

L(M1) = Σ∗ � L.

Proof.

Let u = a1a2 · · · an ∈ L. On input u, M executes a computation of the
following form:

(q0,Z0, u) �∗
M (p1,α, an) �M (p2,β, ε) �∗

M (p3, γ, ε) where p3 ∈ F ,

but p2 and the subsequent states before p3 are from Q � F .
For M1, we have the following computation:

([q0, .],Z0, u) �∗
M1

([p1, .],α, an) �≤2
M1

([p2, 2],β, ε) �∗
M1

([p3, 1], γ, ε),

that is, further ε-transitions cannot lead to a final state of M1.
Thus, L(M1) ⊆ Σ∗ � L.
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Proof of Theorem 3.34 (cont.)

Proof of Claim (cont.)

Conversely, for u = a1a2 · · · an �∈ L, M has a computation of the form:

(q0,Z0, u) �∗
M (p1,α, an) �M (p2,β, ε) �∗

M (p3, γ, ε), where p2, . . . , p3 �∈ F ,

and in (p3, γ, ε), no further ε-transition is applicable.
As M reads each input completely, there exists a letter a ∈ Σ
s.t. δ(p3, a, top(γ)) is defined. Hence, M1 executes the following
computation:

([q0, .],Z0, u) �∗
M1

([p2, 2],β, ε) �∗
M1

([p3, 2], γ, ε) �M1 ([p3, 3], γ, ε)

where [p3, 3] ∈ F1, that is, Σ∗ � L = L(M1).

This shows that Lc ∈ DCFL(Σ).
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Corollary 3.35

Each language L ∈ DCFL is accepted by a DPDA that does not
execute any ε-transitions in any final state.

Corollary 3.36

The class DCFL is closed under intersection with regular languages.

Proof.

Let L1 ∈ DCFL. The there exists a DPDA M that accepts L1 and that
reads each input completely.
For L2 ∈ REG, there exsists a DFA A such that L(A) = L2.
From M and A, one can construct a DPDA for L1 ∩ L2, that is,
L1 ∩ L2 ∈ DCFL.
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Obviously, DCFL ⊆ CFL. Now we will prove that this is a proper
inclusion. Let

LGl := {wc|wRc|w | w ∈ {a, b}∗ }

be the so-called Gladkij language [Gladkij 1964].

Using the Pumping Lemma 3.14 it is easily shown that LGl is not
context-free.

Let Lc
Gl := ({a, b, c| }∗ � LGl).

Lemma 3.37

Lc
Gl ∈ CFL � DCFL.
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Proof.

If Lc
Gl ∈ DCFL, then by Theorem 3.34, LGl ∈ DCFL.

As LGl �∈ CFL, we see that Lc
Gl �∈ DCFL.

It remains to prove that Lc
Gl ∈ CFL.

For a word w ∈ {a, b, c| }∗, we have w ∈ Lc
Gl iff

one of the following conditions is met:
(1) |w |c| �= 2, or

(2) w = w1c|w2c|w3, where wR
1 �= w2, or

(3) w = w1c|w2c|w3, where wR
3 �= w2.

Let H1 := { u ∈ {a, b, c| }∗ | |w |c| �= 2 },
H2 := {w1c|w2c|w3 | w1,w2,w3 ∈ {a, b}∗,wR

1 �= w2 } and
H3 := {w1c|w2c|w3 | w1,w2,w3 ∈ {a, b}∗,wR

3 �= w2 }.
Then H1 ∈ REG and H2,H3 ∈ CFL, implying that
Lc

Gl = H1 ∪ H2 ∪ H3 ∈ CFL.
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Corollary 3.38

DCFL � CFL.

Each DFA can be interpreted as a DPDA that does not use its
pushdown. As { anbn | n ≥ 1 } ∈ DCFL � REG, we obtain the following
proper inclusion.

Corollary 3.39

REG � DCFL.
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Theorem 3.40 (Ogden’s Lemma for DCFL (see Har78))

Let L ∈ DCFL(Σ). Then there exists a constant k that depends on L
such that each word z ∈ L containing δ(z) ≥ k marked positions has a
factorization z = uvwxy that satisfies all of the following properties:
(1) v �= ε,
(2) uviwxiy ∈ L for all i ≥ 0,
(3) u, v and w or w , x and y contain marked positions,
(4) δ(vwx) ≤ k,
(5) if y �= ε, then the following equivalence holds for all m, n ≥ 0 and

all α ∈ Σ∗: uvm+nwxnα ∈ L iff uvmwα ∈ L.
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Theorem 3.41

L := { anbn, anb2n | n ≥ 1 } ∈ CFL � DCFL.

Proof.

It is easily seen that L is context-free. In fact, L is the union of the two
deterministic context-free languages L1 := { anbn | n ≥ 1 } and
L2 := { anb2n | n ≥ 1 }.

We claim that L is not deterministic context-free.

Assume that L is deterministic context-free.
Let k be the corresponding constant from Thm. 3.40, and let p := k !.
Let z := apbp ∈ L, where we mark all occurrences of b.
Then z = apbp has a factorization z = apbp = uvwxy that satisfies
conditions (1) to (5) of the theorem.
As z � = uwy ∈ L, we have v = ai und x = bi for some i ∈ {1, 2, . . . , k}.
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Proof of Theorem 3.41 (cont.)

Because of (3) this implies that w , x and y contain marked positions,
that is,

u = an1 , v = ai , w = ap−n1−i bj , x = bi and
y = bp−i−j for some j ∈ {1, 2, . . . , k}.

In fact, we have i + j < k . In particular, we have y �= ε.

Now we choose m = 1 and n = 1, and we take α = bp−j+p+i . Then

uvn+mwxnα = an1ai·2ap−n1−i bjbibp−j+p+i = ap+i bp+i+p+i ∈ L,

but uvmwα = an1aiap−n1−i bjbp−j+p+i = apbp+p+i = apb2p+i �∈ L, a
contradiction!

Thus, it follows that L �∈ DCFL.
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Corollary 3.42

The language class DCFL is not closed under union.

By using the same technique it can be shown that

L� := { anbnc, anb2nd | n ≥ 1 }

is not in DCFL. On the other hand, the language

L�R = { cbnan, db2nan | n ≥ 1 }

belongs obviously to DCFL.

Corollary 3.43

The class DCFL is not closed under reversal.
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Also L�� := { canbn, danb2n | n ≥ 1 } is in DCFL.
The morphism ϕ : c �→ ε, d �→ ε, a �→ a, b �→ b maps L�� onto L.

Corollary 3.44

The class DCFL is not closed under morphisms.

Theorem 3.45

The class DCFL is closed under inverse morphisms.

Theorem 3.46

The class DCFL is not closed under product and Kleene star.
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Theorem 3.47

The following problems are decidable:

(1) INSTANCE: L ∈ DCFL(Σ) and R ∈ REG(Σ).
QUESTION: Is L = R?

(2) INSTANCE: L ∈ DCFL(Σ) and R ∈ REG(Σ).
QUESTION: Is R ⊆ L?

(3) INSTANCE: L ∈ DCFL(Σ).
QUESTION: Is Lc = ∅?

(4) INSTANCE: L ∈ DCFL(Σ).
QUESTION: Is L regular?

(5) INSTANCE: L1, L2 ∈ DCFL(Σ).
QUESTION: Is L1 = L2?

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 222 / 294



3. Context-Free Languages and Pushdown Automata 3.7. Deterministic Context-Free Languages

Proof.

(1) Let L1 := (L ∩ Rc) ∪ (Lc ∩ R).
Then L = R iff L1 = ∅.
From a DPDA for L and a DFA for R one can construct a PDA for L1.
By Theorem 3.28 it is decidable whether L1 = ∅.

(2) R ⊆ L iff Lc ∩ R = ∅. In analogy to (1) this is decidable.

(3) This is obvious, as by Theorem 3.28 emptiness of context-free
languages is decidable.

(4) See (Stearns 1967).

(5) See (Senizergues 1997).
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