Automata and Grammars

SS 2018

Assignment 9: Solutions to Selected Problems

Problem 9.1. [Greibach Normal Form]
Convert the context-free grammar $G_{1}=\left(\{S, E, F\},\{a,(),,+, *\}, P_{1}, S\right)$ into an equivalent grammar that is in Greibach Normal Form, where

$$
P_{1}=\{S \rightarrow(E), E \rightarrow F+F, E \rightarrow F * F, F \rightarrow a, F \rightarrow S\} .
$$

Use the construction detailed in the proof of Theorem 3.10, and notice that this construction already applies to context-free grammars that are in weak CNF.

Solution. We must first eliminate the chain rule $(F \rightarrow S)$, which is done by deleting this rule and by adding the rule $F \rightarrow(E)$, which yields the set of productions

$$
\hat{P}_{1}=\{S \rightarrow(E), E \rightarrow F+F, E \rightarrow F * F, F \rightarrow a, F \rightarrow(E)\} .
$$

Then we introduce new nonterminals A, B, C to replace the terminal symbols $),+$, and $*$ on the right-hand side of productions, which yields the grammar

$$
G_{1}^{\prime}=\left(\{S, E, F, A, B, C\},\{a,(,),+, *\}, P_{1}^{\prime}, S\right),
$$

where P_{1}^{\prime} is defined as follows:

$$
\begin{aligned}
P_{1}^{\prime}= & \{S \rightarrow(E A, E \rightarrow F B F, E \rightarrow F C F, F \rightarrow a, F \rightarrow(E A, \\
& A \rightarrow), B \rightarrow+, C \rightarrow *\} .
\end{aligned}
$$

Next we choose the ordering $S<E<F$. Then $X<Y$ holds already for each production $X \rightarrow Y \alpha$ of P_{1}^{\prime}, where X, Y are nonterminals. Thus, it remains to apply step (3) of the conversion algorithm:

- Replace the production $E \rightarrow F B F$ by the productions $E \rightarrow a B F$ and $E \rightarrow(E A B F$.
- Replace the production $E \rightarrow F C F$ by the productions $E \rightarrow a C F$ and $E \rightarrow(E A C F$.

This yields the grammar

$$
G_{2}^{\prime \prime}=\left(\{S, E, F, A, B, C\},\{a,(,),+, *\}, P_{1}^{\prime \prime}, S\right),
$$

where $P_{1}^{\prime \prime}$ is defined as follows:

$$
\begin{aligned}
P_{1}^{\prime \prime}= & \{S \rightarrow(E A, E \rightarrow a B F, E \rightarrow(E A B F, E \rightarrow a C F, E \rightarrow(E A C F, F \rightarrow a, F \rightarrow(E A, \\
& A \rightarrow), B \rightarrow+, C \rightarrow *\} .
\end{aligned}
$$

Problem 9.2. [The Pumping Lemma for Context-Free Languages]

Prove that the following languages are not context-free by applying the Pumping Lemma for context-free languages (Theorem 3.14):
(a) $L_{1}=\left\{a^{i} b^{i} c^{2 i} \mid i \geq 1\right\}$,
(b) $L_{2}=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}$,
(c) $L_{3}=\left\{w w \mid w \in\{a, b\}^{*}\right\}$.

Solution. (a) Assume that L_{1} is context-free. Then by Theorem 3.14, there exists a constant r such that each word $z \in L_{1}$ of length $|z| \geq r$ has a factorization of the form $z=u v w x y$ such that $|v x|>0,|v w x| \leq r$, and $u v^{i} w x^{i} y \in L_{1}$ for all $i \geq 0$.
We choose the word $z=a^{r} b^{r} c^{2 r} \in L_{1}$. Then $|z|=4 r \geq r$, and hence, z has a factorization $z=u v w x y$ that satisfies the three conditions above. As $|v w x| \leq r$, we see that $v w x$ is a factor of $a^{r} b^{r}$ or of $b^{r} c^{2 r}$. Thus, the word $u v^{0} w x^{0} y=u w y$ contains less a 's and/or less b 's than z, but the same number of c 's, or it contains the same number of a 's, but less b 's and/or c 's. This implies that $u v^{0} w x^{0} y \notin L_{1}$, that is, L_{1} does not satisfy the Pumping Lemma for Context-free languages. This proves that L_{1} is not context-free.
(b) Assume that L_{2} is context-free. Then by Theorem 3.14, there exists a constant r such that each word $z \in L_{2}$ of length $|z| \geq r$ has a factorization of the form $z=u v w x y$ such that $|v x|>0,|v w x| \leq r$, and $u v^{i} w x^{i} y \in L_{1}$ for all $i \geq 0$.
We choose the word $z=a^{r} b^{r} c^{r} \in L_{2}$. Then $|z|=3 r \geq r$, and hence, z has a factorization $z=u v w x y$ that satisfies the three conditions above. As $|v w x| \leq r$, we see that $v w x$ is a factor of $a^{r} b^{r}$ or of $b^{r} c^{r}$.
Case 1: $v w x$ is a factor of $a^{r} b^{r}$. Then the word $u v^{2} w x^{2} y$ contains more than r occurrences of the letter a and/or b, but it still just contains r occurrences of the letter c. It follows that $u v^{2} w x^{2} y \notin L_{2}$.
Case 2: $v w x$ is a factor of $b^{r} c^{r}$. Then the word $u v^{0} w x^{0} y$ contains less than r occurrences of the letter b and/or c, but it still contains r occurrences of the letter a. This implies that $u v^{0} w x^{0} y \notin L_{2}$.
As each of the two cases leads to a contradiction, we see that L_{2} does not satisfy the Pumping Lemma for Context-free languages. This proves that L_{2} is not context-free.
(c) Assume that L_{3} is context-free. Then by Theorem 3.14, there exists a constant r such that each word $z \in L_{3}$ of length $|z| \geq r$ has a factorization of the form $z=u v w x y$ such that $|v x|>0,|v w x| \leq r$, and $u v^{i} w x^{i} y \in L_{1}$ for all $i \geq 0$.
We choose the word $z=a^{r} b^{r} a^{r} b^{r} \in L_{3}$. Then $|z|=4 r \geq r$, and hence, z has a factorization $z=u v w x y$ that satisfies the three conditions above. As $|v w x| \leq r$, we see that $v w x$ is a factor of the prefix $a^{r} b^{r}$, of the infix $b^{r} a^{r}$, or of the suffix $a^{r} b^{r}$. In each of these cases it is easily seen that the word $u v^{0} w x^{0} y$ is not a square anymore, that is, $u v^{0} w x^{0} y \notin L_{3}$. Thus, L_{3} does not satisfy the Pumping Lemma for Context-free languages. This proves that L_{3} is not context-free.

Problem 9.3. [Context-Free Languages]

Determine which of the following languages are context-free:
(a) $L_{1}=\left\{a^{m} b^{n} \mid 0 \leq m \leq n \leq 2 m\right\}$,
(b) $L_{2}=\left\{\left.w \in\{a, b, c\}^{*}| | w\right|_{a}=|w|_{b}=|w|_{c}\right\}$,
(c) $L_{3}=\left\{a^{n_{1}} b a^{n_{2}} b a^{n_{3}} \mid n_{1} \geq n_{2} \geq n_{3} \geq 0\right\}$.

Hint: You are expected to provide proofs for your answers!
Solution. (a) The language L_{1} is context-free. Just take the context-free grammar

$$
G_{1}=(\{S\},\{a, b\},\{S \rightarrow a S b, S \rightarrow a S b b, S \rightarrow \varepsilon\}, S)
$$

Then $S \rightarrow^{m} a^{m} S b^{m+k} \rightarrow a^{m} b^{m+k}$ for all $0 \leq m$ and $0 \leq k \leq m$. Hence, $L\left(G_{1}\right)=L_{1}$.
(b) The language L_{2} is not context-free. Assume to the contrary that L_{2} is context-free, and let r be the corresponding constant from the Pumping Lemma. Let $z=a^{r} b^{r} c^{r}$. Then $z \in L_{2}$ and $|z|=3 r>r$. Hence, z admits a factorization of the form $z=u v w x y$ such that $|v x|>0$, $|v w x| \leq r$, and $u v^{i} w x^{i} y \in L_{2}$ for all $i \geq 0$. As $|v w x| \leq r$, we see that $v w x$ is a factor of $a^{r} b^{r}$ or of $b^{r} c^{r}$. Hence, the word $u v^{0} w x^{0} y$ has less a - and/or b-symbols than c-symbols, or it has less b - and/or c-symbols than a-symbols, which implies that $u v^{0} w x^{0} y \notin L_{2}$. This contradiction implies that L_{2} is not context-free.
(c) The language L_{3} is not context-free. Assume to the contrary that L_{3} is context-free, and let r be the corresponding constant from the Pumping Lemma. Let $z=a^{r} b a^{r} b a^{r}$. Then $z \in L_{3}$ and $|z|=3 r+2>r$. Hence, z admits a factorization of the form $z=u v w x y$ such that $|v x|>0,|v w x| \leq r$, and $u v^{i} w x^{i} y \in L_{3}$ for all $i \geq 0$. From the definition of L_{3} we see immediately that $|v|_{b}=|x|_{b}=0$, that is, $v=a^{s}$ and $x=a^{t}$ for some $s, t \geq 0$ satisfying $0<s+t \leq r$.
Case 1: If v is contained in the first factor a^{r}, then x is also contained in this factor or it is contained in the second factor of this form. In the former case it follows that $u v^{0} w x^{0} y=$ $a^{r-s-t} b a^{r} b a^{r} \notin L_{3}$, as $r-s-t<r$, and in the latter case it follows that $u v^{0} w x^{0} y=$ $a^{r-s} b a^{r-t} b a^{r} \notin L_{3}$, as $r-s<r$ or $r-t<r$.

Case 2: If v is contained in the second factor a^{r}, then $u v^{2} w x^{2} y=a^{r} b a^{r+s+t} b a^{r}$ or $u v^{2} w x^{2} y=$ $a^{r} b a^{r+s} b a^{r+t}$. Then $r<r+s$ or $r<r+t$, which implies that $u v^{2} w x^{2} y \notin L_{3}$.
Case 3: If v is contained in the third factor a^{r}, then so is x, and $u v^{2} w x^{2} y=a^{r} b a^{r} b a^{r+s+t} \notin L_{3}$.

Thus, we see that L_{3} does not satisfy the Pumping Lemma for context-free languages, which implies that L_{3} is not context-free.

Problem 9.4. [Pushdown Automata]

Give an example of an accepting computation for the following PDA

$$
M=\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\{A, \#\}, \delta, q_{0}, \#,\left\{q_{3}\right\}\right)
$$

where δ is given by

δ	q_{0}	q_{1}	q_{2}	q_{3}
$(a, \#)$	$\left(q_{1}, \# A\right)$	-	-	-
(a, A)	-	$\left(q_{1}, A A\right)$	-	-
$(b, \#)$	-	-	-	-
(b, A)	-	$\left(q_{2}, A\right)$	$\left(q_{3}, \varepsilon\right)$	$\left(q_{2}, A\right)$

and determine the languages that are accepted by it by considering both acceptance conditions:
(1) acceptance by final state and
(2) acceptance by empty pushdown.

Solution. On input $a^{m} b^{n}(m, n \geq 1), M_{1}$ can execute the following computation:

$$
\begin{array}{rllll}
\left(q_{0}, \#, a^{m} b^{n}\right) & \vdash_{M_{1}} & \left(q_{1} \# A, a^{m-1} b^{n}\right) & \vdash_{M_{1}}^{m-1} & \left(q_{1}, \# A^{m}, b^{n}\right) \\
& \vdash_{M_{1}} & \left(q_{2}, \# A^{m}, b^{n-1}\right) & \vdash_{M_{1}} & \left(q_{3}, \# A^{m-1}, b^{n-2}\right) \\
& \vdash_{M_{1}} & \left(q_{2}, \# A^{m-1} b^{n-3}\right) & \vdash_{M_{1}} & \left(q_{3}, \# A^{m-2}, b^{n-4}\right)
\end{array}
$$

Now it follows that $L\left(M_{1}\right)=\left\{a^{m} b^{2 n} \mid m \geq n \geq 1\right\}$, while $N\left(M_{1}\right)=\emptyset$, as the bottom marker \# cannot be popped from the pushdown.

Problem 9.5. [Pushdown Automata]
Prove Theorem 3.18, that is, from a given PDA M_{2}, construct a PDA M_{1} such that $L\left(M_{1}\right)=$ $N\left(M_{2}\right)$.
Solution. Let $M_{2}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \#, \emptyset\right)$ be a PDA, and let $L=N(M)$ be the language it accepts with empty pushdown. We construct a PDA $M_{1}=\left(Q \cup\left\{p_{0}, p_{f}\right\}, \Sigma, \Gamma \cup\right.$ $\left.\{\&\}, \delta_{1}, p_{0}, \#,\left\{p_{f}\right\}\right)$ by defining the transition relation δ_{1} as follows:

$$
\begin{array}{ll}
\delta_{1}\left(p_{0}, \varepsilon, \#\right) & =\left\{\left(q_{0}, \& \#\right)\right\} \\
\delta_{1}(q, a, B) & =\delta(q, a) \\
\delta_{1}(q, \varepsilon, \&) & =\left\{\left(p_{f}, \varepsilon\right)\right\}
\end{array} \quad \text { for all } q \in Q, a \in \Sigma \cup\{\varepsilon\}, \text { and } B \in \Gamma
$$

Then M_{1} proceeds as follows. Given a word $w \in \Sigma^{*}$ as input, it starts from the initial configuration $\left(p_{0}, \#, w\right)$ and enters the configuration $\left(q_{0}, \& \#, w\right)$. Now it simulates a computation of M_{2} that starts from the configuration $\left(q_{0}, \#, w\right)$. If the latter reaches an accepting configuration of the form $(q, \varepsilon, \varepsilon)$, then M_{1} reaches the configuration $(q, \&, \varepsilon)$, from which it can reach the accepting configuration $\left(p_{f}, \varepsilon, \varepsilon\right)$. Conversely, if M_{1} accepts on input w, then the last transition in a corresponding accepting computation is the step from $(q, \&, \varepsilon)$ to $\left(p_{f}, \varepsilon, \varepsilon\right)$, as this is the only way in which M_{1} can enter its final state. Thus, from $\left(q_{0}, \& \#, w\right)$ to $(q, \&, \varepsilon)$ it must simulate a computation of M_{2} that transfers $\left(q_{0}, \#, w\right)$ into $(q, \varepsilon, \varepsilon)$, which implies that $w \in N\left(M_{2}\right)$. This shows that $L\left(M_{1}\right)=N\left(M_{2}\right)$, as required.

