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Assignment 9: Solutions to Selected Problems

Problem 9.1. [Greibach Normal Form]

Convert the context-free grammar G1 = ({S,E, F}, {a, (, ),+, ∗}, P1, S) into an equivalent
grammar that is in Greibach Normal Form, where

P1 = {S → (E), E → F + F,E → F ∗ F, F → a, F → S}.

Use the construction detailed in the proof of Theorem 3.10, and notice that this construction
already applies to context-free grammars that are in weak CNF.

Solution. We must first eliminate the chain rule (F → S), which is done by deleting this
rule and by adding the rule F → (E), which yields the set of productions

P̂1 = {S → (E), E → F + F,E → F ∗ F, F → a, F → (E)}.

Then we introduce new nonterminals A,B,C to replace the terminal symbols ), +, and ∗ on
the right-hand side of productions, which yields the grammar

G′1 = ({S,E, F,A,B,C}, {a, (, ),+, ∗}, P ′1, S),

where P ′1 is defined as follows:

P ′1 = {S → (EA,E → FBF,E → FCF, F → a, F → (EA,
A→ ), B → +, C → ∗}.

Next we choose the ordering S < E < F . Then X < Y holds already for each production
X → Y α of P ′1, where X,Y are nonterminals. Thus, it remains to apply step (3) of the
conversion algorithm:

• Replace the production E → FBF by the productions E → aBF and E → (EABF .

• Replace the production E → FCF by the productions E → aCF and E → (EACF .

This yields the grammar

G′′2 = ({S,E, F,A,B,C}, {a, (, ),+, ∗}, P ′′1 , S),

where P ′′1 is defined as follows:

P ′′1 = {S → (EA,E → aBF,E → (EABF,E → aCF,E → (EACF,F → a, F → (EA,
A→ ), B → +, C → ∗}.
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Problem 9.2. [The Pumping Lemma for Context-Free Languages]

Prove that the following languages are not context-free by applying the Pumping Lemma for
context-free languages (Theorem 3.14):

(a) L1 = { aibic2i | i ≥ 1 },
(b) L2 = { aibjck | 0 ≤ i ≤ j ≤ k },
(c) L3 = {ww | w ∈ {a, b}∗ }.

Solution. (a) Assume that L1 is context-free. Then by Theorem 3.14, there exists a constant
r such that each word z ∈ L1 of length |z| ≥ r has a factorization of the form z = uvwxy
such that |vx| > 0, |vwx| ≤ r, and uviwxiy ∈ L1 for all i ≥ 0.
We choose the word z = arbrc2r ∈ L1. Then |z| = 4r ≥ r, and hence, z has a factorization
z = uvwxy that satisfies the three conditions above. As |vwx| ≤ r, we see that vwx is
a factor of arbr or of brc2r. Thus, the word uv0wx0y = uwy contains less a’s and/or less
b’s than z, but the same number of c’s, or it contains the same number of a’s, but less b’s
and/or c’s. This implies that uv0wx0y 6∈ L1, that is, L1 does not satisfy the Pumping Lemma
for Context-free languages. This proves that L1 is not context-free.

(b) Assume that L2 is context-free. Then by Theorem 3.14, there exists a constant r such
that each word z ∈ L2 of length |z| ≥ r has a factorization of the form z = uvwxy such that
|vx| > 0, |vwx| ≤ r, and uviwxiy ∈ L1 for all i ≥ 0.
We choose the word z = arbrcr ∈ L2. Then |z| = 3r ≥ r, and hence, z has a factorization
z = uvwxy that satisfies the three conditions above. As |vwx| ≤ r, we see that vwx is a
factor of arbr or of brcr.

Case 1: vwx is a factor of arbr. Then the word uv2wx2y contains more than r occurrences
of the letter a and/or b, but it still just contains r occurrences of the letter c. It follows that
uv2wx2y 6∈ L2.

Case 2: vwx is a factor of brcr. Then the word uv0wx0y contains less than r occurrences
of the letter b and/or c, but it still contains r occurrences of the letter a. This implies that
uv0wx0y 6∈ L2.

As each of the two cases leads to a contradiction, we see that L2 does not satisfy the Pumping
Lemma for Context-free languages. This proves that L2 is not context-free.

(c) Assume that L3 is context-free. Then by Theorem 3.14, there exists a constant r such
that each word z ∈ L3 of length |z| ≥ r has a factorization of the form z = uvwxy such that
|vx| > 0, |vwx| ≤ r, and uviwxiy ∈ L1 for all i ≥ 0.
We choose the word z = arbrarbr ∈ L3. Then |z| = 4r ≥ r, and hence, z has a factorization
z = uvwxy that satisfies the three conditions above. As |vwx| ≤ r, we see that vwx is a
factor of the prefix arbr, of the infix brar, or of the suffix arbr. In each of these cases it is
easily seen that the word uv0wx0y is not a square anymore, that is, uv0wx0y 6∈ L3. Thus,
L3 does not satisfy the Pumping Lemma for Context-free languages. This proves that L3 is
not context-free. 2



Problem 9.3. [Context-Free Languages]

Determine which of the following languages are context-free:

(a) L1 = { ambn | 0 ≤ m ≤ n ≤ 2m },
(b) L2 = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c },
(c) L3 = { an1ban2ban3 | n1 ≥ n2 ≥ n3 ≥ 0 }.

Hint: You are expected to provide proofs for your answers!

Solution. (a) The language L1 is context-free. Just take the context-free grammar

G1 = ({S}, {a, b}, {S → aSb, S → aSbb, S → ε}, S).

Then S →m amSbm+k → ambm+k for all 0 ≤ m and 0 ≤ k ≤ m. Hence, L(G1) = L1.

(b) The language L2 is not context-free. Assume to the contrary that L2 is context-free, and
let r be the corresponding constant from the Pumping Lemma. Let z = arbrcr. Then z ∈ L2

and |z| = 3r > r. Hence, z admits a factorization of the form z = uvwxy such that |vx| > 0,
|vwx| ≤ r, and uviwxiy ∈ L2 for all i ≥ 0. As |vwx| ≤ r, we see that vwx is a factor of arbr or
of brcr. Hence, the word uv0wx0y has less a- and/or b-symbols than c-symbols, or it has less
b- and/or c-symbols than a-symbols, which implies that uv0wx0y 6∈ L2. This contradiction
implies that L2 is not context-free.

(c) The language L3 is not context-free. Assume to the contrary that L3 is context-free, and
let r be the corresponding constant from the Pumping Lemma. Let z = arbarbar. Then
z ∈ L3 and |z| = 3r + 2 > r. Hence, z admits a factorization of the form z = uvwxy such
that |vx| > 0, |vwx| ≤ r, and uviwxiy ∈ L3 for all i ≥ 0. From the definition of L3 we see
immediately that |v|b = |x|b = 0, that is, v = as and x = at for some s, t ≥ 0 satisfying
0 < s+ t ≤ r.
Case 1: If v is contained in the first factor ar, then x is also contained in this factor or it
is contained in the second factor of this form. In the former case it follows that uv0wx0y =
ar−s−tbarbar 6∈ L3, as r − s − t < r, and in the latter case it follows that uv0wx0y =
ar−sbar−tbar 6∈ L3, as r − s < r or r − t < r.

Case 2: If v is contained in the second factor ar, then uv2wx2y = arbar+s+tbar or uv2wx2y =
arbar+sbar+t. Then r < r + s or r < r + t, which implies that uv2wx2y 6∈ L3.

Case 3: If v is contained in the third factor ar, then so is x, and uv2wx2y = arbarbar+s+t 6∈ L3.

Thus, we see that L3 does not satisfy the Pumping Lemma for context-free languages, which
implies that L3 is not context-free. 2



Problem 9.4. [Pushdown Automata]

Give an example of an accepting computation for the following PDA

M = ({q0, q1, q2, q3}, {a, b}, {A,#}, δ, q0,#, {q3}),

where δ is given by

δ q0 q1 q2 q3
(a,#) (q1,#A) − − −
(a,A) − (q1, AA) − −
(b,#) − − − −
(b, A) − (q2, A) (q3, ε) (q2, A)

,

and determine the languages that are accepted by it by considering both acceptance condi-
tions:

(1) acceptance by final state and

(2) acceptance by empty pushdown.

Solution. On input ambn (m,n ≥ 1), M1 can execute the following computation:

(q0,#, a
mbn) `M1 (q1#A, a

m−1bn) `m−1M1
(q1,#A

m, bn)

`M1 (q2,#A
m, bn−1) `M1 (q3,#A

m−1, bn−2)
`M1 (q2,#A

m−1bn−3) `M1 (q3,#A
m−2, bn−4).

Now it follows that L(M1) = { amb2n | m ≥ n ≥ 1 }, while N(M1) = ∅, as the bottom marker
# cannot be popped from the pushdown. 2

Problem 9.5. [Pushdown Automata]

Prove Theorem 3.18, that is, from a given PDA M2, construct a PDA M1 such that L(M1) =
N(M2).

Solution. Let M2 = (Q,Σ,Γ, δ, q0,#, ∅) be a PDA, and let L = N(M) be the lan-
guage it accepts with empty pushdown. We construct a PDA M1 = (Q ∪ {p0, pf},Σ,Γ ∪
{&}, δ1, p0,#, {pf}) by defining the transition relation δ1 as follows:

δ1(p0, ε,#) = {(q0,&#)},
δ1(q, a,B) = δ(q, a) for all q ∈ Q, a ∈ Σ ∪ {ε}, and B ∈ Γ,

δ1(q, ε,&) = {(pf , ε)}.

Then M1 proceeds as follows. Given a word w ∈ Σ∗ as input, it starts from the initial configu-
ration (p0,#, w) and enters the configuration (q0,&#, w). Now it simulates a computation of
M2 that starts from the configuration (q0,#, w). If the latter reaches an accepting configura-
tion of the form (q, ε, ε), then M1 reaches the configuration (q,&, ε), from which it can reach
the accepting configuration (pf , ε, ε). Conversely, if M1 accepts on input w, then the last
transition in a corresponding accepting computation is the step from (q,&, ε) to (pf , ε, ε), as
this is the only way in which M1 can enter its final state. Thus, from (q0,&#, w) to (q,&, ε)
it must simulate a computation of M2 that transfers (q0,#, w) into (q, ε, ε), which implies
that w ∈ N(M2). This shows that L(M1) = N(M2), as required. 2


