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Assignment 9: Solutions to Selected Problems

Problem 9.1. [Greibach Normal Form]

Convert the context-free grammar G; = ({S, E, F'},{a,(,),+,*}, P1,S) into an equivalent
grammar that is in Greibach Normal Form, where

pP={S—(E),F—-F+FFE—FxFF —aF — S}

Use the construction detailed in the proof of Theorem 3.10, and notice that this construction
already applies to context-free grammars that are in weak CNF.

Solution. We must first eliminate the chain rule (F' — S), which is done by deleting this
rule and by adding the rule F' — (E), which yields the set of productions

P ={S—(E),E—-F+FE—FxFF —aF— (E)}

Then we introduce new nonterminals A, B, C' to replace the terminal symbols ), 4+, and * on
the right-hand side of productions, which yields the grammar

G{l = ({S7 E’ F’ A’ B’ 0}7 {a7 (7 )7 _’_) *}7 P{’ S)’
where P is defined as follows:

Pl’ = {S—>(EA,E—)FBF,E—)FCF,F—)CL,F%(EA,
A—),B—+,C — x}.

Next we choose the ordering S < E < F. Then X < Y holds already for each production
X — Ya of P/, where X,Y are nonterminals. Thus, it remains to apply step (3) of the
conversion algorithm:

e Replace the production F — FBF by the productions E — aBF and F — (FABF.
e Replace the production F — FCF by the productions £ — aCF and E — (EACF.
This yields the grammar
G/Z/ = ({Sv E7F7 A,B,C}, {a7 (7)7+7*}7P1”75)7
where P/’ is defined as follows:

P! = {S— (EAE— aBF,FE — (FABF,E — oCF,E — (FEACF,F — a,F — (FEA,
A—),B—+,C — *}.



Problem 9.2. [The Pumping Lemma for Context-Free Languages]

Prove that the following languages are not context-free by applying the Pumping Lemma for
context-free languages (Theorem 3.14):

(a) Ly = {a'b'c®|i>1},
(b) Ly = {a'bcF|0<i<j<k},
(¢c) Ly = {ww|wée{a,b}*}.

Solution. (a) Assume that L; is context-free. Then by Theorem 3.14, there exists a constant
r such that each word z € L of length |z| > r has a factorization of the form z = uvwzy
such that [vx| > 0, [vwz| < 7, and wiwaly € Ly for all i > 0.

We choose the word z = a"b"c?” € L. Then |z| = 4r > r, and hence, z has a factorization
z = wvwzxy that satisfies the three conditions above. As |[vwz| < r, we see that vwz is
a factor of a”b” or of b"c?". Thus, the word uv’wz% = wwy contains less a’s and/or less
b’s than z, but the same number of ¢’s, or it contains the same number of a’s, but less b’s
and/or ¢’s. This implies that uv%waxy & Ly, that is, L; does not satisfy the Pumping Lemma
for Context-free languages. This proves that L; is not context-free.

(b) Assume that Lg is context-free. Then by Theorem 3.14, there exists a constant r such
that each word z € Lg of length |z| > r has a factorization of the form z = uvway such that
lvz| > 0, [vwzx| <7, and wwiwaly € Ly for all i > 0.

We choose the word z = a"b"¢” € Ly. Then |z| = 3r > r, and hence, z has a factorization
z = uwvwzy that satisfies the three conditions above. As |[vwz| < r, we see that vwx is a
factor of a”b" or of b"c".

Case 1: vwz is a factor of a”b". Then the word uv?wa?y contains more than r occurrences
of the letter a and/or b, but it still just contains r occurrences of the letter ¢. It follows that
wwz?y & Lo.

Case 2: vwz is a factor of b"¢”. Then the word uv’wax%y contains less than r occurrences
of the letter b and/or ¢, but it still contains r occurrences of the letter a. This implies that
wwazly & Lo.

As each of the two cases leads to a contradiction, we see that Ly does not satisfy the Pumping
Lemma for Context-free languages. This proves that Ly is not context-free.

(c) Assume that L3 is context-free. Then by Theorem 3.14, there exists a constant r such
that each word z € L3 of length |z| > r has a factorization of the form z = uvway such that
lvz| > 0, [vwz| < r, and wwiwz'y € Ly for all i > 0.

We choose the word z = a"b"a"b" € Ls. Then |z| = 4r > r, and hence, z has a factorization
z = wvwzy that satisfies the three conditions above. As |vwz| < r, we see that vwz is a
factor of the prefix a"d", of the infix "a", or of the suffix a”b". In each of these cases it is
easily seen that the word uvwz"y is not a square anymore, that is, uv®wz"y ¢ Ls. Thus,
L3 does not satisfy the Pumping Lemma for Context-free languages. This proves that Lj is
not context-free. a



Problem 9.3. [Context-Free Languages]

Determine which of the following languages are context-free:

(a) L1 = {ad™"|0<m<n<2m},
(b) Ly = {wedab e} ||wla=|wl = [wl},
(¢) Ls3 = {a™ba™ba™ |n3 >ng>ng>0}.

Hint: You are expected to provide proofs for your answers!

Solution. (a) The language L; is context-free. Just take the context-free grammar
Gy = ({S},{a,b},{S — aSb, S — aSbb, S — £}, S).

Then S —™ a™Sb"H* — a™p™+% for all 0 < m and 0 < k < m. Hence, L(G1) = L.

(b) The language Lo is not context-free. Assume to the contrary that Lo is context-free, and
let r be the corresponding constant from the Pumping Lemma. Let z = a"b"¢". Then z € Lo
and |z| = 3r > r. Hence, z admits a factorization of the form z = uvwzy such that |vz| > 0,
lvwz| < 7, and uv'wa'y € Ly for alli > 0. As [vwz| < 7, we see that vwa is a factor of a"b” or
of b"c". Hence, the word uvwa"y has less a- and/or b-symbols than c-symbols, or it has less
b- and/or c-symbols than a-symbols, which implies that uv%wzy ¢ L. This contradiction
implies that Lo is not context-free.

(c) The language L3 is not context-free. Assume to the contrary that Ls is context-free, and
let r be the corresponding constant from the Pumping Lemma. Let z = a"ba"ba". Then
z € Lg and |z| = 3r +2 > r. Hence, z admits a factorization of the form z = wwwzy such
that |vz| > 0, [vwz| < r, and wiwa'y € L3 for all i > 0. From the definition of L3 we see
immediately that |v], = |z], = 0, that is, v = a®* and # = a® for some s,t > 0 satisfying
O0<s+t<r.

Case 1: If v is contained in the first factor a”, then z is also contained in this factor or it
is contained in the second factor of this form. In the former case it follows that uv’wa’y =

a" 57 tha"ba" ¢ Lz, as v — s —t < r, and in the latter case it follows that uvwzy =
a"*ba""'ba" € L3, asr —s<rorr—t<r.
Case 2: If v is contained in the second factor a”, then uv?waz?y = a"ba"+5+ba” or uvwa?y =

a"ba"t*ba"tt. Then r < r + s or 7 < r + t, which implies that uv?wz?y ¢ Ls.

Case 3: If v is contained in the third factor a”, then so is x, and wv?wz?y = a"ba"ba" 5+t & Ls.

Thus, we see that L3 does not satisfy the Pumping Lemma for context-free languages, which
implies that L3 is not context-free. O



Problem 9.4. [Pushdown Automatal

Give an example of an accepting computation for the following PDA

M = ({qo, q1, 92, @3}, {a, b}, {A, #}, 6,90, #, {a3})

0 90 Q 42 a3
(e, #) | (g, #4) | - - -
where ¢ is given by | (a, A) - (q1,AA) - -
Al — | - [ — | -
(b, A) - (92,4) | (g3,¢) | (g2, 4)

and determine the languages that are accepted by it by considering both acceptance condi-
tions:

(1) acceptance by final state and

(2) acceptance by empty pushdown.

Solution. On input a™b™ (m,n > 1), M; can execute the following computation:

(q07 #7 ambn) '_Ml (ql#A7 am_lbn) '_Tﬁl_l (QL #Am7 bn)
l_Ml (q27 #Am’ bnil) |_M1 (Q3a #Amila bn72)
Fan (qo, #A™0"73) bay o (s, #A™ 200,

Now it follows that L(M7) = {a™b®" | m > n > 1}, while N(M;) = ), as the bottom marker
# cannot be popped from the pushdown. O

Problem 9.5. [Pushdown Automatal

Prove Theorem 3.18, that is, from a given PDA Ms, construct a PDA M such that L(M;) =
N(My).

Solution. Let My = (Q,%,T,0,q0,#,0) be a PDA, and let L = N(M) be the lan-
guage it accepts with empty pushdown. We construct a PDA M; = (Q U {po,ps}, =, T U
{&},01,p0,#,{ps}) by defining the transition relation d; as follows:

(51(1707@7 #) = {(QOa&#)};
d(q,a,B) = d(q,a) forall g € Q,a € XU {e}, and B €T,

51((]757&) = {(pf,&)},

Then M; proceeds as follows. Given a word w € ¥* as input, it starts from the initial configu-
ration (po, #,w) and enters the configuration (qo, &#,w). Now it simulates a computation of
My that starts from the configuration (qo, #,w). If the latter reaches an accepting configura-
tion of the form (g, ¢, ), then M; reaches the configuration (g, &, ¢), from which it can reach
the accepting configuration (py,e,e). Conversely, if M; accepts on input w, then the last
transition in a corresponding accepting computation is the step from (¢, &, €) to (py,€,¢€), as
this is the only way in which M; can enter its final state. Thus, from (qo, &#,w) to (g, &, €)
it must simulate a computation of My that transfers (qo, #,w) into (g,¢,¢), which implies
that w € N(Mz). This shows that L(M;) = N(Ms), as required. O



