
3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Theorem 3.20

The language N(M) is context-free for each PDA M.

Proof.

Let M = (Q,Σ, Γ, δ, q0,#,F ) be a PDA, and let L = N(M).
W.l.o.g. we can assume the following:
For all (q�,B1B2 · · ·Bk ) ∈ δ(q, a,A), we have k ≤ 2.
Otherwise, we replace (q�,B1B2 · · ·Bk ) ∈ δ(q, a,A) (k > 2)
by the following transitions:

(q1,B1B2) ∈ δ(q, a,A),
{(q2,B2B3)} = δ(q1, ε,B2),

...
{(q�,Bk−1Bk )} = δ(qk−2, ε,Bk−1),

where q1, q2, . . . , qk−1 are new states.
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Idea: A grammar G that simulates the computations of M through
leftmost derivations.

Let G := (N,Σ,P,S), where
N := {S} ∪ [Q × Γ× Q],

P := {S → (q0,#, q) | q ∈ Q }
∪ { [q,A, q�] → a | (q�, ε) ∈ δ(q, a,A) }
∪ { [q,A, q�] → a[q1,B, q�] | (q1,B) ∈ δ(q, a,A), q� ∈ Q }
∪ { [q,A, q�] → a[q1,C, q2][q2,B, q�] |

(q1,BC) ∈ δ(q, a,A), q�, q2 ∈ Q }.

Claim:

∀p, q ∈ Q ∀A ∈ Γ ∀x ∈ Σ∗ : [q,A, p] →∗
lm x iff (q,A, x) �∗

M (p, ε, ε).
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim.

First we prove by induction on i that
(q,A, x) �i

M (p, ε, ε) implies that [q,A, p] →i
lm x .

For i = 1,
if (q,A, x) �M (p, ε, ε), then (p, ε) ∈ δ(q, x ,A) and x ∈ Σ ∪ {ε}.
Hence, G contains the production [q,A, p] → x , and so, [q,A, p] →lm x .

Now assume that the above implication has been established for i − 1,
let x = ay , and let

(q,A, ay) �M (q1,B2B1, y) �i−1
M (p, ε, ε),

that is, (q1,B2B1) ∈ δ(q, a,A).
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

As M can only read and replace the topmost symbol on the pushdown,
it follows that y = y1y2, and that the above computation can be
factored as follows:

(q1,B1, y1) �k1
M (q2, ε, ε) and (q2,B2, y2) �k2

M (p, ε, ε),

where q2 ∈ Q, and k1 + k2 = i − 1.
From the I.H. we obtain the leftmost derivations

[q1,B1, q2] →k1
lm y1 and [q2,B2, p] →k2

lm y2.
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

Because of the transition in step 1, we have

([q,A, p] → a[q1,B1, q2][q2,B2, p]) ∈ P,

and therewith we obtain the following leftmost derivation in G:

[q,A, p] →lm a[q1,B1, q2][q2,B2, p]
→k1

lm ay1[q2,B2, p]
→k2

lm ay1y2 = ay = x ,

that is, we have [q,A, p] →i
lm x .
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

Now we prove the converse implication, again by induction on i .

For i = 1, [q,A, p] → x implies that x ∈ Σ ∪ {ε} and (p, ε) ∈ δ(q, x ,A),
that is, (q,A, x) �M (p, ε, ε).
Now assume that the implication has been proved for i − 1, and
assume that

[q,A, p] → a[q1,B1, q2][q2,B2, p] →i−1
lm x ∈ Σ∗.

Then x = ax1x2, where [q1,B1, q2] →k1
lm x1, [q2,B2, p] →k2

lm x2,
and k1 + k2 = i − 1.
From the I.H. we obtain (q1,B1, x1) �k1

M (q2, ε, ε) and
(q2,B2, x2) �k2

M (p, ε, ε).

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 183 / 294



3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

Hence, we have
(q1,B2B1, x1) �k1

M (q2,B2, ε).

As (q1,B2B1) ∈ δ(q, a,A), this yields the following computation:

(q,A, x) = (q,A, ax1x2) �M (q1,B2B1, x1x2)

�k1
M (q2,B2, x2) �k2

M (p, ε, ε),

that is, we have (q,A, x) �i
M (p, ε, ε).
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

For all x ∈ Σ∗ we have the following equivalent statements:

x ∈ L(G) iff S →∗
lm x

iff S → [q0,#, q] →i
lm x for some q ∈ Q and i ≥ 1

iff (q0,#, x) �i
M (q, ε, ε).

It follows that L(G) = N(M).

Corollary 3.21

For each language L ⊆ Σ∗, the following statements are equivalent:

(1) L ∈ CFL(Σ), that is, L is generated by a context-free grammar.
(2) L is generated by a context-free grammar in CNF.
(3) L is generated by a context-free grammar in Greibach NF.
(4) There exists a PDA M such that L = N(M).
(5) There exists a PDA M such that L = L(M).
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3. Context-Free Languages and Pushdown Automata 3.5. Closure Properties

3.5. Closure Properties

Theorem 3.22

The class of context-free languages CFL is closed under the
operations of union, product, Kleene star, and morphism.

Proof.

(a) Let G1 = (N1,Σ,P1,S1), G2 = (N2,Σ,P2,S2), N1 ∩ N2 = ∅.
For G3 := (N1 ∪ N2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1|S2},S),
we have L(G3) = L(G1) ∪ L(G2).

(b) For G4 := (N1 ∪ N2 ∪ {S},Σ,P1 ∪ P2 ∪ {S → S1S2},S),
we have L(G4) = L(G1) · L(G2).

(c) W.l.o.g.: S1 does not occur on the right-hand side of P1.
For G5 := (N1 ∪ {S},Σ,P1 ∪ {S → ε|S1|SS1}� {S1 → ε},S),
we have L(G5) = (L(G1))

∗.
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3. Context-Free Languages and Pushdown Automata 3.5. Closure Properties

Proof of Theorem 3.22 (cont.)

(d) Let h : Σ∗ → Γ∗ be a morphism.
For G6 := (N1, Γ, {A → h(r) | (A → r) ∈ P1 },S1), where h is
extended to a morphism h : (N1 ∪ Σ)∗ → (N1 ∪ Γ)∗ by taking
h(A) = A for all A ∈ N1, we have L(G6) = h(L(G1)).

Theorem 3.23

The class CFL is not closed under intersection nor under complement.

Proof.

L1 := { aibjcj | i , j > 0 } ∈ CFL and L2 := { aibicj | i , j > 0 } ∈ CFL,
but L1 ∩ L2 = {aibici | i > 0 } �∈ CFL, that is,
CFL is not closed under intersection.
L1 ∩ L2 = (L1 ∪ L2), that is,
CFL is not closed under complement, either.
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3. Context-Free Languages and Pushdown Automata 3.5. Closure Properties

Theorem 3.24

The class CFL is closed under intersection with regular languages,
that is, if L ∈ CFL and R ∈ REG, then L ∩ R ∈ CFL.

Proof.

Let M = (Q,Σ, Γ, δ, q0,Z0,F ) be a PDA, and
let A = (P,Σ, η, p0,G) be a DFA.
We define a PDA M � := (Q × P,Σ, Γ, δ�, (q0, p0),Z0,F × G) by taking

δ�((q, p), a,A) = { ((q�, p�),α) | (q�,α) ∈ δ(q, a,A), p� = η(p, a) },
δ�((q, p), ε,A) = { ((q�, p),α) | (q�,α) ∈ δ(q, ε,A) },

where q, q� ∈ Q, p, p� ∈ P, a ∈ Σ, A ∈ Γ, and α ∈ Γ∗.
Then it is easily seen that L(M �) = L(M) ∩ L(A).
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3. Context-Free Languages and Pushdown Automata 3.5. Closure Properties

Theorem 3.25

Let L ⊆ Σ∗ be a context-free language, and let w ∈ Σ∗. Then the
left quotient w \ L := {u ∈ Σ∗ | wu ∈ L } is a context-free language.

Proof.

Let M = (Q,Σ, Γ, δ, q0,Z0,F ) be a PDA without ε-transitions,
and let w ∈ Σ∗. Actually, we only consider the special case that
w = b ∈ Σ.
We define a PDA M � := (Q ∪ {p0},Σ, Γ, δ�, p0,Z0,F ) by taking

δ�(p0, ε,Z0) = δ(q0, b,Z0) and
δ�(q, a,A) = δ(q, a,A) for all q ∈ Q, a ∈ Σ, and A ∈ Γ.

Then N(M �) = b \ N(M).
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Remark:

We saw in Section 3 that the language

L := { aibjckd � | i , j , k , � ≥ 0, and i > 0 implies j = k = � }
satisfies the Pumping Lemma for context-free languages.

Claim:

L is not context-free.

Proof.

Assume that L is context-free. Then also the language

L� := L ∩ a · b∗ · c∗ · d∗ = {abncndn | n ≥ 0 }
is context-free, and so is the language a \ L� = {bncndn | n ≥ 0 },
which, however, is not context-free by the Pumping Lemma,
a contradiction!
Thus, it follows that L is not context-free.
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Theorem 3.26

The class CFL is closed under inverse morphisms, that is,
if L ∈ CFL(Δ), and if h : Σ∗ → Δ∗ is a morphism, then
h−1(L) = {w ∈ Σ∗ | h(w) ∈ L } ∈ CFL(Σ).

Proof.

Let h : Σ∗ → Δ∗ be a morphism, and
let M = (Q,Δ, Γ, δ, q0,Z0,F ) be a PDA s.t. L(M) = L.
We construct a PDA M � = (Q�,Σ, Γ, δ�, q�

0,Z0,F �) for
L� := h−1(L) = {w ∈ Σ∗ | h(w) ∈ L } :
– Q� := { [q, x ] | q ∈ Q, and x is a suffix of h(a), a ∈ Σ },
– q�

0 := [q0, ε],
– F � := { [q, ε] | q ∈ F }, and
– δ� is defined by:
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3. Context-Free Languages and Pushdown Automata 3.5. Closure Properties

Proof of Theorem 3.26 (cont.)
(1) δ�([q, ax ], ε,A) = { ([p, x ], γ) | (p, γ) ∈ δ(q, a,A) }

∪ { ([p, ax ], γ) | (p, γ) ∈ δ(q, ε,A) },
(2) δ�([q, ε], a,A) = {([q, h(a)],A)} for all a ∈ Σ.

The second component of the states of M � is used as a “buffer” for
storing the word h(a) for a letter a ∈ Σ read. This word is then
processed through a simulation of a computation of M.
It follows that h−1(L) ⊆ L(M �).

Concersely, let w = a1a2 · · · an ∈ L(M �).
A transition reading a letter a ∈ Σ can only be applied if and when the
buffer is empty, that is, each accepting computation of M � on input w
can be written as follows:
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Proof of Theorem 3.26 (cont.)
([q0, ε],Z0, a1a2 · · · an)

�∗
M� ([p1, ε],α1, a1a2 · · · an) (simulating ε-transitions of M)

�M� ([p1, h(a1)],α1, a2 · · · an) (h(a1) is “read”)
�∗

M� ([p2, ε],α2, a2 . . . an) (for (p1,α1, h(a1)) �∗
M (p2,α2, ε))

...
�M� ([pn, h(an)],αn, ε) (h(an) is “read”)
�∗

M� ([pn+1, ε],αn+1, ε) (for (pn,αn, h(an)) �∗
M (pn+1,αn+1, ε)).

It follows that

(q0,Z0, h(a1a2 · · · an)) = (q0,Z0, h(a1)h(a2) · · · h(an)) �∗
M (pn+1,αn+1, ε).

As M � accepts, pn+1 ∈ F , which implies that M accepts, too.
Thus, L(M �) = h−1(L), which yields h−1(L) ∈ CFL(Σ).
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In analogy to Corollary 2.29 we have the following closure property.

Corollary 3.27

The class CFL is closed under finite transductions, that is, if
T ⊆ Σ∗ ×Δ∗ is a finite transduction, and if L ∈ CFL(Σ), then
T (L) ∈ CFL(Δ).
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