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Theorem 3.20

The language N(M) is context-free for each PDA M.

Let M = (Q, X, T,9,qo, #, F) be a PDA, and let L = N(M).
W.l.0.g. we can assume the following:
Forall (¢',B1B>--- Bx) € §(q,a,A), we have k < 2.
Otherwise, we replace (q', BiB> - -- Bx) € §(q,a,A) (k > 2)
by the following transitions:

(91, B1B2) € 4(q,a A),

{(g2,B2B3)} = 4(q1,¢,Ba),

{(q@",Bk-1Bk)} = 0(Qk—2,¢, Bk—1),
where g4, go, ..., gx_1 are new states.
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Proof of Theorem 3.20 (cont.)

ldea: A grammar G that simulates the computations of M through
leftmost derivations.

Let G:= (N, %, P,S), where
N — {Slu[QxTxq]
P {S—(q:#,9) | g Q}
{[9,A,q] = a|(q,¢)ci(q,aA)}
{ q? Av q/ — a[Q1,B, q/] | (q‘laB) = 5(Q7 a, A)? q/ < Q}
{ Q7 Av q/ — a[Q‘I? Ca q2][q27 87 q/] |
(C]-],BC) < 5(q7 a, A)? q/7q2 S Q}

C C C

Vp,q € QVAETVx € X7 :[q,A p] —p, x iff (g, A Xx) Fpy (P, €, €).
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Proof of Theorem 3.20 (cont.)

Proof of Claim.

First we prove by induction on j that
(g, A, x) Fh, (p, e, €) implies that [g, A, p] —!  x.

Fori=1,
if (q,A,x)Fp(p,e,e), then (p,e) € 6(q,x,A)and x € ¥ U {e}.
Hence, G contains the production [q, A, p] — X, and so, [q, A, p| —1m X-

Now assume that the above implication has been established for / — 1,
let x = ay, and let

(q7 A7 ay) |_/\/I (q1aBZB17y) |_I/\;.I (,0,5,8),
that is, (g1, B2B1) € 6(q, a, A).
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Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

As M can only read and replace the topmost symbol on the pushdown,
it follows that y = y1y», and that the above computation can be

factored as follows:

(1, B, y1) Fi (qos €,€) and (Go, Bo, y2) F12 (P, €, €),

where g> € Q,and ky + ko =i — 1.
From the |.H. we obtain the leftmost derivations

(91, By, q2] —>1m y1 and [go, Bz, p] —>1m Yo.
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Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)
Because of the transition in step 1, we have
([q7 Aap] — a[q'| ) B1 ) q2][CI27 827:0]) S Pv

and therewith we obtain the following leftmost derivation in G:

g, A, p] ﬂ;ﬂ alqs, B, g2][qz, B2, pj
—m arilqe, Bz, p]

k:
e @Y1y =ay =X,

that is, we have [g, A, p] -/ x.
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

Now we prove the converse implication, again by induction on J.
Fori=1,[q,A p|] — ximpliesthat x € X U{e} and (p, ) € i(q, X, A),
thatis, (9, A, x) Fu (p, e, €).

Now assume that the implication has been proved for i — 1, and
assume that

[9,A,p] — alay, By, ][z, Bo, p] =1, X € T+,

Then x = ax; x», where [qg4, By, Q2] —>ﬁ}l X1, [qo, Bo, P] %ﬁi Xo,
and k1 + ko =1 —1.

From the |.H. we obtain (g4, By, X1) H& (g0, e,¢e) and

(G2, B2, X2) F2 (P, &, €).
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

Proof of Claim (cont.)

Hence, we have
(Q175251,X1)|‘ (92, B2, ¢).

As (g1, B>By) € 4(q, a, A), this yields the following computation:

(9,A, x) = (qu axiXz) -y (Q175251 X1X2)
(q27827x2) l_ (,0,8 5)

that is, we have (g, A, x) ), (p, €, €). ]
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.20 (cont.)

For all x € * we have the following equivalent statements:

xelL(G) iff S— X |
iff S — [qo, #, q] =, X forsome g € Qand j > 1
Iff (C]O,#,X) |_;\/I (Q7576)’

It follows that L(G) = N(M). ]

Corollary 3.21

For each language L C ¥.*, the following statements are equivalent:

(1) L e CFL(X), that is, L is generated by a context-free grammar.
(2) L is generated by a context-free grammar in CNF.

(3) L is generated by a context-free grammar in Greibach NF.

(4) There exists a PDA M such that L = N(M).

(5)

5) There exists a PDA M such that L = L(M).
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3.5. Closure Properties

Theorem 3.22

The class of context-free languages CFL is closed under the
operations of union, product, Kleene star, and morphism.

(a) Let Gy = (N-|,Z, P1,S1), Go = (Ng, >, Po, 82), Ny N No = ().
For Gs := (N1 J N> U {S}, > . PUPU {S — S; |82}, S),
we have L(G3) = L(Gq1) U L(G2).

(b) For G4 := (N1 J N> U {S}, >, PLUPoU {S — S; 82}, S),
we have L(G4) — L(G1) c L(Gg)

(c) W.l.o.g.: S does not occur on the right-hand side of P;.
For Gs := (N; U {S}, %, Py U{S — ¢|S{|SSi} ~ {Sy — ¢}, S).
we have L(Gs) = (L(Gy))*.
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Proof of Theorem 3.22 (cont.)

(d) Let h: X* — I'* be a morphism.
For G .= (Ny,T,{A— h(r) | (A—r) € Py}, S1), where his
extended to a morphism h: (N; UX)* — (Ny UT)* by taking
h(A) = Afor all A € N;, we have L(Gg) = h(L(Gq)). ]

Theorem 3.23
The class CFL is not closed under intersection nor under complement.

Proof.

Li:={abd|ij>0}eCFLand Ly, :={ab'c|ij>0}eCFL,

but Ly N Ly ={ab'c'|i>0}¢CFL, thatis,

CFL is not closed under intersection.

L1 N Ly =(LyUL), thatis,

CFL is not closed under complement, either. ]
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Theorem 3.24

The class CFL is closed under intersection with regular languages,
that is, if L € CFL and R € REG, then LN R € CFL.

Let M = (Q, %, T,9,qo, £y, F) be a PDA, and
let A= (P, %X, n, py, G) be a DFA.

We define a PDAM' .= (Q x P,X,T,d",(qo, po), Zo, F x G) by taking

§'((g,p),a,A) = {((9d,p),a)|(q,a)€d(q,a A),p =n(p,a)},
0'((g,p),e,A) = {((d,p),a)|(q a)ciq,cA)},

where 9,9 €c Q,p,p €¢ P,ac X, Acl,anda € I*.
Then it is easily seen that L(M") = L(M) N L(A). ]
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Theorem 3.25

Let L C Y* be a context-free language, and let w € L*. Then the
left quotientw \ L .= {u e ¥X* | wu € L} is a context-free language.

Let M = (Q, %, T,46, qg, 2y, F) be a PDA without e-transitions,
and let w € X*. Actually, we only consider the special case that
w=>bc¢c2X.

We define a PDA M := (QU{po}, X, T, ¢, po, £y, F) by taking

5,(10075720) — 5(Q07 bv ZO) and
8(q,a,A) = 6(qg,a,Aforallge Q,aeX, andAcT.

Then N(M') = b\ N(M). u
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Remark:
We saw in Section 3 that the language
L:={abcd’|ij,k,¢>0, andi> 0impliesj=k=1¢}

satisfies the Pumping Lemma for context-free languages.

Claim:
L is not context-free.

Proof.

Assume that L is context-free. Then also the language
L' =Lna-b*-c*-d"={ab"c"d" |n>0}

is context-free, and so is the language a\ L' = {b"c"d" | n > 0},
which, however, is not context-free by the Pumping Lemma,
a contradiction!

Thus, it follows that L is not context-free. ]
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Theorem 3.26

The class CFL is closed under inverse morphisms, that is,
if L e CFL(A), and if h: ¥* — A* is a morphism, then
h="(L)={we x*| h(w) €L} e CFL(X).

Let h: X* — A* be a morphism, and

let M = (Q,A,T,9,q9, 2, F) be a PDA s.t. L(M) = L.

We construct a PDA M' = (Q', X, T,4', q;, Zo, F') for

' =h"(L)={wex*| h(w)eL}
— Q@ = {[g9,x]]qge Q,and x is a suffix of h(a),ae ¥},
— q6 L= [q078]5
- F' = {]g9,¢]| g€ F}, and

— ¢’ is defined by:
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Proof of Theorem 3.26 (cont.)

(1) d'([g,ax],e,A) = {(lp,x],7) | (p,v) €d(q,aA)}
U {([p,ax],v) | (b,v) € 4(q,¢,A) },
(2) d'([g,¢],a,A) = {(lg,h(a)],A)}forallac .

The second component of the states of M’ is used as a “buffer” for
storing the word h(a) for a letter a € ¥ read. This word is then
processed through a simulation of a computation of M.

It follows that h=1(L) C L(M").

Concersely, let w = a1a, - - - ap € L(M').

A transition reading a letter a € ¥ can only be applied if and when the
buffer is empty, that is, each accepting computation of M’ on input w
can be written as follows:
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Proof of Theorem 3.26 (cont.)

([90,¢], 40, @182 - - - an)
v (p1sel,ar,a1a2---ap)  (simulating e-transitions of M)

l_M’ (p1 9 h(a1 )]7 Qq,dp - an) (h(a1) Is “read”)

=y (L2, el, ap, a0 ... an) (for (p1, a1, h(aq)) Fpy (P2, a2, €))
v ([pn, h(an)], an, €) (h(ap) is “read”)
|_*M’ ([pn+1 . 8]7 ni1, 5) (for (pfh On, h(an)) |_>/I\</] (pn+1 y Ont1, 8))

It follows that

(q07 207 h(a1 dp - - an)) — (q07 207 h(a1 )h(aZ) Co h(an)) |_7;/7 (pn—|—1 » Xntq, 8)’
As M'" accepts, p,.1 € F, which implies that M accepts, too.
Thus, L(M") = h=1(L), which yields h~'(L) € CFL(X). ]
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In analogy to Corollary 2.29 we have the following closure property.

Corollary 3.27

The class CFL is closed under finite transductions, that is, if
T C X* x A* is a finite transduction, and if L € CFL(X), then
T'(L) € CFL(A).
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