Automata and Grammars

SS 2018

Assignment 8: Solutions to Selected Problems

Problem 8.1. [Context-Free Grammars]

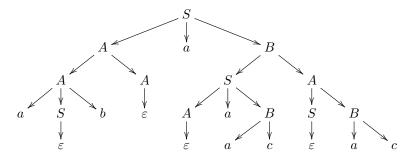
Let $G = (\{S, A, B, C\}, \{a, b, c\}, P, S)$ be the context-free grammar with the following set of productions:

 $P = \{S \rightarrow aSb, S \rightarrow aAbb, S \rightarrow \varepsilon, A \rightarrow aAB, A \rightarrow bB, B \rightarrow aAb, B \rightarrow CC, C \rightarrow ba, C \rightarrow cS\}.$

- (b) Give a right derivation for the word w = aabbababacbb.
- (c) Give syntax trees for your derivations in (a) and in (b).

Problem 8.2. [Context-Free Grammars]

The following figure shows a syntax tree for some context-free grammar G and a word w:



- (a) Determine the word w generated by this syntax tree.
- (b) Give a leftmost derivation for this word.
- (c) Give a list of all productions that are used in this syntax tree.
- (d) What can be said about the ambiguity of the underlying grammar?

Solution. (a) w = abaaacac.

(b) The corresponding leftmost derivation is as follows:

S	\rightarrow	AaB	\rightarrow	AAaB	\rightarrow	aSbAaB
	\rightarrow	abAaB	\rightarrow	abaB	\rightarrow	abaSA
	\rightarrow	abaAaBA	\rightarrow	abaaBA	\rightarrow	abaaacA
	\rightarrow	a baa a c S B	\rightarrow	abaaacB	\rightarrow	abaaacac.

(c) The following productions are used in the syntax tree:

$$P = \{ S \to AaB, S \to \varepsilon, A \to AA, A \to aSb, A \to SB, A \to \varepsilon, B \to SA, B \to ac \}.$$

(d) The grammar G is ambiguous. Consider the leftmost derivations

and

In the third step these leftmost derivations differ, but they both yields the word *abababaac*. This shows that the grammar G is ambiguous. \Box

Problem 8.3. [Context-Free Grammars]

Provide context-free grammars for the following languages:

- (a) $L_1 = \{ w c w^R \mid w \in \{a, b\}^* \},\$
- (b) $L_2 = \{ a^k b^m c^n \mid k = m \text{ or } m = n \},$
- (c) $L_3 = \{uv \mid u, v \in \{a, b\}^+, |u| = |v|, \text{ but } u \neq v\}.$

Solution. (a) Let $G_1 = (\{S\}, \{a, b, c\}, P, S)$, where P is defined as follows:

 $P = \{ S \to aSa, S \to bSb, S \to c \}.$

Then it is easily seen that $L(G_1) = L_1$.

(b) Let $G_2 = (\{S, A, B, C, D\}, \{a, b, c\}, P, S)$, where P is defined as follows:

$$P = \{S \to AB, S \to CD, A \to aAb, A \to \varepsilon, B \to cB, B \to \varepsilon, C \to aC, C \to \varepsilon, D \to bDc, D \to \varepsilon\}$$

Then it is easily seen that $L(G_2) = L_2$.

(c) Let $G_3 = (\{S, A, B, C, D, E\}, \{a, b\}, P, S)$, where P is defined as follows:

$$\begin{array}{lll} P &=& \{S \rightarrow AB, S \rightarrow CD, \\ && A \rightarrow EAE, A \rightarrow a, B \rightarrow EBE, B \rightarrow b, C \rightarrow ECE, C \rightarrow b, D \rightarrow EDE, D \rightarrow a, \\ && E \rightarrow a, E \rightarrow b\}. \end{array}$$

Then $S \to AB \to^* x_1ax_2y_1by_2$, where $|x_1| = |x_2|$ and $|y_1| = |y_2|$. Hence, $|x_1| + |y_2| = |x_2| + |y_1|$, which means that the distinguished occurrences of a and b are at the same position in the first half u and in the second half v of the word $uv = x_1ax_2y_1by_2$. Hence, it follows that $u \neq v$. The case that the derivation starts with $S \to CD$ is analogous.

On the other hand, if $w = uv \in L_3$, then $u = x_1ay_1$ and $v = x_2by_2$ or $u = x_1by_1$ and $v = x_2ay_2$ for some words satisfying $|x_1| = |x_2|$ and $|y_1| = |y_2|$. Let us write $y_1x_2 = x_3y_3$, where $|x_3| = |x_2| = |x_1|$ and $|y_3| = |y_1| = |y_2|$. Then $S \to AB \to^* x_1ax_3y_3by_2 = x_1ay_1x_2by_2 = uv = w$, that is, $w \in L(G_3)$. The case that $u = x_1by_1$ and $v = x_2ay_2$ is completely analogous. Hence, it follows that $L(G_3) = L_3$. Problem 8.4. [Simplifying Context-Free Grammars]

Let G be the following context-free grammar:

$$G = (\{S, A, B, C\}, \{a, c\}, \{S \to aACa, A \to B, A \to a, B \to C, B \to c, C \to cC, C \to \varepsilon\}, S).$$

- (a) Determine a proper context-free grammar that is equivalent to G.
- (b) Remove the ε -productions from G.
- (c) Remove the chain productions from G. Is the resulting grammar G' proper? If not, then determine a proper context-free grammar that is equivalent to G' and that has neither ε -productions nor chain productions.

Solution. (a) $V_{\text{term}} = \{ X \in V \mid \exists w \in \{a, c\}^* : X \to_P^* w \} = \{S, A, B, C\}$ and $V_{\text{reach}} = \{ X \in V \mid \exists \alpha, \beta \in (V_{\text{term}} \cup T)^* : S \to_P^* \alpha X \beta \} = \{S, A, B, C\}$. Thus, all nonterminals of G are useful, that is, G is already a proper context-free grammar.

(b) $V_1 = \{ X \in V \mid X \to_P^* \varepsilon \} = \{A, B, C\}$. Now we remove the ε -production $C \to \varepsilon$ and add the following new productions $S \to aAa, S \to aCa, S \to aa$ and $C \to c$. In this way we obtain the context-free grammar $G_1 = (\{S, A, B, C\}, \{a, c\}, P_1, S)$, where P_1 is defined as follows:

$$P_1 = \{S \to aACa, S \to aAa, S \to aCa, S \to aa, A \to B, A \to a, B \to C, B \to c, C \to cC, C \to c\}.$$

(c) We have $A \to_{P_1} B$ and $B \to_{P_1} C$, which are the only chain productions. Thus, we see that no nonterminal is equivalent to any other nonterminal. Now by ordering the nonterminals as S < A < B < C, we obtain that X < Y holds for each chain production $(X \to Y)$. In order to get rid off of the chain productions, we now proceed as follows:

- Remove the chain production $(B \to C)$ and add the production $(B \to cC)$.
- Remove the chain production $(A \to B)$ and add the productions $(A \to c)$ and $(A \to cC)$.

The resulting grammar is $G_2 = (\{S, A, B, C\}, \{a, c\}, P_2, S)$, where P_2 is defined as follows:

$$P_2 = \{S \to aACa, S \to aAa, S \to aCa, S \to aa, A \to c, A \to cC, A \to a, B \to cC, B \to c, C \to cC, C \to c\}.$$

 $V_{\text{term}} = \{ X \in V \mid \exists w \in \{a, c\}^* : X \to_P^* w \} = \{S, A, B, C\}$

and $V_{\text{reach}} = \{X \in V \mid \exists \alpha, \beta \in (V_{\text{term}} \cup T)^* : S \rightarrow_P^* \alpha X\beta\} = \{S, A, C\}$. Thus, the nonterminal *B* is not useful. By removing this nonterminal and all productions containing *B* we obtain the desired proper context-free grammar $G_3 = (\{S, A, C\}, \{a, c\}, P_3, S)$, where P_3 is defined as follows:

$$P_3 = \{S \to aACa, S \to aAa, S \to aCa, S \to aa, A \to c, A \to cC, A \to a, C \to cC, C \to c\}.$$

Problem 8.5. [Chomsky Normal Form]

Convert the following context-free grammar $G = (\{S, A\}, \{a, b, c\}, P, S)$ into an equivalent grammar that is in Chomsky Normal Form using the construction detailed in the proof of Theorem 3.9, where P_1 is defined as follows:

$$P = \{S \to cS, S \to aAb, S \to ab, A \to aAb, A \to ab, A \to cc\}.$$