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3.3. A Pumping Lemma for Context-Free Languages

Theorem 3.14 (Pumping Lemma: Bar-Hillel, Perles, Shamir 1961)

Let L be a context-free language on Σ. Then there exists a constant k
that depends on L such that each word z ∈ L, |z| ≥ k, has a
factorization of the form z = uvwxy that satisfies all of the following
conditions:

(1) |vx | ≥ 1,
(2) |vwx | ≤ k,
(3) uviwxiy ∈ L for all i ≥ 0.
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Proof of Theorem 3.14.

Let G = (N,Σ,P,S) be a context-free grammar in CNF
for L − {ε}, and let n = |N|.
We choose k := 2n.
Now let z ∈ L such that |z| ≥ k .

We consider a syntax tree for z:
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z

← binary tree

← terminal productions
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Proof of Theorem 3.14 (cont.)

B has |z| ≥ k = 2n leaves. Thus, B contains a path of length � ≥ n.
We consider a path Pa of maximal length �:
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Proof of Theorem 3.14 (cont.)

Pa contains �+ 1 ≥ n + 1 nodes labelled with nonterminals, that is, at
least one nonterminal occurs twice at the nodes of Pa.
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A
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We choose the first such repetition in Pa starting from the leaf.
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Proof of Theorem 3.14 (cont.)

S →∗ uAy
A → BC →∗ vAx
A →∗ w
Chomsky Normal Form : |vx | ≥ 1
Height of upper node with label A ≤ n : |vwx | ≤ 2n = k

Pumping:
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Lemma 3.15

Let B be a binary tree, each inner node of which has two sons. If B has
at least 2n leaves, then B contains a path of length at least n.

Proof by induction on n:

n = 0 : Number of leaves is ≥ 20 = 1.
B contains a path of length ≥ 0.

n ❀ n + 1 : B has ≥ 2n+1 leaves: ❣
✡✡✡ ❏❏
❏ ☞

☞
☞
☞ ▲

▲
▲
▲

✑✑ ◗◗ B�

B

≥ 2n leaves

I.H.: B� contains a path of length ≥ n.
Hence: B contains a path of length ≥ n + 1.
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Example:

Claim: L = { ambmcm | m ≥ 1 } is not context-free.

Proof (indirect).

Assume that L is context-free. Then L satisfies the Pumping Lemma,
that is, ∃k ∈ N+ ∀z ∈ L : |z| ≥ k ❀ ∃z = uvwxy :
|vx | ≥ 1, |vwx | ≤ k , and uviwxiy ∈ L for all i ≥ 0.
Consider the word z := akbkck : z ∈ L and |z| = 3k ≥ k .
Hence:
∃z = uvwxy s.t. vx �= ε, |vwx | ≤ k , and uviwxiy ∈ L for all i ≥ 0.
|vwx | ≤ k : |vx |a = 0 or |vx |c = 0
❀ uv0wx0y = uwy �∈ L. Contradiction!
Thus, L is not context-free.
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Example:

The language L := {anbmcndm | n,m ≥ 1 } is not context-free,
as for z = akbkckdk , no factor vwx satisfying |vwx | ≤ k can possibly
contain a’s and c’s or b’s and d ’s.

Example:

Let L := { aibjckd � | i , j , k , � ≥ 0, and i > 0 implies j = k = � },
and let n > 0 be a constant.
If z = bjckd �, |z| ≥ n, then we choose vwx as a factor of bj , ck or d �.
For all m ≥ 0, uvmwxmy ∈ L.
If z = aibjcjd j , |z| ≥ n and i > 0, then we choose vwx as a factor ai ,
and it follows that uvmwxmy ∈ L for all m ≥ 0.
Thus, L satisfies the Pumping Lemma, but we will see later
that L is not context-free.
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Theorem 3.16

Each context-free language over a one-letter alphabet is regular.

Proof.

Let L be a context-free language over {a}, and let k be the constant
from the Pumping Lemma for L:
∀z ∈ L : |z| ≥ k ❀ ∃z = uvwxy : vx �= ε, |vwx | ≤ k , and

uviwxiy ∈ L f.a. i ≥ 0.
However: L ⊆ {a}∗ : |z| = m ❀ z = am.
∀m ≥ k : ∃n, � ≥ 0 : m = n + �, 1 ≤ � ≤ k , and anai·� ∈ L f.a. i ≥ 0.
Choose q := k ! : Each �i divides q.
Choose q� ≥ q such that the following condition is met:
∀m ≥ q : am ∈ L ❀ ∃q ≤ p ≤ q� : m ≡ p mod q and ap ∈ L.
Then L := { x ∈ L | |x | < q } ∪ { ar aiq | q ≤ r ≤ q�, ar ∈ L, i ∈ N },
which shows that L is regular.
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3.4. Pushdown Automata

A pushdown automaton (PDA) is an ε-NFA that has an additional
external memory in the form of a pushdown.

A PDA M is defined through a 7-tuple M = (Q,Σ, Γ, δ, q0,Z0,F ), where
– Q is a finite set of (internal) states,
– Σ is a finite input alphabet,
– Γ is a finite pushdown alphabet,
– q0 ∈ Q is the initial state,
– Z0 ∈ Γ is the bottom marker of the pushdown,
– F ⊆ Q is the set of accepting states, and
– δ : Q × (Σ ∪ {ε})× Γ → 2Q×Γ∗ is the transition relation.

For each q ∈ Q, a ∈ Σ ∪ {ε}, and b ∈ Γ,
δ(q, a, b) is a finite subset of Q × Γ∗.
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A PDA can be picturered as follows:
Input tape,
contains a

word from Σ∗

Read/write head Read head

Finite-state

control state q ∈ Q

Pushdown, contains a word from Γ∗

b1

b2

...

Z0

a1 a2 a3 a4 · · · an
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

A configuration of M is a triple (q, γ,w) ∈ Q × Γ∗ × Σ∗, where
q is the current state,
γ is the current content of the pushdown, and
w is the remaining input.
Here the last symbol of γ is the topmost symbol on the pushdown.

The PDA M induces a computation relation �∗
M on the set

CONF := Q × Γ∗ × Σ∗ of configurations, which is the reflexive and
transitive closure of the following single-step relation �M :

(q, γZ , aw) �M (p, γβ,w), if (p,β) ∈ δ(q, a,Z ) , and
(q, γZ ,w) �M (p, γβ,w), if (p,β) ∈ δ(q, ε,Z ).
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Example:

Let M = (Q,Σ, Γ, δ, q0,Z0,F ), where Q = {q0, q1, q2, q3}, F = {q3},
Σ = {a, b}, Γ = {A,B,Z0}, and let δ be given by the following table:

δ(q0, a,Z0) = {(q1,Z0A)},
δ(q0, b,Z0) = {(q1,Z0B)},
δ(q0, ε,Z0) = {(q3, ε)},
δ(q1, a,Z ) = {(q1,ZA)},
δ(q1, b,Z ) = {(q1,ZB)},
δ(q1, ε,Z ) = {(q2,Z )},
δ(q2, a,A) = {(q2, ε)},
δ(q2, b,B) = {(q2, ε)},
δ(q2, ε,Z0) = {(q3, ε)}.

On input abba, the PDA M can execute the following computation:

(q0,Z0, abba) � (q1,Z0A, bba) � (q1,Z0AB, ba) � (q2,Z0AB, ba)
� (q2,Z0A, a) � (q2,Z0, ε) � (q3, ε, ε).
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Depending on its mode of operation, a PDA M accepts one of two
possible languages:

L(M) denotes the language

L(M) := {w ∈ Σ∗ | (q0,Z0,w) �∗
M (p, γ, ε) for some p ∈ F and γ ∈ Γ∗ },

that is, L(M) is the language that M accepts with final states,

and N(M) denotes the language

N(M) := {w ∈ Σ∗ | (q0,Z0,w) �∗
M (p, ε, ε) for some p ∈ Q },

that is, N(M) is the language that M accepts with empty pushdown.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 169 / 294



3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Example (cont.):

L(M) = N(M) = { uuR | u ∈ {a, b}∗ }.

Theorem 3.17

For each PDA M1, there exists a PDA M2 such that L(M1) = N(M2).

Proof.

Let M1 = (Q,Σ, Γ, δ, q0,Z0,F ), and let L = L(M1), that is,

L = {w ∈ Σ∗ | (q0,Z0,w) �∗
M1

(p, γ, ε) for some p ∈ F and γ ∈ Γ∗ }.

The PDA M2 will simulate the PDA M1 step by step.
Essentially M2 must solve the following two problems:
- M2 must be able to recognize when M1 empties its pushdown without
being in a final state, as in this situation, M2 must not accept.
- M2 must empty its pushdown when M1 accepts.
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Proof of Theorem 3.17 (cont.)

Let M2 = (Q ∪ {q�, q�
0},Σ, Γ ∪ {X0}, δ�, q�

0,X0, ∅) be defined as follows:

(1) δ�(q�
0, ε,X0) = {(q0,X0Z0)},

(2) δ�(q, a,Z ) ⊇ δ(q, a,Z ) for all q ∈ Q, a ∈ Σ ∪ {ε}, and Z ∈ Γ,
(3) δ�(q, ε,Z ) � (q�,Z ) for all q ∈ F and Z ∈ Γ ∪ {X0},
(4) δ�(q�, ε,Z ) = {(q�, ε)} for all Z ∈ Γ ∪ {X0}.

By (1) M2 enters the initial configuration of M1, with the symbol X0
below the bottom marker of M1.
By (2) M2 simulates the computation of M1 step by step.
If and when M1 reaches a final state, then M2 empties its pushdown
using (3) and (4). It follows that L(M1) ⊆ N(M2).
If M1 empties its pushdown without being in a final state, then M2 gets
stuck in the corresponding configuration (q,X0, aw).
It can now be shown that N(M2) = L(M1).
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Theorem 3.18

For each PDA M2, there exists a PDA M1 such that L(M1) = N(M2).

Theorem 3.19

From a given context-free grammar G, one can effectively construct a
PDA M such that N(M) = L(G).

Proof.

Let G = (N,Σ,S,P) be a context-free grammar. By Theorem 3.10 we
can assume that G is in Greibach Normal form. To simplify the
discussion we assume that ε �∈ L(G).

We define a PDA M = ({q},Σ,N, δ, q,S, ∅) by taking
δ(q, a,A) := { (q, γR) | (A → aγ) ∈ P } for all a ∈ Σ and A ∈ N.
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Proof of Theorem 3.19 (cont.)

Claim:

∀x ∈ Σ∗ ∀α ∈ N∗ : S →∗
lm xα iff (q,S, x) �∗

M (q,αR, ε).

Proof.

By induction on i , we will prove the following:
(∗) If (q,S, x) �i

M (q,αR, ε), then S →i
lm xα.

If i = 0, then α = S and x = ε.
Assume that (∗) has already been shown for some integer i − 1, and
assume that (q,S, x) �i−1

M (q,βR, x �) �M (q,αR, ε).

As M has no ε-transitions, x = ya and x � = a for some y ∈ Σi−1 and
a ∈ Σ, that is, the computation above has the form

(q,S, ya) �i−1
M (q,βR, a) �M (q,αR, ε).
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Proof of Theorem 3.19 (cont.)

Proof of Claim (cont.)

Thus, on input y , M can execute the following computation:

(q,S, y) �i−1
M (q,βR, ε).

By our I.H. this gives a derivation S →i−1
lm yβ.

As (q,βR, a) �M (q,αR, ε), βR = γRA for some A ∈ N and
αR = γRηR for a production (A → aη) ∈ P.
Hence, we obtain the following derivation in G:

S →i−1
lm yβ = yAγ →lm yaηγ = xα.

This proves the implication from right to left.
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3. Context-Free Languages and Pushdown Automata 3.4. Pushdown Automata

Proof of Theorem 3.19 (cont.)

Proof of Claim (cont.)

Now we establish the converse implication:
(∗∗) If S →i

lm xα, then (q,S, x) �i
M (q,αR, ε),

again proceeding by induction on i .
If i = 0, then x = ε and α = S.
As (q,S, ε) �0

M (q,S, ε), the claim holds in this situation.
Assume that the implication has already been proved for some integer
i − 1, and let S →i−1

lm yAγ →lm yaηγ be a derivation in G, where
(A → aη) ∈ P.
Then x = ya and α = ηγ. By our I.H. (q,S, y) �i−1

M (q, γRA, ε), which
yields (q,S, x) = (q,S, ya) �i−1

M (q, γRA, a).
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Proof of Theorem 3.19 (cont.)

Proof of Claim (cont.)

Because of the production (q, ηR) ∈ δ(q, a,A), we obtain the following
computation of M:

(q,S, x) = (q,S, ya) �i−1
M (q, γRA, a) �M (q, γRηR, ε) = (q,αR, ε).

For all x ∈ Σ+, we have the following sequence of equivalent
statements:

x ∈ L(G) iff S →i
lm x for some i ≥ 1

iff (q,S, x) �i
M (q, ε, ε) for some i ≥ 1

iff x ∈ N(M).

Thus, N(M) = L(G) follows.
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Example:

(S → aBC), (B → bC), (C → cDD), (D → a) ∈ P :

S → aBC → abCC → abcDDC →2 abcaaC → abcaacDD →2

abcaacaa.

Computation of M:
(q,S, abcaacaa) � (q,CB, bcaacaa) � (q,CC, caacaa)

� (q,CDD, aacaa) � (q,CD, acaa)
� (q,C, caa) � (q,DD, aa)
� (q,D, a) � (q, ε, ε).

Thus, each context-free language is accepted by a PDA that has only
a single state and that uses no ε-transitions.
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