Automata and Grammars

SS 2018

Assignment 7: Solutions to Selected Problems

Problem 7.1 [Pumping Lemma]

Prove that the following languages are not regular by applying the Pumping Lemma for regular languages (Theorem 2.34):

(a) $L_a = \{ a^m b^n \mid n > m \ge 1 \},\$

(b)
$$L_b = \{ a^m b^n \mid m \le n \le 2m \},$$

- (c) $L_c = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \},$ (d) $L_d = \{ a^{2^n} \mid n \ge 0 \}.$

Solution. (a) Assume that L_a is regular. Then it satisfies the Pumping Lemma, that is, there exists a constant $c \ge 1$ such that each word $x \in L_a$, $|x| \ge c$, admits a factorization x = uvw satisfying $|uv| \le c, v \ne \varepsilon$, and $uv^i w \in L_a$ for all $i \ge 0$.

Consider the word $x = a^{c}b^{c+1}$. Then $x \in L_a$ and |x| = 2c+1 > c. Hence, x has a factorization x = uvw that satisfies the three properties above. Now $a^{c}b^{c+1} = x = uvw$, where $|uv| \leq c$, implies that $u = a^r$ and $v = a^s$ for some r, s satisfying s > 0 and $r + s \leq c$. Hence, $w = a^{c-r-s}b^{c+1}$. Consider the word $uv^2w = a^ra^sa^sa^{c-r-s}b^{c+1} = a^{c+s}b^{c+1}$. As s > 0, we see that $uv^2w \notin L_a$, a contradiction! Thus, L_a does not satisfy the Pumping Lemma, which proves that L_a is NOT regular.

(d) Assume that L_d is regular, and let $c \ge 1$ be the corresponding constant from the Pumping Lemma. Consider the word $x = a^{2^c}$. Then $x \in L_d$ and $|x| = 2^c > c$. Hence, x has a factorization x = uvw that satisfies the three properties stated in the Pumping Lemma. Now $a^{2^c} = x = uvw$, where $|uv| \leq c$, implies that $u = a^r$ and $v = a^s$ for some r, s satisfying s > 0and $r+s \leq c$. Hence, $w = a^{2^c-r-s}$. Consider the word $uv^2w = a^r a^s a^s a^{2^c-r-s} = a^{2^c+s}$. As $0 < s \leq c$, we see that $2^c < 2^c + s < 2^c + 2^c = 2^{c+1}$, that is, $uv^2w \notin L_d$, a contradiction! Thus, L_d does not satisfy the Pumping Lemma, which proves that L_d is NOT regular.

Problem 7.2. [Pumping Lemma]

Let L be the following language over $\Sigma = \{a, b\}$:

 $L = \{ ab(ba)^m ba^n ba^n \mid m, n \ge 1 \} \cup \{ abba^m ba^n \mid m, n \ge 1 \}.$

- (a) Prove that L satisfies the Pumping Lemma for regular languages (Theorem 2.34) by determining a corresponding constant $c \geq 1$.
- (b) Prove that the language L is not regular by using the Theorem of Myhill-Nerode (Theorem 2.12).
- (c) Is the language $L_c = \{ (ab)^n a (ba)^n \mid n \ge 1 \}$ regular? Provide a proof for your answer!

Solution. (a) Choose c = 7, and let $x \in L$ such that $|x| \ge 7$. If $x = ab(ba)^m ba^n ba^n$ for some $m, n \geq 1$, we choose u = ab, v = ba, and $w = (ba)^{m-1}ba^n ba^n$. Then |uv| = |abba| = 4 < c, $v \neq \varepsilon$, and $uv^i w = ab(ba)^i (ba)^{m-1} ba^n ba^n = ab(ba)^{m-1+i} ba^n ba^n$. If $m \ge 2$, then $m-1+i \ge 2$ $m-1 \geq 1$, and hence, $uv^i w \in L$. If m = 1, then m-1+i = i, and so $uv^i w \in L$ for all $i \geq 1$. Finally, for i = 0, we have $uv^i w = ab(ba)^0 ba^n ba^n = abba^n ba^n \in L$.

If $x = abba^m ba^n$ for some $m, n \ge 1$, then $m \ge 2$ or $n \ge 2$. In the former case we choose u = abb, v = a, and $w = a^{m-1}ba^n$. Then $|uv| = |abba| = 4 < c, v \ne \varepsilon$, and $uv^iw = abba^i a^{m-1}ba^n = abba^{m-1+i}ba^n \in L$, as $m-1+i \ge m-1 \ge 1$. If m = 1, then $n \ge 2$, and we choose u = abbab, v = a, and $w = a^{n-1}$. Then $|uv| = |abbaba| = 6 < c, v \ne \varepsilon$, and $uv^iw = abbaba^i a^{n-1} = abbaba^{n-1+i} \in L$, as $n-1+i \ge n-1 \ge 1$. Hence, we see that L satisfies the Pumping Lemma for regular languages with the constant c = 7.

Remark. The constant c = 6 is not sufficient, as the word x = abbaba of length 6 does not admit a corresponding factorization.

(b) For each $n \ge 2$, we consider the word $x_n = ab(ba)^2 ba^n b$. Then $x_n z \in L$ iff $z = a^n$. This means that $(x_n, x_k) \notin R_L$ for all $n, k \ge 2, n \ne k$. Thus, the Nerode relation R_L has infinite index, which shows that L is not regular.

(c) As $(ab)^n a(ba)^n = (ab)^{2n}a$, we see that $L_c = \{ (ab)^{2n}a \mid n \ge 1 \}$ is described by the regular expression $r = (abab)^+ a = (abba)(abba)^* a$. Thus, L_c is a regular language.

Problem 7.3. [Decision Problems]

Determine the cardinality of the language $L(A_i)$ for the following NFAs A_i $(1 \le i \le 4)$:

- (b) $A_2 = (Q, \{a, b\}, \delta_2, \{0\}, \{5, 10\})$, where δ_2 is defined as follows:

δ_2	→0	1	2	3	4	$5 \rightarrow$	6	7	8	9	$10 \rightarrow$
a	1	3	1	4	2	4	2	6	8	6	10
b	7	1	_	3	4	10	0	9	7	_	5

(c) $A_3 = (Q, \{a, b\}, \delta_3, \{0\}, \{0, 5, 7\})$, where δ_3 is defined as follows:

δ_3	$0 \stackrel{\leftarrow}{\rightarrow}$	1	2	3	4	$5 \rightarrow$	6	$7_{ m \rightarrow}$	8	9
a	1, 2	_	_	2	6	4	2,7	_	5,9	9
b	4	1,3	2	_	_	3	_	8,9	_	9

(d) $A_4 = (Q, \{a, b\}, \delta_4, \{0, 5\}, \{10\})$, where δ_4 is defined as follows:

δ_4	$\rightarrow 0$	1	2	3	4	$5 \leftarrow$	6	7	8	9	$10 \rightarrow$
a	1	2	3	4	3	_	-	-	3,9	_	-
b	_	—	—	9	—	6	7	8	—	1, 6, 10	-

Solution. (a) The final state 6 is reachable from the initial state 5. Hence, $L(A_1) \neq \emptyset$. In fact, $L(A_1) = \{abb, bb\}$, that is, it has cardinality 2.

(b) The states 5, 8, 10 are not accessible in A_2 . Hence, $L(A_2) = \emptyset$, as 5 and 10 are the only final states.

(c) As 0 is the initial and a final state, we see that $L(A_3) \neq \emptyset$. In fact, $L(A_3)$ contains all words of the form $baa(baaaa)^m$, $m \ge 0$, as

$$0 \rightarrow_b 4 \rightarrow_a 6 \rightarrow_a 7 \rightarrow_b 8 \rightarrow_a 5 \rightarrow_a 4$$

Thus, $L(A_3)$ is infinite.

(d) $L(A_4)$ contains all words of the form $a(aabb)^m aabb$ $(m \ge 0)$, and hence, it is infinite. \Box