
3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

We could consider rightmost derivations instead of leftmost
derivations. Theorem 3.1 also holds for rightmost derivations.
Thus, for each word w ∈ L(G,A), there are as many leftmost
derivations as there are rightmost derivations.

A context-free grammar G = (N,T ,S,P) is called proper, if it satisfies
the following conditions:
(1) ∀A ∈ N : L(G,A) = {w ∈ T ∗ | A →∗

P w } �= ∅, und
(2) ∀A ∈ N ∃u, v ∈ T ∗ : S →∗

P uAv .

Thus, in a proper context-free grammar, there are no useless
nonterminals.

Lemma 3.3

It is decidable whether a given context-free grammar G = (N,T ,S,P)
is proper.
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Proof of Lemma 3.3.

Inductively, we first determine the set of nonterminals
Vterm = {A ∈ N | L(G,A) �= ∅ }:

V1 := {A ∈ N | ∃x ∈ T ∗ : (A → x) ∈ P };
Vi+1 := Vi ∪ {A ∈ N | ∃α ∈ (Vi ∪ T )∗ : (A → α) ∈ P } (i ≥ 1).

Then Vterm =
�

i≥1 Vi = V|N|.

Next, we inductively determine the set of reachable nonterminals
Vreach = {A ∈ N | ∃α,β ∈ (Vterm ∪ T )∗ : S →∗

P αAβ }:

U1 := {A ∈ Vterm | ∃α,β ∈ (Vterm ∪ T )∗ : (S → αAβ) ∈ P };
Ui+1 := Ui ∪ {A ∈ Vterm | ∃B ∈ Ui ∃α,β ∈ (Vterm ∪ T )∗ :

(B → αAβ) ∈ P } (i ≥ 1).
Then Vreach =

�
i≥1 Ui = U|N|.

Now G is proper iff Vreach = Vterm = N.
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Lemma 3.4

From any given context-free grammar G = (N,T ,S,P), one can
construct a proper context-free grammar G� = (N �,T ,S,P �) such that
L(G�) = L(G).

Proof.

Just take N � = Vreach and

P � = { (A → α) ∈ P | A ∈ Vreach and α ∈ (Vreach ∪ T )∗ }.

Then G� is a proper context-free grammar and L(G�) = L(G).

A production (� → r) ∈ P is called terminal if r ∈ T ∗.
It is called an ε-production if r = ε.

If ε ∈ L(G), then G must contain at least one ε-production.
In fact, it can be required that (S → ε) is the only ε-production in G.
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Lemma 3.5

From a given context-free grammar G = (N,T ,S,P), one can
construct an equivalent context-free grammar G� = (N �,T ,S�,P �) such
that S� does not occur on the righthand side of any production in P �,
and G� contains no ε-production with the only possible exception of
(S� → ε). In fact, (S� → ε) ∈ P � iff ε ∈ L(G) = L(G�).

Proof.

First we consider the case that ε �∈ L(G).

Task: Elimination of all ε-productions.
(1.) Determine V1 := {A ∈ N | A →∗

G ε}:
V (1)

1 := {A ∈ N | (A → ε) ∈ P};
V (i+1)

1 := V (i)
1 ∪ {A ∈ N | ∃r ∈ V (i)∗

1 : (A → r) ∈ P}.
Then V1 =

�
i≥1 V (i)

1 = V (|N|)
1 .

(2.) Remove all ε-productions.
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Proof of Lemma 3.5 (cont.)

(3.) ∀B → xAy such that A ∈ V1 and xy �= ε:
Introduce the new production B → xy .

Then G� = (N,T ,S,P �) does not contain any ε-productions and
L(G�) = L(G).

If ε ∈ L(G), then first apply the construction above, which yields a
context-free grammar G� = (N,T ,S,P �) for L(G)� {ε} without
ε-productions.
Then introduce a new nonterminal S� and the productions (S� → ε)
and (S� → S), where S� is taken as the new start symbol.
The resulting grammar G�� = (N,T ,S�,P ��) generates L(G), (S� → ε) is
the only ε-production in P ��, and the start symbol S� does not occur on
the righthand side of any production.
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Let G = (N,T ,S,P) be a context-free grammar.
A production (A → B) ∈ P, where A,B ∈ N, is called a chain rule.

Example:

A grammar for arithmetic expressions with brackets:
G = (N,T ,E ,P), where N = {E ,T ,F}, T = {a,+,−, ∗, /, (, )}, and
P contains the following productions:
E → T | E + T | E − T ,
T → F | T ∗ F | T/F ,
F → a | (E).
This grammar contains the chain rules (E → T ) and (T → F ).

Lemma 3.6

From a given context-free grammar G = (N,T ,S,P), one can
construct an equivalent context-free grammar G� that does not contain
any chain rules.
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Proof of Lemma 3.6.

By Lemma 3.5, G does not contain any ε-productions.
We define an equiv. relation ∼ on N: A ∼ B iff A →∗

P B and B →∗
P A.

Let [A] = {B ∈ N | A ∼ B } denote the equivalence class of A.
For each A ∈ N, choose a unique representative A0 ∈ [A], replace all
occurrences of all nonterminals B ∈ [A] within P by A0, and delete all
productions of the form (A0 → A0).
Let V = {A1,A2, . . . ,An} be the remaining nonterminals. W.l.o.g. we
can assume for each remaining chain rule (Ai → Aj) that i < j .
For k = n − 1, n − 2, . . . , 2, 1:
If (Ak → Ak �) ∈ P (where k � > k) and if Ak � → x1 | x2 | . . . | xm are all
Ak �-productions, then replace (Ak → Ak �) by Ak → x1 | x2 | . . . | xm.
(By the I.H. |xi | ≥ 2 or xi ∈ T , i = 1, 2, . . . ,m).
The resulting grammar is equivalent to G and it does not contain any
chain-rules.
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Example (cont.):

E → T | E + T | E − T
T → F | T ∗ F | T/F
F → a | (E)

Remove the chain rules (T → F ) and (E → T ):

There are no equivalent nonterminals.
We order the set N through E < T < F :
(T → F ) is replaced by: T → a | (E) | T ∗ F | T/F ,
(E → T ) is replaced by: E → a | (E) | T ∗ F | T/F | E + T | E − T .

Thus, the new grammar has 12 productions, while the given one had
only 8.
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Definition 3.7

Let T be a (terminal) alphabet, and let T := { ā | a ∈ T } be a set of
‘copies’ of T such that T ∩ T = ∅.
The Dyck language D∗

T on T is generated by the grammar
G = ({S,A},T ∪ T ,S,P), where P contains the following productions:

P = {S → AS,S → ε,A → aSā | a ∈ T }.
The words from the language DT := L(G,A) are called Dyck primes.

Examples:

abaāb̄ā, aā, baāb̄ ∈ DT and abb̄ābaāb̄, ε ∈ D∗
T � DT .

As T = {a, b} contains just two letters,
DT and D∗

T are denoted as D2 and D∗
2.
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Corollary 3.8

REG � CFL.

Proof.

As observed before, REG ⊆ CFL.
On the other hand,
D∗

T ∩ { anām | n,m ≥ 1 } = {anān | n ≥ 1 } is not regular.
The class REG is closed under intersection (Theorem 2.8).
If D∗

T ∈ REG, then also { anān | n ≥ 1 } ∈ REG, a contradiction.
Thus, D∗

T ∈ CFL � REG.
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3.2. Normal Forms of Context-Free Grammars

A context-free grammar G = (N,T ,S,P) is in weak Chomsky Normal
Form, if r ∈ N∗ ∪ T ∪ {ε} for each production (� → r) ∈ P.
The grammar G is in Chomsky Normal Form (CNF),
if r ∈ N2 ∪ T ∪ {ε} for each production (� → r) ∈ P).

Theorem 3.9 (Chomsky 1959)

Given a context-free grammar G, one can effectively construct an
equivalent context-free grammar G� that is in Chomsky Normal Form.
In addition, it can be ensured that the start symbol S� of G� does not
occur on the righthand side of any production and that G� does not
contain any ε-production apart from possibly (S� → ε).
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Proof of Theorem 3.9.

From the previous subsection we recall that we can construct a
context-free grammar G1 = (N1,T ,S1,P1) from G such that
L(G1) = L(G) and G1 contains no chain rules and satisfies the
condition on ε-productions.
Let N �

1 := {Aa | a ∈ T } be a new alphabet of nonterminals.
We take G2 := (N2,T ,S2,P2), where

N2 := N1 ∪ N �
1, S2 := S1, and P2 := P2,1 ∪ {Aa → a | a ∈ T }.

Here P2,1 is obtained from P1 by replacing in each righthand side r ,
where |r | > 1, each occurrence of a terminal symbol a ∈ T by Aa ∈ N �

1.
Then P2 contains three types of productions:
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Proof of Theorem 3.9 (cont.).

(1.) possibly the ε-production (S2 → ε),
(2.) the terminal productions of the form (A → b) ∈ P1, and

the new terminal productions (Aa → a) (a ∈ T ),
(3.) nonterminal productions of the form (A → r),

where r ∈ N∗ and |r | ≥ 2.

Thus, G2 is in weak Chomsky Normal Form.

If (A → B1B2 · · ·Bm) is a nonterminal production s.t. m > 2, then we
introduce new nonterminals A(1),A(2), . . . ,A(m−2), and we replace this
production by the following ones:

(A → B1A(1)), (A(1) → B2A(2)), . . . , (A(m−2) → Bm−1Bm).

We obtain a grammar G� in CNF that is equivalent to G2 and therewith
to G. In addition, G� satisfies the condition on ε-productions. ✷
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Example:

Let G = ({S,A,B}, {a, b},S,P), where P is the following system:

P := {S → bA | aB,A → bAA | aS | a,B → aBB | bS | b}.

Then G is a proper context-free grammar.

The first step yields the grammar G2 = (N2, {a, b},S,P2), where
N2 = {S,A,B,Aa,Ab} and

P2 = {S → AbA | AaB,A → AbAA | AaS | a,B → AaBB | AbS | b,
Aa → a,Ab → b },

which is in weak CNF.
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Example (cont.):

From G2 we obtain the grammar G� = (N �, {a, b},S,P �), where
N � = {S,A,B,Aa,Ab,C1,C2} and

P � = {S → AbA | AaB, A → AbC1 | AaS | a,C1 → AA,
B → AaC2 | AbS | b,C2 → BB,
Aa → a,Ab → b}.

This grammar is in CNF, and it is equivalent to G. ✷

A context-free grammar G = (N,T ,S,P) is in

Greibach Normal Form,

if r ∈ T · N∗ holds for each production (� → r) ∈ P.
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Theorem 3.10 (Greibach 1965)

Given a context-free grammar G such that ε �∈ L(G), one can
effectively construct an equivalent context-free grammar G�

that is in Greibach Normal Form.

Lemma 3.11

Let G = (N,T ,S,P) be a context-free grammar, let (A → α1Bα2) ∈ P,
and let (B → β1), (B → β2), . . . , (B → βr ) ∈ P be the set of all
B-produktions in G. Further, let G1 = (N,T ,S,P1) be the grammar that
is obtained G by replacing the production (A → α1Bα2) by the
productions

(A → α1β1α2), (A → α1β2α2), . . . , (A → α1βrα2).

Then L(G1) = L(G).
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Lemma 3.12

Let G = (N,T ,S,P) be a context-free grammar and let

(A → Aα1), (A → Aα2), . . . , (A → Aαr ) ∈ P

be the set of A-produktions the righthand side of which has the
prefix A. Let (A → β1), (A → β2), . . . , (A → βs) ∈ P be the other
A-productions of G. The grammar G1 = (N ∪ {B},T ,S,P1) is obtained
from G by introducing the new nonterminal B and by replacing the
A-productions of G by the following productions:

(A → β1), . . . , (A → βs), (A → β1B), . . . , (A → βsB),
(B → α1), . . . , (B → αr ), (B → α1B), . . . , (B → αr B).

Then L(G1) = L(G).
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Proof of Theorem 3.10.

Let G be in CNF with N = {A1,A2, . . . ,Am}.
(1.) Modify the productions such that (Ai → Ajα) ∈ P implies i < j :

FOR i := 1 TO m DO
FOR j := 1 TO i − 1 DO

FOR ALL (Ai → Ajα) ∈ P DO
Let Aj → β1 | β2 | . . . | βn be all Aj -productions.
Add the productions Ai → β1α | β2α | . . . | βnα
and delete (Ai → Ajα)

END;
END;

(2.) Remove left recursive productions using Lemma 3.12:
IF there is a production of the form (Ai → Aiα) THEN

use Lemma 3.12 with the new nonterminal Bi
END

END.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 151 / 294



3. Context-Free Languages and Pushdown Automata 3.2. Normal Forms of Context-Free Grammars

Proof of Theorem 3.10 (cont.).

(3.) The righthand side of each Am-production begins with a terminal
symbol. We now enforce this also for all Ai -productions,
i = m − 1,m − 2, . . . , 1:
FOR i := m − 1 DOWNTO 1 DO

FOR ALL (Ai → Ajα) ∈ P, j > i , DO
Let Aj → β1 | β2 | . . . | βn be all Aj -productions.
Add the productions Ai → β1α | β2α | . . . | βnα
and delete (Ai → Ajα)

END
END

(4.) Modify the Bi -productions (Bi → Ajα) (1 ≤ i ≤ n):
Let Aj → β1 | β2 | . . . | βn be all Aj -productions.
Add the productions Bi → β1α | β2α | . . . | βnα
and delete (Bi → Ajα). ✷
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Example:

Let G = ({A1,A2,A3}, {a, b},A1,P), where

P : (A1 → A2A3), (A2 → A3A1), (A2 → b), (A3 → A1A2), (A3 → a).

Step 1: The A1- and A2-productions are already in the correct form,
(A3 → A1A2) is replaced by (A3 → A2A3A2),
(A3 → A2A3A2) is replaced by
(A3 → A3A1A3A2) and (A3 → bA3A2).

Step 2: Lemma 3.12 is applied to the A3-productions:
(A3 → bA3A2), (A3 → a), (A3 → bA3A2B3), (A3 → aB3),
(B3 → A1A3A2), (B3 → A1A3A2B3).
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Example (cont.):

Step 3: All Ai -productions are brought into Greibach form:
(A3 → bA3A2), (A3 → a), (A3 → bA3A2B3), (A3 → aB3),
(A2 → bA3A2A1), (A2 → aA1), (A2 → bA3A2B3A1),
(A2 → aB3A1), (A2 → b),
(A1 → bA3A2A1A3), (A1 → aA1A3),
(A1 → bA3A2B3A1A3), (A1 → aB3A1A3), (A1 → bA3).

Step 4: The B3-productions are brought into Greibach form:
(B3 → bA3A2A1A3A3A2), (B3 → aA1A3A3A2),
(B3 → bA3A2B3A1A3A3A2), (B3 → aB3A1A3A3A2),
(B3 → bA3A3A2), (B3 → bA3A2A1A3A3A2B3),

(B3 → aA1A3A3A2B3), (B3 → bA3A2B3A1A3A3A2B3),

(B3 → aB3A1A3A3A2B3), (B3 → bA3A3A2B3).

While G has only 5 short productions, G� has 24 long ones. ✷
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A context-free grammar G = (N,T ,S,P) is in
quadratic Greibach Normal Form,

if r ∈ T · N∗ and |r | ≤ 3 for each production (� → r) ∈ P, that is,
r contains at most two nonterminals.

Theorem 3.13 (Rosenkrantz 1967)

Given a context-free grammar G such that ε �∈ L(G), one can
effectively construct an equivalent context-free grammar G�

that is in quadratic Greibach Normal Form.
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