Automata and Grammars

SS 2018

Assignment 7

Solutions are to be presented at the Seminary on Thursday, April 12, 2018.

Problem 7.1 [Pumping Lemma]

Prove that the following languages are not regular by applying the Pumping Lemma for regular languages (Theorem 2.34):

(a) $L_a = \{ a^m b^n \mid n > m \ge 1 \},$ (b) $L_b = \{ a^m b^n \mid m \le n \le 2m \},$ (c) $L_c = \{ w \in \{a, b\}^* \mid |w|_a = |w|_b \},$ (d) $L_d = \{ a^{2^n} \mid n \ge 0 \}.$

Problem 7.2. [Pumping Lemma]

Let L be the following language over $\Sigma = \{a, b\}$:

 $L = \{ ab(ba)^m ba^n ba^n \mid m, n \ge 1 \} \cup \{ abba^m ba^n \mid m, n \ge 1 \}.$

- (a) Prove that L satisfies the Pumping Lemma for regular languages (Theorem 2.34) by determining a corresponding constant $c \ge 1$.
- (b) Prove that the language L is not regular by using the Theorem of Myhill-Nerode (Theorem 2.12).
- (c) Is the language $L_c = \{ (ab)^n a (ba)^n \mid n \ge 1 \}$ regular? Provide a proof for your answer!

Problem 7.3. [Decision Problems]

Determine the cardinality of the language $L(A_i)$ for the following NFAs A_i $(1 \le i \le 4)$:

(a) $A_1 = (Q, \{a, b\}, \delta_1, \{0, 5\}, \{6\})$, where δ_1 is defined as follows:

δ_1	→0	1	2	3	4	5^{\leftarrow}	$6 \rightarrow$	7	8
a	4	2	3	1	0	7	3	1	3
b	1	3	2	3	4	8	_	8	6

(b) $A_2 = (Q, \{a, b\}, \delta_2, \{0\}, \{5, 10\})$, where δ_2 is defined as follows:

δ_2	$\rightarrow 0$	1	2	3	4	$5 \rightarrow$	6	7	8	9	$10 \rightarrow$
a	1	3	1	4	2	4	2	6	8	6	10
b	7	1	_	3	4	10	0	9	7	-	5

(c) $A_3 = (Q, \{a, b\}, \delta_3, \{0\}, \{0, 5, 7\})$, where δ_3 is defined as follows:

δ_3	$0 \stackrel{\leftarrow}{\rightarrow}$	1	2	3	4	$5 \rightarrow$	6	7_{\rightarrow}	8	9
a	1, 2	_	_	2	6	4	2,7	Ι	5, 9	9
b	4	1,3	2	—		3	_	8,9	_	9

(d) $A_4 = (Q, \{a, b\}, \delta_4, \{0, 5\}, \{10\})$, where δ_4 is defined as follows:

δ_4	0←	1	2	3	4	5←	6	7	8	9	$10 \rightarrow$
a	1	2	3	4	3	_	_	-	3,9	_	_
b	_	_	—	9	_	6	7	8	_	1, 6, 10	_