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2.8 The Pumping Lemma

Theorem 2.34 (Pumping Lemma)

Let L be a regular language. Then there exists a positive integer n
such that each word x ∈ L of length |x | ≥ n admits a factorization of
the form x = uvw that satisfies all of the following properties:
(1) |v | ≥ 1,
(2) |uv | ≤ n,
(3) uviw ∈ L for all i ∈ N.

Proof.

Let A = (Q,Σ, δ, q0,F ) be a DFA for L.
We choose n := |Q|, and consider a word x ∈ L satisfying |x | ≥ n.

A : q0 −→
x1

q1 −→
x2

· · · −→
xn−1

qn−1 −→
xn

qn
∗−→
x �

q� ∈ F ,

where x = x1x2 . . . xnx �, x1, x2, . . . , xn ∈ Σ and x � ∈ Σ∗.
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2. Regular Languages and Finite Automata 2.8 The Pumping Lemma

Proof of Theorem 2.34 (cont.)

Then there are r and s such that 0 ≤ r < s ≤ n and qr = qs.
Hence, x can be written as x = uvw , where

|u| = r ,
1 ≤ |v | = s − r ≤ n,
δ̂(q0, u) = qr ,

δ̂(qr , v) = qs = qr ,

δ̂(qs,w) = q� ∈ F .

It follows that
δ̂(q0, uviw) = δ̂(qr , v iw) = δ̂(qs, v i−1w)

= δ̂(qr , v i−1w) = δ̂(qs,w) = q� ∈ F ,
that is, uviw ∈ L(A) = L. ✷
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2. Regular Languages and Finite Automata 2.8 The Pumping Lemma

Example 1:

Claim: L = { ambm | m ≥ 1 } is not regular.

Proof (indirect):

Assume that L were regular. Then L satisfies the Pumping Lemma,
that is, ∃n ∈ N+∀x ∈ L : |x | ≥ n ❀ ∃x = uvw :
|v | ≥ 1, |uv | ≤ n, and uviw ∈ L for all i ≥ 0.
Consider the word x := anbn : x ∈ L and |x | = 2n > n.
Hence: ∃x = uvw s. t. |v | ≥ 1, |uv | ≤ n, and uviw ∈ L for all i ≥ 0.

x = anbn = uvw , where |uv | ≤ n
❀ u = ar , v = as, and w = an−s−r bn

for certain integers r , s satisfying r ≥ 0, s ≥ 1, r + s ≤ n.
Thus: uv0w = ar an−s−r bn = an−sbn �∈ L, a contradiction!

As L does not satisfy the Pumping Lemma, it is not regular. ✷
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2. Regular Languages and Finite Automata 2.8 The Pumping Lemma

Example 2:

Claim: L = { 0m | m is a square number } is not regular.

Proof (indirect)

Assume that L were regular.
Let n be the constant for L from the Pumping Lemma.
Consider the word x := 0n2

: x ∈ L and |x | = n2 > n.
Hence: ∃x = uvw s. t. |v | ≥ 1, |uv | ≤ n, and uviw ∈ L for all i ≥ 0.

Now consider the word uv2w :
n2 = |uvw | < |uv2w |

= |uvw |+ |v | = n2 + |v |
≤ n2 + n < n2 + 2n + 1
= (n + 1)2,

that is, |uv2w | is not a square number, and so, uv2w �∈ L.
This contradiction shows that L is not regular. ✷
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2. Regular Languages and Finite Automata 2.8 The Pumping Lemma

Example 3:

Let L = { cmanbn | m, n ≥ 0 } ∪ {a, b}∗.
Claim: L satisfies the Pumping Lemma with the constant k = 1.

Proof.

Let x ∈ L, where |x | ≥ k .
(i) x ∈ {a, b}∗ : obvious.
(ii) x = cmanbn for some m ≥ 1:

Choose u := ε, v := c, w := cm−1anbn.
Then: x = uvw , 1 ≤ |v |, |uv | = 1 ≤ k ,

uviw = ci+m−1anbn ∈ L for all i ≥ 0.

Claim: L is not regular.

Proof.

L has infinite index, and hence, by Theorem 2.12, it is not regular.
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2. Regular Languages and Finite Automata 2.9 Decision Problems

2.9 Decision Problems

The membership problem for a regular language:

INSTANCE : x ∈ Σ∗.
QUESTION : Is x in L?

This problem is solvable in time |x | using a DFA.

The emptiness problem for a DFA (NFA):

INSTANCE : A DFA (NFA) A.
QUESTION : Is L(A) = ∅?

This is decidable in time O(|A|2), as L(A) �= ∅ iff a final state is
reachable from the initial state in the graph of A.
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2. Regular Languages and Finite Automata 2.9 Decision Problems

The finiteness problem for a DFA (NFA):

INSTANCE : A DFA (NFA) A.
QUESTION : Is L(A) finite?

This is decidable in polynomial time, as L(A) is infinite iff
∃q0 initial state ∃q1∃q2 final state: q0 →∗ q1 →+ q1 →∗ q2,

which can be checked using the graph of A.

The intersection emptiness problem for regular grammars (or NFAs):

INSTANCE : Two grammars G1 and G2.
QUESTION : Is L(G1) ∩ L(G2) empty?

This is decidable in quadratic time:
Construct an NFA (or a grammar) for L(G1) ∩ L(G2)
and test for emptiness.
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2. Regular Languages and Finite Automata 2.9 Decision Problems

The inclusion problem for regular languages:

INSTANCE : Two regular grammars G1 and G2.
QUESTION : Is L(G1) a subset of L(G2)?

Decidable, as L(G1) ⊆ L(G2) iff L(G1) ∩ L(G2) = ∅,
and a DFA for L(G1) ∩ L(G2) can be constructed from G1 and G2.
If L(G1) and L(G2) are given through DFAs, then this problem is
decidable in quadratic time.

The equivalence problem for regular languages:

INSTANCE : Two regular grammars G1 and G2.
QUESTION : Are L(G1) and L(G2) equal?

Decidable, as L(G1) = L(G2) iff L(G1) ⊆ L(G2) and L(G2) ⊆ L(G1).
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3. Context-Free Languages and Pushdown Automata

Chapter 3:

Context-Free Languages and Pushdown Automata

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 122 / 294



3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

3.1. Context-Free Grammars

A phrase-structure grammar G = (N,T ,S,P) is called context-free,
if � ∈ N for each production (� → r) ∈ P.

A language L ⊆ T ∗ is called context-free, if there exists a context-free
grammar G satisfying L(G) = L.

By CFL(Σ) we denote the class of all context-free languages over Σ,
and CFL is the class of all context-free languages.

Obiously, we have REG ⊆ CFL.

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 123 / 294



3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Let G = (N,T ,S,P) be a context-free grammar, and
let α0 →G α1 →G . . . →G αn be a derivation in G.
Then there exist βi , γi ∈ (N ∪ T )∗ and (Ai → ri) ∈ P such that

αi = βiAiγi and αi+1 = βi riγi (0 ≤ i ≤ n − 1).

This derivation is called a left derivation if |βi | ≤ |βi+1| for all i ,
it is called a right derivation if |γi | ≤ |γi+1| for all i ,
and it is called a leftmost derivation if βi ∈ T ∗ for all i .
If αi → αi+1 is a step in a leftmost derivation, this is denoted as
αi →lm αi+1.

Remark:

If α0 ∈ N and αn ∈ T ∗, then each left derivation α0 → α1 → · · · → αn is
necessarily leftmost.
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

(a) G1 := ({A}, {a},A, {A → AA,A → a}).
(b) G2 := ({S}, {a, b},S, {S → aSa,S → bSb,S → ε}).
(c) G3 := ({A}, {[, ], a,#, ↑},A, {A → [A#A ],A → [A ↑ A ],A → a}).

(a): The derivation A → AA → Aa → AAa → aAa → aaa
is neither a left nor a right derivation.
(b): Each derivation that starts with S is a left and a right derivation.
(c): The derivation

A → [A#A ] → [A#[A ↑ A ] ] → [ a#[A ↑ A ] ] → [ a#[ a ↑ A ] ]

is neither a left nor a right derivation, but the derivation

A → [A#A ] → [ a#A ] → [ a#[A ↑ A ] ] → [ a#[ a ↑ A ] ]

is a leftmost derivation.
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

The grammar G = (N,T ,S,P) is called unambiguous w.r.t. A ∈ N if
there exists exactly one left derivation A →∗

P α for each α ∈ L(G,A).

It is called unambiguous if it is unambiguous w.r.t. all its nonterminals.

It is called ambiguous if it is not unambiguous.

A context-free language is called unambiguous if it is generated by a
context-free grammar G = (N,T ,S,P) that is unambiguous.

A context-free language L is called inherently ambiguous if it is not
generated by any unambiguous grammar.
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example (cont.):

(a) G1 is not unambiguous, as

A → AA → AAA → aAA → aaA → aaa

and
A → AA → aA → aAA → aaA → aaa

are two different left derivations for aaa.

(b) G2 is trivially unambiguous.

(c) It can be shown that G3 is unambiguous.
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

Let G = ({S,A,B}, {a, b, c},P,S), where
P := {S → aB,S → Ac,A → ab,B → bc}:

S

a B

b c

S

A c

a b

G is ambiguous.

G� := ({S}, {a, b, c}, {S → abc},S) is unambiguous and
L(G�) = L(G).

The language L := {aibjck | i = j or j = k } is inherently ambiguous.
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

G = ({T}, {1, 2, . . . , 9,+,−}, {T → T + T | T − T | 1 | 2 | · · · | 9},T ):

T

T + T

T − T

9 4 3

T

T − T

T + T

9 4 3

Prof. Dr. F. Otto (Universität Kassel) Automata and Grammars 129 / 294



3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

G = ({T}, {1, 2, . . . , 9,+,−}, {T → T + T | T − T | 1 | 2 | · · · | 9},T ):

T8

T5 + T3

T9 − T4

9 4 3

T

T − T

T + T

9 4 3
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

G = ({T}, {1, 2, . . . , 9,+,−}, {T → T + T | T − T | 1 | 2 | · · · | 9},T ):

T8

T5 + T3

T9 − T4

9 4 3

T2

T9 − T7

T4 + T3

9 4 3
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Syntax Trees

Let G = (V ,T ,P,S) be a context-free grammar, and let
S = x0 → x1 → x2 → . . . → xn = x be a derivation in G for a word
x ∈ L(G).

We can describe this derivation through a syntax tree:

Start: Introduce a root with label S.

Step i : If xi−1 = uAv → urv = xi , where u, v ∈ (V ∪ Σ)∗ and
(A → r) ∈ P, then add |r | children to the node with label A
which are labelled from left to right with the symbols of r .
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Example:

G = ({S}, {a, b}, {S → aS,S → b},S) :

S

a S

a S

a S

b
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Beispiel:

Let G = ({E ,F ,T}, {a, ∗},E , {E → T ,T → F ,T → T ∗ F ,F → a}):
(1.) E → T → T ∗ F → F ∗ F → a ∗ F → a ∗ a

(2.) E → T → T ∗ F → T ∗ a → F ∗ a → a ∗ a

E

T

T ∗ F

F a

a

(1) Left derivation
(2) Right derivation
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3. Context-Free Languages and Pushdown Automata 3.1. Context-Free Grammars

Theorem 3.1

Let G = (N,T ,S,P) be a context-free grammar.

(a) If A ∈ N and x ∈ (N ∪ T )∗ such that A →∗ x, then there exists a
syntax tree with root labelled A and leaves labelled with x.

(b) If there exists a syntax tree with root labelled A ∈ N and leaves
labelled with x ∈ T ∗, then A →∗

lm x.
(c) For each nonterminal A ∈ N and each word x ∈ L(G,A), the

number of leftmost derivations of x from A coincides with the
number of syntax trees with root labelled A and leaves labelled
with x.

Corollary 3.2

A context-free grammar G is unambiguous if and only if there exists a
unique syntax tree with root labelled A and leaves labelled x for each
A ∈ N and each word x ∈ L(G,A).
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