Automata and Grammars

SS 2018

Assignment 5: Solutions to Selected Problems

Problem 5.1 [2DFA]

Let $A = (Q, \Sigma, \rightarrow, \triangle, \delta, q_0, F)$ be the 2DFA with initial state p_0 and final state q_4 that is given by the following table:

(a) Describe the step-by-step computation of A on input abacba.

(b) Determine all seven crossing sequences of the above computation.

(c) Which language is accepted by A?

Solution.

(a) On input $w = abacba$, the 2DFA A executes the following computation:

and as q_4 is the final state, we see that A accepts input $w = abacba$.

(b) The above computation yields the following crossing sequences:

(c) The language $L(A)$ is the set of all words of the form wcu , where $w, u \in \{a, b\}^*$ such that w begins with a or it contains aa as a factor. \Box

Problem 5.2 [Moore Automaton]

Design a Moore automaton with input and output alphabet $\{0, 1\}$ that realizes the function f that is defined as follows:

$$
f(a_ma_{m-1}\cdots a_2a_1) = \begin{cases} 1, & \text{if } \sum_{i=1}^m a_i \cdot 2^{i-1} \equiv 0 \mod 4, \\ 0, & \text{otherwise.} \end{cases}
$$

Solution. Let $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1\}, \delta, \sigma, q_0)$ be the Moore automaton that is given by the following table:

Then

 $\delta(q_0, u) = q_0$ iff $u = \varepsilon$ or u ends in 1, $\delta(q_0, u) = q_1$ iff $u = 0$ or u ends in 1⁺0, $\delta(q_0, u) = q_2$ iff u ends in 00. As $f(u) = 1$ iff u ends in 00, we see that A computes the intended function. \Box

Problem 5.3 [Mealey Automaton]

Design a Mealey automaton with input and output alphabet $\{0, 1\}$ that realizes the following function:

- output 1, if the current input symbol is a part of a sequence of 1s, which is directly preceded by the factor 00,
- output 0, otherwise.

Solution. Let $A = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1\}, \delta, \sigma, q_0)$ be the Mealey automaton that is given by the following table:

 $\delta(q_0, u) = q_0$ iff $u \in 1^*$ or $u \in 01^+$ or u ends in $101^+,$ $\delta(q_0, u) = q_1$ iff $u = 0$ or u ends in 1^+0 , $\delta(q_0, u) = q_2$ iff u ends in 00, and $\delta(q_0, u) = q_3$ iff u ends in 001⁺. It is now easily seen that A computes the intended function. \Box

Problem 5.4 [Moore and Mealey Automata]

Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton and let $B = (Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ be a Mealey automaton. For $u \in \Sigma^*$, let $F_A(u) \in \Delta^*$ and $F_B(u) \in \Delta^*$ be the output words that are generated by A and B on input u . The automata A und B are called *equivalent*, if $F_A(u) = \sigma(q_0) \cdot F_B(u)$ for all $u \in \Sigma^*$. Prove the following statements:

- (a) For each Moore automaton, there exists an equivalent Mealey automaton.
- (b) For each Mealey automaton, there exists an equivalent Moore Automaton.

Solution. (a) Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton. We define a Mealey automaton $B = (Q, \Sigma, \Delta, \delta, \sigma', q_0)$ by taking $\sigma'(q, a) = \sigma(\delta(q, a))$ for all $q \in Q$ and all $a \in \Sigma$. If A is in state q and reads letter a, then it changes to state $\delta(q, a)$, which then yields the output $\sigma(\delta(q, a))$. Now if B is in state q and reads the letter a, then it changes to state $\delta(q, a)$ producing the output $\sigma'(q, a) = \sigma(\delta(q, a))$ during this transition. Hence, it follows that B is equivalent to A.

(b) Let $B = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Mealey automaton. We define a Moore automaton $A =$ $(Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ as follows:

- $Q' = Q \times \Delta = \{ (q, b) | q \in Q, b \in \Delta \},\$
- $q'_0 = (q_0, b_0)$ for some letter $b_0 \in \Delta$,
- $\sigma'((q, b)) = b$ for all $(q, b) \in Q \times \Delta$, and
- δ' is defined through $\delta'((q, b), a) = (\delta(q, a), \sigma(q, a))$ for all $q \in Q, b \in \Delta$, and $a \in \Sigma$.

If B is in state q and reads the letter a, then it changes to state $\delta(q, a)$ producing the output $\sigma(a, a)$. Now if A is in a state of the form (a, b) and reads the letter a, then it changes to the state $(\delta(q, a), \sigma(q, a))$, which then yields the output $\sigma'((\delta(q, a), \sigma(q, a)) = \sigma(q, a)$. Hence, it follows that A is equivalent to B. \Box

Problem 5.5 [Finite-State Transducer]

A regular substitution $\varphi : \Sigma^* \to 2^{\Gamma^*}$ maps each letter $a \in \Sigma$ to a regular language $\varphi(a) \in$ REG(Γ) and then $\varphi(a_1a_2\cdots a_n) = \varphi(a_1)\cdot \varphi(a_2)\cdots \varphi(a_n)$.

- (a) Let $\varphi_1: \{a,b\}^* \to 2^{\{a,b\}^*}$ be the regular substitution that is given through $a \mapsto \{a\}^*$ and $b \mapsto \{b\}^*$. Construct a finite-state transducer T_1 such that $T_1(w) = \varphi_1(w)$ for each word $w \in \{a, b\}^*$.
- (b) Prove that each regular substitution can be realized by a finite-state transducer, that is, if $\varphi : \Sigma^* \to 2^{\Gamma^*}$ is a regular substitution, then there exists a finite-state transducer T such that $T(w) = \varphi(w)$ for each word $w \in \Sigma^*$.

Solution. (a) Let $T_1 = (\{q_0, q_a, q_b\}, \{a, b\}, \{a, b\}, \delta, q_0, \{q_0\})$ be the finite-state transducer that is given by the following table:

On input a word $w \in \{a, b\}^*, T_1$ reads w letter by letter, and for each letter read, it can output any number of copies of that letter. It follows that $T_1(w) = \varphi(w)$.

(b) Let $\varphi : \Sigma^* \to 2^{\Gamma^*}$ be a regular substitution. Then $\varphi(a)$ is a regular language over Γ for each letter $a \in \Sigma$. So there exists a DFA $A_a = (Q_a, \Gamma, \delta_a, q_0^{(a)})$ $L_0^{(a)}$, F_a) such that $L(A_a) = \varphi(a)$ for each $a \in \Sigma$. Without loss of generality we can assume that $Q_a \cap Q_b = \emptyset$ for all $a \neq b$. Now we define a finite-state transducer $T = (Q, \Sigma, \Gamma, \delta, q_0, F)$ as follows:

- $Q = \{q_0\} \cup \bigcup_{a \in \Sigma} Q_a$
- $F = \{q_0\},\,$
- and δ is defined as follows:

$$
\delta(q_0, a) = \{ (q_0^{(a)}, \varepsilon) \} \qquad \text{for each } a \in \Sigma,
$$

\n
$$
\delta(q^{(a)}, \varepsilon) = \{ (\delta_a(q^{(a)}, b), b) \mid b \in \Gamma \} \qquad \text{for all } a \in \Sigma \text{ and } q^{(a)} \in Q_a \setminus F_a,
$$

\n
$$
\delta(q^{(a)}, \varepsilon) = \{ (\delta_a(q^{(a)}, b), b) \mid b \in \Gamma \} \cup \{ (q_0, \varepsilon) \} \qquad \text{for all } a \in \Sigma \text{ and } q^{(a)} \in F_a.
$$

Let $w = a_1 a_2 \cdots a_n \in \Sigma^n$. On input w, T proceeds as follows:

$$
(q_0w, \varepsilon) = (q_0a_1a_2 \cdots a_n, \varepsilon) +_T (q_0^{(a_1)}a_2 \cdots a_n, \varepsilon) \n\vdash_T^* (q_f^{(a_1)}a_2 \cdots a_n, u_1) +_T (q_0a_2 \cdots a_n, u_1) \n\vdash_T^* (q_f^{(a_n)}, u_1u_2 \cdots u_n) +_T (q_0, u_1u_2 \cdots u_n),
$$

where $u_i \in \varphi(a_i)$ and $q_f^{(a_i)} \in F_{a_i}$. It follows that $T(w) = \varphi(w)$.