Automata and Grammars

SS 2018

Assignment 5: Solutions to Selected Problems

Problem 5.1 [2DFA]

Let $A = (Q, \Sigma, \rhd, \triangleleft, \delta, q_0, F)$ be the 2DFA with initial state p_0 and final state q_4 that is given by the following table:

δ :	p_0	$\overleftarrow{q_0}$	$\overleftarrow{q_1}$	$\overleftarrow{q_2}$	$\overleftarrow{q_3}$	$\overrightarrow{q_0}$	$\overrightarrow{q_1}$	$\overrightarrow{q_2}$	$\overrightarrow{q_3}$	q_4
a	(p_0, R)	$(\overleftarrow{q_1}, L)$	$(\overleftarrow{q_2}, L)$	$(\overleftarrow{q_3}, L)$	$(\overleftarrow{q_2}, L)$	$(\overrightarrow{q_1}, R)$	$(\overrightarrow{q_2}, R)$	$(\overrightarrow{q_3}, R)$	$(\overrightarrow{q_2}, R)$	(q_4, R)
b	(p_0, R)	$(\overleftarrow{q_0}, L)$	$(\overleftarrow{q_0}, L)$	$(\overleftarrow{q_2}, L)$	$(\overleftarrow{q_3}, L)$	$(\overrightarrow{q_0}, R)$	$(\overrightarrow{q_0}, R)$	$(\overrightarrow{q_2}, R)$	$(\overrightarrow{q_3}, R)$	(q_4, R)
c	$(\overleftarrow{q_0}, L)$	_	_	_	_	—	_	(q_4, R)	(q_4, R)	_
\triangleright	(p_0, R)	$(\overrightarrow{q_0}, R)$	$(\overrightarrow{q_1}, R)$	$(\overrightarrow{q_2}, R)$	$(\overrightarrow{q_3}, R)$	—	_	—	—	—
\triangleleft	_	_	_				_		_	—

(a) Describe the step-by-step computation of A on input abacba.

(b) Determine all seven crossing sequences of the above computation.

(c) Which language is accepted by A?

Solution.

(a) On input w = abacba, the 2DFA A executes the following computation:

$p_0 \triangleright abacba \lhd$	\vdash_A	$\triangleright p_0 a b a c b a \lhd$	\vdash_A	$\triangleright ap_0bacba \lhd$	\vdash_A	$\triangleright abp_0acba \lhd$
	\vdash_A	$\triangleright abap_0cba \lhd$	\vdash_A	$ ightarrow ab\overline{q_0}acba \lhd$	\vdash_A	$\triangleright a \overleftarrow{q_1} bacba \lhd$
	\vdash_A	$\triangleright \overleftarrow{q_0} a b a c b a \triangleleft$	\vdash_A	$\overleftarrow{q_1} \triangleright abacba \lhd$	\vdash_A	$\triangleright \overrightarrow{q_1} a b a c b a \lhd$
	\vdash_A	$ ightarrow a\overline{q_2}bacba \lhd$	\vdash_A	$ ightarrow ab\overline{q_2}acba \lhd$	\vdash_A	$ ightarrow aba \overline{q_3} cba \lhd$
	\vdash_A	$ ightarrow abacq_4 ba \lhd$	\vdash_A	$\vartriangleright abacbq_4a \lhd$	\vdash_A	$\rhd abacbaq_4 \lhd$,

and as q_4 is the final state, we see that A accepts input w = abacba.

(b) The above computation yields the following crossing sequences:

\triangleright		a		b		a		c		b		a		\triangleleft
	p_0		p_0		p_0		p_0		q_4		q_4		q_4	
	$\overleftarrow{q_1}$		$\overleftarrow{q_0}$		$\overleftarrow{q_1}$		$\overleftarrow{q_0}$							
	$\overrightarrow{q_1}$		$\overrightarrow{q_2}$		$\overrightarrow{q_2}$		$\overrightarrow{q_3}$							

(c) The language L(A) is the set of all words of the form wcu, where $w, u \in \{a, b\}^*$ such that w begins with a or it contains aa as a factor. \Box

Problem 5.2 [Moore Automaton]

Design a Moore automaton with input and output alphabet $\{0, 1\}$ that realizes the function f that is defined as follows:

$$f(a_m a_{m-1} \cdots a_2 a_1) = \begin{cases} 1, & \text{if } \sum_{i=1}^m a_i \cdot 2^{i-1} \equiv 0 \mod 4, \\ 0, & \text{otherwise.} \end{cases}$$

Solution. Let $A = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1\}, \delta, \sigma, q_0)$ be the Moore automaton that is given by the following table:

δ	q_0	q_1	q_2
0	q_1	q_2	q_2
1	q_0	q_0	q_0
σ	0	0	1

Then

 $\delta(q_0, u) = q_0$ iff $u = \varepsilon$ or u ends in 1, $\delta(q_0, u) = q_1$ iff u = 0 or u ends in 1⁺0, $\delta(q_0, u) = q_2$ iff u ends in 00. As f(u) = 1 iff u ends in 00, we see that A computes the intended function.

Problem 5.3 [Mealey Automaton]

Design a Mealey automaton with input and output alphabet $\{0, 1\}$ that realizes the following function:

- output 1, if the current input symbol is a part of a sequence of 1s, which is directly preceded by the factor 00,
- output 0, otherwise.

Solution. Let $A = (\{q_0, q_1, q_2, q_3\}, \{0, 1\}, \{0, 1\}, \delta, \sigma, q_0)$ be the Mealey automaton that is given by the following table:

(δ,σ)	q_0	q_1	q_2	q_3
0	$(q_1, 0)$	$(q_2, 0)$	$(q_2, 0)$	$(q_1, 0)$
1	$(q_0, 0)$	$(q_0, 0)$	$(q_3, 1)$	$(q_3, 1)$

$$\begin{split} &\delta(q_0,u)=q_0 \text{ iff } u\in 1^* \text{ or } u\in 01^+ \text{ or } u \text{ ends in } 101^+,\\ &\delta(q_0,u)=q_1 \text{ iff } u=0 \text{ or } u \text{ ends in } 1^+0,\\ &\delta(q_0,u)=q_2 \text{ iff } u \text{ ends in } 00, \text{ and}\\ &\delta(q_0,u)=q_3 \text{ iff } u \text{ ends in } 001^+.\\ &\text{It is now easily seen that } A \text{ computes the intended function.} \end{split}$$

it is now easily seen that A computes the intended funct

Problem 5.4 [Moore and Mealey Automata]

Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton and let $B = (Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ be a Mealey automaton. For $u \in \Sigma^*$, let $F_A(u) \in \Delta^*$ and $F_B(u) \in \Delta^*$ be the output words that are generated by A and B on input u. The automata A und B are called *equivalent*, if $F_A(u) = \sigma(q_0) \cdot F_B(u)$ for all $u \in \Sigma^*$. Prove the following statements:

- (a) For each Moore automaton, there exists an equivalent Mealey automaton.
- (b) For each Mealey automaton, there exists an equivalent Moore Automaton.

Solution. (a) Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton. We define a Mealey automaton $B = (Q, \Sigma, \Delta, \delta, \sigma', q_0)$ by taking $\sigma'(q, a) = \sigma(\delta(q, a))$ for all $q \in Q$ and all $a \in \Sigma$. If A is in state q and reads letter a, then it changes to state $\delta(q, a)$, which then yields the output $\sigma(\delta(q, a))$. Now if B is in state q and reads the letter a, then it changes to state $\delta(q, a)$ producing the output $\sigma'(q, a) = \sigma(\delta(q, a))$ during this transition. Hence, it follows that B is equivalent to A.

(b) Let $B = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Mealey automaton. We define a Moore automaton $A = (Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ as follows:

- $\bullet \ Q' = Q \times \Delta = \{ \, (q,b) \mid q \in Q, b \in \Delta \, \},$
- $q'_0 = (q_0, b_0)$ for some letter $b_0 \in \Delta$,
- $\sigma'((q, b)) = b$ for all $(q, b) \in Q \times \Delta$, and
- δ' is defined through $\delta'((q, b), a) = (\delta(q, a), \sigma(q, a))$ for all $q \in Q, b \in \Delta$, and $a \in \Sigma$.

If B is in state q and reads the letter a, then it changes to state $\delta(q, a)$ producing the output $\sigma(q, a)$. Now if A is in a state of the form (q, b) and reads the letter a, then it changes to the state $(\delta(q, a), \sigma(q, a))$, which then yields the output $\sigma'((\delta(q, a), \sigma(q, a)) = \sigma(q, a)$. Hence, it follows that A is equivalent to B.

Problem 5.5 [Finite-State Transducer]

A regular substitution $\varphi : \Sigma^* \to 2^{\Gamma^*}$ maps each letter $a \in \Sigma$ to a regular language $\varphi(a) \in \mathsf{REG}(\Gamma)$ and then $\varphi(a_1 a_2 \cdots a_n) = \varphi(a_1) \cdot \varphi(a_2) \cdots \varphi(a_n)$.

- (a) Let $\varphi_1 : \{a, b\}^* \to 2^{\{a, b\}^*}$ be the regular substitution that is given through $a \mapsto \{a\}^*$ and $b \mapsto \{b\}^*$. Construct a finite-state transducer T_1 such that $T_1(w) = \varphi_1(w)$ for each word $w \in \{a, b\}^*$.
- (b) Prove that each regular substitution can be realized by a finite-state transducer, that is, if $\varphi : \Sigma^* \to 2^{\Gamma^*}$ is a regular substitution, then there exists a finite-state transducer T such that $T(w) = \varphi(w)$ for each word $w \in \Sigma^*$.

Solution. (a) Let $T_1 = (\{q_0, q_a, q_b\}, \{a, b\}, \{a, b\}, \delta, q_0, \{q_0\})$ be the finite-state transducer that is given by the following table:

δ	;	q_0	q_a	q_b
6	;	—	$\{(q_a,a),(q_0,\varepsilon)\}$	$\{(q_b, b), (q_0, \varepsilon)\}$
0	ı	$\{(q_a,\varepsilon)\}$	—	—
ľ)	$\{(q_b,\varepsilon)\}$	_	—

On input a word $w \in \{a, b\}^*$, T_1 reads w letter by letter, and for each letter read, it can output any number of copies of that letter. It follows that $T_1(w) = \varphi(w)$.

(b) Let $\varphi : \Sigma^* \to 2^{\Gamma^*}$ be a regular substitution. Then $\varphi(a)$ is a regular language over Γ for each letter $a \in \Sigma$. So there exists a DFA $A_a = (Q_a, \Gamma, \delta_a, q_0^{(a)}, F_a)$ such that $L(A_a) = \varphi(a)$ for each $a \in \Sigma$. Without loss of generality we can assume that $Q_a \cap Q_b = \emptyset$ for all $a \neq b$. Now we define a finite-state transducer $T = (Q, \Sigma, \Gamma, \delta, q_0, F)$ as follows:

- $Q = \{q_0\} \cup \bigcup_{a \in \Sigma} Q_a,$
- $F = \{q_0\},$
- and δ is defined as follows:

$$\begin{array}{lll} \delta(q_0,a) &= \{(q_0^{(a)},\varepsilon)\} & \text{for each } a \in \Sigma, \\ \delta(q^{(a)},\varepsilon) &= \{(\delta_a(q^{(a)},b),b) \mid b \in \Gamma\} & \text{for all } a \in \Sigma \text{ and } q^{(a)} \in Q_a \smallsetminus F_a, \\ \delta(q^{(a)},\varepsilon) &= \{(\delta_a(q^{(a)},b),b) \mid b \in \Gamma\} \cup \{(q_0,\varepsilon)\} & \text{for all } a \in \Sigma \text{ and } q^{(a)} \in F_a. \end{array}$$

Let $w = a_1 a_2 \cdots a_n \in \Sigma^n$. On input w, T proceeds as follows:

where $u_i \in \varphi(a_i)$ and $q_f^{(a_i)} \in F_{a_i}$. It follows that $T(w) = \varphi(w)$.