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The Einstein—Podolsky—Rosen Paradox

My interpretation of the repeated measurement experiments in section 4.2
was: .

An atom with a definite value of m, doesn’t have a definite
value of my. All that can be said is that when my is measured

there is probability 1 of finding + DTV |
finding —m. 2 g +mp and probability 5 of

This is in many ways the simplest and most natural interpretation, but

there are other possibilities. F
' . For example, the “measureme i
classical system™ possibility: nt disturbs 2

An atom with a definite value of m, also has a definite value

of m,, but' the measurement of m, disturbs the value of m. in
an unpredictable way. ’

or the “complex atom” possibility:

An atom with a definite value of m, also has a definite value

of my, but this value changes so rapi
s pidly that no one can
out what that value is. fleure

The Einstein—Podolsky—Rosen (or E
these “other interpreta)‘iions” aré unteisgle?rgument shows. that both of
I will give the argument in the form of two hypothetical experiments
Beca}use of technical difficulties, these experiments have never been carrie(i
out in exactly the form that I will describe. But similar experiments have
bee.n pe.rformed, most notably by Alain Aspect and his collaborators at the
Upwers1ty of Paris’s Institute of Theoretical and Applied Optics at Orsa
flgure 6.1 shows the apparatus that this group employed and, as usua}ll'
it is mugh more elaborate than the sketch diagrams that I Wiﬁ use later’
to describe the hypothetical experiment. Our hypothetical experiment
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Fig. 6.1. Alain Aspect’s laboratory in Orsay, France (courtesy of A. Aspect).

will employ a pair of atoms and detectors that tilt by 120°. Aspect’s
real experiment employed a pair of “photons” (“particles of light”) and
detectors that tilted by 22.5°. In spite of these technical differences, the
real experiment was conceptually equivalent to the one I will describe here,
and its results are a ringing endorsement of quantum mechanics.

Locality

Before proceeding, I must attend to one small but essential point: the
term “local”. It is clear that something which happens at one place can
influence what happens far away. For example, a newspaper article printed
in Madrid can foment a revolution in Buenos Aires. But the effect happens
some time after the cause, because it takes some time for the agent of
influence (the newspapers) to travel from Madrid to Buenos Aires, and
as they travel they always move bit by bit — they never disappear from
one place and reappear at another without passing through intermediate
points. This method of influence is called “Jocal”. Modern communication
technology might appear to be non-local, because when you speak into a
telephone it seems that you can be heard far away at the same instant.
But in fact there is a short — and usually unnoticeable — delay between
the speaking and the hearing, as electrical signals encoding your voice
travel through telephone lines at the speed of light.

Technical aside: Notice that the very definition of locality in-
volves concepts like cause and effect, concepts that assume a
deterministic world. Because quantum mechanics is not deter-
ministic and events can take place without causes, the concept
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qf locality becomes more subtle and complex. The technical
literature is thus full of terms like “active locality”, “passive

locality”, “non-locality”, and “alocality”.

The assgmption of locality is so natural and commonplace that it has
been enshrined in poetry:*

?nd when the loss has been disclosed, the Secret Service say:
It must have been Macavity!” — but he’s a mile away.

Einstein’s _theory of relativity puts the assumption of locality on an even
ﬁrmer basis, establishing that no causal agent can travel faster than a light
signal. Stanfiard quantum mechanics, as presented in this book, retains
the assumption of locality. But it is possible to produce alternatives to
standard quantum theory that are non-local.

I mention locality here because the experiments described below illumi-
nate our old ideas in a strange — but ultimately satisfying — new light.

6.1 Experiment 6.1: Distant measurements

source

In this expe:'riment a box labeled “source” produces a pair of atoms with a
net magnetic arrow of zero, and the two atoms fly off in opposite directions
Each atom is detected by its own vertical Stern-Gerlach analyzer. .

Observed results: The probability that the right atom leaves through
the + exit is %, the probability that it leaves through the — exit is 1

Similarly for the left atom. But if the right atom leaves through its + exit
jchen the left atom always leaves through its — exit, and vice versa Thi;
Is true regardless of which, if either, analyzer is closer to the sour‘ce. It
is also true regardless of the orientation of the two analyzers, as long as
both have the same orientation. ’

Here is a straightforward proposal that explains most of these obser-
vations: Simply suppose that when the pairs of atoms are produced, one
atom has m, = +mp and the other has m, = —my. This proposal exp’lains
the first four observations but it is inconsistent with the last one. If the two
analyzers are, say, horizontal instead of vertical, then under this proposal

* T.S. Eliot, Old Possum’s Book of Practical Cats.
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it would be possible (see problem 6.2) for both atoms to leave through
their + exits, or for both to leave through their — exits. But in fact
the two atoms always leave through opposite exits. The straightforward
proposal is appealing, but it must be wrong. Eventually we will replace the
straightforward yet incorrect proposal with a much more elaborate one,
a proposal called “quantum mechanics”. For the time being, however, it
is important to get a clear idea of how atoms actually do behave before
rushing into new proposals. So how do atoms behave?

Imagine, for example, that the left analyzer is five miles from the source,
while the right analyzer is five miles plus one inch from the source. Then
the left atom will go into its analyzer and be measured before the right
atom goes into its analyzer. Suppose that the left atom leaves the + exit.
Then it is known with certainty that the right atom has m, = —mg (i.e.
that when it gets to its analyzer it will leave through the — exit), but the
right atom itself has not been measured. It is impossible that the right
atom, ten miles away from the scene of the measurement, could have been
mechanically disturbed by the measurement of the left atom.” The first
alternative interpretation mentioned on page 38 must be rejected.

If you are familiar with Einstein’s theory of relativity, you know that
the fastest possible speed at which a message can travel is the speed
of light. Yet this experiment suggests a mechanism for instantaneous
communication: When the two atoms are launched, it cannot be predicted
whether the right atom will leave the + exit or the — exit once it gets
to its analyzer. But the instant that the left atom leaves the + exit of its
analyzer, it is known that the right atom (now ten miles away) will leave
the — exit once it gets to the right analyzer. This seems to be instantaneous
communication. But the important point is not whether “it is known that
the right atom will leave the — exit” but rather who knows that the right
atom will leave the — exit. Certainly the person standing next to the left-
hand analyzer knows it¥ but the person on the left won’t be able to tell
the person on the right except through some ordinary, slower-than-light
mechanism. The result is strange (Einstein called it “spooky”) but it does
not open up the door to instantaneous communication.

Quantum mechanics forces us to the brink of implausibility — but not
beyond.

Technical aside: The conceptual equivalent of this experiment
has been performed many times, usually with detectors located
yards rather than miles apart. But in 1997 Nicolas Gisin of

T Is it really “impossible”? In fact, this is the assumption of locality which, as T have mentioned,
is very natural but nevertheless an assumption.

 And the person standing next to the right-hand analyzer knows that the person standing next to
the left-hand analyzer knows it.
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the Upiversity of Geneva and his collaborators performed the
experiment with detectors in the Swiss villages of Bellevue and
Bernex, separated by nearly seven miles.

6.2 Experiment 6.2: Random distant measurements

Th1§ experiment is called the “test of Bell’s theorem”. The reasoning is
Intricate, so I give an outline here before plunging into the details. We
will build an apparatus much like the previous one with a central S(.)urce
that produces a pair of atoms, and with two detector boxes. Mounted
atop each detec‘tor box are a red lamp and a green lamp. Every time
the experiment is run, a single lamp on each detector box lights up. On
some runs the detector on the left flashes red and the detector oﬁ the
right ﬂashe.:s green, on other runs both detectors flash red, etc. When the
apparatus is analyzed by quantum mechanics, we find that’ the probabilit

of each detector flashing a different color is % But we can also analyzz
the apparatus under the assumption of local determinism. This analysis
shows that the probability of each detector flashing a different color is
§ or more. (Exactly how much more depends on exactly which local
de;terrmmstw scheme is employed, see problem 6.4.) Experiment agrees
with quantum mechanics, so the assumption of local determinism, natural
though it may be, is false. Any local deterministic scheme inclujding the
second alternative interpretation mentioned on page 38, rn[lst be wrong

The apparatus

This experiment uses the same source as the previous experiment, but
now the detectors are not regular Stern-Gerlach analyzers, but the tiltin
Stern-Gerlach analyzers described in section 5.3 (page 33,). Each of th§
two analyzers has probability % of being oriented as A, B, or C. If you
wish, you may set the detector orientations and then ha’ve the. source
generate its pair of atoms, but you will get the same results if you first
launch the_ two atoms and then set the detector orientations while the
atoms are in flight. Mounted on each detector are two colored lamps. If
an atom comes out of the + exit, the red lamp flashes: if an atom corﬁes
out the — exit, the green lamp flashes. ’

source
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The prediction of quantum mechanics

If the two detectors happen to have the same orientation, then this
experiment is exactly the same as the previous one, so exactly the same
results are obtained: the two detectors always flash different colors. On
the other hand, if the two detectors have different orientations, then they
might or might not flash different colors.

What is the probability that the two detectors flash different colors in
general, that is, when the two detectors might or might not have the
same orientation? Suppose the detector on the left is closer to the source
than the detector on the right. If the left detector were set to A and
flashed green (that is, —), then the atom on the right has m; = +mp.
In the previous chapter we saw that when such an atom enters the right
detector, it has probability % of causing a red flash and probability % of
causing a green flash. You can readily generalize this reasoning to show
that regardless of orientation, the two detectors flash different colors with
probability %

We conclude that:

(1) If the orientation settings are the same, then the two detectors
flash different colors always.

(2) If the orientation settings are ignored, then the two detectors
flash different colors with probability %

And these results are indeed observed!

The prediction of local determinism

In any local deterministic scheme, each atom must leave the source already
supplied with an instruction set that determines which lamp flashes for
each of the three orientation settings. For example, an. instruction set
might read (if set to A then flash red, if set to B then flash red, if set
to C then flash green), which we abbreviate as (RRG). One natural way
to implement an instruction set scheme would be through the atom’s
associated magnetic arrow: if the detector is vertical (orientation A) and
the atom’s arrow points anywhere north of the equator, then the atom
leaves through the + exit, while if the atom’s arrow points anywhere south
of the equator, then the atom leaves through the — exit. Similar rules hold
for orientations B and C: the atom always leaves through the exit towards
which its arrow most closely points.® The argument that follows holds for

$ This postulated scheme is inconsistent with quantum mechanics because it assumes that an atom’s
magnetic arrow points in the same manner that a classical stick does, with definite values for all
three projections miy, my, and m; simultaneously.
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this natural scheme, but it also holds for any other oddball instruction set
scheme as well.

To explain observation (1) above, assume that the two atoms are
launched with opposite instruction sets: if the atom going left is (GRG),
then the atom going right is (RGR), and so forth. (In the “natural”
scheme, the two atoms are launched with magnetic arrows pointing in
opposite directions.) Now let’s see how we can explain observation (2).

If the instruction set for the atom going left is (RRG), and for the atom
going right is (GGR), then what colors will the detectors flash? That
depends on the orientation settings of the two detectors. Suppose the left
detector were set to C and the right detector were set to A. Then the
third letter of (RRG) tells us that the left detector would flash green, and
the first letter of (GGR) tells us that the right detector would flash green.
The same list-lookup reasoning can be applied to any possible orientation
setting to produce the following table.

orientation settings detectors flash

AA RG: different
BB RG: different
CcC GR: different
AB RG: different
BA RG: different
BC RR: same
CB GG: same
AC RR: same
CA GG: same

There are nine possible orientation settings and five of them lead to
different color flashes. So if the atom going left is (RRG), then the
probability of different color flashes is g. A little thought shows that the
same result applies if the atom going left is (GGR), or (GRG), or anything
but (RRR) and (GGG). In the last two cases, the probability of different
color flashes is of course 1.

Now we know the probability of different color flashes for any given
instruction set. We want to find the probability of different color flashes
period. To calculate this we need to know what kind of atoms the
source makes. (If it makes only (RRR)s paired with (GGG)s then the
probability of different color flashes is 1. If it makes only (RRG)s
paired with (GGR)s then the probability of different color flashes is
g. If it makes [(RRR) paired with (GGG)] half the time and [(RRG)
paired with (GGR)] half the time, then the probability of different
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color flashes is half-way between % and 1.) Because I don’t gnt(,)'?]
exactly how the source works, I can’t say exactly what the probabil-
ity for different color flashes is. But I do know .that any source can
make only eight kinds of atoms, because only eight kinds of atoms

exist:

kind of atom going left probability of different color flashes

(RRR) i
(GGG) 1

(RRG) 5/9
(RGR) 5/9
(GRR) 5/9
(RGG) 5/9
(GRG) 5/9
(GGR) 5/9

Thus for any kind of source, the probabil.i‘.ty 05f different color flashes is
some mixture of probability 1 and probability 3. .

We conclude that in any instruction set scheme, the detectors will flash
different colors with probability g (55.5%) or more.

The conclusion

But in fact, the detectors flash different colors with probak?illty %!‘ ghe
assumption of local determinism has produced a conclus10n. .wh%c li
violated in the real world, and hence it must be wrong. Prob'ab'lhty is n(l)
just the easiest way out of the conundrum of projections, it is the only

way out.

Technical aside: What, only? Well, alrnos.t only. . In fact, our
arguments only rule out the existence of instruction sets, and
hence it permits alternatives to staqdard probabll‘lstlc quanturg
theory that do not rely on instructlon_ sets. David Bohm, an
others, have invented such deterministic but non-}c:cal alterr}a-
tives. If you dislike quantum mechanics because it’s too weird
for your tastes, this may make you happy. However, these
alternative theories are necessarily pretty weird them§elves. Eor
example, in Bohm’s theory the two atoms don’t need instruction
sets because they can communicate with §§Ch_other instanta-
neously. To be absolutely accurate, pr.obablhty is the only local
way out of the conundrum of projections.
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6.4 Problems

6.1 Instantaneous communication. In your own words, explain why you
cannot send a message instantaneously using the mechanism of ex-
periment 6.1. If quantum mechanics were deterministic rather than
probabilistic, yet the distant atoms still always left from opposite
exits, would you then be able to send a message instantaneously?
What if the operator of the left-hand Stern-Gerlach analyzer were
somehow? able to force his atom to come out of the + exit? (You
might want to answer by completing the following story: “An eccen-
tric gentleman in London has two correspondents: Ivan in Seattle
and Veronica in Johannesburg. Every Monday he sends each cor-
respondent a letter, and the two letters are identical except that he
signs one in red ink and one in green ink. The instant that Veronica
opens her letter, she knows ....”)

6.2 Quantal states for distant measurements. Mr. Parker is an intelligent
layman. He is interested in quantum mechanics and is open to
new ideas, but he wants evidence before he will accept wild-eyed
assertions. “I like the argument of experiment 6.1,” he says, “but
I don’t like the idea that when the left atom is detected, the right
atom instantly jumps into the state with m, = —mp. I think that
one atom is produced in the state my = +mp and the other atom is
produced in the state my = —mp, and that there are no instant state
jumps.” Show that Mr. Parker’s suggestion is consistent with the

9 Perhaps by magic powers, but not so magic as to change the fact that the two atoms always
leave from opposite exits.
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6.4
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obser\./at‘ion that “the right atom leaves the + exit with probability 4
and similarly for the left atom”. However, show also that if it wer2é

1 .
true, then on abput 7 of the experimental runs, both atoms would
emerge from their respective + exits.

A probability fqund through quantum mechanics. Tn the test of Bell’s
theorem, experiment 6.2, what is the probability given by quantum

mechanics that, if the orientation i i
that, settings are different, the t
detectors will flash different colors? ’ "

Afprobfzbility Jound through local determinism. The experimental test
0 _Bells theorem shows that .the postulated instruction sets do not
exist. But suppose that they did. Suppose further that a given source

produces the various possible instruction ' e
; sets
listed below: with the probabilities

kind of atom going left probability of making such a pair

(RRR) /2
(RRG) 1/4
(GRR) 1/8
(RGG) 1/8

If this particular source were used in i

a experiment 6.2, what would
be the probability that the detectors flash different colors? Hint:
Compare the draft lottery problem 5.6. .

7

Variations on a Theme by Einstein

The previous chapter covered the most important aspects of the Einstein—
Podolsky-Rosen conundrum. But some interesting new features have
come up since Aspect performed his experiments, and I thought you
might enjoy them, so I'll mention two of them here. You may skip this
chapter without interrupting the flow of the book’s argument.

The results of the Aspect experiment were welcomed by most scientists
as a final confirmation of the principles of quantum mechanics, principles
that had already been verified magnificently in numerous experiments
that were not as clean nor as easy to understand as the test of Bell’s
theorem. But scientists also looked for possible flaws in the confirmation,
and they found one. We have discussed an ideal experiment, in which
the source produces a pair of atoms and each tilting analyzer detects one
of them. But in Aspect’s real experiment, it often happened that after
the source launched its atoms only one of the two atoms was detected,
and sometimes neither of them were. This is not surprising: perhaps one
of the atoms collided with a stray nitrogen molecule and was deflected
away from its detector, or perhaps the detector electronics were pausing
to reset after detecting one atom when a second atom rushed in. For these
reasons, in analyzing his experiment Aspect ignored cases where only one
atom was detected. But another possibility is that each atom is generated
with an instruction set which could include the instruction “don’t detect
me”. If this possibility is admitted, then one can invent local deterministic
schemes that are consistent with Aspect’s experimental results.

Personally, I regard this objection as far-fetched. But either of the
two proposed experiments described here would overrule this objection
definitively, because both of them produce situations in which quantum
mechanics predicts that something might happen, whereas local determin-
ism predicts that the same thing will never happen. Neither experiment
has been executed in its entirety, but work is in progress on both and the

49
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preliminary results announced to date support quantum mechanics and
oppose local determinism.

71 The Greenberger—Horne—Zeilinger variation on the
Einstein—Podolsky-Rosen experiment

This experiment involves a source that ejects three atoms in an initial
state that is.hard to produce and even harder to describe. It is impossible
fo.r me to justify the prediction of quantum mechanics in a book at
this level. For these two reasons I considered ignoring this experiment
altqgether in writing this book. But there is a payoff so rich that I had
to 1nc.1ude it: Whereas the test of Bell’s theorem gives a circumstance
in which the quantal probability for something happening is 50% while
the local deterministic probability is more than 55%, the Greenberger—
Horne-Zeilinger (or GHZ) variation gives a circumstance in which the
quantal probability is 1 and the local deterministic probability is 0.

A top view of the Greenberger-Horne-Zeilinger experiment is sketched
below. The source ejects three atoms in a special state, and each atom flies

P
N

off to its own QCtector. Like the detectors in the test of Bell’s theorem,
each box contains a Stern-Gerlach analyzer that can be tilted and set to
various orientations. But unlike the tilting analyzers used before, these

analyze.rs can be set to only two orientations: the z direction (vertical) or
the x direction (horizontal).
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Back panel of each Greenberger—
Horne—Zeilinger detector, showing
X the two orientations for its inter-
nal Stern—Gerlach analyzer. This
analyzer is set to orientation z.

The orientations of the three analyzers are reported through a code like
xxz, which means that detectors A and B are set to x while detector C is
set to z. As with the test of Bell’s theorem (experiment 6.2, page 42), the
detector orientations can be set after the atoms have been launched, while
they are still in flight toward the detectors.

The predictions of quantum mechanics are:

detector settings what happens

(1) ZXX odd number (1 or 3) go to +
(2) XXz odd number (1 or 3) go to +
(3) XzX odd number (1 or 3) go to +
4) zzz even number (0 or 2) go to +
(5) other not used in this argument

Thus whenever two analyzers are set to x and one to z, either all three
atoms leave through the + exits of their respective analyzers, or else one
leaves through the + exit and the other two leave through — exits.

The argument for instruction sets

I will give an argument based on line (1) of the prediction that makes
it seem reasonable that each atom is launched from the source with an
instruction set, so that it will know whether to go to + or to — when it
reaches its detector, regardless of what the settings of the detectors are.
If you find this assertion reasonable already, you may skip the argument.
Remember, however, that quantum mechanics maintains that this natural
surmise is not correct, because an atom with a definite value of m, does
not have a definite value of m,.

Suppose that I wished to measure the value of m, for the atom going
to detector C. One way to do it would be by setting A to z, B to x, and C
to x, corresponding to line (1) of the prediction. Then I ask what would
happen if T used only the detectors at A and at B, and forgot about the
detector at C. (This despite the fact that it is the atom going to C that
I'm interested in.) If detector A (set to z) measured +, and detector B
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(set to x) measured +, then detector C (set to x) would have to measure
+ as well, because according to line (1) of the prediction there must be
either one or three atoms going to +. So if the atoms going to A and B
come out through the + exit, then I don’t need to actually measure m, of
the atom going to C — I know what’s going to happen at C merely by
observing what had happened at A and B.

In fact, the same is true regardless of how the atoms come out at A
and B, as long as the detectors are set to zxx:

outcomes at outcome at

A B C

+ + +
given + - then -

—_ + —

— - +

In short, if the settings are zxx, then by reading the outcomes at A and
B, T can determine the outcome at C. I don’t need to actually put an
analyzer at C. The same is true for other directions: reading the outcomes
at B and C enables me to determine the outcome at A, and reading the
outcomes at A and C enables me to determine the outcome at B. And a
glance at the quantal prediction on page 51 will convince you that parallel
statements hold if the settings are xxz or xzx. In short, lines (1), (2),
and (3) of the prediction enable you to determine either m, or m, of any
atom merely by measuring appropriate quantities for the other two atoms,
without actually touching the atom in question.

Because the detectors don’t communicate with each other, the natural
interpretation of this fact is that when an atom is launched from the source,
it must already “know” how it will behave at the detector, regardless of
the setting of that detector. Such an “instruction set” might be encoded
into the direction of the atom’s magnetic arrow, but it could conceivably
be encoded in some strange or complicated way. In what follows T make
no assumption about how the instruction set is encoded, only that it exists.

The prediction of local determinism

I will write down the instruction set of all three atoms using a symbol like

atom heading toward
A B C
+ - - —if set to z
( - - + ) «— if set to x

This notation means that the atom heading toward detector A will leave
through the + exit if that detector is set to z, through the — exit if it is set
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to x. The atom heading toward detector B will leave the — exit regardless
of setting. The atom heading toward detector C will leave the — exit if
that detector is set to z, the + exit if it is set to x.

Now I ask: What instruction sets are consistent with the quantal
prediction? We will examine the first four lines of the table on page 51 in
turn.

Line (1) of the table pertains to detector settings zxx, so it has nothing
to say about what will happen if A is set to x, if B is set to z, or if C is
set to z. In the following table the instructions for such settings are set
to “?”. Notice from the table that with these settings either one or three
atoms leave through the + exit, and therefore the only instruction sets
compatible with line (1) are the following:

instruction sets consistent with line (1)
+ 7 7 - 7
(x20) (7 42)
- 7 2 + 7 ?
(28 (v +4)

Which of these instruction sets is consistent with line (2) of the quantal
prediction as well? We begin by considering only instruction sets of the
type shown in the upper left above. Line (2) involves the setting xxz, so
this reasoning will enable us to fill in the x (bottom) slot of column A and
the z (top) slot of column C. We already know, from the entry above, that
the atom heading for detector B will come out through the — exit. Since
a total of either one or three atoms must come out through the + exit in
this circumstance, then of the atoms heading for A and C, one must come
out through + and the other through —. Thus the instruction set must be

either
( + 7 + ) or ( + 2?7 - )

The same game can be played with the other three types of instruction
sets consistent with line (1), resulting in:

instruction sets consistent with lines (1) and (2)
+ 7 + + 7 - - 7 - - 7 4+ )
(212 (312) (242) (542
- 7 - - 7 + + ? - + ? + )
( + - + ) ( - - + > < - + + ) ( + + +
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From here it is easy to find the instruction sets consistent with line (3)
of the quantal prediction as well:

instruction sets consistent with lines (1), (2), and (3)
(frr) (o) (2rD) (R0
- - - + - - - + - + + -
(vra) (E20) () (B8 5)
+ - + - - + - + + + + +

These eight, now completely determined, instruction sets are the only ones
consistent with the quantal predictions given in lines (1), (2), and (3).

Which of these eight instruction sets is consistent with line (4) as well?
In line (4) the detectors are set to zzz, so only the upper row of the
instruction sets are relevant. The instruction set shown in the upper left
above would result in all three atoms leaving through the + exits of their
analyzers. But according to quantum mechanics (see line (4) of the quantal
prediction on page 51), in this case an even number of atoms must leave
+ exits. Three is an odd number, so the instruction set in the upper left
above must be ruled out as inconsistent with the predictions of quantum
mechanics. The instruction set in the lower right must be ruled out for
the same reason. All the remaining instruction sets call for exactly one of
the three atoms to leave through + exits. But one is also an odd number!
In short:

instruction sets consistent with lines (1), (2), (3), and (4)

NONE!

Once again, the existence of instructions sets — regardless of how subtly
the instructions are encoded — is inconsistent with the predictions of
quantum mechanics.

7.2 Hardy’s variation on the Einstein—Podolsky—Rosen experiment

This variation is harder to describe and I will not treat it in detail. It
involves a source that ejects two atoms toward two different detectors,
each of which can be tilted to two different angles, and an unusual initial
state at the source. The experiment looks for a certain combination
of events. The local deterministic prediction is that this combination
will never happen. The quantal prediction is that it will happen with a
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Fig. 7.1. The golden rectangle.

probability of 9.017%. Thus if the combination happens in an experiment
even once, then local determinism must be wrong.

One thing that intrigues me about this variation is the mathematical
origin of the probability 0.09017.... The number is g°, where the constant
g is equal to (y/5—1)/2 = 0.6180... and is called “the golden mean”.
If a line of length 1 is divided into two pieces so that the ratio of the
length of the whole to the length of the long piece is equal to the ratio
of the length of the long piece to the length of the short piece, then the
long piece will have length g. The ancient Greeks considered a rectangle
of width 1 and height g to be the “ideal” (most beautiful) rectangle.
The Parthenon in Athens, for example, has a height of g times its width.
Rectangles with these proportions also appear in the work of Leonardo
da Vinci, Titian, and Mondrian. In addition the number is connected with
the Great Pyramid, the star pentagram (which in one form appears in
the American flag and which in another is said to call up the devil), the
Fibonacci sequence, recursion relations, and with algorithms for locating
the minimum of a one-variable function. But this is the first time I've ever
seen it appear in quantum mechanics.
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8

Optical Interference

8.1 Overview

We have uncovered the first central principle of quantum mechanics,
which is that the outcome of an experiment cannot, in general, be predicted
exactly; only the probabilities of the various outcomes can be found. In
particular, for the magnetic arrow of a silver atom, we know:

If m, has a definite value, then m, doesn’t have a value. If you
measure my, then of course you find some value, but no one
(not even the atom itself!) can say with certainty what that
value will be — only the probabilities of measuring the various
values can be calculated.

How do you like it? Do you feel liberated from the shackles of classical
determinism? Or do you feel like Matthew Arnold, who wrote in Dover
Beach that

... the world, which seems
To lie before us like a land of dreams,
So various, so beautiful, so new,
Hath really neither joy, nor love, nor light,
Nor certitude, nor peace, nor help from pain;
And we are here as on a darkling plain
Swept with confused alarms of struggle and flight,
Where ignorant armies clash by night.

Regardless of your personal reaction, it is our job as scientists to describe
nature, not to dictate to it!

In particular, we know that the model of a magnetic needle as an arrow,
so carefully developed in chapter 2 and so correct within the domain of
classical mechanics, must be wrong. In classical mechanics, magnetic
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