The influence of the visual modality on language structure: Insights from sign language and gesture

Dr. Pamela Perniss University of Brighton

> 28th April 2017 Linguistics Prague

 $27^{\rm th}-29^{\rm th}$ April 2017 Faculty of Arts, Charles University

The visual modality

- Communicative expression in the visual modality
- Meaningful bodily action
- Hands and body as articulators in a visible space
- Two main types
 - Sign language
 - Co-speech gesture
- Integral to and constitutive of language

Communicative expression in the visual modality

Sign languages

- Natural languages that emerge within Deaf communities
- Share linguistic properties with spoken languages on all levels
- Process of native language acquisition parallel to spoken language
- Neural substrates of language processing similar to spoken language

Co-speech gesture

- Ubiquitous, unwitting accompaniment to speech
- Semantically and temporally integrated with speech
- Not interpretable without speech
- Sign and gesture are notably different in communicative function, but share modality of expression

Affordances of the visual modality

High degree of iconicity

- Use of space and hands to create forms that resemble objects/events in visible environment
- Object shape, location, motion
- Directly (=literally) embodied representation
 - Use of body to depict bodily experience
 - Action, movement, affective displays

Iconic and embodied representation for...

... in both sign and gesture

...with shared systems across sign languages

Shared systems: Classifiers – Classifier predicates

- Handshape represents whole referent (entity) or manipulation (handling) of referent
- Placement/movement in space encodes location, motion, action information

Classifier predicates

Canonical structure of locative expression in sign languages

Classifier predicates encode referent location Simultaneous representation of referents

Similarity of expression across sign languages

- The iconic and embodied affordances of the modality assumed to create similarity of expression across different sign languages (e.g. Aronoff et al. 2003)
 - Relative uniformity between sign languages in range of domains that rely on use of space and body (Meier 2002; Sandler & Lillo-Martin 2006)
 - In contrast to vast diversity of encoding in spoken languages in spatial domains (e.g. Levinson & Wilkins 2006; Strömqvist & Verhoeven 2004)

Similarity of expression between sign and gesture

- The iconic and embodied affordances of the modality also motivates assumptions of similarity between sign and gesture
 - Gestural (imagistic) nature of sign language structures that use space and body to depict visual-spatial-action information (e.g. Liddell 2003)

But...

- Relatively little empirical investigation in these domains
 - Few comparative studies between sign languages in spatial and action domains
 - Few comparative studies between sign and gesture in spatial and action domains
- Cross-linguistic comparison is usually cross-modal comparison, i.e. sign-spoken comparison
 - Sign-spoken comparison needs to be speech and gesture compared to sign

Language-specific variation (typology effects)

- Sign language typology is a relatively young field
- **Typological variation in sign languages** (Perniss, Pfau & Steinbach 2007; Pfau & Steinbach 2006; Zeshan 2004; Zeshan & Perniss 2008)
 - Possession, Existence, Interrogatives, Negation, Auxiliaries, Word order, Plurals
- Investigation has been in domains arguably less directly influenced by iconic and embodied affordances of the visual modality
 - More sign-spoken than sign-sign comparison (e.g. typology of motion event encoding, Galvan & Taub 2006)

What I will focus on today

- 1. Cross-linguistic investigation of two sign languages
 - German Sign Language (*Deutsche Gebärdensprache*, DGS)
 - Turkish Sign Language (*Türk Isaret Dili,* TID)
- 2. Cross-linguistic and cross-modal investigation of sign and spoken (+gesture) languages
 - German Sign Language (*Deutsche Gebärdensprache,* DGS) and German (speech and co-speech gesture)
 - Turkish Sign Language (*Türk Isaret Dili*, TID) and Turkish (speech and co-speech gesture)

Why DGS and TID?

- Historically unrelated
- Similarities in historical and sociolinguistic situation
 - Compulsory deaf education since begin of 20th century
 - Oral tradition in deaf schools
- Typological distinctness of surrounding spoken languages (German and Turkish)
 - Similarities between DGS and TID through language contact with spoken languages less likely
 - Similarities from co-speech gesture (known to be influenced by linguistic structure, Kita & Özyürek 2003) less likely
- Familiar and accessible to us!

Why German and Turkish

- Typologically distinct languages in terms of motion event encoding
 - German: satellite-framed
 - Turkish: verb-framed
- Assume differences in speech and co-speech gesture in encoding of motion events
- Familiar and accessible to us

Study 1:

Do the iconic and embodied affordances of the visual modality shape different sign languages in the same way?

Domain of spatial representation (locative expression)

Perniss, Zwitserlood & Özyürek 2015, Language

Data collection: Participants

- German Sign Language (DGS)
 - 12 signers (9 native, 3 early)
 - Data collected in Aachen and Essen, Germany
- Turkish Sign Language (TİD)
 - 12 signers (all native)
 - Data collected in Izmir, Turkey

Data collection: Picture descriptions

- Photographs of (topologically non-contrastive) Figure-Ground and Figure-Figure relationships
- Different objects (cups, plates, pens, boats, birds)
- Different number of tokens (1, 2, 3-4) of each object
- Discourse context

Questions

- Do we find language-specific differences between DGS and TID in locative expression?
- Focus on features of spatial expression assumed to be particularly shaped by affordances of visual modality (and thus similar across sign languages)
 - Entity, location and spatial relationship representation
- Semantic specificity of forms encoding these features
 - *Entity:* Iconic vs. generic
 - Location: Relative location (e.g. distance between referents)
 - Spatial relationship: Simultaneous vs. non-simultaneous

Coding and analysis

- Analyzed expressions that contained:
 - Explicit mention of Ground (e.g. table)
 - Localisation of Figure objects (e.g. cup)
- Coded for:

DGS

- Entity representation (localisation devices)
- Location representation
- Representation of spatial relationship

CUP TABLE cup-next-to-cup (Ground)

(Figure)

DGS

Results: Localisation devices (entity representation)

SASS = Size and Shape Specifier

ΤİD

Noun localisation

Noun

ТİD

CL localisation

TİD generic form

- Abstracts from referent shape
 - Extended finger used for all referents
- Abstracts from location
 - Distance between fingers (finger=referent) doesn't represent relative distances
- Highlights next-to relationship

DGS generic form

- Abstracts from referent shape
 - Flat hand used for all referents
- Relative distance can be represented
 - Distance between locations marked by hand (hand=referent) can be modulated
- Highlights next-to relationship

Simultaneous referent representation: Figure-Ground (*on* relationships), 1 figure only

CUP cup-(on-table)

Simultaneous referent representation: Figure-Figure (*next-to* relationships), 2-4 figures

1

What did simultaneous referent representation look like?

DGS bimanual form

Semantically specific about entity and about spatial relationship

TID unimanual form

LH: RH: CUP

FOUR

CL(cup).locC1

NEXT-TO-4-LoC

Summary

- Iconic affordances differentially shape spatial language in different sign languages
 - Iconic affordances not exploited in same way or to same degree
- Different preferences (noun sign vs. SASS) for same available devices
- Little use of simultaneity for direct representation of Figure-Ground on relationship
- Language-specific ways of encoding (highlighting) semantic feature *next-to*-ness

Why is simultaneity so rare for Figure-Ground *on* relationships?

 Typicality of spatial relationships may affect use of simultaneity to encode on relationships

TID

 Influence of semantic/pragmatic constraints on how iconic affordances are exploited

Why is simultaneity so rare for Figure-Ground *on* relationships?

 Similar to semantic/pragmatic constraints on encoding of spatial relationships in some spoken languages

Summary

- Iconic affordances differentially shape spatial language in different sign languages
- Iconic affordances not always exploited
- Language-specific ways of encoding semantic features of spatial relationship (SIDE-BY-SIDE-ness)

DGS

TID

Study 2: Do the iconic and embodied affordances of the visual modality shape

- different sign languages in the same way?
- sign and gesture in the same way?

Event representation (caused motion)

Perniss & Özyürek, in preparation

Data collection: Participants

- German Sign Language (DGS)
 - 12 signers (9 native, 3 early)
 - Data collected in Aachen and Essen, Germany
- Turkish Sign Language (TİD)
 - 12 signers (all native)
 - Data collected in Izmir, Turkey
- German
 - 12 native speakers
 - Data collected in Frankfurt (Oder)
- Turkish
 - 12 native speakers
 - Data collected in Istanbul, Turkey

Data collection: Event narration

- Cartoon clips from Canary Row and Die Sendung mit der Maus
- Focussed on 6 caused motion events, where motion caused by manual action (manner of handling)
- Clips were narrated to addressee, who then re-narrated

Questions

- Do the iconic and embodied affordances of the visual modality drive similarity of expression in this domain?
 - Between sign languages?
 - Between sign and gesture?
- How does difference in spoken languages impact?
 - Satellite-framed vs. verb-framed languages (Talmy 1985)
 - Influence of spoken language structure on gestural representation (Kita & Özyürek 2003)
 - Gesture as a substrate of sign language structure (Wilcox et al. 2010)

Coding and analysis

- Encoding in visual modality (sign and co-speech gesture)
 - Both action and motion components expressed
 - Separate forms (segmented)
 - Single form (conflated)
 - Only one component expressed (Action only or Motion only)
- Encoding in speech
 - Both action and motion components expressed
 - 2 clauses
 - 1 clause
 - Only one component expressed (Action only or Motion only)

Predictions

Spoken languages

- German is satellite-framed (like English; e.g. to roll down); Turkish is verb-framed (e.g. to descend rolling) (Talmy 1985)
- Expect single clause expression of components in German; expect two clause expression in Turkish (Kita & Özyürek 2003)

Co-speech gesture

 Influenced by typological structure of speech (Kita & Özyürek 2003)
Expect conflation of components into single gesture in German cosp. gesture; expect separate gestures in Turkish co-sp. gesture

Sign languages

- (Iconic) mappings must be clearly interpretable (Singleton et al. 1996) and shared spatial system predicts similarity in event packaging and linguistic structure (Benedicto & Brentari 2004; Schembri et al. 2005)
- Expect separation of components in both German and Turkish sign languages

Results: Speech and Gesture

SPEECH

CO-SPEECH GESTURE

Examples: Differences in co-speech gesture

German co-speech gesture Conflated action/motion representation

Turkish co-speech gesture Action only representation

VIDEO EXAMPLES

Speech: *und [nimmt die beiden Sachen mit]* and takes the two things away-with

[heyecanlı bi şekilde alip onları], gidiyo, sonra [dışarı] çıkıyo. excited in a way takes them, goes, then out exits

Results: Sign and gesture

GESTURE

TurkGest

SIGN

0.80

0.70

0.60

41

Examples: Similarity between SLs

German SL Segmented action/motion representation

Turkish SL

Segmented action/motion representation

VIDEO EXAMPLES

Examples: But also differences...

Turkish SL Conflated action/motion representation

VIDEO EXAMPLE

Summary

Spoken languages

- German speech exhibits expected single clause pattern
- Turkish speech exhibits variable encoding, unlike expected pattern (cf. Furman 2012), but still different from German

Co-speech gestures

- German co-sp. gesture conflation pattern follows speech pattern
- Turkish co-sp. gesture encodings more likely to focus on just one component

Sign languages

- Overall similarity in encoding, and different from the surrounding co-sp. gestures (no evidence for gesture as substrate on this level)
- Likely to represent both components, and in segmented way (consistent with expected constraints on iconic representation)
- Possible typological variation in preference for conflation vs. segmentation pattern (beyond expected constraints on iconic representation)

Discussion

- Iconic and embodied affordances of the visual modality differentially modulated depending on whether the modality is used within a one-channel (sign) or a two-channel (gesture) system
- How does nature of one-channel vs. two-channel system shape expression?

Co-speech gesture: Two channels

- Spoken language communication spreads information across two channels – speech (vocal) and gesture (visual)
 - Speech is dominant channel and carries primary burden of semantic encoding
 - Gesture representations shaped by semantic and temporal matrix provided by speech
- Gestures iconic with aspects of the event, but need not be veridical representations (i.e. ambiguity is tolerated)
- Gestural representations influenced by linguistic packaging of event information in speech (cf. Interface Model, Kita & Özyürek 2003)
 - Gestures conflating action and motion predominantly co-occur with predicates like *rüberschwingen* (to swing across) or *rausnehmen* (to take out)

Sign: One channel

- Signed language communication uses one channel (visual) for expression
 - Visual channel assumes full duty of expression
 - Visual expression not constrained by alignment with another channel (speech)
- Iconic mappings (and reference in general) must be clearly interpretable (i.e. ambiguity not tolerated) (cf. Singleton et al. 1996)
 - Separation of action and motion components driven by onechannel visual language system
 - Motivates linguistic constraints, e.g. transitive/intransitive alternation of entity and handling classifier predicates (Benedicto & Brentari 2004)
- Independence of channel means individual iconic and embodied representations have time/freedom to unfold

Discussion

- Modality effects have been generally characterized as
 - Sign language vs. spoken language
 - Resulting from fact that sign language motion/action encoding is "gestural" in nature (due to shared affordances of the visual modality)
- Full understanding of modality effects requires
 - Comparison across different systems of expression sign, speech, co-speech gesture
 - Understanding how representation is influenced by constraints on modality (visual vs. vocal; unimodal vs. bimodal system) and typology (linguistic patterns)

Understanding modality and typology effects

- Comparison across different systems of expression – sign, speech, co-speech gesture
- Understanding how representation is influenced by factors relating to modality and typology
 - Visual vs. vocal modality
 - Unimodal vs. bimodal system
 - Integration of linguistic and non-linguistic expression in visual system
 - Range of linguistic patterns
 - Influence of (language-specific) semantic/pragmatic constraints

Conclusion

- Iconic and embodied affordances of modality play strong role in shaping expression
 - Sign languages map space to space, form to form, body-part to body-part
- Sign languages may display more diversity in spatial language than has been previously assumed (and in a way more comparable with diversity found in spoken language)
 - Forms differing in semantic specificity
 - Language-specific forms
 - Different preferences in use of shared devices
- Maybe less diversity with embodied representation (where body movement needs to be interpreted)

Thanks for your attention!

And thanks to: Şule Kibar Dalya Samur Beyza Sümer Lian van Hoof Uwe Zelle Deaf and Hearing participants