Automata and Grammars

SS 2018

Assignment 6

Solutions are to be presented at the Seminary on Thursday, April 5, 2018.

Problem 6.1 [Right and Left Quotients]

Let L and P be two languages over Σ . The right quotient L/P of L by P is defined as

$$L/P = \{ u \in \Sigma^* \mid \exists v \in P : uv \in L \}$$

and the *left quotient* $P \setminus L$ of L by P is defined as

$$P \setminus L = \{ v \in \Sigma^* \mid \exists u \in P : uv \in L \}.$$

Let $A = (Q, \Sigma, \delta, I, F)$ be an NFA such that L(A) = L.

- (a) Prove that the right quotient L/P is a regular language by showing how to obtain an NFA for L/P from A and P.
- (b) Prove that the left quotient $P \setminus L$ is a regular language by showing how to obtain an NFA for $P \setminus L$ from A and P.

Problem 6.2. [Regular Expressions]

- (a) Write a regular expression that defines the language on $\{a, b\}$ that contains exactly those words that begin with 'ba' and that end with 'ab'.
- (b) Write a regular expression that defines the language on $\{a, *\}$ that contains exactly all those words of the form a, a * a, a * a * a, ...
- (c) Convert the following regular expressions into equivalent ε -NFAs by using the construction from the proof of Theorem 2.30:
 - $(ab+c)^*$,
 - $((ab+c)^*a(bc)^*+b)^*$.

Problem 6.3. [Regular Expressions]

Convert the NFA $A = (\{q_0, q_1, q_2\}, \{a, b\}, q_0, \{q_1, q_2\}, \delta)$ into an equivalent regular expression using the construction from the proof of Theorem 2.31, where δ is defined as follows:

δ	q_0^{\leftarrow}	$q_{1\rightarrow}$	$q_{2\rightarrow}$
a	q_0	q_2	q_0
b	q_1	q_1	q_1

Problem 6.4. [Regular Expressions]

Prove that the following identities hold for all regular expressions r, s, t:

(1)
$$r + \emptyset = r$$
,
(2) $r\varepsilon = r$,
(3) $r\emptyset = \emptyset$,
(4) $r(s+t) = (rs) + (rt)$,
(5) $\emptyset^* = \varepsilon$,
(6) $(r^*)^* = r^*$,
(7) $(r+s)^* = (r^*+s^*)^*$,

Hint: For proving (1) one must show that $L(r+\emptyset) = L(r)$ holds for each regular expression r, and analogously for the other identities.