Automata and Grammars #### SS 2018 ### Assignment 5 Solutions are to be presented at the Seminary on Thursday, March 29, 2018. ## **Problem 5.1** [2DFA] Let $A = (Q, \Sigma, \triangleright, \triangleleft, \delta, q_0, F)$ be the 2DFA with initial state p_0 and final state q_4 that is given by the following table: | δ : | p_0 | q_0 | q_1 | q_2 | $\overleftarrow{q_3}$ | $\overrightarrow{q_0}$ | $\overrightarrow{q_1}$ | $ \overrightarrow{q_2}$ | $\overrightarrow{q_3}$ | q_4 | |------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------| | a | (p_0,R) | $(\overline{q_1}, L)$ | $(\overline{q_2}, L)$ | $(\overleftarrow{q_3}, L)$ | $(\overleftarrow{q_2}, L)$ | $(\overrightarrow{q_1},R)$ | $(\overrightarrow{q_2},R)$ | $(\overrightarrow{q_3},R)$ | $(\overrightarrow{q_2},R)$ | (q_4,R) | | b | (p_0,R) | $(\overline{q_0}, L)$ | $(\overline{q_0}, L)$ | $(\overleftarrow{q_2}, L)$ | $(\overleftarrow{q_3}, L)$ | $(\overrightarrow{q_0},R)$ | $(\overrightarrow{q_0},R)$ | $(\overrightarrow{q_2},R)$ | $(\overrightarrow{q_3},R)$ | (q_4,R) | | c | $(\overleftarrow{q_0}, L)$ | _ | _ | _ | _ | _ | _ | (q_4,R) | (q_4,R) | _ | | \triangleright | (p_0,R) | $(\overrightarrow{q_0},R)$ | $(\overrightarrow{q_1},R)$ | $(\overrightarrow{q_2},R)$ | $(\overrightarrow{q_3},R)$ | _ | _ | _ | _ | _ | | \triangleleft | _ | _ | _ | _ | _ | _ | _ | _ | _ | _ | - (a) Describe the step-by-step computation of A on input abacba. - (b) Determine all seven crossing sequences of the above computation. - (c) Which language is accepted by A? ## Problem 5.2 [Moore Automaton] Design a Moore automaton with input and output alphabet $\{0,1\}$ that realizes the function f that is defined as follows: $$f(a_m a_{m-1} \cdots a_2 a_1) = \begin{cases} 1, & \text{if } \sum_{i=1}^m a_i \cdot 2^{i-1} \equiv 0 \mod 4, \\ 0, & \text{otherwise.} \end{cases}$$ ### Problem 5.3 [Mealey Automaton] Design a Mealey automaton with input and output alphabet $\{0,1\}$ that realizes the following function: - output 1, if the current input symbol is a part of a sequence of 1s, which is directly preceded by the factor 00, - output 0, otherwise. ## Problem 5.4 [Moore and Mealey Automata] Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton and let $B = (Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ be a Mealey automaton. For $u \in \Sigma^*$, let $F_A(u) \in \Delta^*$ and $F_B(u) \in \Delta^*$ be the output words that are generated by A and B on input u. The automata A und B are called *equivalent*, if $F_A(u) = \sigma(q_0) \cdot F_B(u)$ for all $u \in \Sigma^*$. Prove the following statements: - (a) For each Moore automaton, there exists an equivalent Mealey automaton. - (b) For each Mealey automaton, there exists an equivalent Moore Automaton. # Problem 5.5 [Finite-State Transducer] A regular substitution $\varphi: \Sigma^* \to 2^{\Gamma^*}$ maps each letter $a \in \Sigma$ to a regular language $\varphi(a) \in \mathsf{REG}(\Gamma)$ and then $\varphi(a_1 a_2 \cdots a_n) = \varphi(a_1) \cdot \varphi(a_2) \cdots \varphi(a_n)$. - (a) Let $\varphi_1: \{a,b\}^* \to 2^{\{a,b\}^*}$ be the regular substitution that is given through $a \mapsto \{a\}^*$ and $b \mapsto \{b\}^*$. Construct a finite-state transducer T_1 such that $T_1(w) = \varphi_1(w)$ for each word $w \in \{a,b\}^*$. - (b) Prove that each regular substitution can be realized by a finite-state transducer, that is, if $\varphi: \Sigma^* \to 2^{\Gamma^*}$ is a regular substitution, then there exists a finite-state transducer T such that $T(w) = \varphi(w)$ for each word $w \in \Sigma^*$.