2.6 Automata with Output

A Moore automaton is a DFA in which an output symbol is assigned to each state. Accordingly, a Moore automaton A is given through a 6-tuple $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$, where

- Q is a finite set of (internal) states,
- $-\Sigma$ is a finite input alphabet,
- $-\Delta$ is a finite output alphabet,
- $-q_0 \in Q$ is the initial state,
- $-\delta: Q \times \Sigma \to Q$ is the transition function, and
- $-\sigma: Q \to \Delta$ is the output function.

For $u = a_1 a_2 \dots a_n$, let $q_i := \delta(q_0, a_1 a_2 \dots a_i)$, $i = 1, 2, \dots, n$, that is, on input u, A visits the sequence of states $q_0, q_1, q_2, \dots, q_n$. During this computation A generates the output

$$\sigma(q_0)\sigma(q_1)\sigma(q_2)\ldots\sigma(q_n)\in\Delta^{n+1}$$
.

Example:

Let A be the Moore automaton that is given by the following graph, where the output symbols are written as external markings to the various states:

Claim:

If
$$u = b_1 b_2 ... b_n$$
, then $\sigma(u) = r_0 r_1 ... r_n$, where $r_i \equiv \sum_{j=1}^{r} b_j \cdot 2^{i-j} \mod 3$.

If u = bin(m), that is, $m = \sum_{j=1}^{n} b_j \cdot 2^{n-j}$, then the last symbol r_n of the output $\sigma(u)$ is just the remainder of m mod 3.

Proof.

For i = 0, 1, 2, $\sigma(q_i) = i$. Hence, it suffices to prove the following:

(*) For all
$$u = b_1 b_2 \dots b_n$$
, $\delta(q_0, u) = q_i$, where $i \equiv \sum_{j=1}^n b_j \cdot 2^{n-j} \mod 3$.

If n = 0, then $u = \varepsilon$, and $\delta(q_0, u) = q_0$.

If
$$n = 1$$
, then $u = b_1 \in \{0, 1\}$. Hence, $\delta(q_0, u) = \begin{cases} q_0, & \text{for } b_1 = 0, \\ q_1, & \text{for } b_1 = 1. \end{cases}$

Proof (cont.)

Assume that the statement (*) has been verified for some $n \ge 1$, and let $u = b_1 b_2 \dots b_n b_{n+1}$.

Then
$$\delta(q_0, u) = \delta(\delta(q_0, b_1 b_2 \dots b_n), b_{n+1}).$$

For i = n, the statement holds by the induction hypothesis.

For index n + 1, the following can be checked by case analysis:

$$\delta(\delta(q_0, b_1b_2...b_n), b_{n+1}) = q_i$$
, where $i \equiv \sum_{j=1}^{n+1} b_j \cdot 2^{n+1-j} \mod 3$.

This completes the proof.

A Mealey automaton is a DFA that outputs a symbol during each transition. Accordingly, a Mealey automaton A is specified by a 6-tuple $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$, where $Q, \Sigma, \Delta, \delta$, and q_0 are defined as for a Moore automaton, while $\sigma : Q \times \Sigma \to \Delta$ is the output function.

The output function σ can be extended to a function $\sigma: Q \times \Sigma^* \to \Delta^*$:

$$\sigma(q, \varepsilon) := \varepsilon$$
 for all $q \in Q$,
 $\sigma(q, ua) := \sigma(q, u) \cdot \sigma(\delta(q, u), a)$ for all $q \in Q, u \in \Sigma^*, a \in \Sigma$.

Example:

Let A be the Mealey automaton given through the following graph:

Let $L = \{0, 1\}^* \cdot \{00, 11\}$. On input $u = b_1 b_2 \dots b_m \in \{0, 1\}^m$, A produces output $v = c_1 c_2 \dots c_m \in \{y, n\}^m$, where

$$c_i = \begin{cases} y, & \text{if } b_1 b_2 \dots b_i \in L, \\ n, & \text{if } b_1 b_2 \dots b_i \notin L. \end{cases}$$

In state p_0 or p_1 , A "stores" the latest input symbol.

Let $A = (Q, \Sigma, \Delta, \delta, \sigma, q_0)$ be a Moore automaton and let $B = (Q', \Sigma, \Delta, \delta', \sigma', q'_0)$ be a Mealey automaton. For $u \in \Sigma^*$, let $F_A(u) \in \Delta^*$ and $F_B(u) \in \Delta^*$ be the output words that are generated by A and B on input u. Then $|F_A(u)| = |u| + 1$ and $|F_B(u)| = |u|$.

The automata A und B are called equivalent, if

$$F_A(u) = \sigma(q_0) \cdot F_B(u)$$

for all $u \in \Sigma^*$.

Theorem 2.26

- (a) For each Moore automaton, there exists an equivalent Mealey automaton.
- (b) For each Mealey automaton, there exists an equivalent Moore Automaton.

Proof.

As an exercise!

In fact, the equivalent automata can be constructed effectively!

A finite-state transducer (FST) T is given through a 6-tuple

$$T = (Q, \Sigma, \Delta, \delta, q_0, F),$$

where Q, Σ, Δ , and q_0 are defined as for a Mealey automaton, $F \subseteq Q$ is a set of final states,

and $\delta: D \to 2^{Q \times \Delta^*}$ is the transition and output function.

Here *D* is a finite subset of $Q \times \Sigma^*$, and

 δ associates a finite subset of $Q \times \Delta^*$ to each pair $(q, u) \in D$.

Example:

Let *T* be the following finite-state transducer:

For $u \in \Sigma^*$, $v \in \Delta^*$ is a possible output of T, if u admits a factorisation of the form $u = u_1 u_2 \cdots u_n$ such that there are states $q_1, q_2, \ldots, q_n \in Q$ and transitions

$$\delta(q_0, u_1) \ni (q_1, v_1), \delta(q_1, u_2) \ni (q_2, v_2), \dots, \delta(q_{n-1}, u_n) \ni (q_n, v_n)$$

such that $q_n \in F$ and $v = v_1 v_2 \cdots v_n$.

By $T(u) \subseteq \Delta^*$ we denote the set of all possible outputs of T for input u. In this way T induces a (partial) mapping $T: \Sigma^* \to 2^{\Delta^*}$.

A mapping $\varphi: \Sigma^* \to 2^{\Delta^*}$ is called a finite transduction, if there exists a finite-state transducer T such that $T(w) = \varphi(w)$ for all $w \in \Sigma^*$.

Let $T = (Q, \Sigma, \Delta, \delta, q_0, F)$ be an FST.

For a language $L \subseteq \Sigma^*$,

$$T(L) := \bigcup_{w \in L} T(w)$$

is the image of L w.r.t. T.

For a language $L \subseteq \Delta^*$,

$$T^{-1}(L) := \{ u \in \Sigma^* \mid T(u) \cap L \neq \emptyset \}$$

is the preimage of *L* w.r.t. *T*.

By $R_T \subseteq \Sigma^* \times \Delta^*$ we denote the relation

$$R_T := \{ (u, v) \mid v \in T(u) \}.$$

Relations of this form are called rational relations.

Example (cont.):

$$T(aabb)$$
 = $\{010111,010110111\},$
 $T(bbba)$ = $\{1011110,101101110,1011011101\},$
 $T(\varepsilon)$ = \emptyset ,
 $T(aaab)$ = \emptyset ,
 $T(\{b,ba\})$ = $\{10111,101110\},$
 $T^{-1}(\{10111,101110\})$ = $\{b^{n+1},b^{n+1}a \mid n \geq 0\}.$

Theorem 2.27 (Nivat 1968)

Let Σ and Δ be finite alphabets, and let $R \subseteq \Sigma^* \times \Delta^*$. The relation R is a rational relation if and only if there exist a finite alphabet Γ , a regular language $L \subseteq \Gamma^*$, and morphisms $g: \Gamma^* \to \Sigma^*$ and $h: \Gamma^* \to \Delta^*$ such that $R = \{ (g(w), h(w)) \mid w \in L \}$.

Proof.

" \Rightarrow ": Let *R* be a rational relation, that is,

$$R = R_T = \{ (u, v) \mid u \in \Sigma^* \text{ and } v \in T(u) \}$$

for some FST $T = (Q, \Sigma, \Delta, \delta, q_0, F)$.

We must show that $R = \{ (g(w), h(w)) \mid w \in L \}$ for some $L \in REG(\Gamma)$ and morphisms $g : \Gamma^* \to \Sigma^*$ and $h : \Gamma^* \to \Delta^*$.

Proof of Theorem 2.27 (cont.)

Let
$$\Gamma := \{ [q, u, v, p] \mid (p, v) \in \delta(q, u) \}.$$

From the definition of T it follows that Γ is a finite set, the elements of which we interpret as letters.

We define morphisms $g: \Gamma^* \to \Sigma^*$ and $h: \Gamma^* \to \Delta^*$ through

$$g([q, u, v, p]) := u \text{ and } h([q, u, v, p]) := v.$$

Finally, let $L \subseteq \Gamma^*$ be defined as follows:

$$[q_1, u_1, v_1, p_1][q_2, u_2, v_2, p_2] \cdots [q_n, u_n, v_n, p_n] \in L$$
 iff

- 1 $q_1 = q_0$,
- $p_n \in F$, and
- 3 for all i = 1, ..., n-1, $p_i = q_{i+1}$.

One can easily define a DFA for this language, that is, $L \in REG(\Gamma)$.

Proof of Theorem 2.27 (cont.)

The word

$$[q_1, u_1, v_1, p_1][q_2, u_2, v_2, p_2] \cdots [q_n, u_n, v_n, p_n] \in L$$

describes an accepting computation of T for input $u := u_1 u_2 \cdots u_n$ producing output $v := v_1 v_2 \cdots v_n$.

Thus, if $q_0 \notin F$, then

$$R = R_T = \{ (u, v) \mid v \in T(u) \} = \{ (g(w), h(w)) \mid w \in L \}.$$

If $q_0 \in F$, then we consider the language $L' := L \cup \{\varepsilon\}$, since then the empty computation is an accepting computation of T for input ε that produces the output ε .

Proof of Theorem 2.27 (cont.)

"\(\infty\)": Now let $R = \{ (g(w), h(w)) \mid w \in L \}$ for a regular language $L \subseteq \Gamma^*$. Then there is a DFA $A = (Q, \Gamma, \delta, q_0, F)$ such that L(A) = L. Let T be the FST $T = (Q, \Sigma, \Delta, \delta', q_0, F)$ that is obtained from A by replacing each transition $q \stackrel{c}{\to} q'$ of A by $q \stackrel{g(c)/h(c)}{\to} q'$. Then

$$R = \{ (g(w), h(w)) \mid w \in L \} = \{ (u, v) \mid v \in T(u) \}.$$

Corollary 2.28

If T is a finite transduction, then so is T^{-1} .

Corollary 2.29

The class REG is closed under finite transductions and inverse finite transductions, that is, if $T \subseteq \Sigma^* \times \Delta^*$ is a finite transduction, then the following implications hold:

- **11** If $L \in REG(\Sigma)$, then $T(L) \in REG(\Delta)$.
- **2** If $L \in REG(\Delta)$, then $T^{-1}(L) \in REG(\Sigma)$.

Proof.

By Corollary 2.28 it suffices to prove (1).

Let $T \subseteq \Sigma^* \times \Delta^*$ be a finite transduction, and let $L_1 \in REG(\Sigma)$. We must prove that $T(L_1) \in REG(\Delta)$ ist.

By Theorem 2.27, there are an alphabet Γ , a language $L \in \text{REG}(\Gamma)$, and morphisms $g : \Gamma^* \to \Sigma^*$ and $h : \Gamma^* \to \Delta^*$ such that

$$T = \{ (g(w), h(w)) \mid w \in L \}.$$

Proof of Corollary 2.29 (cont.)

We obtain the following sequence of equivalent statements:

$$T(L_{1}) = \{ v \in \Delta^{*} \mid \exists u \in L_{1} : v \in T(u) \}$$

$$= \{ h(w) \mid w \in L \text{ and } \exists u \in L_{1} : g(w) = u \}$$

$$= \{ h(w) \mid w \in L \text{ and } g(w) \in L_{1} \}$$

$$= \{ h(w) \mid w \in L \cap g^{-1}(L_{1}) \}$$

$$= h(L \cap g^{-1}(L_{1})).$$

By Theorem 2.13, $g^{-1}(L_1) \in \text{REG}(\Gamma)$, by Theorem 2.8, REG is closed under intersection, which yields $L \cap g^{-1}(L_1) \in \text{REG}(\Gamma)$, and by Remark 2.4(c), REG is closed under morphisms, that is, $T(L_1) = h(L \cap g^{-1}(L_1))$ is a regular language.

