2. Regular Languages and Finite Automata 2.6 Automata with Output

2.6 Automata with Output

A Moore automaton is a DFA in which an output symbol is assigned to
each state. Accordingly, a Moore automaton A is given through a
6-tuple A= (Q,%,A,J,0,q), Where

— Qs afinite set of (internal) states,

— X is a finite input alphabet,

— A'is a finite output alphabet,

— Qo € Qs the initial state,

— 0 : @Qx X — Qs the transition function, and
— o : Q — A is the output function.

Foru=ajar...ap, let g :=90(q,a1a>...a;),i =1,2,...,n,
that is, on input u, A visits the sequence of states qp, 91, G>, . . ., Qn.
During this computation A generates the output

o(q)o(q1)o(qe) - .. o(qn) € AT
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Let A be the Moore automaton that is given by the following graph,
where the output symbols are written as external markings to the

various states:
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Example (cont.):

Claim:

/ o
If u=b1bs...bpn, then o(u) = rpry...rm, wherer; = > b; -2/ mod 3.
j=1

n .
If u = bin(m), thatis, m= ) b;- 2"/, then the last symbol r, of the
j=1
output o(u) is just the remainder of m mod 3.

Proof.
Fori=0,1,2, o(qi) = i. Hence, it suffices to prove the following:

n .

(x) Forall u= bibs...bn, 6(qo,U) = q;, where i = > b; - 2"/ mod 3.
j=1

If n= 0, then u= ¢, und 6(qg, U) = Qp.

- - | qo, forby =0,
If n=1,then u= by € {0,1}. Hence, 6(qp, U) = { gr. for by — 1.
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Example (cont.):

Proof (cont.)

Assume that the statement (x) has been verified for some n > 1, and
let u=b1bs ... bnbn_|_1.

Then 6(qo, u) = 6(6(qo, b1ba ... bn), bri1).

For i = n, the statement holds by the induction hypothesis.

For index n + 1, the following can be checked by case analysis:

n+1
5(5(qo, b1bz . .. by), bpi1) = q;, where i = b;- 2"/ mod 3.
j=1
This completes the proof. ]
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A Mealey automaton is a DFA that outputs a symbol during each
transition. Accordingly, a Mealey automaton A is specified by a 6-tuple
A=(Q, X, A0 q), where Q, 2, A, d, and qp are defined as for a
Moore automaton, while ¢ : Q x ¥ — A is the output function.

The output function o can be extended to a function o : Q x X* — A*:

o(q,e) = ¢ forall g € Q,
o(q, ua) o(q,u)-o(é(q,u),a) forallge QueX* ack.

Let A be the Mealey automaton given through the following graph:
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Example (cont.):
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Example (cont.):

Let L={0,1}*-{00,11}. Oninput u = b1b>... by, € {0,1}™,
A produces output v = ¢G> ...Ccm € {y, n}", where

o Y, if bybo...bj € L,
e I, ifb1b2...b,'€L.

In state py or py, A “stores” the latest input symbol.

Let A=(Q, X, A, 4, 0,q) be a Moore automaton and

let B=(Q,%,A, 0,0, q)) be a Mealey automaton.

Foru e ¥, let Fa(u) € A* and Fg(u) € A* be the output words
that are generated by A and B on input vu.

Then |Fa(u)| = |ul + 1 and |Fg(u)| = |ul.

The automata A und B are called equivalent, if
Fa(u) = o(qo) - Fe(u)
forall u e ¥*.
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Theorem 2.26

(a) For each Moore automaton, there exists an equivalent Mealey
automaton.

(b) For each Mealey automaton, there exists an equivalent Moore
Automaton.

As an exercise!

[]

In fact, the equivalent automata can be constructed effectively!
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A finite-state transducer (FST) T is given through a 6-tuple

T=(Q,x,A,0q,F),
where Q, X, A, and qp are defined as for a Mealey automaton,
F C Qis a set of final states,
and § : D — 29%A" is the transition and output function.
Here D is a finite subset of Q x ¥*, and
0 associates a finite subset of Q x A* to each pair (g, u) € D.

Let T be the following finite-state transducer:

b/101
aa/0 b/e a/0

RO Gy S—e,
6 b/101 \__/ /11 ‘
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Foru e X*, v € A* is a possible output of T, if u admits a factorisation
of the form u = uyus - - - up such that there are states g4,9-,...,9, € Q
and transitions

0(qo, U1) 2 (91, v1),0(q1, U2) 2 (G2, V2),...,0(qn-1,Un) 2 (Qn, Vn)

suchthatg, e Fandv=vyvo--- vy

By T(u) C A* we denote the set of all possible outputs of T for input v.
In this way T induces a (partial) mapping T : ©* — 227,

A mapping ¢ : ¥* — 247 is called a finite transduction, if there exists a
finite-state transducer T such that T(w) = p(w) for all w € ¥*.

Llet T = (Q,X,A,6,qo, F) be an FST.

For a language L C Y%,

T(L) =[] T(w)

is the image of L w.rt. T. wel
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For a language L C A*,
T L) ={uex* | T(wnNL#D}
Is the preimage of L w.r.t. T.
By Rt C ¥* x A* we denote the relation
Rr={(u,v)|veT(u)}.
Relations of this form are called rational relations.

Example (cont.):

T (aabb) = {010111,010110111},

T (bbba) = {101110,101101110,101101101110},
T(e) = 0,

T (aaab) = (),

T'({b, ba}) = {10111,101110},

T=1({10111,101110}) = {61, b""a|n>0}.
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Theorem 2.27 (Nivat 1968)

LetY and A be finite alphabets, and let R C ¥* x A*.

The relation R is a rational relation if and only if

there exist a finite alphabet I', a reqular language L C T*, and
morphisms g : I'* — Y* and h: * — A* such that
R={(g(w),h(w)) | weL}.

“="": Let R be a rational relation, that is,
R=Rr={(u,v)|lueX*andve T(u)}
forsome FST T =(Q, %, A, 9, qo, F).

We must show that R = { (g(w), h(w)) | w € L} for some L € REG(T)
and morphisms g:I'*—¥*and h: ' — A*.
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Proof of Theorem 2.27 (cont.)

Let I := {[q,u,v,p] | (p,Vv) €(q,u) }.
From the definition of T it follows that I is a finite set, the elements of
which we interpret as letters.
We define morphisms g : '™ — X* and h: ' — A* through
g(lg, u, v,p]) := vand h([g,u,v,p]) = Vv.

Finally, let L C I'* be defined as follows:
[CI‘I , U, V‘IaP'I][QZa Uo, V27p2] T [ql’h Un, Vnapn] e L iff

g1 = Qo

pn € F, and

foralli=1,...,n—1, pi = qj.1.
One can easily define a DFA for this language, that is, L € REG(I").
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Proof of Theorem 2.27 (cont.)
The word

(G4, U1, Vi, P1](G2, Uz, Vo, P2] - - - [Qn, Un, Vi, Pn] € L

describes an accepting computation of T for input U := uUs - - - Up
producing output v := v4Vvo - - - Vp.

Thus, if gy € F, then
R=Rr={(uv)|veT(w)}={(g(w) h(w)|weL}.

If go € F, then we consider the language L' := L U {¢}, since then the
empty computation is an accepting computation of T for input ¢ that
produces the output ¢.
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Proof of Theorem 2.27 (cont.)

<":Now let R={(g(w), h(w)) | w € L} for a regular language
L CT*. Thenthereisa DFA A= (Q,Tl,4,qo, F) such that L(A) = L.

Let T bethe FST T = (Q, X, A, ', qo, F) that is obtained from A by

Q(C)/ h(c)

replacing each transition g = g’ of Aby g q’. Then

A= 1(g(w),h(w)) [wel}=1{(uv)|lveT(u); =

Corollary 2.28

If T is a finite transduction, then sois T~ 1.
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Corollary 2.29

The class REG is closed under finite transductions and inverse finite
transductions, that is, if T C X* x A* is a finite transduction, then the
following implications hold:

If L €« REG(X), then T(L) € REG(A).
If L e REG(A), then T-1(L) € REG(Y).

By Corollary 2.28 it suffices to prove (1).
Let T C ¥* x A* be a finite transduction, and let L1 € REG(X). We
must prove that T(L;) € REG(A) ist.

By Theorem 2.27, there are an alphabet I', a language L € REG(I),
and morphisms g : I'* — 2~*and h: ' — A* such that

T =1(9(w),h(w)) | w e L}
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Proof of Corollary 2.29 (cont.)

We obtain the following sequence of equivalent statements:

T(Ly) = {veA*|Jueli:veT(u)}
= {h(w)|welandduely:g(w)=u}
= {h(w)|welandg(w) € Ly}
= {h(w)|welng (L)}
= h(Lng (L))

By Theorem 2.13, g~ 1(Ly) € REG(I),

by Theorem 2.8, REG is closed under intersection,

which yields LN g~'(Ly) € REG(I),

and by Remark 2.4(c), REG is closed under morphisms, that is,

T(Ly) = h(LNn g~ '(Ly)) is a regular language. ]
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