2.6 Automata with Output

A Moore automaton is a DFA in which an output symbol is assigned to each state. Accordingly, a Moore automaton A is given through a 6 -tuple $A=\left(Q, \Sigma, \Delta, \delta, \sigma, q_{0}\right)$, where

- Q is a finite set of (internal) states,
$-\Sigma$ is a finite input alphabet,
$-\Delta$ is a finite output alphabet,
$-q_{0} \in Q$ is the initial state,
$-\delta: Q \times \Sigma \rightarrow Q$ is the transition function, and
$-\sigma: Q \rightarrow \Delta$ is the output function.
For $u=a_{1} a_{2} \ldots a_{n}$, let $q_{i}:=\delta\left(q_{0}, a_{1} a_{2} \ldots a_{i}\right), i=1,2, \ldots, n$, that is, on input u, A visits the sequence of states $q_{0}, q_{1}, q_{2}, \ldots, q_{n}$. During this computation A generates the output

$$
\sigma\left(q_{0}\right) \sigma\left(q_{1}\right) \sigma\left(q_{2}\right) \ldots \sigma\left(q_{n}\right) \in \Delta^{n+1}
$$

Example:

Let A be the Moore automaton that is given by the following graph, where the output symbols are written as external markings to the various states:

Example (cont.):

Claim:

If $u=b_{1} b_{2} \ldots b_{n}$, then $\sigma(u)=r_{0} r_{1} \ldots r_{n}$, where $r_{i} \equiv \sum_{j=1}^{i} b_{j} \cdot 2^{i-j} \bmod 3$. If $u=\operatorname{bin}(m)$, that is, $m=\sum_{j=1}^{n} b_{j} \cdot 2^{n-j}$, then the last symbol r_{n} of the output $\sigma(u)$ is just the remainder of $m \bmod 3$.

Proof.

For $i=0,1,2, \sigma\left(q_{i}\right)=i$. Hence, it suffices to prove the following:
$(*)$ For all $u=b_{1} b_{2} \ldots b_{n}, \delta\left(q_{0}, u\right)=q_{i}$, where $i \equiv \sum_{j=1}^{n} b_{j} \cdot 2^{n-j} \bmod 3$.
If $n=0$, then $u=\varepsilon$, und $\delta\left(q_{0}, u\right)=q_{0}$.
If $n=1$, then $u=b_{1} \in\{0,1\}$. Hence, $\delta\left(q_{0}, u\right)= \begin{cases}q_{0}, & \text { for } b_{1}=0, \\ q_{1}, & \text { for } b_{1}=1 .\end{cases}$

Example (cont.):

Proof (cont.)

Assume that the statement (*) has been verified for some $n \geq 1$, and let $u=b_{1} b_{2} \ldots b_{n} b_{n+1}$.
Then $\delta\left(q_{0}, u\right)=\delta\left(\delta\left(q_{0}, b_{1} b_{2} \ldots b_{n}\right), b_{n+1}\right)$.
For $i=n$, the statement holds by the induction hypothesis.
For index $n+1$, the following can be checked by case analysis:

$$
\delta\left(\delta\left(q_{0}, b_{1} b_{2} \ldots b_{n}\right), b_{n+1}\right)=q_{i}, \text { where } i \equiv \sum_{j=1}^{n+1} b_{j} \cdot 2^{n+1-j} \bmod 3
$$

This completes the proof.

A Mealey automaton is a DFA that outputs a symbol during each transition. Accordingly, a Mealey automaton A is specified by a 6 -tuple $A=\left(Q, \Sigma, \Delta, \delta, \sigma, q_{0}\right)$, where $Q, \Sigma, \Delta, \delta$, and q_{0} are defined as for a Moore automaton, while $\sigma: Q \times \Sigma \rightarrow \Delta$ is the output function.

The output function σ can be extended to a function $\sigma: Q \times \Sigma^{*} \rightarrow \Delta^{*}$:

$$
\begin{array}{lll}
\sigma(q, \varepsilon) & :=\varepsilon & \text { for all } q \in Q, \\
\sigma(q, u a) & :=\sigma(q, u) \cdot \sigma(\delta(q, u), a) & \text { for all } q \in Q, u \in \Sigma^{*}, a \in \Sigma .
\end{array}
$$

Example:

Let A be the Mealey automaton given through the following graph:

Example (cont.):

Example (cont.):

Let $L=\{0,1\}^{*} \cdot\{00,11\}$. On input $u=b_{1} b_{2} \ldots b_{m} \in\{0,1\}^{m}$, A produces output $v=c_{1} c_{2} \ldots c_{m} \in\{y, n\}^{m}$, where

$$
c_{i}= \begin{cases}y, & \text { if } b_{1} b_{2} \ldots b_{i} \in L \\ n, & \text { if } b_{1} b_{2} \ldots b_{i} \notin L .\end{cases}
$$

In state p_{0} or p_{1}, A "stores" the latest input symbol.
Let $A=\left(Q, \Sigma, \Delta, \delta, \sigma, q_{0}\right)$ be a Moore automaton and let $B=\left(Q^{\prime}, \Sigma, \Delta, \delta^{\prime}, \sigma^{\prime}, q_{0}^{\prime}\right)$ be a Mealey automaton.
For $u \in \Sigma^{*}$, let $F_{A}(u) \in \Delta^{*}$ and $F_{B}(u) \in \Delta^{*}$ be the output words that are generated by A and B on input u.
Then $\left|F_{A}(u)\right|=|u|+1$ and $\left|F_{B}(u)\right|=|u|$.
The automata A und B are called equivalent, if

$$
F_{A}(u)=\sigma\left(q_{0}\right) \cdot F_{B}(u)
$$

for all $u \in \Sigma^{*}$.

Theorem 2.26

(a) For each Moore automaton, there exists an equivalent Mealey automaton.
(b) For each Mealey automaton, there exists an equivalent Moore Automaton.

Proof.

As an exercise!
In fact, the equivalent automata can be constructed effectively!

A finite-state transducer (FST) T is given through a 6-tuple

$$
T=\left(Q, \Sigma, \Delta, \delta, q_{0}, F\right)
$$

where Q, Σ, Δ, and q_{0} are defined as for a Mealey automaton, $F \subseteq Q$ is a set of final states, and $\delta: D \rightarrow 2^{Q \times \Delta^{*}}$ is the transition and output function. Here D is a finite subset of $Q \times \Sigma^{*}$, and δ associates a finite subset of $Q \times \Delta^{*}$ to each pair $(q, u) \in D$.

Example:

Let T be the following finite-state transducer:

For $u \in \Sigma^{*}, v \in \Delta^{*}$ is a possible output of T, if u admits a factorisation of the form $u=u_{1} u_{2} \cdots u_{n}$ such that there are states $q_{1}, q_{2}, \ldots, q_{n} \in Q$ and transitions

$$
\delta\left(q_{0}, u_{1}\right) \ni\left(q_{1}, v_{1}\right), \delta\left(q_{1}, u_{2}\right) \ni\left(q_{2}, v_{2}\right), \ldots, \delta\left(q_{n-1}, u_{n}\right) \ni\left(q_{n}, v_{n}\right)
$$

such that $q_{n} \in F$ and $v=v_{1} v_{2} \cdots v_{n}$.
By $T(u) \subseteq \Delta^{*}$ we denote the set of all possible outputs of T for input u. In this way T induces a (partial) mapping $T: \Sigma^{*} \rightarrow 2^{\Delta^{*}}$.
A mapping $\varphi: \Sigma^{*} \rightarrow 2^{\Delta^{*}}$ is called a finite transduction, if there exists a finite-state transducer T such that $T(w)=\varphi(w)$ for all $w \in \Sigma^{*}$.
Let $T=\left(Q, \Sigma, \Delta, \delta, q_{0}, F\right)$ be an FST.
For a language $L \subseteq \Sigma^{*}$,
is the image of L w.r.t. T.

$$
T(L):=\bigcup_{w \in L} T(w)
$$

For a language $L \subseteq \Delta^{*}$,

$$
T^{-1}(L):=\left\{u \in \Sigma^{*} \mid T(u) \cap L \neq \emptyset\right\}
$$

is the preimage of L w.r.t. T.
By $R_{T} \subseteq \Sigma^{*} \times \Delta^{*}$ we denote the relation

$$
R_{T}:=\{(u, v) \mid v \in T(u)\} .
$$

Relations of this form are called rational relations.
Example (cont.):

$T(a a b b)$	$=\{010111,010110111\}$,
$T(b b b a)$	$=\{101110,101101110,101101101110\}$,
$T(\varepsilon)$	$=\emptyset$,
$T(a a a b)$	$=\emptyset$,
$T(\{b, b a\})$	$=\{10111,101110\}$,
$T^{-1}(\{10111,101110\})$	$=\left\{b^{n+1}, b^{n+1} a \mid n \geq 0\right\}$.

Theorem 2.27 (Nivat 1968)

Let Σ and Δ be finite alphabets, and let $R \subseteq \Sigma^{*} \times \Delta^{*}$.
The relation R is a rational relation if and only if there exist a finite alphabet Γ, a regular language $L \subseteq \Gamma^{*}$, and morphisms $g: \Gamma^{*} \rightarrow \Sigma^{*}$ and $h: \Gamma^{*} \rightarrow \Delta^{*}$ such that
$R=\{(g(w), h(w)) \mid w \in L\}$.

Proof.

" \Rightarrow ": Let R be a rational relation, that is,

$$
R=R_{T}=\left\{(u, v) \mid u \in \Sigma^{*} \text { and } v \in T(u)\right\}
$$

for some FST $T=\left(Q, \Sigma, \Delta, \delta, q_{0}, F\right)$.
We must show that $R=\{(g(w), h(w)) \mid w \in L\}$ for some $L \in \operatorname{REG}(\Gamma)$ and morphisms $g: \Gamma^{*} \rightarrow \Sigma^{*}$ and $h: \Gamma^{*} \rightarrow \Delta^{*}$.

Proof of Theorem 2.27 (cont.)

Let $\Gamma:=\{[q, u, v, p] \mid(p, v) \in \delta(q, u)\}$.
From the definition of T it follows that Γ is a finite set, the elements of which we interpret as letters.
We define morphisms $g: \Gamma^{*} \rightarrow \Sigma^{*}$ and $h: \Gamma^{*} \rightarrow \Delta^{*}$ through

$$
g([q, u, v, p]):=u \text { and } h([q, u, v, p]):=v .
$$

Finally, let $L \subseteq \Gamma^{*}$ be defined as follows:
$\left[q_{1}, u_{1}, v_{1}, p_{1}\right]\left[q_{2}, u_{2}, v_{2}, p_{2}\right] \cdots\left[q_{n}, u_{n}, v_{n}, p_{n}\right] \in L$ iff
$1 q_{1}=q_{0}$,
$2 p_{n} \in F$, and
3 for all $i=1, \ldots, n-1, p_{i}=q_{i+1}$.
One can easily define a DFA for this language, that is, $L \in \operatorname{REG}(\Gamma)$.

Proof of Theorem 2.27 (cont.)

The word

$$
\left[q_{1}, u_{1}, v_{1}, p_{1}\right]\left[q_{2}, u_{2}, v_{2}, p_{2}\right] \cdots\left[q_{n}, u_{n}, v_{n}, p_{n}\right] \in L
$$

describes an accepting computation of T for input $u:=u_{1} u_{2} \cdots u_{n}$ producing output $v:=v_{1} v_{2} \cdots v_{n}$.
Thus, if $q_{0} \notin F$, then

$$
R=R_{T}=\{(u, v) \mid v \in T(u)\}=\{(g(w), h(w)) \mid w \in L\} .
$$

If $q_{0} \in F$, then we consider the language $L^{\prime}:=L \cup\{\varepsilon\}$, since then the empty computation is an accepting computation of T for input ε that produces the output ε.

Proof of Theorem 2.27 (cont.)

$" \Leftarrow "$: Now let $R=\{(g(w), h(w)) \mid w \in L\}$ for a regular language $L \subseteq \Gamma^{*}$. Then there is a DFA $A=\left(Q, \Gamma, \delta, q_{0}, F\right)$ such that $L(A)=L$. Let T be the FST $T=\left(Q, \Sigma, \Delta, \delta^{\prime}, q_{0}, F\right)$ that is obtained from A by replacing each transition $q \xrightarrow{c} q^{\prime}$ of A by $q \xrightarrow{g(c) / h(c)} q^{\prime}$. Then

$$
R=\{(g(w), h(w)) \mid w \in L\}=\{(u, v) \mid v \in T(u)\} .
$$

Corollary 2.28

If T is a finite transduction, then so is T^{-1}.

Corollary 2.29

The class REG is closed under finite transductions and inverse finite transductions, that is, if $T \subseteq \Sigma^{*} \times \Delta^{*}$ is a finite transduction, then the following implications hold:
1 If $L \in \operatorname{REG}(\Sigma)$, then $T(L) \in \operatorname{REG}(\Delta)$.
2 If $L \in \operatorname{REG}(\Delta)$, then $T^{-1}(L) \in \operatorname{REG}(\Sigma)$.

Proof.

By Corollary 2.28 it suffices to prove (1).
Let $T \subseteq \Sigma^{*} \times \Delta^{*}$ be a finite transduction, and let $L_{1} \in \operatorname{REG}(\Sigma)$. We must prove that $T\left(L_{1}\right) \in \operatorname{REG}(\Delta)$ ist.
By Theorem 2.27, there are an alphabet Γ, a language $L \in \operatorname{REG}(\Gamma)$, and morphisms $g: \Gamma^{*} \rightarrow \Sigma^{*}$ and $h: \Gamma^{*} \rightarrow \Delta^{*}$ such that

$$
T=\{(g(w), h(w)) \mid w \in L\} .
$$

Proof of Corollary 2.29 (cont.)

We obtain the following sequence of equivalent statements:

$$
\begin{aligned}
T\left(L_{1}\right) & =\left\{v \in \Delta^{*} \mid \exists u \in L_{1}: v \in T(u)\right\} \\
& =\left\{h(w) \mid w \in L \text { and } \exists u \in L_{1}: g(w)=u\right\} \\
& =\left\{h(w) \mid w \in L \text { and } g(w) \in L_{1}\right\} \\
& =\left\{h(w) \mid w \in L \cap g^{-1}\left(L_{1}\right)\right\} \\
& =h\left(L \cap g^{-1}\left(L_{1}\right)\right) .
\end{aligned}
$$

By Theorem 2.13, $g^{-1}\left(L_{1}\right) \in \operatorname{REG}(\Gamma)$,
by Theorem 2.8, REG is closed under intersection, which yields $L \cap g^{-1}\left(L_{1}\right) \in \operatorname{REG}(\Gamma)$, and by Remark 2.4(c), REG is closed under morphisms, that is, $T\left(L_{1}\right)=h\left(L \cap g^{-1}\left(L_{1}\right)\right)$ is a regular language.

